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We are interested in the problem of robust parametric estimation of a density from n i.i.d. observations. By
using a practice-oriented procedure based on robust tests, we build an estimator for which we establish non-
asymptotic risk bounds with respect to the Hellinger distance under mild assumptions on the parametric
model. We show that the estimator is robust even for models for which the maximum likelihood method
is bound to fail. A numerical simulation illustrates its robustness properties. When the model is true and
regular enough, we prove that the estimator is very close to the maximum likelihood one, at least when the
number of observations n is large. In particular, it inherits its efficiency. Simulations show that these two
estimators are almost equal with large probability, even for small values of n when the model is regular
enough and contains the true density.
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1. Introduction

We consider n independent and identically distributed random variables X1, . . . ,Xn defined on
an abstract probability space (�,E,P) with values in the measure space (X,F,μ). We suppose
that the distribution of Xi admits a density s with respect to μ and aim at estimating s by using
a parametric approach.

1.1. About the maximum likelihood estimator

The maximum likelihood method is one of the most widespread estimation methods to deal with
this statistical setting. Indeed, it is well known that it provides estimators with nice statistical
properties when the parametric model is true and regular enough.

Nevertheless, it is also recognized that it breaks down for many parametric models F of inter-
est. A simple one is the translation model F = {f (· − θ), θ ∈ �} where limx→0 f (x) = +∞, in
which the maximum likelihood estimator (m.l.e. for short) does not exist. Other counterexamples
may be found in Pitman [23], Ferguson [18], Le Cam [21], Birgé [9] among other references.

Another known defect of the m.l.e. is its lack of robustness. This means that if the assump-
tion that s belongs to the parametric model F is only slightly violated, the m.l.e. may perform
poorly. As an example, consider the model F = {θ−11[0,θ], θ > 0}, in which the maximum
likelihood estimator is θ̂−1

mle1[0,θ̂mle] with θ̂mle = max1≤i≤n Xi . Suppose that the true density s
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does not belong to F but lies in a very small neighbourhood of it. For instance, assume that
s = (1 − p)1[0,1] + p2−11[0,2] for some p ∈ (0,1). If p is very small, the true underlying den-
sity s is very close to 1[0,1] ∈ F and a good estimator f̂ of s should therefore be also close to
1[0,1], at least when n is large enough and p is small enough. Nonetheless, whatever p > 0, the
estimator θ̂−1

mle1[0,θ̂mle] converges almost surely to 2−11[0,2] when n goes to infinity. It is thus a
very poor estimate of s when p is small.

1.2. Alternative estimators

Several attempts have been made in the literature to overcome the difficulties of the maximum
likelihood approach. When the model is regular enough, the classical notion of efficiency can be
used to measure the quality of an estimator (when the model is not regular enough, the optimal
rate of convergence may not be the usual root-n rate). For these models, the L-estimators com-
monly accomplish a good trade-off between robustness and efficiency. Some estimators have
the nice feature to be simultaneously robust and asymptotically efficient. This is the case, for
example, of the minimum Hellinger distance estimators introduced by Beran [8] and studied in
Donoho and Liu [16], Lindsay [22] among other references. We refer to Basu et al. [7] for an
introduction to these estimators.

Things become more complicated when the model is less regular and even more when the
maximum likelihood estimators do not even exist. We do not know if the aforementioned es-
timation strategies can be adapted to cope with these models in a satisfactory way. Building a
robust and optimal estimator is not straightforward in some models (where “optimal” means that
it achieves the optimal rate of convergence when the model holds true). Think, for instance, about
the translation model F = {f (· − θ), θ ∈ [−1,1]} where

f (x) =
⎧⎨⎩

1

4
√|x|1[−1,1](x), for all x ∈ R \ {0},

0, for x = 0.
(1)

The median is a natural robust estimator, but it converges slowly to the right parameter since it
only reaches the rate n−1 whereas the optimal one is n−2.

1.3. Estimation via testing

There is in the literature a more or less universal strategy of estimation that leads to robust and
optimal estimators. It even manages to deal with models for which the maximum likelihood
method is bound to fail. Its basic principle is to use tests to derive estimators. Historically, this
idea of using tests for building estimators dates back to the 1970s with the works of Lucien Le
Cam. More recently, Birgé [9] significantly extended the scope of these procedures by relating
them to the problem of model selection, providing at the same time new perspectives on estima-
tion theory. It gave birth to a series of papers; see Birgé [10–12], Baraud and Birgé [4], Baraud
[2,3], Sart [26,27], Baraud et al. [5]. The main feature of these procedures is that they allow to
obtain general theoretical results in various statistical settings (such as general model selection
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theorems) which are usually unattainable by the traditional procedures (such as those based on
the minimization of a penalized contrast).

In density estimation, these papers show that under very mild assumptions on the parametric
model F = {fθ , θ ∈ �}, one can design an estimator ŝ = f

θ̂
such that

P

[
Ch2(s, f

θ̂
) ≥ inf

θ∈�
h2(s, fθ ) + DF

n
+ ξ

]
≤ e−nξ for all ξ > 0, (2)

where C is a numerical positive constant, h the Hellinger distance, and DF measures, in some
sense, the “massiveness” of F . We recall that the Hellinger distance is defined on the cone
L

1+(X,μ) of non-negative integrable functions on X with respect to μ by

h2(f, g) = 1

2

∫
X

(√
f (x) −√g(x)

)2 dμ(x) for all f,g ∈ L
1+(X,μ).

When s does belong to the model F , that is, when there exists θ0 ∈ � such that s = fθ0 , the
estimator ŝ achieves a quadratic risk of order n−1 with respect to the Hellinger distance. Besides,
if we can relate the Hellinger distance h(fθ0, fθ ) to a distance between the parameters θ0, θ , the
convergence rate of θ̂ to θ0 may be deduced from (2). For instance, when � ⊂R, and when there
exists α > 0 such that h2(fθ0, fθ ) ∼ |θ0 − θ |α , the estimator θ̂ reaches the rate n−1/α . When the
model is regular enough, h2(fθ0 , fθ ) ∼ |θ0 − θ |2, and the estimator θ̂ attains the usual root-n
rate.

It is worth mentioning that one does not have to assume that the unknown density s belongs
to the model, which is important since one cannot usually ensure that this is the case in practice.
We rather use the model F as an approximating class (sieve) for s. Inequality (2) shows that the
estimator ŝ = f

θ̂
cannot be strongly influenced by any type of small departures from the model

(measured through the Hellinger distance). As a matter of fact, if infθ∈� h2(s, fθ ) ≤ an−1 with
a > 0, which means that the model is slightly misspecified, the quadratic risk of the estimator
ŝ = f

θ̂
remains of order n−1. This can be interpreted as a robustness property (that is, not shared

by the m.l.e.).

1.4. The purposes of this paper

One of the most annoying drawbacks of the estimators based on tests is that their practical con-
struction is numerically very difficult. Two steps are required to build these estimators. In the
first step, we discretize the model F , that is, we build a thin net Fdis in F that must be finite
or countable. In the second step, we use the tests to pairwise compare the elements of Fdis.
Therefore, the number of tests we need to compute is of the order of the square of the cardinality
of Fdis. Unfortunately, this cardinality is often very large, making the construction of the esti-
mators difficult in practice. In this paper, we present a new estimation procedure based on the
test designed by Baraud [2] and on an iterative construction of confidence sets. This procedure
does not involve the pairwise comparison of all the elements of Fdis but only of a small (random
and suitably chosen) part of them, which results in a significant reduction of the numerical com-
plexity. In particular, this makes it possible to evaluate the quality of the estimator by means of
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numerical simulations in situations where the procedure of Baraud [2] would have required the
computation of an intractable number of tests.

This estimation procedure outperforms the maximum likelihood one in many aspects. Simi-
larly to the procedure of Baraud [2], the estimator ŝ = f

θ̂
exists in parametric models where the

m.l.e. does not. We establish a risk bound akin to (2). In particular, when the model F is true,
that is, when there exists θ0 ∈ � such that s = fθ0 ∈ F , the estimator θ̂ converges to the true
parameter θ0 at the right rate of convergence. When the model is only approximately true, which
means that the Hellinger distance between s and the model F is small, the estimator ŝ of s still
performs well.

An additional significant property of this estimator is that it essentially coincides with the
m.l.e. (with large probability), when the model is true and regular enough, even when the number
of observations n is small. It seems to be, in this case, as good as the m.l.e. This property was
brought to light by numerical simulations in the first draft of this paper. During the revision
process, an asymptotic theoretical connection between an estimator based on tests and the m.l.e.
was established, for the first time, in Theorem 4 of Baraud et al. [5]. The techniques developed
in this paper helped us to prove theoretically that our estimator was asymptotically very close to
the m.l.e. and that it inherited in particular its nice asymptotic properties such as efficiency (at
least under suitable regularity assumptions on the model F ). These regularity assumptions are
however different from theirs. They may therefore hold true in some parametric models where
those of Baraud et al. [5] do not.

1.5. Organization of the paper and notations

For the sake of clarity, we start by considering models parametrized by a one-dimensional param-
eter. In Section 2, we present our procedure and the associated theoretical results. We evaluate its
performance in practice by carrying out numerical simulations in the next section. We study the
multi-dimensional case in Section 4. We postpone the main proofs to Section 5 except the one of
Theorem 4.1 which is quite technical and deferred to the Appendix.

We now introduce some notation that will be used all along the paper. The number x ∨ y

stands for max(x, y) and x+ stands for x ∨ 0. We set N� = N \ {0}. The vector (θ1, . . . , θd) of
R

d is denoted by the bold letter θ . We write indifferently h(fθ , fθ ′) or h(θ , θ ′). The cardinality
of a finite set A is denoted by |A|. For (E,d) a metric space, x ∈ E and A ⊂ E, the distance
between x and A is denoted by d(x,A) = infa∈A d(x, a). The indicator function of a subset A is
denoted by 1A. The notation C, C′, C′′ stand for quantities independent of n. When they depend
on other parameters, this dependency will be specified in the text. The values of C, C′, C′′, . . .
may change from line to line.

2. Models parametrized by a one-dimensional parameter

2.1. Assumption on the model

We start by considering sets of densities F = {fθ , θ ∈ �} indexed by a finite interval � =
[m,M] of R. Such a set will be called a one-dimensional model. Throughout this section, the
models are assumed to satisfy the following property.
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Assumption 2.1. There exist positive numbers α, R, �R such that for all θ, θ ′ ∈ [m,M],
R
∣∣θ − θ ′∣∣α ≤ h2(θ, θ ′)≤ �R∣∣θ − θ ′∣∣α,

where h(θ, θ ′) stands for the Hellinger distance h(fθ , fθ ′) between the two densities fθ and fθ ′ .

This assumption allows to connect a (quasi) distance between the parameters to the Hellinger
one between the corresponding densities. A similar assumption may be found in Theorem 5.8
of Chapter 1 of Ibragimov and Has’minskii [20] to prove results on the maximum likelihood
estimator. They require, however, the application θ 
→ fθ (x) to be continuous for μ-almost all x

to ensure the existence and the consistency of the m.l.e. Without this additional assumption, the
m.l.e. may not exist as shown by the translation model F = {f (· − θ), θ ∈ [−1,1]} where f is
defined in the Introduction by (1) (note that Assumption 2.1 holds for this model with α = 1/2).

Under suitable regularity conditions on the model, Theorem 7.6 of Chapter 1 of Ibragimov
and Has’minskii [20] shows that this assumption is fulfilled with α = 2. Other kinds of sufficient
conditions implying Assumption 2.1 may be found in this book (see the beginning of Chapter 5
and Theorem 1.1 of Chapter 6). Other examples and counterexamples are given in Chapter 7 of
Dacunha-Castelle [15]. Several models of interest satisfying this assumption will appear later in
the paper.

2.2. Basic ideas

We now present the heuristic on which our estimation procedure is based. We assume in this
section that s belongs to the model F , that is, there exists θ0 ∈ � = [m,M] such that s = fθ0 .
The starting point is the existence for all θ, θ ′ ∈ � of a measurable function T (θ, θ ′) of the
observations X1, . . . ,Xn such that:

1. For all θ, θ ′ ∈ �, T (θ, θ ′) = −T (θ ′, θ).
2. There exists κ > 0 such that if E[T (θ, θ ′)] is non-negative, then h2(θ0, θ) > κh2(θ, θ ′).
3. For all θ, θ ′ ∈ �, T (θ, θ ′) and E[T (θ, θ ′)] are close (in a suitable sense).

For all θ ∈ �, r > 0, let B(θ, r) be the Hellinger ball centered at θ with radius r , that is,

B(θ, r) = {θ ′ ∈ �,h
(
θ, θ ′)≤ r

}
. (3)

For all θ, θ ′ ∈ �, we deduce from the first point that either T (θ, θ ′) is non-negative, or T (θ ′, θ)

is non-negative. It is likely that it follows from 2 and 3 that in the first case

θ0 ∈ � \B(θ, κ1/2h
(
θ, θ ′))

while in the second case

θ0 ∈ � \B(θ ′, κ1/2h
(
θ, θ ′)).

These sets may be interpreted as confidence sets for θ0.
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The main idea is to build a decreasing sequence (in the sense of inclusion) of intervals (�i)i .
Set θ(1) = m, θ ′(1) = M , and �1 = [θ(1), θ ′(1)] (which is merely �). If T (θ(1), θ ′(1)) is non-
negative, we consider a set �2 such that

�1 \B(θ(1), κ1/2h
(
θ(1), θ ′(1)

))⊂ �2 ⊂ �1

while if T (θ(1), θ ′(1)) is non-positive, we consider a set �2 such that

�1 \B(θ ′(1), κ1/2h
(
θ(1), θ ′(1)

))⊂ �2 ⊂ �1.

The set �2 may thus also be interpreted as a confidence set for θ0. Thanks to Assumption 2.1,
we can define �2 as an interval �2 = [θ(2), θ ′(2)].

We then repeat the construction to build an interval �3 = [θ(3), θ ′(3)] included in �2 such that
either

�3 ⊃ �2 \B(θ(2), κ1/2h
(
θ(2), θ ′(2)

))
or �3 ⊃ �2 \B(θ ′(2), κ1/2h

(
θ(2), θ ′(2)

))
according to the sign of T (θ(2), θ ′(2)).

By induction, we build a decreasing sequence of such intervals (�i)i . We now consider an
integer N large enough so that the length of �N is small enough. We then define the estimator θ̂

as the center of the set �N and estimate s by f
θ̂
.

2.3. Definition of the test

The test T (θ, θ ′) we use in our estimation strategy is the one of Baraud [2] applied to two suitable
densities of the model. More precisely, let T be the functional defined for all g,g′ ∈ L

1+(X,μ)

by

T
(
g,g′)= 1

n

n∑
i=1

√
g′(Xi) − √

g(Xi)√
g(Xi) + g′(Xi)

+ 1

2

∫
X

√
g(x) + g′(x)

(√
g′(x) −√g(x)

)
dμ(x), (4)

where the convention 0/0 = 0 is in use.
We consider t ∈ (0,1] and ε = t (�Rn)−1/α . We then define the finite sets

�dis = {m + kε, k ∈ N, k ≤ (M − m)ε−1}, Fdis = {fθ , θ ∈ �dis}
and the map π on [m,M] by

π(x) = m + ⌊(x − m)/ε
⌋
ε for all x ∈ [m,M],

where �·� denotes the integer part. The test T (θ, θ ′) is finally defined by

T
(
θ, θ ′)= T (fπ(θ), fπ(θ ′)) for all θ, θ ′ ∈ [m,M].

The aim of the parameter t is to tune the thinness of the net Fdis. The smaller t , the thinner Fdis.
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2.4. Estimation procedure

We shall build a decreasing sequence (�i)i≥1 of intervals of � = [m,M] as explained in Sec-
tion 2.2. Let κ > 0, and for all θ, θ ′ ∈ [m,M] such that θ ′ > θ , let r(θ, θ ′), r(θ, θ ′) be two
positive numbers satisfying

[m,M] ∩ [θ, θ + r
(
θ, θ ′)] ⊂ B

(
θ, κ1/2h

(
θ, θ ′)), (5)

[m,M] ∩ [θ ′ − r
(
θ, θ ′), θ ′] ⊂ B

(
θ ′, κ1/2h

(
θ, θ ′)), (6)

where we recall that B(θ, κ1/2h(θ, θ ′)) and B(θ ′, κ1/2h(θ, θ ′)) are the Hellinger balls defined
by (3).

We set θ(1) = m, θ ′(1) = M and �1 = [θ(1), θ ′(1)]. We define the sequence (�i)i≥1 by induc-
tion. When �i = [θ(i), θ ′(i)], we set

θ(i+1) =
⎧⎨⎩ θ(i) + min

{
r
(
θ(i), θ ′(i)), θ ′(i) − θ(i)

2

}
, if T

(
θ(i), θ ′(i))≥ 0,

θ(i), otherwise

θ ′(i+1) =
⎧⎨⎩ θ ′(i) − min

{
r
(
θ(i), θ ′(i)), θ ′(i) − θ(i)

2

}
, if T

(
θ(i), θ ′(i))≤ 0,

θ ′(i), otherwise.

We then define �i+1 = [θ(i+1), θ ′(i+1)].
The role of conditions (5) and (6) is to ensure that �i+1 is big enough to contain one of the

two confidence sets

�i \B(θ(i), κ1/2h
(
θ(i), θ ′(i))) and �i \B(θ ′(i), κ1/2h

(
θ(i), θ ′(i))).

The parameter κ allows to tune the level of these confidence sets. There is a minimum in the
definitions of θ(i+1) and θ ′(i+1) in order to guarantee the inclusion of �i+1 in �i .

We now consider a positive number η and build these intervals until their lengths become
smaller than η. The estimator is then defined as the center of the last interval. This parameter η

stands for a measure of the accuracy of the estimation and must be small enough to get a suitable
risk bound for the estimator. The algorithm is therefore the following.

Algorithm 1
1: θ ← m, θ ′ ← M

2: while θ ′ − θ > η do
3: Compute r = min{r(θ, θ ′), (θ ′ − θ)/2}
4: Compute r ′ = min{r(θ, θ ′), (θ ′ − θ)/2}
5: Compute Test = T (θ, θ ′)
6: if Test ≥ 0 then
7: θ ← θ + r
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8: end if
9: if Test ≤ 0 then

10: θ ′ ← θ ′ − r ′
11: end if
12: end while
13: Return: θ̂ = (θ + θ ′)/2

The convergence of the algorithm is guaranteed under very mild conditions on r(θ, θ ′) and
r(θ, θ ′). For instance, a sufficient condition is that the functions r(·, ·), r(·, ·) are positive and
continuous on the set {(θ, θ ′),m ≤ θ < θ ′ ≤ M}. Moreover, its numerical complexity can be
bounded as soon as r(θ, θ ′) and r(θ, θ ′) are large enough as we shall see in Section 2.7.

2.5. A non-asymptotic risk bound

The following theorem specifies the values of the parameters t , κ , η that allow to control the risk
of the estimator ŝ = f

θ̂
.

Theorem 2.1. Suppose that Assumption 2.1 holds. Set

κ̄ = 3/2 − √
2. (7)

Assume that t ∈ (0,1], κ ∈ (0, κ̄), η ∈ (0, (�Rn)−1/α] and that r(θ, θ ′), r(θ, θ ′) are such that (5)
and (6) hold and that the algorithm converges.

Then, for all ξ > 0, the estimator θ̂ derived from Algorithm 1 satisfies

P

[
Ch2(s, f

θ̂
) ≥ h2(s,F ) + DF

n
+ ξ

]
≤ e−nξ ,

where DF = 1 ∨ log(1 + t−1((1/α)(c�R/R))1/α) with c depending only on κ , and where C > 0
depends only on κ and �R/R. Besides, if

h2(θ2, θ
′
2

)≤ h2(θ1, θ
′
1

)
for all m ≤ θ1 ≤ θ2 < θ ′

2 ≤ θ ′
1 ≤ M

then C depends only on κ .

We deduce from this risk bound that if s = fθ0 belongs to the model F , the estimator θ̂

converges almost surely to θ0. Besides, we may then derive from Assumption 2.1 that there exist
positive numbers a, b such that

P
[
n1/α|θ̂ − θ0| ≥ ξ

]≤ ae−bξα

for all ξ > 0.

We emphasize here that this exponential inequality on θ̂ is non-asymptotic but that the numbers
a and b are, unfortunately, far from optimal (since their values depend on several parameters
involved in the algorithm such as t or κ). As explained in the Introduction, this theorem also
shows that the estimator ŝ possesses robustness properties with respect to the Hellinger distance.
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2.6. Connection with the maximum likelihood estimator

When the model is true and regular enough, the above theorem states that
√

n(θ̂ − θ0) is sub-
Gaussian (since in this case Assumption 2.1 holds with α = 2). Actually, in favourable situations,
θ̂ shares the nice asymptotic properties of the m.l.e., and in particular its efficiency.

Theorem 2.2. Suppose that the model F satisfies the following conditions:

(i) There exists θ0 ∈ (m,M) such that s = fθ0 ∈ F .
(ii) The model is identifiable, that is, for all θ �= θ ′, fθ �= fθ ′ .

(iii) For μ-almost all x ∈ X, the mapping θ 
→ fθ (x) is continuous and positive on [m,M]
and two times differentiable on (m,M). Its first and second derivatives are denoted, respectively,
by ḟθ (x) and f̈θ (x). For μ-almost all x ∈ X, the function θ 
→ ḟθ (x) can be extended by conti-
nuity to [m,M].

(iv) For all θ ∈ [m,M], the Fisher information

I (θ) =
∫
X

(
l̇θ (x)
)2

fθ (x)dμ(x) with l̇θ (x) = ∂ logfθ (x)

∂θ

is non-zero and satisfies supθ∈[m,M] I (θ) < ∞. Moreover, θ 
→ I (θ) is continuous at θ0.
(v) The integrals

∫
X

ḟθ0(x)dμ(x),
∫
X

f̈θ0(x)dμ(x) exist and are zero.
(vi) There exist two positive functions ϕ1, ϕ2 and two numbers γ1 > 2/3, γ2 > 0 such that

for all θ, θ ′ ∈ (m,M) and μ-almost all x ∈ X,∣∣logfθ ′(x) − logfθ (x)
∣∣ ≤ ϕ1(x)

∣∣θ ′ − θ
∣∣γ1 ,∣∣l̈θ ′(x) − l̈θ (x)

∣∣ ≤ ϕ2(x)
∣∣θ ′ − θ

∣∣γ2 ,

where l̈θ (x) stands for the second derivative of θ 
→ logfθ (x). Moreover, E[ϕ3
1(X1)] and

E[ϕ2(X1)] are finite.
Furthermore, assume the following conditions on the algorithm:
(vii) The parameter t depends on n (one then writes t (n) in place of t ) and t (n) tends to 0 in

such a way that | log t (n)| = o(n) when n goes to infinity. The positive parameter η depends on n

and is smaller than t (n)(Rn)−1/2.
(viii) The parameter κ ∈ (0, κ̄) is chosen independently of n, the parameters r(θ, θ ′), r(θ, θ ′)

are chosen in such a way that (5) and (6) hold and that the algorithm converges.

Then Assumption 2.1 holds with α = 2 and there exist C > 0 (that may depend on κ and R but
not on n) and a sequence (ζn)n≥1 in [0,1] converging to 0 such that

P

[
∃θ̃ ∈ (m,M),

n∑
i=1

l̇θ̃ (Xi) = 0 and |θ̂ − θ̃ | ≤ C
t(n)

√
n

]
≥ 1 − ζn.

In particular, θ̂ is asymptotically efficient, that is,
√

n(θ̂ − θ0) converges in distribution to a
normal distribution with mean zero and variance 1/I (θ0). Moreover, if there exists λ > 0 such
that E[exp(λϕ2(X1))], E[exp(λ|l̇θ0(X1)|)] and E[exp(λ|l̈θ0(X1)|)] are finite, then there exists
b > 0 such that the sequence (ζn exp(bn))n≥1 is bounded above.
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The main interest of θ̂ as compared to the m.l.e. when the model is regular enough lies in the
fact that one usually does not know whether s belongs to the model or not. If the model is true,
θ̂ inherits the nice asymptotic statistical properties of the m.l.e. However, it possesses robustness
properties with respect to the Hellinger distance, which is definitively not the case for the m.l.e.

Remark. When the model is regular enough but does not contain the unknown density s, the the-
oretical properties of the estimator θ̂ are only guaranteed by Theorem 2.1. When t = t (n) depends
on n and satisfies the assumptions of Theorem 2.2, the term DF /n appearing in Theorem 2.1
converges to 0, but at a rate slower than 1/n. It is, for instance, of the order of logn/n when
t (n) = a/nk with a > 0, k > 0. This deteriorates the risk bound and this could get worse since
we may make this rate of convergence arbitrarily slow by playing with t (n). We conjecture that
this phenomenon is due to technical difficulties and that the estimator remains good even when
t = t (n) is arbitrarily small or even zero (that is, with Fdis = F ) as suggested by the numerical
simulations (in Section 3).

2.7. Numerical complexity

The numerical complexity of the estimation procedure depends on several parameters (η, κ ,
r(θ, θ ′), r(θ, θ ′)) that must be chosen by the statistician (since they are involved in the algorithm).

The role of the parameter η is to stop the algorithm when the confidence sets are small enough.
Consequently, the smaller η, the longer it takes to compute the estimator. Nevertheless, we shall
see at the end of this section that the time of construction of the estimator grows slowly when η

decreases.
The parameter κ tunes the level of the confidence sets, and thus also the speed of the procedure:

the larger κ , the faster the procedure. Note, however, that the preceding theorems require that κ

be smaller than κ̄ . There is no theoretical guarantee when κ is larger than κ̄ .
The values of the parameters r(θ, θ ′), r(θ, θ ′) do not change the theoretical statistical proper-

ties of the estimator given by Theorems 2.1 and 2.2 (provided that (5) and (6) hold) but strongly
influence its construction time. The larger they are, the faster the procedure is. There are three
different situations:

First case: The Hellinger distance h(θ, θ ′) can be made explicit. We have thus an interest in
defining them as the largest numbers for which (5) and (6) hold, that is,

r
(
θ, θ ′) = sup

{
r > 0, [m,M] ∩ [θ, θ + r] ⊂ B

(
θ, κ1/2h

(
θ, θ ′))}, (8)

r
(
θ, θ ′) = sup

{
r > 0, [m,M] ∩ [θ ′ − r, θ ′]⊂ B

(
θ ′, κ1/2h

(
θ, θ ′))}. (9)

Second case: The Hellinger distance h(θ, θ ′) can be quickly evaluated numerically but the
computation of (8) and (9) is difficult. We may then define them by

r
(
θ, θ ′)= r

(
θ, θ ′)= ((κ/R)h2(θ, θ ′))1/α

. (10)

One can verify that (5) and (6) hold. When the model is regular enough and α = 2, the value of
�R can be calculated by using Fisher information [see, for instance, Theorem 7.6 of Chapter 1 of
Ibragimov and Has’minskii [20]].
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Third case: The computation of the Hellinger distance h(θ, θ ′) involves the numerical compu-
tation of an integral and this computation is slow. An alternative definition is then

r
(
θ, θ ′)= r

(
θ, θ ′)= (κR/�R)1/α

(
θ ′ − θ

)
. (11)

As in the second case, one can check that (5) and (6) hold. Note, however, that the computation of
the test also involves in most cases the numerical computation of an integral (see (4)). This third
case is thus mainly devoted to models for which this numerical integration can be avoided, as
for the translation models F = {f (· − θ), θ ∈ [m,M]} with f even, X = R and μ the Lebesgue
measure (the second term of (4) is 0 for these models).

We can upper bound the numerical complexity of the algorithm when r(θ, θ ′) and r(θ, θ ′) are
large enough. More precisely, we have the following.

Proposition 2.1. Suppose that the assumptions of Theorem 2.1 hold and that r(θ, θ ′), r(θ, θ ′)
are larger than

(κR/�R)1/α
(
θ ′ − θ

)
. (12)

Then the algorithm converges in less than

1 + max
{(�R/(κR)

)1/α
,1/log 2

}
log

(
M − m

η

)
iterations.

This is an improvement with respect to the procedure of Baraud [2] where the number of tests
computed is roughly of the order of |Fdis|2, which is much larger than the above bound when ε

is small enough (and η = ε).

3. Simulations for one-dimensional models

In what follows, we carry out a simulation study in order to investigate more precisely the perfor-
mance of our estimator. We simulate samples (X1, . . . ,Xn) with density s and use our procedure
to estimate s.

3.1. Models

Our simulation study is based on the following models.

Example 1. F = {fθ , θ ∈ [0.01,100]} where fθ (x) = θe−θx1[0,+∞)(x) for all x ∈R.

Example 2. F = {f (· − θ), θ ∈ [−100,100]} where f is the density of a standard Gaussian
distribution.
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Example 3. F = {f (· − θ), θ ∈ [−10,10]} where f is the density of a standard Cauchy distri-
bution.

Example 4. F = {fθ , θ ∈ [0.01,10]} where fθ = θ−11[0,θ].

Example 5. F = {fθ , θ ∈ [−10,10]} where fθ (x) = 1
(x−θ+1)2 1[θ,+∞)(x) for all x ∈R.

Example 6. F = {1[θ−1/2,θ+1/2], θ ∈ [−10,10]}.

Example 7. F = {f (· − θ), θ ∈ [−1,1]} where f is defined by (1).

In these examples, we shall mainly compare our estimator with the maximum likelihood one.
In Examples 1, 2, 4 and 5, the m.l.e. θ̃mle can be made explicit and is thus easy to compute.
Finding the m.l.e. is more delicate for the problem of estimating the location parameter of a
Cauchy distribution, since the likelihood function may be multimodal. We refer to Barnett [6]
for a discussion of numerical methods devoted to the maximization of the likelihood. In this
simulation study, we avoid the issues of the numerical algorithms by computing the likelihood at
106 equally spaced points between max(−10, θ̂ − 1) and min(10, θ̂ + 1) (where θ̂ is our estima-
tor) and at 106 equally spaced points between max(−10, θ̃median − 1) and min(10, θ̃median + 1)

where θ̃median is the median. We then select among these points the one for which the likelihood
is maximal. In Example 4, we shall also compare our estimator to the estimator of the family
{a max1≤i≤n Xi, a > 0} that minimizes the Hellinger quadratic risk, that is,

θ̃best =
(

4n

2n + 1

)2/(2n−1)

max
1≤i≤n

Xi.

In Example 6, we shall compare our estimator to

θ̃ ′ = 1

2

(
max

1≤i≤n
Xi + min

1≤i≤n
Xi

)
.

In the case of Example 7, the likelihood is infinite at each observation and the maximum likeli-
hood method fails. We shall then compare our estimator to the median and the empirical mean
but also to the maximum spacing product estimator θ̃mspe (m.s.p.e. for short). This estimator was
introduced by Cheng and Amin [14] and Ranneby [24] to deal with parametric models for which
the likelihood is unbounded. It is known to possess nice theoretical properties when s does be-
long to F . We refer, for instance, to the two aforementioned papers and to Ekström [17], Shao
and Hahn [28], Ghosh and Jammalamadaka [19], Anatolyev and Kosenok [1]. This estimator is,
however, not robust. In Example 4, it is, for instance, defined by (1 + 1/n)max1≤i≤n Xi when
all the observations Xi are positive, and is therefore highly sensitive to outliers. In Example 7,
any estimator with values in [−1,1] is a m.s.p.e. when max1≤i≤n Xi − min1≤i≤n Xi > 2. The
practical construction of the m.s.p.e. in Example 7 involves the problem of finding a global max-
imum of the maximum product function on � = [−1,1] which may be multimodal. We compute
it by considering 2 × 105 equally spaced points between −1 and 1 and by calculating, for each
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of these points, the function to maximize. We then select the point for which the function is max-
imal. Using more points would give more accurate results, especially when n is large, but we are
limited by the capacity of the computer.

3.2. Implementation of the procedure

In this simulation study, we take arbitrarily κ = κ̄/2. We choose η very small but not too much
to avoid undesirable numerical issues. More precisely, η = (M − m)/108 (it is small enough in
view of the values of α and n).

The choice of r(θ, θ ′) and r(θ, θ ′) varies according to the examples. In Examples 1, 2, 4 and 6,
we define them by (8) and (9). In Examples 3 and 5, we define them by (10). In the first case,
α = 2 and �R = 1/16, while in the second case, α = 1 and �R = 1/2. In the case of Example 7, we
use (11) with α = 1/2, R = 0.17 and �R = 1/

√
2.

It remains to choose t which tunes the thinness of the net Fdis. When the model is regular
enough and contains s, a good choice of t seems to be t = 0 (that is, �dis = �, Fdis = F and
T (θ, θ ′) = T (fθ , fθ ′)), since then the simulations suggest that our estimator is almost equal to
the m.l.e. (with large probability). In all the simulations, we take t = 0 (although this is not
theoretically justified).

3.3. Risks when s ∈ F

We begin to simulate N samples (X1, . . . ,Xn) when the true density s belongs to the model F .
They are generated according to the density s = f1 in Examples 1, 4 and according to s = f0 in
Examples 2, 3, 5, 6, 7.

We evaluate the quality of an estimator θ̃ by computing it on each of the N samples. Let θ̃ (i)

be the value of this estimator corresponding to the ith sample and let

R̂N (θ̃) = 1

N

N∑
i=1

h2(s, fθ̃(i) ).

The risk E[h2(s, fθ̃ )] of the estimator θ̃ is estimated by R̂N (θ̃). We also introduce

R̂N,rel(θ̃) = R̂N (θ̂)

R̂N (θ̃)
− 1

in order to make the comparison of our estimator θ̂ and the estimator θ̃ easier. When R̂N,rel(θ̃)

is negative, our estimator is better than θ̃ , whereas if R̂N,rel(θ̃) is positive, our estimator is worse
than θ̃ . More precisely, if R̂N,rel(θ̃) = α, the risk of our estimator corresponds to the one of θ̃

reduced of 100|α|% when α < 0 and increased of 100α% when α > 0.
The numerical results are given in Table 1. In the first three examples, the risk of our estimator

is almost equal to the one of the m.l.e., whatever the value of n. In Example 4, our estimator
slightly improves the maximum likelihood estimator but has a risk 40% larger than the one of
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Table 1. Risks of the estimators

n = 10 n = 25 n = 50 n = 75 n = 100

Example 1 R̂106 (θ̂) 0.0130 0.0051 0.0025 0.0017 0.0013
R̂106 (θ̃mle) 0.0129 0.0051 0.0025 0.0017 0.0013

R̂106,rel(θ̃mle) 6 · 10−4 10−5 7 · 10−7 −8 · 10−9 2 · 10−9

Example 2 R̂106 (θ̂) 0.0123 0.0050 0.0025 0.0017 0.0012
R̂106 (θ̃mle) 0.0123 0.0050 0.0025 0.0017 0.0012

R̂106,rel(θ̃mle) 5 · 10−10 9 · 10−10 −2 · 10−9 −2 · 10−9 −3 · 10−9

Example 3 R̂106 (θ̂) 0.0152 0.0054 0.0026 0.0017 0.0013
R̂104 (θ̃mle) 0.0149 0.0054 0.0026 0.0017 0.0012

R̂104,rel(θ̃mle) −0.001 −2 · 10−4 −10−8 −3 · 10−8 9 · 10−8

Example 4 R̂106 (θ̂) 0.0468 0.0192 0.0096 0.0064 0.0048
R̂106 (θ̃mle) 0.0476 0.0196 0.0099 0.0066 0.0050
R̂106 (θ̃best) 0.0333 0.0136 0.0069 0.0046 0.0035

R̂106,rel(θ̃mle) −0.0160 −0.0202 −0.0287 −0.0271 −0.0336
R̂106,rel(θ̃best) 0.4059 0.4086 0.3992 0.4025 0.3933

Example 5 R̂106 (θ̂) 0.0504 0.0197 0.0098 0.0065 0.0049
R̂106 (θ̃mle) 0.0483 0.0197 0.0099 0.0066 0.0050

R̂106,rel(θ̃mle) 0.0436 −0.0019 −0.0180 −0.0242 −0.0263

Example 6 R̂106 (θ̂) 0.0455 0.0193 0.0098 0.0066 0.0050
R̂106 (θ̃

′) 0.0454 0.0192 0.0098 0.0066 0.0050

R̂106,rel(θ̃
′) 0.0029 0.0029 0.0031 0.0028 0.0030

Example 7 R̂104 (θ̂) 0.050 0.022 0.012 0.008 0.006
R̂104 (θ̃mean) 0.084 0.061 0.049 0.043 0.039
R̂104 (θ̃median) 0.066 0.036 0.025 0.019 0.017

R̂104 (θ̃mspe) 0.050 0.022 0.012 0.008 0.006

R̂104,rel(θ̃mean) −0.40 −0.64 −0.76 −0.82 −0.85
R̂104,rel(θ̃median) −0.25 −0.39 −0.54 −0.59 −0.65

θ̃best. In Example 5, the risk of our estimator is larger than the one of the m.l.e. when n = 10 but
is slightly smaller as soon as n becomes larger than 25. In Example 6, the risk of our estimator is
0.3% larger than the one of θ̃ ′. In Example 7, our estimator significantly improves the empirical
mean and the median. Its risk is comparable to the one of the m.s.p.e.

When the model is regular enough, these simulations show that our estimation strategy pro-
vides an estimator whose risk is very close to the one of the maximum likelihood estimator.
Moreover, our estimator seems to work rather well in a model where the m.l.e. does not exist
(case of Example 7).



Robust estimation on a parametric model via testing 1631

Table 2. Connection with the m.l.e.

n = 10 n = 25 n = 50 n = 75 n = 100

Example 1 q̂0.99 10−7 10−7 10−7 10−7 10−7

q̂0.999 0.07 10−7 10−7 10−7 10−7

q̂1 1.9 0.3 0.06 0.005 10−7

Example 2 q̂0.99 2 · 10−7 3 · 10−7 3 · 10−7 3 · 10−7 3 · 10−7

q̂0.999 3 · 10−7 3 · 10−7 3 · 10−7 3 · 10−7 3 · 10−7

q̂1 3 · 10−7 3 · 10−7 3 · 10−7 3 · 10−7 3 · 10−7

Example 3 q̂0.99 10−6 10−6 10−6 10−6 10−6

q̂0.999 3 · 10−6 10−6 10−6 10−6 10−6

q̂1 1.5 0.1 10−6 10−6 10−6

3.4. Link with the m.l.e.

We now study numerically the connection between our estimator and the m.l.e. when the model
is regular enough (that is, in the first three examples). Let for c ∈ {0.99,0.999,1}, qc be the c-
quantile of the random variable |θ̂ − θ̃mle|, and q̂c be the empirical version based on N samples
(N = 106 in Examples 1, 2 and N = 104 in Example 3).

Table 2 shows that with large probability, our estimator is almost equal to the m.l.e. This
probability is quite high for small values of n and even more for larger values of n. This explains
why the risks of these two estimators are very close in the first three examples. Note that the
value of η prevents the empirical quantiles from being smaller than something of the order 10−7

according to the examples (in Example 3, the value of 10−6 is due to the procedure used to build
the m.l.e.).

3.5. Speed of the procedure

For the sake of completeness, we specify in Table 3 the number of tests that have been calculated
in the preceding examples.

We observe in Figure 1 that the number of tests computed is quite small, except for Example 7.
The number of tests computed in this example is quite large because r(θ, θ ′) and r(θ, θ ′) are
defined by relation (11) and α = 1/2. The smaller α, the longer it takes to compute the estimator.
Notice however that is possible to use less tests by choosing κ closer to κ̄ or by using a more
accurate control of the Hellinger distance h(θ, θ ′).

3.6. Simulations when s /∈ F

In Section 3.3, we were in the favourable situation where the true density s belonged to the
model F , which may not hold true in practice. We now work with random variables X1, . . . ,Xn

simulated according to a density s /∈ F to illustrate the robustness properties of our estimator.
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Table 3. Number of tests computed averaged over 106 samples for Examples 1 to 6 and over 104 samples
for Example 7. The corresponding standard deviations are in brackets

n = 10 n = 25 n = 50 n = 75 n = 100

Example 1 77 (1.4) 77 (0.9) 77 (0.7) 77 (0.6) 77 (0.5)
Example 2 293 (1) 294 (1) 294 (0.9) 295 (0.9) 295 (0.9)
Example 3 100 (3.5) 100 (0.5) 100 (0.001) 100 (0) 100 (0)
Example 4 460 (3) 461 (1) 462 (0.6) 462 (0.4) 462 (0.3)
Example 5 687 (0) 687 (0) 687 (0) 687 (0) 687 (0)
Example 6 412 (8) 419 (8) 425 (8) 429 (8) 432 (8)
Example 7 173,209 (10) 173,212 (0) 173,212 (0.9) 173,206 (12) 173,212 (0.3)

We propose an example based on the mixture of two uniform laws. We use the parametric
model F = {fθ , θ ∈ [0.01,10]} with fθ = θ−11[0,θ], take p ∈ (0,1) and simulate the data ac-
cording to the density

sp(x) = (1 − p)f1(x) + pf2(x) for all x ∈R.

Set p0 = 1 − 1/
√

2. One can check that

h2(sp,F ) =
{

h2(sp, f1), if p ≤ p0,

h2(sp, f2), if p ≥ p0

=
{

1 − √
2 − p/

√
2, if p ≤ p0,

1 − (
√

2 − p + √
p)/2, if p ≥ p0,

which means that the best approximation of sp in F is f1 when p < p0 and f2 when p > p0.
We now compare our estimator θ̂ to the m.l.e. θ̃mle = max1≤i≤n Xi . For a lot of values of p,

we simulate N samples of n random variables with density sp and investigate the behaviour of
the estimator θ̃ ∈ {θ̂ , θ̃mle} by computing the function

R̂p,n,N (θ̃) = 1

N

N∑
i=1

h2(sp, fθ̃(p,i) ),

where θ̃ (p,i) is the value of the estimator θ̃ corresponding to the ith sample whose density is sp .
We draw below the functions p 
→ R̂p,n,N (θ̂), p 
→ R̂p,n,N (θ̃) and p 
→ h2(sp,F ) for n = 102

and then for n = 104.
We observe in Figure 1 that the m.l.e. is rather good when p ≥ p0 and very poor when p < p0.

This can be explained by the fact that the m.l.e. θ̃mle is close to 2 as soon as the number n of
observations is large enough. The shape of the function p 
→ R̂p,n,5000(θ̂) looks more like the
function p 
→ h2(sp,F ). The lower figure suggests that R̂p,n,N (θ̂) converges to h2(sp,F ) when
n,N go to infinity except on a small neighbourhood before p0.
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Figure 1. Red: p 
→ h2(sp,F ). Blue: p 
→ R̂p,n,5000(θ̂). Green: p 
→ R̂p,n,5000(θ̃mle).

4. Models parametrized by a multi-dimensional parameter

4.1. Assumption

In the preceding sections, we have dealt with models indexed by a finite interval of R. We now
turn to the multi-dimensional case and consider models F = {fθ , θ ∈ �} indexed by a rectangle
� =∏d

j=1[mj ,Mj ] of Rd and satisfying a multi-dimensional version of Assumption 2.1.

Assumption 4.1. There exist positive numbers α1, . . . , αd , R1, . . . ,Rd , �R1, . . . , �Rd such that for
all θ = (θ1, . . . , θd), θ ′ = (θ ′

1, . . . , θ
′
d) ∈ � =∏d

j=1[mj ,Mj ],

sup
j∈{1,...,d}

Rj

∣∣θj − θ ′
j

∣∣αj ≤ h2(θ , θ ′)≤ sup
j∈{1,...,d}

�Rj

∣∣θj − θ ′
j

∣∣αj .

4.2. Definition of the test

As in the one-dimensional case, our estimation strategy is based on the existence for all θ , θ ′ ∈ �

of a measurable function T (θ , θ ′) of the observations possessing suitable statistical properties.
The definition of this functional is the natural extension of the one we have proposed in Sec-
tion 2.3.

Let for j ∈ {1, . . . , d}, tj ∈ (0, d1/αj ] and εj = tj (�Rn)−1/αj . We introduce the finite sets

�dis = {(m1 + k1ε1, . . . ,md + kdεd),∀j ∈ {1, . . . , d}, kj ≤ (Mj − mj)ε
−1
j

}
,

Fdis = {fθ , θ ∈ �dis}
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and the map π on
∏d

j=1[mj ,Mj ] by

π(x) = (m1 + ⌊(x1 − m1)/ε1
⌋
ε1, . . . ,md + ⌊(xd − md)/εd

⌋
εd

)
for all x = (x1, . . . , xd) ∈

d∏
j=1

[mj ,Mj ],

where �·� is the integer part. We then define T (θ , θ ′) for all θ , θ ′ ∈ � by

T
(
θ , θ ′)= T (fπ(θ), fπ(θ ′)), (13)

where T is given by (4).

4.3. Basic ideas

For the sake of simplicity, we first restrict ourselves to the dimension d = 2. The idea is to build a
decreasing sequence (�i)i of rectangles by induction (in the sense of set inclusion). When there
exists θ0 ∈ � such that s = fθ0 , these rectangles �i can be interpreted as confidence sets for θ0.

We set �1 = �. We suppose that the rectangle �i has already been built and aim at building
�i+1.

Let a1, b1, a2, b2 be such that �i = [a1, b1]×[a2, b2]. For all θ = (θ1, θ2) ∈ �i , θ ′ = (θ ′
1, θ

′
2) ∈

�i , let R(θ , θ ′) be a rectangle included in �i and containing a neighbourhood of θ (for the usual
topology on �i ) such that

R
(
θ , θ ′)⊂ B

(
θ , κ1/2h

(
θ , θ ′)).

We recall that for all θ ∈ � and r > 0, B(θ, r) = {θ ′ ∈ �,h(θ , θ ′) ≤ r}. Let P and P ′ be the two
horizontal sides of the rectangle �i :

P = [a1, b1] × {a2},
P ′ = [a1, b1] × {b2}.

We begin by building L + 1 elements θ (�) ∈ P and L + 1 elements θ ′(�) ∈ P ′ in such a way that
if R(�) designates the set

R(�) =

⎧⎪⎨⎪⎩
R
(
θ (�), θ ′(�)), if T

(
θ (�), θ ′(�))> 0,

R
(
θ ′(�), θ (�)

)
, if T

(
θ (�), θ ′(�))< 0,

R
(
θ (�), θ ′(�))∪R

(
θ ′(�), θ (�)

)
, if T

(
θ (�), θ ′(�))= 0,

then, either

P =
L⋃

�=1

(
R(�) ∩P

)
or P ′ =

L⋃
�=1

(
R(�) ∩P ′). (14)
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The rectangle �i+1 is then defined in such a way that

�i

∖ L⋃
�=1

R(�) ⊂ �i+1 ⊂ �i

and that �i+1 �= �i . Its theoretical existence is guaranteed by (14). Besides, it follows from the
heuristics of Section 2.2 that �i+1 may be interpreted as a confidence set for θ0 whenever it
exists (since it contains �i \⋃L

�=1 R(�)).
It remains to define θ (�) and θ ′(�) for all � ∈ {1, . . . ,L + 1}. We define θ (1) = (a1, a2) as the

bottom left corner of �i and θ ′(1) = (a1, b2) as the top left corner of �i . The definition of θ (2)

and θ ′(2) depends on the sign of T (θ (1), θ ′(1)):

• If T (θ (1), θ ′(1)) > 0, we define θ (2) as the bottom right corner of R(θ (1), θ ′(1)) and θ ′(2) =
θ ′(1).

• If T (θ (1), θ ′(1)) < 0, we define θ (2) = θ (1) and θ ′(2) as the top right corner of R(θ ′(1), θ (1)).
• If T (θ (1), θ ′(1)) = 0, we define θ (2) as the bottom right corner of R(θ (1), θ ′(1)) and θ ′(2) as

the top right corner of R(θ ′(1), θ (1)).

If θ (2) = (b1, a2) or if θ ′(2) = (b1, b2), which means that one of these two points is a right corner
of �i , we set L = 1. In the contrary case, we define θ (3) either as the bottom right corner of
R(θ (2), θ ′(2)) or as θ (2), according to the sign of T (θ (2), θ ′(2)). Similarly, θ ′(3) is either θ ′(2) or
the top right corner of R(θ ′(2), θ (2)). If one of the points θ (3), θ ′(3) is a right corner of �i , we
set L = 2. Otherwise, we build θ (4), θ ′(4) and so on. More precisely, we build θ (�) and θ ′(�) until
that one of these two elements becomes a right corner of �i . We then stop the construction and
set L = � − 1. See Figure 2 for an illustration.

Remark. we define �i+1 as a rectangle to make the procedure easier to implement in practice.
Note that this rectangle �i+1 is of the form �i+1 = [a1, b1] × [a′

2, b
′
2] where a′

2, b
′
2 satisfy b′

2 −
a′

2 < b2 − a2. We may also adapt the preceding ideas to build a confidence set �i+1 of the form
�i+1 = [a′

1, b
′
1] × [a2, b2] where a′

1, b
′
1 satisfy b′

1 − a′
1 < b1 − a1.

We shall build the rectangles �i until their diameters become sufficiently small. The estimator
we shall consider will then be the center of the last rectangle built.

Figure 2. Illustration when L = 5, T (θ (i), θ ′(i)) > 0 for i ∈ {1,2,4,5} and T (θ (3), θ ′(3)) < 0.
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4.4. Estimation procedure

4.4.1. General scheme

In this section, we aim at designing an estimator in dimension 2 or higher. We build a finite
sequence of nested rectangles (�i)1≤i≤N of Rd included in � by induction. These rectangles
can be interpreted as confidence sets for θ0 whenever it exists. We set �1 = �. As long as the
size of �i is large enough (in a suitable sense), we use an algorithm (that we present below) to
build �i+1 from �i . As soon as the size of �i becomes small enough, we stop the construction
of the rectangles. We then denote this last rectangle by �N and define our estimator θ̂ as the
center of �N .

We now explain the general principle for constructing �i+1 from �i . Let aj , bj be the num-
bers such that �i =∏d

j=1[aj , bj ] and let k be an integer in {1, . . . , d} to be specified later. The
confidence set �i+1 will be of the form

�i+1 =
(

k−1∏
j=1

[aj , bj ]
)

× [a′
k, b

′
k

]×( d∏
j=k+1

[aj , bj ]
)

(15)

with a′
k, b

′
k ∈ [ak, bk] such that b′

k − a′
k < bk − ak . In order to be a little more precise, let us con-

sider κ ∈ (0, κ̄), and, for all θ , θ ′ ∈ �i , let R(θ , θ ′) be a rectangle included in �i and containing
a neighbourhood of θ (for the usual topology on �i ) such that

R
(
θ , θ ′)⊂ B

(
θ , κ1/2h

(
θ , θ ′)).

Let P and P ′ be the two following opposite faces of �i :

P = {(θ1, . . . , θk−1, ak, θk+1, . . . , θd), θ ∈ �i

}
,

P ′ = {(θ1, . . . , θk−1, bk, θk+1, . . . , θd), θ ∈ �i

}
.

As in Section 4.3, the construction of �i+1 is based on the existence of L + 1 elements θ (�) ∈P
and L + 1 elements θ ′(�) ∈ P ′ satisfying one of the two following relations:

P =
L⋃

�=1

(
R(�) ∩P

)
or P ′ =

L⋃
�=1

(
R(�) ∩P ′), (16)

where R(�) stands for the set

R(�) =

⎧⎪⎨⎪⎩
R
(
θ (�), θ ′(�)), if T

(
θ (�), θ ′(�))> 0,

R
(
θ ′(�), θ (�)

)
, if T

(
θ (�), θ ′(�))< 0,

R
(
θ (�), θ ′(�))∪R

(
θ ′(�), θ (�)

)
, if T

(
θ (�), θ ′(�))= 0.
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Thanks to (16), there exist a′
k, b

′
k ∈ [ak, bk] such that b′

k −a′
k < bk −ak and such that the rectangle

�i+1 defined by (15) satisfies

�i

∖ L⋃
�=1

R(�) ⊂ �i+1 ⊂ �i. (17)

The heuristics developed in Section 2.2 show that �i+1 may be interpreted as a confidence set
for θ0 (whenever it exists). It remains to build �i+1 in a constructive way.

4.4.2. Construction of the confidence set �i+1 from �i

We present in this section an algorithm easy to code on a computer and taking back the ideas
of the preceding section to build �i+1 from �i . In what follows, it is convenient to introduce
positive numbers r�i,j (θ , θ ′), r�i,j

(θ , θ ′) such that

R
(
θ , θ ′)= �i ∩

d∏
j=1

[
θj − r�i,j

(
θ , θ ′), θj + r�i,j

(
θ , θ ′)].

We recall that this set must satisfy

R
(
θ, θ ′)⊂ B

(
θ , κ1/2h

(
θ , θ ′)). (18)

We also consider for all j ∈ {1, . . . , d}, a number R�i,j
∈ [Rj ,+∞) such that

h2(θ , θ ′)≥ sup
1≤j≤d

R�i,j

∣∣θj − θ ′
j

∣∣αj for all θ , θ ′ ∈ �i . (19)

We finally consider for all j ∈ {1, . . . , d}, a one-to-one map ψj from {1, . . . , d − 1} into
{1, . . . , d} \ {j}.

We set �1 = �. Given �i , we define �i+1 by using the algorithm below. This algorithm
ensues from the strategy described in the preceding section. It defines k, builds the elements θ (�),
θ ′(�) and, lastly returns �i+1.

Algorithm 2 Definition of �i+1 from �i

Require: �i =∏d
j=1[aj , bj ]

1: Choose k ∈ {1, . . . , d} such that

R�i,k
(bk − ak)

αk = max
1≤j≤d

R�i,j
(bj − aj )

αj

2: θ = (θ1, . . . , θd) ← (a1, . . . , ad)

3: θ ′ = (θ ′
1, . . . , θ

′
d) ← (a1, . . . , ak−1, bk, ak+1, . . . , ad)

4: �j ← r�i,j (θ , θ ′) and �′
j ← r�i,j (θ

′, θ) for all j ∈ {1, . . . , d} \ {k}
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5: �k ← (bk − ak)/2 and �′
k ← (bk − ak)/2

6: repeat
7: Test ← T (θ , θ ′)
8: For all j ∈ {1, . . . , d}, rj ← r�i,j (θ , θ ′), r ′

j ← r�i,j (θ
′, θ), r ′

j ← r�i,j
(θ ′, θ)

9: if Test ≥ 0 then
10: �ψk(1) ← rψk(1)

11: �ψk(j) ← min(�ψk(j), rψk(j)) for all j ∈ {2, . . . , d − 1}
12: �k ← min(�k, rk)

13: J ← {1 ≤ j ≤ d − 1, θψk(j) + �ψk(j) < bψk(j)}
14: if J �= ∅ then
15: jmin ← minJ

16: θψk(j) ← aψk(j) for all j ≤ jmin − 1
17: θψk(jmin) ← θψk(jmin) + �ψk(jmin)

18: else
19: jmin ← d

20: end if
21: end if
22: if Test ≤ 0 then
23: �′

ψk(1) ← r ′
ψk(1)

24: �′
ψk(j) ← min(�′

ψk(j), r
′
ψk(j)) for all j ∈ {2, . . . , d − 1}

25: �′
k ← min(�′

k, r
′
k)

26: J ′ ← {1 ≤ j ≤ d − 1, θ ′
ψk(j) + �′

ψk(j) < bψk(j)}
27: if J ′ �= ∅ then
28: j′min ← minJ ′
29: θ ′

ψk(j) ← aψk(j) for all j ≤ j′min − 1
30: θ ′

ψk(j
′
min)

← θ ′
ψk(j

′
min)

+ �′
ψk(j

′
min)

31: else
32: j′min ← d

33: end if
34: end if
35: until jmin = d or j′min = d

36: if jmin = d then
37: ak ← ak + �k

38: end if
39: if j′min = d then
40: bk ← bk − �′

k

41: end if
42: �i+1 ←∏d

j=1[aj , bj ]
43: Return: �i+1
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The parameters κ , tj , r�i,j (θ , θ ′), r�i,j
(θ , θ ′) can be interpreted as in dimension 1. We have

introduced a new parameter R�i,j
whose role is to control more accurately the Hellinger distance

in order to define k. Sometimes, the computation of this parameter is difficult in practice. In this
case, we can overcome this issue by remarking that for all θ, θ ′ ∈ �,

h2(θ , θ ′)≥ sup
1≤j≤d

R
∣∣θj − θ ′

j

∣∣αj with R = min1≤j≤d Rj ,

which means that we can always assume that Rj is independent of j . Choosing R�i,j
= R

then simplifies the only line where this parameter is involved (line 1). It becomes (bk − ak)
αk =

max1≤j≤d(bj − aj )
αj and k can be calculated without computing R.

4.4.3. Construction of the estimator

As explained in Section 4.4.1, we only build a finite number of rectangles �i in order to define
our estimator. We stop their construction when they become small enough. More precisely, we
consider d positive numbers η1, . . . , ηd and use the following algorithm to design θ̂ .

Algorithm 3 Construction of the estimator
1: Set aj = mj and bj = Mj for all j ∈ {1, . . . , d}
2: i ← 0
3: while there exists j ∈ {1, . . . , d} such that bj − aj > ηj do
4: i ← i + 1
5: Build �i and set a1, . . . , ad , b1, . . . , bd such that

∏d
j=1[aj , bj ] = �i

6: end while
7: Return:

θ̂ =
(

a1 + b1

2
, . . . ,

ad + bd

2

)

The convergence of the two preceding algorithms is guaranteed under mild conditions on
r�i,j (θ , θ ′) and r�i,j

(θ , θ ′). We refer to Section 4.6 for more details on this point.

4.5. A risk bound

The risk of θ̂ can be bounded as soon as the preceding parameters are suitably chosen.

Theorem 4.1. Suppose that Assumption 4.1 holds with d ≥ 2. Let κ̄ be defined by (7), and as-
sume that κ ∈ (0, κ̄). Suppose that for all j ∈ {1, . . . , d}, tj ∈ (0, d1/αj ], εj = tj (�Rjn)−1/αj , and
ηj ∈ (0, d1/αj (�Rjn)−1/αj ]. Suppose moreover that for all i, θ , θ ′ ∈ �i , the numbers r�i,j (θ , θ ′),
r�i,j

(θ , θ ′), are such that (18) holds and that the two preceding algorithms converge.

Then, for all ξ > 0, the estimator θ̂ derived from Algorithm 3 satisfies

P

[
Ch2(s, f

θ̂
) ≥ h2(s,F ) + DF

n
+ ξ

]
≤ e−nξ ,
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where DF = d ∨∑d
j=1 log(1 + t−1

j ((d/ᾱ)(c�Rj/Rj ))
1/αj ), with c depending only on κ , ᾱ the

harmonic mean of α, and where C > 0 depends only on κ and (�Rj/Rj )1≤j≤d .

We can also prove that the estimator is asymptotically very close to the m.l.e. when the model
F is regular enough and contains s. We refer to Theorem 5.2 in Section 5.1.2.

4.6. Choice of r�i,j (θ, θ ′) and r�i,j
(θ, θ ′)

We now briefly discuss the choice of the parameters r�i,j (θ , θ ′), r�i,j
(θ , θ ′). Note that they

must be calculated in practice since they are involved in Algorithm 2. It turns out that the two
preceding algorithms converge and that the numerical complexity of the estimation procedure
can be theoretically upper bounded when r�i,j (θ , θ ′) and r�i,j

(θ , θ ′) are larger than(
κ sup

1≤k≤d

{
(Rk/

�Rj )
∣∣θ ′

k − θk

∣∣αk
})1/αj

,

which is in particular true when they are larger than ((κ/�Rj )h
2(fθ , fθ ′))1/αj . This bound may

be found in Proposition 6 of Chapter 6 of Sart [25] (it is omitted here to reduce the size of the
paper). Besides, the larger r�i,j (θ , θ ′) and r�i,j

(θ , θ ′), the faster the convergence of the two
algorithms. They should therefore be as large as possible so that (18) holds. Note that changing
the values of r�i,j (θ , θ ′) and r�i,j

(θ , θ ′) may influence the value of the estimator θ̂ but does not
modify its theoretical properties.

We refer to Sections 6 and 8 of Chapter 6 of Sart [25] for numerical simulations (the results
are similar to dimension one) as well as for more information on the practical implementation of
the procedure.

5. Proofs

5.1. Preliminary results on the estimation procedure

The estimators we have built in the preceding sections were based on particular sequences of
subsets (�i)i of Rd that could be interpreted as confidence sets for the true parameter θ0 when-
ever it exists. In this section, we make explicit the assumptions we need to consider on the (�i)

in order to ensure that the resulting estimator possesses good statistical properties.
The results of this section simultaneously cover the cases of models indexed by a one-

dimensional parameter (that is, d = 1) and those indexed by a multi-dimensional parameter (that
is, d ≥ 2). They will allow us to prove the theoretical properties of the estimators considered in
the preceding sections.

5.1.1. A risk bound

Theorem 5.1. Suppose that Assumption 4.1 holds. Let κ ∈ (0, κ̄), and let �1 · · ·�N be N non-
empty subsets of � such that �1 = �. For all j ∈ {1, . . . , d}, let tj be an arbitrary number in
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(0, d1/αj ] and εj = tj (�Rjn)−1/αj . Assume that for all i ∈ {1, . . . ,N − 1}, there exists Li ≥ 1
such that for all � ∈ {1, . . . ,Li}, there exist two elements θ (i,�) �= θ ′(i,�) of �i such that

�i

∖ Li⋃
�=1

B(i,�) ⊂ �i+1 ⊂ �i, (20)

where B(i,�) is the set defined by

B(i,�) =

⎧⎪⎨⎪⎩
B
(
θ (i,�), ri,�

)
, if T

(
θ (i,�), θ ′(i,�))> 0,

B
(
θ ′(i,�), ri,�

)
, if T

(
θ (i,�), θ ′(i,�))< 0,

B
(
θ (i,�), ri,�

)∪B
(
θ ′(i,�), ri,�

)
, if T

(
θ (i,�), θ ′(i,�))= 0,

where r2
i,� = κh2(θ (i,�), θ ′(i,�)) and T the functional defined by (13). Let θ0 be an arbitrary

element of � such that

h2(s, fθ0) ≤ h2(s,F ) + 1/n

and δ be a non-negative map from �2 such that δ2(θ , θ) = 0 for all θ ∈ � and

sup
θ ,θ ′∈�i

δ2(θ , θ ′)≤ inf
1≤�≤Li

h2(θ (i,�), θ ′(i,�)) for all i ∈ {1, . . . ,N}. (21)

Then, for all ξ > 0,

P

[
C inf

θ∈�N

δ2(θ0, θ) ≥ h2(s,F ) + D
(n)

F

n
+ ξ

]
≤ e−nξ ,

where C > 0 depends only on κ and where

D
(n)

F = max

{
d,

d∑
j=1

log
(
1 + t−1

j

(
(d/ᾱ)
(
c�Rj/R

(n)
j

))1/αj
)}

.

In the definition of D
(n)

F , ᾱ is the harmonic mean of α, c depends only on κ , and R
(n)
j is any

positive number such that R
(n)
j ≥ Rj and such that

h2(θ , θ ′)≥ sup
1≤j≤d

R
(n)
j

∣∣θj − θ ′
j

∣∣αj

for all θ , θ ′ ∈ � satisfying h2(θ , θ ′) ≤ c
n

∑d
j=1 log(1 + t−1

j (Mj − mj)(�Rjn)1/αj ).

Remark. In this theorem, the sets (�i), the numbers (Li) and N as well as the elements θ (i,�),
θ ′(i,�) may be random.
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This theorem implies Theorem 4.1. Indeed, its assumptions are fulfilled when R
(n)
j = Rj ,

when the (�i) are those provided by Algorithm 2, when the elements θ (i,�) and θ ′(i,�) correspond
to those defined in Section 4.4 (the index i has been omitted in that section for ease of reading),
and when δ2 is defined by

δ2(θ , θ ′)= sup
j∈{1,...,d}

Rj

∣∣θj − θ ′
j

∣∣αj .

The fact that (20) holds follows from the fact that �i+1 has been built in such a way that (17)
holds. However, this point has only be claimed and has not been proved. Its rigorous proof is
quite long and is therefore postponed to the Appendix. The fact that (21) holds follows from the
choice of k in Algorithm 2; see the Appendix.

The above theorem then asserts that

P

[
C inf

θ∈�N

sup
j∈{1,...,d}

Rj |θ0,j − θj |αj ≥ h2(s,F ) + DF

n
+ ξ

]
≤ e−nξ ,

where C depends only on κ and where DF is defined in Theorem 4.1. By using the triangular
inequality, Assumption 4.1, and the fact that the estimator θ̂ of Theorem 4.1 is very close to any
element θ of �N (since its size is very small), we finally get

P

[
C′h2(s, f

θ̂
) ≥ h2(s,F ) + DF

n
+ ξ

]
≤ e−nξ ,

where C′ depends on κ and supj∈{1,...,d} Rj/Rj .

Remark. In some models, R
(n)
j can be chosen much larger than Rj . This refinement is omitted

in Theorems 2.1 and 4.1 for ease of presentation.

5.1.2. Connection with the maximum likelihood estimator

In this section, we carry out the general result that link our estimator to the maximum likelihood
one. In particular, it manages to deal with multi-dimensional parametric models.

We need to introduce the following notation. We define
◦
� as the interior of � and lθ (x) =

logfθ (x). The gradient of the map θ 
→ logfθ (x) is denoted by l̇θ (x) and its Hessian matrix by
l̈θ (x). The notation (·)T represents the transpose of a vector or a matrix. The Euclidean norm
and its induced matrix norm are both denoted by ‖ · ‖. We denote the log likelihood by L(θ) =
n−1∑n

i=1 lθ (Xi).

Assumption 5.1. The following conditions are satisfied:

(i) Assumption 4.1 holds with α1 = · · · = αd = 2 and there exists θ0 ∈ ◦
� such that s =

fθ0 ∈ F .

(ii) F and κ do not depend on n. The tj depend on n (one then write t
(n)
j in place of tj ) and

are chosen in such a way that | log t
(n)
j |/n tends to 0 when n goes to infinity.
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(iii) For μ-almost all x ∈ X, the mapping θ 
→ fθ (x) is positive and two times differentiable
on

◦
�.
(iv) The Fisher information matrix

I (θ) =
∫
X

(
l̇θ (x)
)(

l̇θ (x)
)T

fθ (x)dμ(x)

exists for all θ ∈ ◦
�. Moreover, the map θ 
→ I (θ) is continuous and non-singular at θ0.

(v) The integrals
∫
X

ḟθ0(x)dμ(x),
∫
X

f̈θ0(x)dμ(x) exist and are zero.
(vi) For all ϑ > 0, there exist a neighbourhood �0(ϑ) of θ0 (independent of n) and an event

An(ϑ) on which

sup
θ ,θ ′∈�0(ϑ)

1

n

n∑
i=1

| logfθ (Xi) − logfθ ′(Xi)|3
‖θ − θ ′‖2

≤ ϑ,

1

n

n∑
i=1

sup
θ∈�0(ϑ)

∥∥l̈θ (Xi) − l̈θ0(Xi)
∥∥ ≤ ϑ.

Moreover, the maps ϑ 
→ �0(ϑ) and ϑ 
→ An(ϑ) are non-decreasing (in the sense of set inclu-
sion).

Theorem 5.2. Suppose that Assumption 5.1 is fulfilled. Let δ2 be a function satisfying the as-
sumptions of Theorem 5.1. Let, for each n ∈ N

�, Nn be a (possibly random) positive integer and
�1, . . . ,�Nn be (random) subsets satisfying the assumptions of Theorem 5.1. Let, for all ϑ > 0,
A′

n(ϑ) be the event on which∥∥∥∥∥1

n

n∑
i=1

l̇θ0(Xi)

∥∥∥∥∥≤ ϑ and

∥∥∥∥∥1

n

n∑
i=1

(
l̈θ0(Xi) −E

[
l̈θ0(Xi)

])∥∥∥∥∥≤ ϑ.

Then there exist ϑ > 0, ξ > 0, n0 ∈ N
� such that for all n ≥ n0:

P

[
∃θ̃ ∈ ◦

�,

n∑
i=1

l̇θ̃ (Xi) = 0 and inf
θ∈�Nn

δ2(θ , θ̃) ≤ 120

n
sup

j∈{1,...,d}
(
t
(n)
j

)2]
(22)

≥ 1 − {P[(An(ϑ)
)c]+ P

[(
A′

n(ϑ)
)c]+ e−nξ

}
.

Remark that the law of large numbers implies that P[A′
n(ϑ)] converges to 1 when n goes to

infinity. The right-hand side of inequality (22) tends therefore to 1 as soon as P[An(ϑ)] converges
to 1. Moreover, under suitable assumptions, the rate of convergence of P[An(ϑ)] and P[A′

n(ϑ)]
to 1 can be specified as in Theorem 2.2.
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5.2. Proof of Theorem 5.1

Let G : (1/
√

2,1) → (3 + 2
√

2,+∞) be the bijection defined by

G(x) = (1 + min((1 − x)/2, x − 1/
√

2))4(1 + x) + min((1 − x)/2, x − 1/
√

2)

1 − x − min((1 − x)/2, x − 1/
√

2)
.

Let Cκ be such that (1 + √
Cκ)2 = κ−1. Since κ ∈ (0, κ̄), Cκ ∈ (3 + 2

√
2,+∞) and there exists

thus υ ∈ (1/
√

2,1) such that G(υ) = Cκ . We then set

c = 24
(
2 + √

2/6(υ − 1/
√

2)
)
/(υ − 1/

√
2)2 · 103,

β1 = min
{
(1 − υ)/2, υ − 1/

√
2
}
,

(23)
β2 = (1 + β1)

(
1 + β−1

1

)[
1 − υ + (1 + β1)(1 + υ)

]
,

β3 = (1 + β−1
1

)[
1 − υ + (1 + β1)

3(1 + υ)
]+ c(1 + β1)

2.

We need the following claim, which will be proved immediately after the present proof.

Claim 5.1. For all ξ > 0, there exists an event �ξ such that P(�ξ ) ≥ 1 − e−nξ and on which,
for all f,f ′ ∈ Fdis,

(1 − υ)h2(s, f ′)+ T (f,f ′)√
2

≤ (1 + υ)h2(s, f ) + c
(D

(n)

F + nξ)

n
,

where D
(n)

F is defined in Theorem 5.1 for the value of c > 0 given by (23).

We begin by proving the following lemma.

Lemma 5.1. For all ξ > 0, the following assertion holds on �ξ : if there exist p ∈ {1, . . . ,N −1}
and � ∈ {1, . . . ,Lp} such that θ0 ∈ �p and such that

β2h
2(s, fθ0) + β3

(
D

(n)

F

n
+ ξ

)
< β1
(
h2(fθ0 , fθ (p,�) ) + h2(fθ0 , fθ ′(p,�) )

)
, (24)

then θ0 /∈ B(p,�).

Proof. Without loss of generality, we may assume that T (θ (p,�), θ ′(p,�)) = T (f
π(θ (p,�))

,

f
π(θ ′(p,�))

) is non-negative, and prove that θ0 /∈ B(θ (p,�), rp,�). On the event �ξ , we deduce
from the claim that

(1 − υ)h2(s, f
π(θ ′(p,�))

) ≤ (1 + υ)h2(s, f
π(θ (p,�))

) + c
(D

(n)

F + nξ)

n
.
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Consequently, by using the triangular inequality and the above inequality

(1 − υ)h2(fθ0 , fπ(θ ′(p,�))
) ≤ (1 + β−1

1

)
(1 − υ)h2(s, fθ0)

+ (1 + β1)(1 − υ)h2(s, f
π(θ ′(p,�))

)

≤ (1 + β−1
1

)
(1 − υ)h2(s, fθ0)

+ (1 + β1)

[
(1 + υ)h2(s, f

π(θ (p,�))
) + c

(D
(n)

F + nξ)

n

]
.

Since h2(s, f
π(θ (p,�))

) ≤ (1 + β−1
1 )h2(s, fθ0) + (1 + β1)h

2(fθ0, fπ(θ (p,�))
),

(1 − υ)h2(fθ0, fπ(θ ′(p,�))
) ≤ (1 + β−1

1

)[
1 − υ + (1 + β1)(1 + υ)

]
h2(s, fθ0)

+ (1 + β1)
2(1 + υ)h2(fθ0, fπ(θ (p,�))

) (25)

+ c(1 + β1)(D
(n)

F + nξ)

n
.

Remark now that for all θ ∈ �,

h2(fθ , fπ(θ)) ≤ sup
1≤j≤d

�Rjε
αj

j ≤ d/n.

By using the triangular inequality,

h2(fθ0 , fπ(θ (p,�))
) ≤ (1 + β1)h

2(fθ0, fθ (p,�) ) + d
(
1 + β−1

1

)
/n,

h2(fθ0 , fθ ′(p,�) ) ≤ (1 + β1)h
2(fθ0, fπ(θ ′(p,�))

) + d
(
1 + β−1

1

)
/n.

We deduce from these two inequalities and from (25) that

(1 − υ)h2(fθ0, fθ ′(p,�) ) ≤ β2h
2(s, fθ0) + (1 + β1)

4(1 + υ)h2(fθ0 , fθ (p,�) )

+ d(1 + β−1
1 )[1 − υ + (1 + β1)

3(1 + υ)] + c(1 + β1)
2(D

(n)

F + nξ)

n
.

Since D
(n)

F ≥ d and β3 ≥ 1,

(1 − υ)h2(fθ0, fθ ′(p,�) ) ≤ β2h
2(s, fθ0) + β3(D

(n)

F + nξ)

n

+ (1 + β1)
4(1 + υ)h2(fθ0, fθ (p,�) ).

By using (24),

(1 − υ)h2(fθ0, fθ ′(p,�) ) < β1
(
h2(fθ0 , fθ (p,�) ) + h2(fθ0 , fθ ′(p,�) )

)
+ (1 + β1)

4(1 + υ)h2(fθ0, fθ (p,�) )
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and thus

h2(fθ0 , fθ ′(p,�) ) < G(υ)h2(fθ0, fθ (p,�) )

< Cκh2(fθ0, fθ (p,�) ).

Finally,

h2(fθ (p,�) , fθ ′(p,�) ) ≤ (h(fθ0, fθ (p,�) ) + h(fθ0 , fθ ′(p,�) )
)2

< (1 +√Cκ)2h2(fθ0, fθ (p,�) )

< κ−1h2(fθ0, fθ (p,�) ),

which leads to θ0 /∈ B(θ (p,�), rp,�) as wished. �

Let us return to the proof of Theorem 5.1. Since the result is straightforward when θ0 ∈ �N ,
we assume that θ0 /∈ �N . We then set

p = max
{
i ∈ {1, . . . ,N − 1}, θ0 ∈ �i

}
and consider any element θ ′

0 of �N . Then θ ′
0 belongs to �p and

δ2(θ0, θ
′
0

) ≤ sup
θ ,θ ′∈�p

δ2(θ , θ ′)
≤ inf

�∈{1,...,Lp}h
2(fθ (p,�) , fθ ′(p,�) )

≤ 2 inf
�∈{1,...,Lp}

(
h2(fθ0, fθ (p,�) ) + h2(fθ0, fθ ′(p,�) )

)
.

By the definition of p, θ0 ∈ �p \ �p+1. We then derive from the above lemma that on �ξ ,

β1 inf
�∈{1,...,Lp}

(
h2(fθ0, fθ (p,�) ) + h2(fθ0, fθ ′(p,�) )

)≤ β2h
2(s, fθ0) + β3

D
(n)

F + nξ

n
.

Hence,

δ2(θ0, θ
′
0

)≤ 2

β1

(
β2h

2(s, fθ0) + β3
D

(n)

F + nξ

n

)
.

Since h2(s, fθ0) ≤ h2(s,F ) + 1/n, there exists C > 0 depending only on κ such that

Cδ2(θ0, θ
′
0

)≤ h2(s,F ) + D
(n)

F

n
+ ξ on �ξ .

This concludes the proof of the theorem.
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It remains to prove Claim 5.1. It actually derives from the work of Baraud [2]. More precisely,
Proposition 2 of Baraud [2] says that for all f,f ′ ∈ Fdis,(

1 − 1√
2

)
h2(s, f ′)+ T (f,f ′)√

2
≤
(

1 + 1√
2

)
h2(s, f ) + T (f,f ′) −E[T (f,f ′)]√

2
.

Let z = υ − 1/
√

2 ∈ (0,1 − 1/
√

2). We define �ξ by

�ξ =
⋂

f,f ′∈Fdis

[
T (f,f ′) −E[T (f,f ′)]

z(h2(s, f ) + h2(s, f ′)) + c(D
(n)

F + nξ)/n
≤ √

2

]
.

On this event,

(1 − υ)h2(s, f ′)+ T (f,f ′)√
2

≤ (1 + υ)h2(s, f ) + c
D

(n)

F + nξ

n

and the inequality P(�c
ξ ) ≤ e−nξ will follow from Lemma 1 of Baraud [2]. Before applying this

lemma, we need to check that his Assumption 3 is fulfilled. This is the purpose of the claim
below.

Claim 5.2. Let

τ = 4
2 + (n

√
2/6)z

(n2/6)z2
,

η2
F = max

{
3de4,

d∑
j=1

log
(
1 + 2t−1

j

(
(d/ᾱ)
(
c�Rj/R

(n)
j

))1/αj
)}

.

Then, for all r ≥ 2ηF , ∣∣Fdis ∩Bh(s, r
√

τ)
∣∣≤ exp

(
r2/2
)
, (26)

where Bh(s, r
√

τ) is the Hellinger ball centered at s with radius r
√

τ defined by

Bh(s, r
√

τ) = {f ∈ L
1+(X,μ),h2(s, f ) ≤ r2τ

}
.

Proof. If Fdis ∩ Bh(s, r
√

τ) = ∅, (26) holds. In the contrary case, there exists θ ′
0 = (θ ′

0,1, . . . ,

θ ′
0,d ) ∈ �dis such that h2(s, fθ ′

0
) ≤ r2τ , and thus∣∣Fdis ∩Bh(s, r

√
τ)
∣∣≤ ∣∣Fdis ∩Bh(fθ ′

0
,2r

√
τ)
∣∣.

First of all, suppose that r satisfies

4r2τ ≤ c

n

d∑
j=1

log
(
1 + t−1

j (Mj − mj)(�Rjn)1/αj
)
. (27)
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Then ∣∣Fdis ∩Bh(fθ ′
0
,2r

√
τ)
∣∣ = ∣∣{fθ , θ ∈ �dis, h

2(fθ , fθ ′
0
) ≤ 4r2τ

}∣∣
≤ ∣∣{θ ∈ �dis,∀j ∈ {1, . . . , d},R(n)

j

∣∣θj − θ ′
0,j

∣∣αj ≤ 4r2τ
}∣∣.

Let k0,j ∈ N be such that θ ′
0,j = mj + k0,j εj . Then

∣∣Fdis ∩Bh(fθ ′
0
,2r

√
τ)
∣∣ ≤ d∏

j=1

∣∣{kj ∈N, |kj − k0,j | ≤
(
4r2τ/R

(n)
j

)1/αj ε−1
j

}∣∣
≤

d∏
j=1

(
1 + 2ε−1

j

(
4r2τ/R

(n)
j

)1/αj
)
.

It is worthwhile to notice that 103τ ≤ c/n. In particular, by using the weaker inequality 4τ ≤ c/n

and εj = tj (�Rjn)−1/αj ,

∣∣Fdis ∩Bh(fθ ′
0
,2r

√
τ)
∣∣≤ d∏

j=1

(
1 + 2t−1

j

(
r2c�Rj/R

(n)
j

)1/αj
)
.

If ᾱ ≤ e−4, one can check that η2
F ≥ 4d/ᾱ (since c ≥ 1 and t−1

j ≥ d−1/αj ). If now ᾱ ≥ e−4, then

η2
F ≥ 3de4 ≥ 3d/ᾱ. In particular, we always have r2 ≥ 10(d/ᾱ).
We derive from the weaker inequality r2 ≥ d/ᾱ that

∣∣Fdis ∩Bh(fθ ′
0
,2r

√
τ)
∣∣ ≤ ( r2

d/ᾱ

)d/ᾱ d∏
j=1

(
1 + 2t−1

j

(
(d/ᾱ)
(
c�Rj/R

(n)
j

))1/αj
)

≤ exp

(
log(r2/(d/ᾱ))

r2/(d/ᾱ)
r2
)

exp
(
η2
F

)
.

We then deduce from the inequalities r2/(d/ᾱ) ≥ 10 and η2
F ≤ r2/4 that∣∣Fdis ∩Bh(fθ ′

0
,2r

√
τ)
∣∣≤ exp

(
r2/4
)

exp
(
r2/4
)≤ exp

(
r2/2
)

as wished. It remains to show that this inequality remains true when (27) does not hold. In this
case,

∣∣Fdis ∩Bh(fθ ′
0
,2r

√
τ)
∣∣≤ |�dis| ≤

d∏
j=1

(
1 + Mj − mj

εj

)
≤ e4r2τn/c.

The result follows from the inequality 4τn/c ≤ 1/2. �
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We can now use Lemma 1 of Baraud [2] to get for all ξ > 0 and y2 ≥ τ(4η2
F + nξ),

P

[
sup

f,f ′∈Fdis

(T (f,f ′) −E[T (f,f ′)])/√2

(h2(s, f ) + h2(s, f ′)) ∨ y2
≥ z

]
≤ e−nξ .

Since 4η2
F ≤ 103D

(n)

F and 103τ ≤ c/n, we can choose y2 = c(D
(n)

F + nξ)/n, which concludes
the proof of Claim 5.1.

5.3. Proof of Theorem 5.2

All along this proof, we set Cn(ϑ) = An(ϑ) ∩ A′
n(ϑ) for all ϑ > 0 and we denote by λ0 the

minimum between the smallest eigenvalue of I (θ0) and 1. Since I (θ0) is invertible, λ0 ∈ (0,1].

Claim 5.3. For all r > 0, there exists ϑ > 0 such that, on the event Cn(ϑ), there exists a solution
θ̃ ∈ ◦

� of the likelihood equation

1

n

n∑
i=1

l̇θ̃ (Xi) = 0

satisfying ‖θ̃ − θ0‖ ≤ r .

Proof. The proof of this claim follows from classical arguments that can be found in the lit-
erature. We make them explicit for the sake of completeness. There exists a neighbourhood
�0(λ0/8) of θ0, such that on An(λ0/8) ∩A′

n(λ0/8),

1

n

n∑
i=1

sup
θ∈�0(λ0/8)

∥∥l̈θ (Xi) − l̈θ0(Xi)
∥∥ ≤ λ0

8
,

∥∥∥∥∥1

n

n∑
i=1

(
l̈θ0(Xi) −E

[
l̈θ0(Xi)

])∥∥∥∥∥ ≤ λ0

8
.

Without lost of generality, we may assume that r is small enough so that r ≤ 1 and that the ball
{θ ∈ �,‖θ − θ0‖ ≤ r} is a subset of �0(λ0/8). Let Sr be the d-sphere Sr = {θ ∈ �,‖θ − θ0‖ =
r} and ϑ = λ0r/8. Then, on A′

n(ϑ),∥∥∥∥∥1

n

n∑
i=1

l̇θ0(Xi)

∥∥∥∥∥≤ rλ0

8
.

We now use Taylor’s theorem to show that for all θ ∈ Sr , and μ-almost all x ∈ X, there exists
θx ∈ �0(λ0/8) such that

lθ (x) = lθ0(x) + (l̇θ0(x)
)T

(θ − θ0) + 1
2 (θ − θ0)

T l̈θx
(x)(θ − θ0).
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In particular, for all θ ∈ Sr ,∣∣∣∣L(θ) − L(θ0) + 1

2
(θ − θ0)

T I (θ0)(θ − θ0)

∣∣∣∣
≤ r

∥∥∥∥∥1

n

n∑
i=1

l̇θ0(Xi)

∥∥∥∥∥+ r2

∥∥∥∥∥ 1

2n

n∑
i=1

(
l̈θXi

(Xi) + I (θ0)
)∥∥∥∥∥

≤ r

∥∥∥∥∥1

n

n∑
i=1

l̇θ0(Xi)

∥∥∥∥∥+ r2

2n

n∑
i=1

sup
θ ′∈�0(λ0/8)

∥∥l̈θ ′(Xi) − l̈θ0(Xi)
∥∥

+ r2

∥∥∥∥∥ 1

2n

n∑
i=1

(
l̈θ0(Xi) + I (θ0)

)∥∥∥∥∥.
Now, remark that

fθ0(x)l̈θ0(x) = f̈θ0(x) − (l̇θ0(x)
)(

l̇θ0(x)
)T

fθ0(x),

which, together with point (v) of Assumption 5.1, yields I (θ0) = −E[l̈θ0(X1)]. Therefore, on
the event Cn(ϑ) ⊂ An(λ0/8) ∩A′

n(ϑ),∣∣∣∣L(θ) − L(θ0) + 1

2
(θ − θ0)

T I (θ0)(θ − θ0)

∣∣∣∣≤ λ0r
2

4
,

which implies

L(θ) − L(θ0) ≤ λ0r
2

4
− 1

2
(θ − θ0)

T I (θ0)(θ − θ0)

≤ λ0r
2

4
− λ0r

2

2
< 0.

This means that for all θ ∈ Sr , L(θ) < L(θ0) on the event Cn(ϑ). In particular, this proves that
there exists θ̃ in the ball {θ ∈ �,‖θ − θ0‖ < r} such that L̇(θ̃) = 0. �

Claim 5.4. For all τ ∈ (0,1), there exists a neighbourhood �1(τ ) of θ0 such that for all θ , θ ′ ∈
�1(τ ),

1 − τ

8

(
θ − θ ′)T I (θ0)

(
θ − θ ′)≤ h2(fθ , fθ ′) ≤ 1 + τ

8

(
θ − θ ′)T I (θ0)

(
θ − θ ′).

The proof of this claim is omitted since it is very similar to the one of Lemma 1.A of Section 31
of Borovkov [13].

Claim 5.5. For all τ ∈ (0,1) and for all r > 0, there exist a neighbourhood �2(τ ) of θ0 (that
does not depend on r) and ϑ > 0 such that on Cn(ϑ):
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• There exists a solution θ̃ ∈ �2(τ ) of the likelihood equation satisfying ‖θ̃ − θ0‖ ≤ r .
• For all θ ∈ �2(τ ),∣∣L(θ̃) − L(θ) − 1

2 (θ − θ̃)T I (θ0)(θ − θ̃)
∣∣< τ(θ − θ̃)T I (θ0)(θ − θ̃).

Proof. Let �2(τ ) be a convex neighbourhood of θ0 included in �0(τλ0). Without lost of gen-
erality, we can assume that r is small enough to ensure that the ball {θ ∈ �,‖θ − θ0‖ ≤ r} is
included in �2(τ ).

Thanks to Claim 5.3, there exist a positive number ϑ0 and a solution θ̃ ∈ � of the likelihood
equation satisfying ‖θ̃ − θ0‖ ≤ r on Cn(ϑ0). In particular θ̃ ∈ �2(τ ). We then use Taylor’s theo-
rem to show that for all θ ∈ �2(τ ) and μ-almost all x ∈ X, there exists θx ∈ �2(τ ) such that

lθ (x) = lθ̃ (x) + (l̇θ̃ (x)
)T

(θ − θ̃) + 1
2 (θ − θ̃)T l̈θx

(x)(θ − θ̃).

Therefore,

lθ (x) − lθ̃ (x) − (l̇θ̃ (x)
)T

(θ − θ̃) + 1
2 (θ − θ̃)T I (θ0)(θ − θ̃)

= 1
2 (θ − θ̃)T

(
l̈θx

(x) + I (θ0)
)
(θ − θ̃).

We derive that∣∣∣∣L(θ) − L(θ̃) + 1

2
(θ − θ̃)T I (θ0)(θ − θ̃)

∣∣∣∣ =
∣∣∣∣∣(θ − θ̃)T

(
1

2n

n∑
i=1

(
l̈θXi

(Xi) + I (θ0)
))

(θ − θ̃)

∣∣∣∣∣
≤
(

1

2n

n∑
i=1

sup
θ ′∈�0(τλ0)

∥∥l̈θ ′(Xi) − l̈θ0(Xi)
∥∥)‖θ − θ̃‖2

+
∥∥∥∥∥ 1

2n

n∑
i=1

(
l̈θ0(Xi) + I (θ0)

)∥∥∥∥∥‖θ − θ̃‖2.

We now set ϑ = min(ϑ0, τλ0) so that Cn(ϑ) ⊂ Cn(ϑ0) ∩ Cn(τλ0). On the event Cn(ϑ), we thus
have for all θ ∈ �2(τ ),∣∣L(θ) − L(θ̃) + 1

2 (θ − θ̃)T I (θ0)(θ − θ̃)
∣∣ ≤ τλ0‖θ − θ̃‖2

≤ τ(θ − θ̃)T I (θ0)(θ − θ̃).

This completes the proof. �

Claim 5.6. For all τ ∈ (0,1) and r > 0, there exist a neighbourhood �3(τ ) of θ0 (that does not
depend on r) and ϑ > 0 such that on Cn(ϑ):

• There exists a solution of the likelihood equation θ̃ ∈ � satisfying ‖θ̃ − θ0‖ ≤ r .
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• For all θ , θ ′ ∈ �3(τ ),

T (fθ , fθ ′) ≤
(

8 + 5
√

2

7
+ τ

)
h2(fθ̃ , fθ ) − (8 − 5

√
2 − τ)h2(fθ̃ , fθ ′). (28)

Proof. We introduce the function F defined on (0,+∞) by F(x) = (
√

x − 1)/
√

1 + x and
define for all θ , θ ′ ∈ �,

T 1(fθ , fθ ′) = 1

2

∫
X

√
fθ (x) + fθ ′(x)

(√
fθ ′(x) −√fθ (x)

)
dμ(x),

T 2(fθ , fθ ′) = 1

n

n∑
i=1

F

(
fθ ′(Xi)

fθ (Xi)

)
.

Remark that for all θ, θ ′ ∈ �,

T (fθ , fθ ′) = T 1(fθ , fθ ′) + T 2(fθ , fθ ′). (29)

We begin by bounding T 1(fθ , fθ ′) from above. Since fθ and fθ ′ are two densities, T 1(fθ , fθ ′)
is also equal to

T 1(fθ , fθ ′) = 1

2

∫
X

(√
fθ (x) + fθ ′(x) −

√
fθ (x) +√fθ ′(x)√

2

)(√
fθ ′(x) −√fθ (x)

)
dμ(x).

By using the inequality∣∣∣∣√a + b −
√

a + √
b√

2

∣∣∣∣≤ (1 − 1/
√

2)|√b − √
a| for all a, b ≥ 0,

we get

T 1(fθ , fθ ′) ≤ (1 − 1/
√

2)h2(fθ , fθ ′).

We then use the triangular inequality to deduce

T 1(fθ , fθ ′) ≤ (1−1/
√

2)

[(
1+ 5 + 4

√
2

7

)
h2(fθ , fθ̃ )+

(
1+ 7

5 + 4
√

2

)
h2(fθ ′ , fθ̃ )

]
. (30)

We now aim at bounding T 2(fθ , fθ ′) from above. We consider τ0 ∈ (0,1/2] such that

1 + τ0

1 − τ0
≤ 1 + τ

2
, (31)

and define

�3(τ ) = �0

(
τλ0

√
2/64

5
√

2/384

)
∩ �1(τ0) ∩ �2(τ0/2),
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where we recall that �0(·) is given by point (vi) of Assumption 5.1 and that �1(·), �2(·) are
defined in the two preceding claims. Thanks to Claim 5.5, there exists ϑ0 > 0 such that on
Cn(ϑ0), there exists a solution θ̃ of the likelihood equation satisfying ‖θ̃ − θ0‖ ≤ r , and such that
for all θ ∈ �2(τ0/2),∣∣∣∣L(θ̃) − L(θ) − 1

2
(θ − θ̃)T I (θ0)(θ − θ̃)

∣∣∣∣< τ0

2
(θ − θ̃)T I (θ0)(θ − θ̃). (32)

We then set

ϑ = min

{
ϑ0,

τλ0
√

2/64

5
√

2/384

}
.

We shall bound T 2(fθ , fθ ′) on the event Cn(ϑ). To this end, remark that∣∣∣∣F(x) − logx

2
√

2

∣∣∣∣≤ 5
√

2

384
| logx|3 for all x > 0.

Consequently,

T 2(fθ , fθ ′) − L(θ ′)
2
√

2
+ L(θ)

2
√

2
= 1

n

n∑
i=1

[
F

(
fθ ′(Xi)

fθ (Xi)

)
− 1

2
√

2
log

(
fθ ′(Xi)

fθ (Xi)

)]
(33)

≤ 5
√

2

384n

n∑
i=1

∣∣logfθ ′(Xi) − logfθ (Xi)
∣∣3.

On the event Cn(ϑ), for all θ , θ ′ ∈ �3(τ ):

5
√

2

384n

n∑
i=1

∣∣logfθ (Xi) − logfθ ′(Xi)
∣∣3 ≤ τ

√
2

64
λ0
∥∥θ − θ ′∥∥2

≤ τ
√

2

64

(
θ − θ ′)T I (θ0)

(
θ − θ ′).

By using θ , θ ′ ∈ �1(τ0) and that τ0 ≤ 1/2, we deduce from Claim 5.4 that

5
√

2

384n

n∑
i=1

∣∣logfθ (Xi) − logfθ ′(Xi)
∣∣3 ≤ 8

1 − 1/2
× τ

√
2

64
h2(fθ , fθ ′).

By putting this inequality into (33),

T 2(fθ , fθ ′) ≤ L(θ ′)
2
√

2
− L(θ)

2
√

2
+ τ

√
2

4
h2(fθ , fθ ′)

≤ L(θ ′) − L(θ̃)

2
√

2
− L(θ) − L(θ̃)

2
√

2
+ τ

√
2

4
h2(fθ , fθ ′).
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We deduce from (32),

T 2(fθ , fθ ′) ≤ 1 + τ0

4
√

2
(θ − θ̃)T I (θ0)(θ − θ̃) − 1 − τ0

4
√

2

(
θ ′ − θ̃

)T
I (θ0)
(
θ ′ − θ̃

)
+ τ

√
2

4
h2(fθ , fθ ′).

Since θ , θ ′ belong together to �1(τ0),

T 2(fθ , fθ ′) ≤ √
2

1 + τ0

1 − τ0
h2(fθ̃ , fθ ) − √

2
1 − τ0

1 + τ0
h2(fθ̃ , fθ ′) + τ

√
2

4
h2(fθ , fθ ′).

It follows from (31) that (1 − τ0)/(1 + τ0) ≥ 1/(1 + τ/2) ≥ 1 − τ/2, and thus

T 2(fθ , fθ ′) ≤ √
2

(
1 + τ

2

)
h2(fθ̃ , fθ ) − √

2

(
1 − τ

2

)
h2(fθ̃ , fθ ′) + τ

√
2

4
h2(fθ , fθ ′).

By using the triangular inequality,

τ
√

2

4
h2(fθ , fθ ′) ≤ √

2

(
τ

2
h2(fθ̃ , fθ ) + τ

2
h2(fθ̃ , fθ ′)

)
and hence

T 2(fθ , fθ ′) ≤ (
√

2 + τ)h2(fθ̃ , fθ ) − (
√

2 − τ)h2(fθ̃ , fθ ′).

We then use (29) and (30) to complete the proof. �

We now return to the proof of Theorem 5.2. Let β1, β2, β3 be the numbers given at the begin-
ning of the proof of Theorem 5.1 (they only depend on κ). Let τ = 0.01 and let �3(τ ) be the set
given by Claim 5.6. There exists r0 > 0 such that the ball

B(θ0, r0) = {θ ∈ �,h(fθ , fθ0) ≤ r0
}

is included in �3(τ ). We define ξ = r2
0 β1/(9β3) and consider ϑ > 0 so that there exists a solution

θ̃ of the likelihood equation on Cn(ϑ) satisfying

h2(fθ0, fθ̃ ) ≤ [9(1 + β2/β1)
]−1

r2
0 . (34)

We may assume (without lost of generality) that θ̃ /∈ �Nn . We then set

p = max
{
i ∈ {1, . . . ,Nn − 1}, θ̃ ∈ �i

}
.

By the definition of p, θ̃ ∈ �p \ �p+1. There exists � ∈ {1, . . . ,Lp} such that θ̃ ∈ B(p,�) and a
look at the proof of Lemma 5.1 shows that on the event �ξ ∩ Cn(ϑ),

β2h
2(fθ0 , fθ̃ ) + β3

D
(n)

F

n
+ r2

0β1

9
≥ β1
(
h2(fθ̃ , fθ (p,�) ) + h2(fθ̃ , fθ ′(p,�) )

)
. (35)
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Without lost of generality, we may suppose that T (θ (p,�), θ ′(p,�)) = �T (f
π(θ (p,�))

, f
π(θ ′(p,�))

) is

non-negative and θ̃ ∈ B(θ (p,�), rp,�). Now, by using the triangular inequality and the fact that for
all θ ∈ �,

h2(fθ , fπ(θ)) ≤ sup
1≤j≤d

Rjε
2
j = 1

n
sup

1≤j≤d

(
t
(n)
j

)2 ≤ d/n,

we get

h2(f
π(θ (p,�))

, fθ0) ≤ 3h2(fθ (p,�) , fθ̃ ) + 3h2(fθ̃ , fθ0) + 3d/n.

We use (35) and then (34) to deduce

h2(f
π(θ (p,�))

, fθ0) ≤ 3(1 + β2/β1)h
2(fθ0, fθ̃ ) + 3(β3/β1)

D
(n)

F

n
+ r2

0

3
+ 3d

n

≤ 2r2
0

3
+ 3(β3/β1)

D
(n)

F

n
+ 3d

n
.

Since 3(β3/β1)D
(n)

F /n + 3d/n tends to 0 when n goes to infinity, there exists n0 ∈ N
� such that

for all n ≥ n0, h2(f
π(θ (p,�))

, fθ0) ≤ r2
0 . Similarly, the bound h2(f

π(θ ′(p,�)
)
, fθ0) ≤ r2

0 also holds.

In particular, π(θ (p,�)) and π(θ ′(p,�)
) belong together to �3(τ ). We can therefore use (28) to get

T (f
π(θ (p,�))

, f
π(θ ′(p,�))

) ≤
(

8 + 5
√

2

7
+ τ

)
h2(fθ̃ , fπ(θ (p,�))

)

− (8 − 5
√

2 − τ)h2(fθ̃ , fπ(θ ′(p,�)
)
).

Since T (f
π(θ (p,�))

, f
π(θ ′(p,�))

) is non-negative, we may replace τ by its numerical value τ = 0.01
to get

h(fθ̃ , fπ(θ ′(p,�)
)
) ≤ 1.6h(fθ̃ , fπ(θ (p,�))

).

Therefore,

h(fθ (p,�) , fθ ′(p,�) ) ≤ h(fθ (p,�) , fθ̃ ) + h(fθ̃ , fπ(θ ′(p,�))
) + h(f

π(θ ′(p,�))
, fθ ′(p,�) )

≤ h(fθ (p,�) , fθ̃ ) + 1.6h(fθ̃ , fπ(θ (p,�))
) +
√

1

n
sup

1≤j≤d

(
t
(n)
j

)2
≤ h(fθ (p,�) , fθ̃ ) + 1.6

[
h(fθ̃ , fθ (p,�) ) +

√
1

n
sup

1≤j≤d

(
t
(n)
j

)2]+
√

1

n
sup

1≤j≤d

(
t
(n)
j

)2
≤ 2.6h(fθ (p,�) , fθ̃ ) + 2.6

√
1

n
sup

1≤j≤d

(
t
(n)
j

)2
.
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Since θ̃ ∈ B(θ (p,�), rp,�),

h(fθ (p,�) , fθ ′(p,�) ) ≤ 2.6κ̄1/2h(fθ (p,�) , fθ ′(p,�) ) + 2.6

√
1

n
sup

1≤j≤d

(
t
(n)
j

)2
.

By replacing κ̄ by its numerical value κ̄ = 3/2 − √
2,

h(fθ (p,�) , fθ ′(p,�) ) ≤ 10.91

√
1

n
sup

1≤j≤d

(
t
(n)
j

)2
.

Let now θ be any element of �Nn . Since θ , θ̃ belong together to �p ,

δ2(θ , θ̃) ≤ sup
θ ′,θ ′′∈�p

δ2(θ ′, θ ′′)≤ h2(fθ (p,�) , fθ ′(p,�) ) ≤ 120

n
sup

1≤j≤d

(
t
(n)
j

)2
.

Finally, we have shown that there exist ξ > 0, ϑ > 0, n0 ∈ N
� such that for all n ≥ n0,

P

[
∃θ̃ ∈ �, L̇(θ̃) = 0 and inf

θ∈�Nn

δ2(θ , θ̃) ≤ 120

n
sup

1≤j≤d

(
t
(n)
j

)2]≥ P
[
�ξ ∩ Cn(ϑ)

]
.

The theorem follows from P(�ξ ) ≥ 1 − e−nξ and Cn(ϑ) =An(ϑ) ∩A′
n(ϑ).

5.4. Proof of Theorem 2.1

It follows from Theorem 5.1, page 1640, where d = 1, α1 = α, �i = [θ(i), θ ′(i)], Li = 1, R
(n)
1 =

R, R1 = R and δ2(θ, θ ′) = R|θ − θ ′|α in the first part of the theorem and δ2(θ, θ ′) = h2(fθ , fθ ′)
in the second part.

5.5. Proof of Proposition 2.1

For all i ∈ {1, . . . ,N − 1},
θ(i+1) ∈ {θ(i), θ (i) + min

(
r
(
θ(i), θ ′(i)), (θ ′(i) − θ(i)

)
/2
)}

,

θ ′(i+1) ∈ {θ ′(i), θ ′(i) − min
(
r
(
θ(i), θ ′(i)), (θ ′(i) − θ(i)

)
/2
)}

.

Since r(θ(i), θ ′(i)) and r(θ(i), θ ′(i)) are larger than (κR/�R)1/α(θ ′(i) − θ(i)),

θ ′(i+1) − θ(i+1) ≤ max
{
1 − (κR/�R)1/α,1/2

}(
θ ′(i) − θ(i)

)
.

By induction, we derive that for all i ∈ {1, . . . ,N − 1},

θ ′(i+1) − θ(i+1) ≤ (max
{
1 − (κR/�R)1/α,1/2

})i
(M − m).
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Consequently, the algorithm converges in less than N iterations where N is the smallest integer
such that (

max
{
1 − (κR/�R)1/α,1/2

})N
(M − m) ≤ η,

that is,

N ≥ log((M − m)/η)

− log[max{1 − (κR/�R)1/α,1/2}] .

We conclude by using the inequality −1/ log(1 − x) ≤ 1/x for all x ∈ (0,1).

5.6. Proof of Theorem 2.2

We shall apply Theorem 5.2, page 1643, with �i = [θ(i), θ ′(i)], Li = 1, δ2(θ, θ ′) = R|θ − θ ′|2
and with Nn corresponding to the last step of the algorithm.

The proof that Assumption 2.1 holds can be derived from Theorem 3 of Section 31 of
Borovkov [13]. Moreover, point (vi) of Assumption 5.1 is satisfied with the event An(ϑ) on
which

1

n

n∑
i=1

ϕ3
1(Xi) ≤ 2E

[
ϕ3

1(X1)
]

and
1

n

n∑
i=1

ϕ2(Xi) ≤ 2E
[
ϕ2(X1)

]
and with

�0(ϑ) =
{
θ ∈ (m,M), |θ − θ0| ≤ min

{
1

2

(
ϑ

2E[ϕ3
1(X1)]

)1/(3γ1−2)

,

(
ϑ

2E[ϕ2(X1)]
)1/γ2
}}

.

Theorem 5.2 then asserts that there exist ϑ > 0, ξ > 0, n0 ∈N
�, such that for n ≥ n0:

P

[
∃θ̃ ∈ (m,M),

n∑
i=1

l̇θ̃ (Xi) = 0 and inf
θ∈�Nn

R(θ − θ̃ )2 ≤ 120

n

(
t (n)
)2]

≥ 1 − {P[(An(ϑ)
)c]+ P

[(
A′

n(ϑ)
)c]+ e−nξ

}
.

Recalling that θ ′(Nn) − θ(Nn) ≤ t (n)(Rn)−1/2 and that θ̂ is the middle of the interval �Nn =
[θ(Nn), θ ′(Nn)],

R(θ̂ − θ̃ )2 ≤ 2 inf
θ∈�Nn

R(θ − θ̃ )2 + 2(R/R)
(t(n))2

n
.

This shows that there exists C > 0 such that

P

[
∃θ̃ ∈ (m,M),

n∑
i=1

l̇θ̃ (Xi) = 0 and |θ̂ − θ̃ | ≤ C
t(n)

√
n

]

≥ 1 − {P[(An(ϑ)
)c]+ P

[(
A′

n(ϑ)
)c]+ e−nξ

}
.
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Therefore, for all n, this probability is always larger than 1 − ζn where

ζn =
{

1, if n < n0,

min
{
1,P
[(
An(ϑ)

)c]+ P
[(
A′

n(ϑ)
)c]+ e−nξ

}
, if n ≥ n0.

By the law of large numbers, the two probabilities P[(An(ϑ))c] and P[(A′
n(ϑ))c] converge to 1

and therefore also the sequence (ζn)n≥1.
We now prove that θ̂ is asymptotically efficient. Let θ̃ be an estimator satisfying

∑n
i=1 l̇θ̃ (Xi) =

0 and |θ̂ − θ̃ | ≤ Ct(n)/
√

n with probability tending to 1 when n goes to infinity. Let us consider
for μ-almost all x ∈ X,

R(x) =
∫ 1

0

(
l̈θ0+u(θ̃−θ0)

(x) − l̈θ0(x)
)

du.

Then

l̇θ̃ (x) = l̇θ0(x) + l̈θ0(x)(θ̃ − θ0) + R(x)(θ̃ − θ0).

Therefore,

1

n

n∑
i=1

l̇θ̃ (Xi) = 1

n

n∑
i=1

l̇θ0(Xi) + 1

n

n∑
i=1

l̈θ0(Xi)(θ̃ − θ0) +
(

1

n

n∑
i=1

R(Xi)

)
(θ̃ − θ0),

and hence
√

n(θ̂ − θ0) = √
n(θ̂ − θ̃ ) + √

n(θ̃ − θ0)

= √
n(θ̂ − θ̃ ) + (1/

√
n)
∑n

i=1 l̇θ0(Xi) − (1/
√

n)
∑n

i=1 l̇θ̃ (Xi)

−(1/n)
∑n

i=1 l̈θ0(Xi) − (1/n)
∑n

i=1 R(Xi)
.

Now, with probability tending to 1 when n goes to infinity,∣∣∣∣∣1n
n∑

i=1

R(Xi)

∣∣∣∣∣ ≤ 2E
[
ϕ2(X1)

]|θ̃ − θ0|γ2

≤ 2E
[
ϕ2(X1)

](
C

t(n)

√
n

+ |θ̂ − θ0|
)γ2

.

Remark now that the term DF /n involved in Theorem 2.1 tends to 0, which shows that θ̂ con-
verges almost surely to θ0. Therefore, n−1∑n

i=1 R(Xi) converges to 0 in probability. Slutsky’s
theorem then shows that

(1/
√

n)
∑n

i=1 l̇θ0(Xi) − (1/
√

n)
∑n

i=1 l̇θ̃ (Xi)

−(1/n)
∑n

i=1 l̈θ0(Xi) − (1/n)
∑n

i=1 R(Xi)

converges in distribution to N (0,1/I (θ0)). We then reuse Slutsky’s theorem to prove the asymp-
totic efficiency of θ̂ .

Suppose now that there exists λ > 0 such that E[exp(λϕ2(X1))], E[exp(λ|l̇θ0(X1)|)] and
E[exp(λ|l̈θ0(X1)|)] are finite. Then the fact that P[(An(ϑ))c] and P[(A′

n(ϑ))c] go to 0 expo-
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nentially fast ensues from the following result which goes back to Cramér.

Lemma 5.2. Let Y1, . . . , Yn be n independent and identically distributed R-valued random vari-
ables satisfying E[exp(λ|Y1|)] < ∞ for some λ > 0. Then, for all ϑ > 0, there exists σ > 0 such
that

P

[∣∣∣∣∣1n
n∑

i=1

(
Yi −E[Yi]

)∣∣∣∣∣≥ ϑ

]
≤ 2e−σn.

Notice now that one can always replace ϕ1 by ϕ1(x) = supθ∈(m,M) |l̇θ (x)| and γ1 by γ1 = 1
since ∣∣logfθ ′(x) − logfθ (x)

∣∣≤ ( sup
θ ′′∈(m,M)

∣∣l̇θ ′′(x)
∣∣)∣∣θ ′ − θ

∣∣.
We shall show that there exists λ1 > 0 such that E[exp(λ1ϕ1(X1))] < ∞. Since ϕ2(X1) has
also finite exponential moments, the preceding lemma will show that P[(An(ϑ))c] goes to 0
exponentially fast. By setting λ0 = λ/max{2,2(M − m)γ2},

E

[
exp
[
λ0 sup

θ∈(m,M)

{∣∣l̈θ (X1)
∣∣}]] ≤ E

[
exp
[
λ0
∣∣l̈θ0(X1)

∣∣] exp
[
λ0 sup

θ∈(m,M)

∣∣l̈θ (X1) − l̈θ0(X1)
∣∣]]

≤ E
[
exp
[
(λ/2)
∣∣l̈θ0(X1)

∣∣] exp
[
(λ/2)ϕ2(X1)

]]
≤ E

1/2[exp
(
λ
∣∣l̈θ0(X1)

)∣∣]E1/2[exp
(
λϕ2(X1)

)]
< ∞.

By setting λ1 = (1/2)min{λ,λ0/(M − m)},

E

[
exp
[
λ1 sup

θ∈(m,M)

∣∣l̇θ (X1)
∣∣]] ≤ E

[
exp
[
λ1
∣∣l̇θ0(X1)

∣∣] exp
[
λ1 sup

θ∈(m,M)

∣∣l̈θ (X1)
∣∣(M − m)

]]
≤ E

1/2[exp
(
λ
∣∣l̇θ0(X1)

∣∣)]E1/2
[
exp
[
λ0 sup

θ∈(m,M)

∣∣l̈θ (X1)
∣∣]]

< ∞,

which completes the proof.

Appendix: Proof of Theorem 4.1

This theorem follows from Theorem 5.1 as explained in Section 5.1.1. It remains to prove that
its assumptions are fulfilled, that is, that (20) and (21) hold.

For this purpose, remark that the different parameters rj , rj , �j , �′
j , �k, . . . that have been

introduced in Algorithm 2 depend on the set �i and may vary at each iteration of the until
loop. We need to make explicit this dependency in order to prove rigorously (20) and (21).
Unfortunately, this makes the algorithm more difficult to read.
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Algorithm 4 Rewriting of Algorithm 2

Require: �i =∏d
j=1[a(i)

j , b
(i)
j ]

1: Choose k(i) ∈ {1, . . . , d} such that

R�i,k
(i)

(
b

(i)

k(i) − a
(i)

k(i)

)α
k(i) = max

1≤j≤d
R�i,j

(
b

(i)
j − a

(i)
j

)αj .

2: θ (i,1) = (a
(i)
1 , . . . , a

(i)
d )

3: θ ′(i,1) = (a
(i)
1 , . . . , a

(i)

k(i)−1
, b

(i)

k(i) , a
(i)

k(i)+1
, a

(i)
d )

4: �j
(i,0) = r�i,j (θ

(i,1), θ ′(i,1)) and �′
j
(i,0) = r�i,j (θ

′(i,1), θ (i,1)) for all j �= k(i)

5: �
(i,0)

k(i) = (b
(i)

k(i) − a
(i)

k(i) )/2 and �
′(i,0)

k(i) = (b
(i)

k(i) − a
(i)

k(i) )/2
6: for all � ≥ 1 do
7: if T (θ (i,�), θ ′(i,�)) ≥ 0 then
8: �

(i,�)
ψ

k(i) (1) = r�i,ψk(i) (1)(θ
(i,�), θ ′(i,�))

9: �
(i,�)
ψ

k(i) (j) = min(�
(i,�−1)
ψ

k(i) (j), r�i,ψk(i) (j)(θ
(i,�), θ ′(i,�))), for all j ∈ {2, . . . , d − 1}

10: �
(i,�)

k(i) = min(�
(i,�−1)

k(i) , r�i,k
(i) (θ (i,�), θ ′(i,�)))

11: J(i,�) = {1 ≤ j ≤ d − 1, θ
(i,�)
ψ

k(i) (j) + �
(i,�)
ψ

k(i) (j) < b
(i)
ψ

k(i) (j)}
12: if J(i,�) �=∅ then
13: j

(i,�)
min = minJ(i,�)

14: Define θ (i,�+1) as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

θ
(i,�+1)
ψ

k(i) (j) = a
(i)
ψ

k(i) (j), for all j < j
(i,�)
min ,

θ
(i,�+1)

ψ
k(i) (j

(i,�)
min )

= θ
(i,�)

ψ
k(i) (j

(i,�)
min )

+ �
(i,�)

ψ
k(i) (j

(i,�)
min )

,

θ
(i,�+1)
ψ

k(i) (j) = θ
(i,�)
ψ

k(i) (j), for all j > j
(i,�)
min ,

θ
(i,�+1)

k(i) = a
(i)

k(i)

15: else
16: Define θ (i,�+1) = θ (i,�)

17: j
(i,�)
min = d

18: end if
19: end if
20: if T (θ (i,�), θ ′(i,�)) ≤ 0 then
21: �

′(i,�)
ψ

k(i) (1) = r�i,ψk(i) (1)(θ
′(i,�), θ (i,�))

22: �
′(i,�)
ψ

k(i) (j) = min(�
′(i,�−1)
ψ

k(i) (j), r�i,ψk(i) (j)(θ
′(i,�), θ (i,�))), for all j ∈ {2, . . . , d − 1}

23: �
′(i,�)
k(i) = min(�

′(i,�−1)

k(i) , r�i ,k
(i) (θ ′(i,�), θ (i,�)))

24: J′(i,�) = {1 ≤ j ≤ d − 1, θ
′(i,�)
ψ

k(i) (j) + �
′(i,�)
ψ

k(i) (j) < b
(i)
ψ

k(i) (j)}
25: if J′(i,�) �=∅ then
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26: j
′(i,�)
min = minJ′(i,�)

27: Define θ ′(i,�+1) as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

θ
′(i,�+1)
ψ

k(i) (j) = a
(i)
ψ

k(i) (j), for all j < j
′(i,�)
min ,

θ
′(i,�+1)

ψ
k(i) (j

′(i,�)
min )

= θ
′(i,�)
ψ

k(i) (j
′(i,�)
min )

+ �
′(i,�)
ψ

k(i) (j
′(i,�)
min )

,

θ
′(i,�+1)
ψ

k(i) (j) = θ
′(i,�)
ψ

k(i) (j), for all j > j
′(i,�)
min ,

θ
′(i,�+1)

k(i) = b
(i)

k(i)

28: else
29: θ ′(i,�+1) = θ ′(i,�)
30: j

′(i,�)
min = d

31: end if
32: end if
33: if j

(i,�)
min = d or j′(i,�)min = d then

34: Li = � and quit the loop
35: end if
36: end for
37: if j(i,�)min = d then

38: a
(i+1)

k(i) = a
(i)

k(i) + �
(i,Li)

k(i)

39: end if
40: if j

′(i,�)
min = d then

41: b
(i+1)

k(i) = b
(i)

k(i) − �
′(i,Li)

k(i)

42: end if
43: a

(i+1)
j = a

(i)
j and b

(i+1)
j = b

(i)
j for all j �= k(i)

44: Return: �i+1 =∏d
j=1[a(i+1)

j , b
(i+1)
j ]

Algorithm 5 Rewriting of Algorithm 3

45: �1 =∏d
j=1[a(1)

j , b
(1)
j ] =∏d

j=1[mj ,Mj ]
46: for all i ≥ 1 do
47: if there exists j ∈ {1, . . . , d} such that b

(i)
j − a

(i)
j > ηj then

48: Compute �i+1
49: else
50: Leave the loop and set N = i

51: end if
52: end for
53: Return:

θ̂ =
(

a
(N)
1 + b

(N)
1

2
, . . . ,

a
(N)
d + b

(N)
d

2

)
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We begin by proving that (21) holds.

Lemma A.1. For all i ∈ {1, . . . ,N − 1} and � ∈ {1, . . . ,Li},

sup
θ ,θ ′∈�i

δ2(θ , θ ′)≤ h2(fθ (i,�) , fθ ′(i,�) ).

Proof. Recalling that Rj ≤ R�i,j
,

sup
θ ,θ ′∈�i

δ2(θ , θ ′) ≤ sup
1≤j≤d

R�i,j

(
b

(i)
j − a

(i)
j

)αj

≤ R�i,k
(i)

(
b

(i)

k(i) − a
(i)

k(i)

)α
k(i) .

Now, θ
(i,�)

k(i) = a
(i)

k(i) and θ
′(i,�)
k(i) = b

(i)

k(i) , and thus

sup
θ ,θ ′∈�i

δ2(θ , θ ′) ≤ R�i,k
(i)

(
θ

′(i,�)
k(i) − θ

(i,�)

k(i)

)α
k(i)

≤ sup
1≤j≤d

R�i,j

(
θ

′(i,�)
j − θ

(i,�)
j

)αj

≤ h2(fθ (i,�) , fθ ′(i,�) ). �

We now show that (20) holds:

Lemma A.2. For all i ∈ {1, . . . ,N − 1},

�i

∖ Li⋃
�=1

B(i,�) ⊂ �i+1 ⊂ �i.

Proof. Since

�
(i,Li)

k(i) ≤ b
(i)

k(i) − a
(i)

k(i)

2
and

�
′(i,Li)

k(i) ≤ b
(i)

k(i) − a
(i)

k(i)

2
,

we have �i+1 ⊂ �i . We now aim at proving �i \⋃Li

�=1 B(i,�) ⊂ �i+1.
We introduce the rectangles

R′(i,�)
1 =

d∏
q=1

[
θ(i,�)
q , θ(i,�)

q + �(i,�)
q

]
,
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R′(i,�)
2 =

k(i)−1∏
q=1

[
θ ′(i,�)
q , θ ′(i,�)

q + �′(i,�)
q

]× [θ ′(i,�)
k(i) − �

′(i,�)
k(i) , θ

′(i,�)
k(i)

]

×
d∏

q=k(i)+1

[
θ ′(i,�)
q , θ ′(i,�)

q + �′(i,�)
q

]
and we set

R′(i,�)
3 =

⎧⎪⎪⎨⎪⎪⎩
R′(i,�)

1 , if T
(
θ (i,�), θ ′(i,�))> 0,

R′(i,�)
2 , if T

(
θ (i,�), θ ′(i,�))< 0,

R′(i,�)
1 ∪R′(i,�)

2 , if T
(
θ (i,�), θ ′(i,�))= 0.

Using that �i ∩ R′(i,�)
1 ⊂ R(θ (i,�), θ ′(i,�)), �i ∩ R′(i,�)

2 ⊂ R(θ ′(i,�), θ (i,�)) together with (18)

yields �i ∩R′(i,�)
3 ⊂ B(i,�). It is then sufficient to show

�i

∖ Li⋃
�=1

R′(i,�)
3 ⊂ �i+1.

Note that either T (θ (i,Li ), θ ′(i,Li )) ≥ 0 or T (θ (i,Li ), θ ′(i,Li )) ≤ 0. In what follows, we assume that
T (θ (i,Li ), θ ′(i,Li)) ≥ 0 but the proof is similar if T (θ (i,Li), θ ′(i,Li)) is non-positive. Without lost
of generality, and for the sake of simplicity, we suppose that k(i) = d and ψd(j) = j for all
j ∈ {1, . . . , d − 1}. Let

L = {1 ≤ � ≤ Li,T
(
θ (i,�), θ ′(i,�))≥ 0

}
and �1 < · · · < �r be the elements of L. It is sufficient to prove that

�i

∖ Li⋃
�=1

R′(i,�)
3 ⊂

d−1∏
q=1

[
a(i)
q , b(i)

q

]× [a(i)
d + �

(i,Li)
d , b

(i)
d

]
. (36)

We shall actually prove

d−1∏
q=1

[
a(i)
q , b(i)

q

]× [a(i)
d , a

(i)
d + �

(i,Li)
d

]⊂ r⋃
k=1

R′(i,�k)
1 ,

which, in particular, implies (36). Remark now that for all k ∈ {1, . . . , r}, θ
(i,�k)
d = a

(i)
d , and thus

R′(i,�k)
1 =

d−1∏
q=1

[
θ(i,�k)
q , θ(i,�k)

q + �(i,�k)
q

]× [a(i)
d , a

(i)
d + �

(i,�k)
d

]
.
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By using the fact that the sequence (�
(i,�k)
d )k is non-increasing,

[
a

(i)
d , a

(i)
d + �

(i,Li)
d

]⊂ r⋂
k=1

[
a

(i)
d , a

(i)
d + �

(i,�k)
d

]
.

This means that we only need to show

d−1∏
q=1

[
a(i)
q , b(i)

q

]⊂ r⋃
k=1

d−1∏
q=1

[
θ(i,�k)
q , θ(i,�k)

q + �(i,�k)
q

]
. (37)

Let us now define for all p ∈ {1, . . . , d − 1}, kp,0 = 0 and by induction for all integer m,

kp,m+1 =

⎧⎪⎨⎪⎩
inf
{
k > kp,m, j

(i,�k)
min > p

}
,

if there exists k ∈ {kp,m + 1, . . . , r} such that j(i,�k)
min > p,

r, otherwise.

Let Mp be the smallest integer m such that kp,m = r . Let then for all m ∈ {0, . . . ,Mp − 1},
Kp,m = {kp,m + 1, . . . , kp,m+1}.

We need the two following claims.

Claim A.1. For all m ∈ {0, . . . ,Mp+1 − 1}, there exists m′ ∈ {0, . . . ,Mp − 1} such that
kp,m′+1 ∈ Kp+1,m.

Proof. The set {m′ ∈ {0, . . . ,Mp − 1}, kp,m′+1 ≤ kp+1,m+1} is non-empty and we can thus de-
fine the largest integer m′ of {0, . . . ,Mp − 1} such that kp,m′+1 ≤ kp+1,m+1. We then have

kp,m′ = sup
{
k < kp,m′+1, j

(i,�k)
min > p

}
.

Since kp,m′ < kp+1,m+1,

kp,m′ = sup
{
k < kp+1,m+1, j

(i,�k)
min > p

}
≥ sup
{
k < kp+1,m+1, j

(i,�k)
min > p + 1

}
≥ kp+1,m.

Hence, kp,m′+1 ≥ kp,m′ + 1 ≥ kp+1,m + 1. Finally, kp,m′+1 ∈ Kp,m. �

Claim A.2. Let m′ ∈ {0, . . . ,Mp+1 − 1}, p ∈ {1, . . . , d − 1}. There exists a subset M of
{0, . . . ,Mp − 1} such that

K ′
p = {kp,m+1,m ∈ M} ⊂ Kp+1,m′
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and [
a

(i)
p+1, b

(i)
p+1

]⊂ ⋃
k∈K ′

p

[
θ

(i,�k)
p+1 , θ

(i,�k)
p+1 + �

(i,�k)
p+1

]
.

Proof. Thanks to Claim A.1, we can define the smallest integer m0 of {0, . . . ,Mp − 1} such that
kp,m0+1 ∈ Kp+1,m′ , and the largest integer m1 of {0, . . . ,Mp − 1} such that kp,m1+1 ∈ Kp+1,m′ .
Define now

M = {m0,m0 + 1, . . . ,m1}.
Note that for all m ∈ {m0, . . . ,m1}, kp,m+1 ∈ Kp+1,m′ (this ensues from the fact that the sequence
(kp,m)m is increasing).

Let m ∈ {0, . . . ,Mp −1} be such that kp,m ∈ Kp+1,m′ and kp,m �= kp+1,m′+1. Then j
(i,�kp,m )

min ≤
p + 1 and since j

(i,�kp,m )

min > p, we get j
(i,�kp,m )

min = p + 1. Consequently,

θ
(i,�kp,m+1)

p+1 = θ
(i,�kp,m )

p+1 + �
(i,�kp,m )

p+1 .

Now, θ
(i,�kp,m+1)

p+1 = θ
(i,�kp,m+1 )

p+1 since kp,m + 1 and kp,m+1 belong together to Kp,m. The set

[
θ

(i,�kp,m )

p+1 , θ
(i,�kp,m )

p+1 + �
(i,�kp,m )

p+1

]∪ [θ(i,�kp,m+1 )

p+1 , θ
(i,�kp,m+1 )

p+1 + �
(i,�kp,m+1 )

p+1

]
is thus the interval [

θ
(i,�kp,m )

p+1 , θ
(i,�kp,m+1 )

p+1 + �
(i,�kp,m+1 )

p+1

]
.

We apply this argument to each m ∈ {m0 + 1, . . . ,m1} to derive that the set

I =
m1⋃

m=m0

[
θ

(i,�kp,m+1 )

p+1 , θ
(i,�kp,m+1 )

p+1 + �
(i,�kp,m+1 )

p+1

]
is the interval

I = [θ(i,�kp,m0+1 )

p+1 , θ
(i,�kp,m1+1 )

p+1 + �
(i,�kp,m1+1 )

p+1

]
.

The claim is proved if we show that [
a

(i)
p+1, b

(i)
p+1

]⊂ I.

Since I is an interval, it remains to prove that a
(i)
p+1 ∈ I and b

(i)
p+1 ∈ I .

We begin to show a
(i)
p+1 ∈ I by showing that a

(i)
p+1 = θ

(i,�kp,m0+1 )

p+1 . If kp+1,m′ = 0, then m′ = 0

and m0 = 0. Besides, since 1 and kp,1 belong to Kp,0, we have θ
(i,�kp,1 )

p+1 = θ
(i,�1)
p+1 . Now, θ

(i,�1)
p+1 =

a
(i)
p+1 and thus a

(i)
p+1 ∈ I . We now assume that kp+1,m′ �= 0. Since kp,m0 ≤ kp+1,m′ , there are two

cases.
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• First case: kp,m0 = kp+1,m′ . We then have j
(i,�kp,m0

)

min > p + 1 and thus θ
(i,�kp,m0 +1)

p+1 =
a

(i)
p+1. Since kp,m0+1 and kp,m0 + 1 belong to Kp,m0 , θ

(i,�kp,m0+1 )

p+1 = θ
(i,�kp,m0 +1)

p+1 and thus

θ
(i,�kp,m0+1 )

p+1 = a
(i)
p+1 as wished.

• Second case: kp,m0 + 1 ≤ kp+1,m′ . Then kp+1,m′ ∈ Kp,m0 , and thus

θ
(i,�kp,m0 +1)

p+1 = θ
(i,�k

p+1,m′ )
p+1 .

Since j
(i,�k

p+1,m′ )
min > p + 1, we have θ

(i,�k
p+1,m′ )

p+1 + �
(i,�k

p+1,m′ )
p+1 ≥ b

(i)
p+1. By using the fact that

the sequence (�
(i,�k)
p+1 )k is decreasing, we then deduce

θ
(i,�kp,m0 +1)

p+1 + �
(i,�kp,m0 +1)

p+1 ≥ b
(i)
p+1

and thus j
(i,�kp,m0 +1)

min > p + 1. This proves that

θ
(i,�kp,m0 +2)

p+1 = a
(i)
p+1. (38)

Let us now show that kp,m0 + 2 ≤ kp,m0+1. If this is not true, kp,m0 + 2 ≥ kp,m0+1 + 1, and
thus kp,m0 + 1 ≥ kp,m0+1 which means that kp,m0 + 1 = kp,m0+1 (we recall that (kp,m)m
is an increasing sequence of integers). Since we are in the case where kp,m0 + 1 ≤ kp+1,m′ ,
we have kp,m0+1 ≤ kp+1,m′ which is impossible since kp,m0+1 ∈ Kp+1,m′ .

Therefore, we use that kp,m0 + 2 ≤ kp,m0+1 to get kp,m0 + 2 ∈ Kp,m0 , and thus

θ
(i,�kp,m0+1 )

p+1 = θ
(i,�kp,m0 +2)

p+1 . We then deduce from (38) that θ
(i,�kp,m0+1 )

p+1 = a
(i)
p+1 as wished.

We now show that b
(i)
p+1 ∈ I by showing that θ

(i,�kp,m1+1 )

p+1 +�
(i,�kp,m1+1 )

p+1 ≥ b
(i)
p+1. If m1 =Mp −1,

θ
(i,�kp,m1+1 )

p+1 + �
(i,�kp,m1+1 )

p+1 = θ
(i,�r )
p+1 + �

(i,�r )
p+1 = θ

(i,Li)
p+1 + �

(i,Li)
p+1 .

Since J(i,Li ) =∅, we have θ
(i,Li)
p+1 + �

(i,Li)
p+1 ≥ b

(i)
p+1, which proves the result.

We now assume that m1 < Mp − 1. We begin to prove that kp,m1+1 = kp+1,m′+1. If this
equality does not hold, we derive from the inequalities kp,m1+1 ≤ kp+1,m′+1 < kp,m1+2, that

kp,m1+1 + 1 ≤ kp+1,m′+1 and thus kp+1,m′+1 ∈ Kp,m1+1. Since j
(i,�k

p+1,m′+1
)

min > p + 1,

θ
(i,�k

p+1,m′+1
)

p+1 + �
(i,�k

p+1,m′+1
)

p+1 ≥ b
(i)
p+1.

Hence,

θ
(i,�(kp,m1+1)+1)

p+1 + �
(i,�(kp,m1+1)+1)

p+1 ≥ b
(i)
p+1 which implies j

(i,�(kp,m1+1)+1)

min > p + 1.
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Since

kp+1,m′+1 = inf
{
k > kp+1,m′ , j(i,�k)

min > p + 1
}

and kp,m1+1 + 1 > kp+1,m′ , we have kp+1,m′+1 ≤ kp,m1+1 + 1. Moreover, since kp+1,m′+1 ≥
kp,m1+1 + 1, we have kp,m1+1 + 1 = kp+1,m′+1. Consequently,

kp,m1+2 = inf
{
k > kp,m1+1, j

(i,�k)
min > p

}= kp+1,m′+1.

This is impossible because kp+1,m′+1 < kp,m1+2, which finally implies that kp,m1+1 =
kp+1,m′+1.

We then deduce from this equality,

j
(i,�kp,m1+1 )

min = j
(i,�k

p+1,m′+1
)

min > p + 1.

Hence, θ
(i,�kp,m1+1 )

p+1 + �
(i,�kp,m1+1 )

p+1 ≥ b
(i)
p+1 and thus b

(i)
p+1 ∈ I . This completes the proof. �

We now return to the proof of Lemma A.2 and prove by induction on p the following result.
For all p ∈ {1, . . . , d − 1} and all m ∈ {0, . . . ,Mp − 1},

p∏
q=1

[
a(i)
q , b(i)

q

]⊂ ⋃
k∈Kp,m

p∏
q=1

[
θ(i,�k)
q , θ(i,�k)

q + �(i,�k)
q

]
. (39)

Note that (37) follows from this inclusion when p = d − 1 and m = 0.
We begin to prove (39) for p = 1 and all m ∈ {0, . . . ,M1 − 1}. For all k ∈ {k1,m +

1, . . . , k1,m+1 − 1}, j(i,�k)
min ≤ 1, and thus

θ
(i,�k+1)

1 ∈ {θ(i,�k)
1 , θ

(i,�k)
1 + �

(i,�k)
1

}
.

This implies that the set

k1,m+1⋃
k=k1,m+1

[
θ

(i,�k)
1 , θ

(i,�k)
1 + �

(i,�k)
1

]
is an interval. Now, θ

(i,�k1,m+1)

1 = a
(i)
1 , θ

(i,�k1,m+1)

1 +�
(i,�k1,m+1)

1 ≥ b
(i)
1 since j

(i,�k1,m+1)

min > 1. There-
fore,

[
a

(i)
1 , b

(i)
1

]⊂ k1,m+1⋃
k=k1,m+1

[
θ

(i,�k)
1 , θ

(i,�k)
1 + �

(i,�k)
1

]
,

which establishes (39) when p = 1.
Let now p ∈ {1, . . . , d − 2} and assume that for all m ∈ {0, . . . ,Mp − 1},

p∏
q=1

[
a(i)
q , b(i)

q

]⊂ ⋃
k∈Kp,m

p∏
q=1

[
θ(i,�k)
q , θ(i,�k)

q + �(i,�k)
q

]
.



1668 M. Sart

Let m′ ∈ {0, . . . ,Mp+1 − 1}. We shall show that

p+1∏
q=1

[
a(i)
q , b(i)

q

]⊂ ⋃
k∈Kp+1,m′

p+1∏
q=1

[
θ(i,�k)
q , θ(i,�k)

q + �(i,�k)
q

]
.

Let x ∈∏p+1
q=1 [a(i)

q , b
(i)
q ]. By using Claim A.2, there exists m ∈ {0, . . . ,Mp − 1} such that

xp+1 ∈ [θ(i,�kp,m+1 )

p+1 , θ
(i,�kp,m+1 )

p+1 + �
(i,�kp,m+1 )

p+1

]
and such that kp,m+1 ∈ Kp+1,m′ . By using the induction assumption, there exists k ∈ Kp,m such
that

x = (x1, . . . , xp) ∈
p∏

q=1

[
θ(i,�k)
q , θ(i,�k)

q + �(i,�k)
q

]
.

Since k ∈ Kp,m, θ
(i,�k)
p+1 = θ

(i,�kp,m+1 )

p+1 and �
(i,�kp,m+1 )

p+1 ≤ �
(i,�k)
p+1 . Hence,

xp+1 ∈ [θ(i,�k)
p+1 , θ

(i,�k)
p+1 + �

(i,�k)
p+1

]
.

We finally use the claim below to show that k ∈ Kp+1,m′ which concludes the proof. �

Claim A.3. Let m ∈ {0, . . . ,Mp − 1} and m′ ∈ {0, . . . ,Mp+1 − 1}. If kp,m+1 ∈ Kp+1,m′ , then
Kp,m ⊂ Kp+1,m′ .

Proof. We have

kp+1,m′ = sup
{
k < kp+1,m′+1, j

(i,�k)
min > p + 1

}
.

Since kp,m+1 > kp+1,m′ ,

kp+1,m′ = sup
{
k < kp,m+1, j

(i,�k)
min > p + 1

}
≤ sup
{
k < kp,m+1, j

(i,�k)
min > p

}
≤ kp,m.

We then derive from the inequalities kp+1,m′ ≤ kp,m and kp,m+1 ≤ kp+1,m′+1 that Kp,m ⊂
Kp+1,m′ . �
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