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This paper studies posterior concentration behavior of the base probability measure of a Dirichlet measure,
given observations associated with the sampled Dirichlet processes, as the number of observations tends
to infinity. The base measure itself is endowed with another Dirichlet prior, a construction known as the
hierarchical Dirichlet processes (Teh et al. [J. Amer. Statist. Assoc. 101 (2006) 1566–1581]). Convergence
rates are established in transportation distances (i.e., Wasserstein metrics) under various conditions on the
geometry of the support of the true base measure. As a consequence of the theory, we demonstrate the
benefit of “borrowing strength” in the inference of multiple groups of data – a powerful insight often invoked
to motivate hierarchical modeling. In certain settings, the gain in efficiency due to the latent hierarchy can
be dramatic, improving from a standard nonparametric rate to a parametric rate of convergence. Tools
developed include transportation distances for nonparametric Bayesian hierarchies of random measures,
the existence of tests for Dirichlet measures, and geometric properties of the support of Dirichlet measures.
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1. Introduction

Ferguson’s Dirichlet process is a fundamental building block in nonparametric Bayesian statistics
[3,8,23]. Recent advances in modeling and computation have seen Dirichlet processes routinely
built into hierarchical probabilistic structures in innovative ways [16]. A particularly useful and
interesting structure that is also the focus of this paper, is the hierarchical Dirichlet processes [25,
26] – a construction in which the base probability measure of the Dirichlet becomes an object of
inference, which is endowed with yet another Dirichlet prior. The hierarchical Dirichlet processes
have been successfully applied to the problem of clustering for grouped data in a vast array of
domains.1

This paper investigates the asymptotic behavior of measure-valued latent variables that arise
in the hierarchical Dirichlet processes. The basic question that we address is the convergence of
an estimate of the base probability measure (hereafter “base measure”) of a Dirichlet measure,
given observations associated with the Dirichlet processes sampled by the Dirichlet. Let � be
a complete separable metric space equipped with the Borel sigma algebra, P(�) the space

1The Google scholar page shows more than 1400 citations of [26].
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of probability measures on �, and let G ∈ P(�) and α > 0. Recall from [8] that a Dirichlet
process Q is a random measure taking value in P(�) and distributed by a Dirichlet measure
DαG, if for any measurable partition (B1, . . . ,Bk) of � for some k ∈ N, (Q(B1), . . . ,Q(Bk)) is
a random vector distributed according to the k-dimensional Dirichlet distribution with parameters
(αG(B1), . . . , αG(Bk)).

Questions. Let Q1, . . . ,Qm be an i.i.d. m-sample from a Dirichlet measure DαG, where α > 0
is given and the base measure G = G0 is unknown. By a basic property of Dirichlet processes,
Q1, . . . ,Qm are almost surely discrete probability measures on �. They will not be observed
directly. Instead, for each i = 1, . . . ,m, we shall be given an i.i.d. n-sample Y i[n] = (Yi1, . . . , Yin)

from a mixture distribution in which Qi serves as a mixing measure. This mixture distribution
admits the density function pQi

(x) := Qi ∗ f (x) := ∫
f (x|θ)Qi(dθ), where f (·|·) is a known

kernel density function defined with respect to a dominating measure on �.
To estimate G0 by taking a Bayesian approach, the base measure G is endowed with a prior

on the space of measures P(�), yielding a hierarchical model specification as follows:

G ∼ �G, Q1, . . . ,Qm|G i.i.d.∼ DαG, (1)

Yi1, . . . , Yin|Qi
i.i.d.∼ Qi ∗ f for i = 1, . . . ,m. (2)

For the choice of prior �G := DγH , where γ > 0 and H ∈ P(�) is nonatomic and known,
this construction is called the hierarchical Dirichlet processes model [26]. Fast computational
methods have been developed to collect samples from the posterior distributions of interest, such
as those for the latent G and Qi , given the m × n data set Y

[m]
[n] := (Y 1[n], . . . , Ym[n]). The first

question considered in this paper is the following:

(I) How fast does the posterior distribution of the base measure G concentrate toward the true
G0, as m and n tend to infinity?

An appealing aspect well appreciated by (Bayesian) modelers and practioners of hierarchical
modeling is the notion of “borrowing strength”. Latent variables shared higher up in a conditional
independence probabilistic hierarchy provide an infrastructure through which one may improve
the inference of a parameter of interest by borrowing from information on other related data and
parameters that are also part of the model. For the hierarchical Dirichlet processes, the “borrow-
ing” has a particularly concrete meaning: according to the model, the Dirichlet processes Qi

for all i = 1, . . . ,m share the same set of supporting atoms as that of the base measure G. It is
intuitive that the inference of the supporting atoms of, say, Q1 for group 1, should benefit from
the information given by other groups of data associated with Q2,Q3 and so on. To quantify this
intuition, we ask the following:

(II) What is the posterior concentration behavior of a mixture distribution, denoted by Q ∗ f ,
as Q is attached to the Bayesian hierarchy in the same way as the Qi , in comparison to a “stand-
alone” mixture model Q ∗ f , where Q is endowed with an independent prior distribution?

By resolving question (I), we can demonstrate situations in which the Bayesian hierarchy has the
effect of translating the posterior concentration behavior of base measure G to improved posterior
concentration of each individual group of data in the setting of question (II). Both questions will
be addressed using the tools that we develop with transportation distances [29].
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Related work. The only work known to us about the inference of the Dirichlet base measure
is by [17], who show that it is possible to obtain a consistent estimate (in some sense) of a base
measure G0, given an i.i.d. n-sample from m = 1 Dirichlet process Q1 distributed by DαG0 .
This curious result is due to two crucial assumptions made in their work: the true base measure
G0 is nonatomic, and Q1 is observed directly. Due to the fact that two Dirichlet measures with
different nonatomic base measures are orthogonal, the estimation of nonatomic base measures
becomes somewhat simple if the sampled Dirichlet processes Qi are observed directly. Changing
at least one of the two assumptions makes the question considerably more difficult, which leads
to different answers and requires new proof techniques. In this paper, we study the case G0 is an
atomic measure with either finite or infinite support, and the Qi are not observed directly. To get
a sense of the challenge, consider the simplest case, that the base measure G0 has a finite number
of support points, say G0 = ∑k

i=1 βiδθi
, where θ1, . . . , θk are known. Having a single observation

Q1 distributed by DαG0 is equivalent to being given a single draw from a k-dim Dirichlet dis-
tribution with parameter (αβ1, . . . , αβk). It is clearly impossible to obtain a consistent estimate
of G0 by setting m = 1 (or finite), and n → ∞. In addition, the assumption that Q1, . . . ,Qm

are not observed directly makes the analysis considerably more delicate, due to the fact that we
would no longer have access to a simple point estimate of the Dirichlet base measure, as allowed
in [17]. We leave open the setting where G0 is nonatomic and the Qi are not observed directly.
For this setting, the choice of Dirichlet prior in the hierarchical Dirichlet processes may not be
appropriate, due to the discreteness of Dirichlet processes. On the other hand, there is no known
practical estimation method available for this setting at the moment.

The convergence theory of posterior distributions has received much attention in the past
decade. Recent references include [1,13,14,24,30,31]. See [12] for a concise overview. This the-
ory when applied to density estimation problem has become quite mature – the dominant theme
is a Hellinger theory of density estimation for observed data. On the other hand, asymptotic
behaviors of latent variable models remain poorly understood. When the inference of a latent
variable is of primary concern, the Hellinger theory alone is not adequate; moreover, the under-
lying geometry of the variables of interest has to be taken into account. There are some examples
of such theory that have been developed recently, for example, for models of random functions
[15,27], mixture models [11,19,22], models of random polytopes [20]. In a prior work, the au-
thor demonstrated the usefulness of Wasserstein distances in analyzing the convergence of latent
mixing measures in mixture models [19]. This viewpoint will be deepened and generalized in
this work to a canonical class of hierarchical models equipped with optimal transport distances
for hierarchies for random measures.

Latent hierarchies of random variables have long been a versatile and highly effective model-
ing tool for Bayesian modelers (see, e.g., [2]). They can also be viewed as a device for frequentist
concepts of shrinkage and random effects (see, e.g., Chapter 5 of [18]). Due to their wide usages,
it is of interest to characterize the roles of latent hierarchies and their effects on posterior in-
ference in a rigorous manner. Examples of hierarchical and parametric models that have been
explored recently include the work by [10], who studied hidden Markov models, and by the au-
thor [20], who studied the finite admixtures for categorical data. Theoretical work addressing
hierarchical and nonparametric models, remains scarce in the literature.

Overview of results. The contributions of this paper include: (1) an analysis of convergence
for the estimation of the base measure (mean measure) of a Dirichlet measure, as well as the
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convergence behavior of the induced marginal density of observed data; (2) a theoretical analysis
of the effect of “borrowing of strength” in the latent nonparametric hierarchy of variables; and (3)
as part of the proofs of these two results we develop new tools that help to explain the geometry of
the support of Dirichlet measures, and the geometry of test sets that discriminate among different
Dirichlet measures. As mentioned earlier, our geometric theory is equipped with Wasserstein
distances, and a new class of transportation distances that we will introduce.

Recall that for r ≥ 1, the Lr Wasserstein distance between two probability measures G,G′ ∈
P(�) is given as

Wr

(
G,G′) = inf

κ∈T (G,G′)

[∫ ∥∥θ − θ ′∥∥r dκ
(
θ, θ ′)]1/r

. (3)

Here, T (G,G′) is the space of all joint distributions on � × � whose marginal distributions are
G and G′. Such a joint distribution κ is also called a coupling between G and G′ [29].

There are three main theorems summarized in Section 2. Our first main result (Theorem 2.1)
establishes the posterior concentration behavior for the marginal density PY[n]|G of a generic
n-vector Y[n] = (Y1, . . . , Yn), which is obtained by integrating out the latent variable Q (see the
formulae of the density in equation (11)). Suppose that the m×n data set Y

[m]
[n] := (Y 1[n], . . . , Ym[n])

are generated by the model specified by equations (1) and (2), according to G = G0 for some
unknown G0 ∈ P(�), where � is taken to be a bounded subset of Rd . For each fixed n, as m →
∞, there is a vanishing sequence εmn = C[(n3d) log(mn)/m]1/(2d+2) such that the posterior
probability

�G

(
h(pY[n]|G0 ,pY[n]|G) ≤ εmn|Y [m]

[n]
) −→ 1 (4)

in P m
Y[n]|G0

-probability. Here, P m
Y[n]|G0

denotes the true probability measure that generates the data
set, C is a constant independent of m and n, and h denotes the Hellinger distance. Moreover,
equation (4) continues to hold if we allow n := n(m) to increase (e.g., to infinity) as well. This
concentration rate holds under minimum assumptions on the kernel density f of the mixture
distributions. In fact, improved rates can be achieved when more is assumed about either f or
G0. For instance, if f is a standard Gaussian kernel, then εmn 
 [n2d(logn)(logm)2d+1/m]1/2,
which is optimal in terms of m (up to a logarithmic quantity). This is quite noteworthy since G0

may have infinite support. On the other hand, if we consider a hierarchical parametric setting, that
is, G0 has finite and known number of support points, while f is an arbitrary kernel satisfying
some mild conditions, then we obtain parametric rate εmn 
 [log(mn)/m]1/2.

Our second main result (Theorem 2.2 in Section 2) turns to the posterior concentration be-
havior of base measure G. In numerous applications of the hierarchical Dirichlet processes to
biomedical and machine learning problems [26], the practitioners are usually not interested in
the marginal densities of the observed groups of data per se, but rather the inference of the latent
variables Qi and G, as they represent specific information about the underlying heterogeneity in
data population. In admixed modeling of population genetics, for instance, G encodes the popu-
lation structures responsible for diverse genotypic patterns. In the topic modeling of documents
and images, G may represent topics and objects, respectively, of the observed texts and visual
scenes.
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As we shall see, the posterior concentration of the marginal densities of the data can be shown
to entail the concentration of the base measure G, provided (again) that the data are generated
according to some true base measure G = G0. In this asymptotic result, we work in the regime
where m → ∞, while n := n(m) is also taken to increase at an arbitrary rate relative to m. We
will show that

�G

(
W1(G,G0) ≤ εmn + �n|Y [m]

[n]
) −→ 1 (5)

in P m
Y[n]|G0

-probability, where εmn is the posterior concentration rate of the marginal densities as
established in the previous theorem (cf. equation (4)). Quantity �n → 0 as n → ∞, and can be
defined as a function of the demixing rate δn of a deconvolution problem (cf. [4,7,19,33]). [To
be clear, δn is the rate of convergence – in W2 in our case – for estimating a mixing measure Q

given an i.i.d. n-sample of a mixture density Q ∗ f .] The nature of the dependence of �n on δn

is interesting, as it hinges on the geometry of the support of the true base measure G0. We can
establish a sequence of gradually deteriorating rates as the support of G0 becomes less sparse:

(i) If G0 has a finite and known number of support points on a bounded subset of
R

d , then �n 
 δα∗
n . In fact, we obtain the overall parametric rate of convergence under

some conditions that εmn + �n 
 [log(mn)/m]1/2 + [(logn)1/2/n1/4]α∗
, where constant α∗ =

infθ∈sptG0 αG0({θ}).
(ii) If G0 has a finite and unknown number of support points on a bounded subset of Rd , then

�n 
 δ
α∗/(α∗+1)
n .

(iii) If G0 has an infinite number of geometrically sparse support points on a bounded
subset of R

d , then �n 
 exp−[log(1/δn)]1/(1∨γ0+γ1) for supersparse measures, or �n 

[log(1/δn)]−1/(γ0+γ1) for ordinary sparse measures.

The notion of ordinary and supersparse measures mentioned in (iii) will be defined in Section 2.
At a high level, they refer to probablity measures that have geometrically sparse support on �,
where the sparseness is characterized in terms of parameters γ0 and γ1, which are, respectively,
analogous to the Hausdorff dimension and the packing dimension that arise in fractal geome-
try [6,9].

Our last main theorem establishes the effect of “borrowing strength” of hierarchical modeling.
Suppose that an i.i.d. ñ-sample Y 0

[ñ] drawn from a mixture model Q0 ∗ f is available, where
Q0 = Q∗

0 ∈ P(�) is unknown:

Y 0
[ñ]|Q0

i.i.d.∼ Q0 ∗ f. (6)

In a stand-alone setting Q0 is endowed with a Dirichlet prior: Q0 ∼ Dα0H0 for some known
α0 > 0 and nonatomic base measure H0 ∈ P(�). Under mild conditions on the Dirichlet process
mixture, it can be shown that in Hellinger metric, the posterior probability

�Q

(
h
(
Q0 ∗ f,Q∗

0 ∗ f
) ≥ C(log ñ/ñ)1/(d+2)|Y 0

[ñ]
) −→ 0 (7)

in PY 0
[ñ]|Q∗

0
-probability for some constant C > 0 (see [19]). Alternatively, suppose that Q0 is

attached to the hierarchical Dirichlet process in the same way as the Q1, . . . ,Qm, that is,

G ∼ DγH , Q0,Q1, . . . ,Qm|G i.i.d.∼ DαG. (8)
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Implicit in this specification, due to a standard property of the Dirichlet, is the assumption that Q0
shares the same set of supporting atoms as Q1, . . . ,Qm, as they share with the (latent) discrete
base measure G.

Theorem 2.3 in Section 2 establishes the posterior concentration rate δm,n,ñ for the mixture
density Q0 ∗f , under the hierarchical model given by equation (8), as ñ → ∞ and m,n → ∞ at
suitable rates. Specifically, suppose that the true base measure G0 has a finite number of support
points, if m and n grow sufficiently fast relatively to ñ so that the base measure G converges to
G0 at a sufficiently fast rate, then the “borrowing of strength” from the m×n data set Y

[m]
[n] to the

inference about the data set Y 0
[ñ] has a striking effect: In particular, if f is an ordinary smooth ker-

nel density, we obtain δm,n,ñ 
 (log ñ/ñ)1/2. If f is a supersmooth kernel density with smooth-
ness β > 0, then δm,n,ñ 
 (1/ñ)1/(β+2). (The formal definition of smoothness conditions is given
in Section 2.) These present sharp improvements from nonparametric rate (log ñ/ñ)1/(d+2) in
equation (7). Thus, the hierarchical models are particularly beneficial to groups of data with
small sample sizes, as the convergence of the latent variable further up in the hierarchy can be
translated into faster (e.g., parametric) rates of convergence of these small-sample groups. This
appears to be the first result that establishes the benefits of the latent hierarchy in a concrete
manner.

Technical approach. The major part of the proof of the main theorems lies in our attempt
to understand the identifiability of the Dirichlet base measure based on the marginal densities
of the data. This is achieved by establishing suitable inequalities relating the three quantities:
(1) a Wasserstein distance between two base measures, Wr(G,G′), (2) a suitable notion of dis-
tance between Dirichlet measures DαG and Dα′G′ , and (3) the variational distance or Kullback–
Leibler divergence between the densities of n-vector Y[n], which are obtained by integrating out
the (latent) Dirichlet process Q that is distributed by Dirichlet measures DαG and Dα′G′ . In fact,
the establishment of these inequalities takes up the most space of this paper (Sections 3, 4 and 5).
To this end, we define a notion of optimal transport distance between Dirichlet measures DαG

and Dα′G′ (see equation (21)), which is the optimal cost of moving the mass of atoms lying in the
support of measure DαG to that of Dα′G′ , where the cost of moving from an atom (i.e., a mea-
sure) P1 ∈ P(�) to another measure P2 ∈ P(�) is again defined as a Wasserstein distance
Wr(P1,P2) given by equation (3). In general, one can define distances of measures of measures
and so on in a recursive way. This provides means for comparing between Bayesian hierarchies
of random measures for an arbitrary number of hierarchy levels (see Section 3).

In order to derive inequalities for the aforementioned distances, our approach boils down to
establishing the existence of a subset of P(�) which can be used to distinguish one Dirichlet
measure from a class of Dirichlet measures. Because we do not have direct access to the samples
Qi of a Dirichlet measure, only the estimates of such samples, the test set has to be robust. By
robustness, we require that the measure of a tube-set constructed along the boundary of the test
set be regular, by which we mean that it is possible to control the rate at which such measure
vanishes, as the radius in Wasserstein metric of such tube-set tends to zero. Interestingly, the
precise vanishing rates are closely linked to the geometrically sparse structure of the support of
the true Dirichlet base measure. These results are developed in Section 4 and Section 5.

The proof of Theorem 2.3 requires results concerning the geometry of the support of a single
Dirichlet measure. Although the support of a Dirichlet measure is very large, that is, the entire
space P(�) (cf. [8]), we show that most of the mass of a Dirichlet measure concentrates on a
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very small set as measured by the covering number of Wasserstein balls defined on P(Rd). Our
result generalizes to higher dimensions the behavior of tail probabilities chosen from a Dirichlet
measure on P(R) [5].

Limitations of our results. The asymptotic results established in this paper are distinguished by
the nonstandard roles of two quantities m and n simultaneously present in the model. Although
both determine the size of observed data, they play asymmetric roles in the model hierarchy: m is
the number of groups of data, and n is the sample size for each group. When n is fixed and m

increases, the concentration rates established for marginal densities of n-vectors in Theorem 2.1
are optimal up to some logarithmic terms in several settings. However, when n is allowed to
increase, the rate gets worse. For parametric models, the logn term may be ignored. Unfortu-
nately, for nonparametric models, the presence of a polynomial quantity of n in the numerator
may be suboptimal. Such presence of n in the rate is due to the fact that the space of the marginal
densities on n-vector Y[n] data appears to get larger with n. This explanation appears reasonable,
but we should be quickly reminded that the n elements of Y[n] are in fact exchangeable – they
carry a special dependence structure among themselves. In short, having explained the role of n

in its appearance in the posterior concentration rate’s upper bound, we do not know whether this
appearance is optimal. A more definitive conclusion on the optimal nature of convergence rates
of the marginal density can only be achieved by directly tackling a minimax theory of density
estimation for exchangeable sequences. Such a theory is not available at the moment.

On the more difficult question regarding the inference of base measure G, our result given by
Theorem 2.2 exhibits some notable weaknesses. First of all, the posterior concentration rate (5) is
meaningful only in the regime that both m and n increase. The intuition behind our analysis for G

is quite natural: as n increases, one should get a better handle on individual parameter Qi in each
group. And with m increasing as well, one should be able to improve the quality of the inference
of the base measure G on the basis of the Qi ’s. Unfortunately, if n grows too fast relatively to m,
the upper bound (5) gets worse (and eventually becomes useless). Note that in this paper we are
still unable to establish posterior concentration behavior for G in the case where n is fixed, and
m grows (except the case n = 1). Our present techniques are probably not powerful enough to
address this interesting and arguably more practical asymptotic regime. The limitations seems
to have their roots in a decoupling technique employed in the development of Theorem 5.1 in
Section 5, which derives an upper bound for the Wasserstein distances of Dirichlet base measures
in terms of the corresponding marginal densities on n-vector Y[n]. These issues will be elaborated
further in the paper.

Organization of the paper. Section 2 describes the model setting and provides a full statement
of the main theorems. Section 2.3 elaborates on the components of the proofs and the tools
that we develop. Section 3 defines transportation distances for hierarchies of random measures.
Section 4 analyzes regular boundaries of test sets that arise in the support of various classes of
Dirichlet measures of interest. Section 5 gives upper bounds for Wasserstein distances of base
measures. The proof of Theorem 2.1 is given in Section 3, the proof of Theorem 2.2 is given
later in Section 5, which draws from the machinery developed in Sections 3, 4 and 5. The proof
of Theorem 2.3 is given in Section 6, which also draws on the results on the geometry of the
support of a single Dirichlet measure.

Notation. Wr denotes the Lr Wasserstein distance. N(ε,G ,Wr) denotes the covering number
of G in metric Wr . D(ε,G ,Wr) is the packing number of the same metric [28]. sptG denotes
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the support of probability measure G. Several divergence functionals of probability densities
are employed: K(p,q),h(p, q),V (p,q) denote the Kullback–Leibler divergence, Hellinger and
variational distance between two densities p and q defined with respect to a measure on a com-
mon space: K(p,q) = ∫

p log(p/q), h2(p, q) = 1
2

∫
(
√

p − √
q)2 and V (P,Q) = 1

2

∫ |p − q|.
In addition, we define K2(p, q) = ∫

p[log(p/q)]2, χ(p,q) = ∫
p2/q . A � B means A ≤ C ×B

for some positive constant C that is either universal or specified otherwise. Similarly, for A � B .

2. Main theorems and tools

2.1. Model setting and definitions

Consider the following hierarchical probabilistic model:

G ∼ DγH , Q1, . . . ,Qm|G i.i.d.∼ DαG, (9)

Y i[n] := (Yi1, . . . , Yin)|Qi
i.i.d.∼ Qi ∗ f for i = 1, . . . ,m. (10)

The relationship among quantities of interest can be illustrated by the following diagram:

DγH G

DαG

Q1 . . . Qm

Y 1[n] ∼ Q1 ∗ f . . . Ym[n] ∼ Qm ∗ f

Dropping the index i, Y[n] := (Y1, . . . , Yn) denotes the generic i.i.d. random n-vector according
to the generic mixture density Q ∗ f , where Q is sampled from Dirichlet measure DαG. The
marginal density of Y[n] takes the form:

pY[n]|G(Y[n]) =
∫ n∏

j=1

Q ∗ f (Yj )DαG(dQ). (11)

Given an m × n data set Y
[m]
[n] := (Y 1[n], . . . , Ym[n]), the posterior distribution of G given Y

[m]
[n] takes

the form, for any measurable B ⊂ P(�):

�G

(
G ∈ B|Y [m]

[n]
) =

∫
B

∏m
i=1 pY[n]|G(Y i[n])DγH (dG)∫ ∏m

i=1 pY[n]|G(Y i[n])DγH (dG)
. (12)
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There are three main theorems. The first is concerned with the concentration behavior of the
posterior distribution of marginal density pY[n]|G given the data Y

[m]
[n] , as m → ∞, assuming that

the data is generated according to G = G0 for some fixed G0 ∈ P(�). The second deduces the
posterior contraction of the base measure G, reposing upon that of pY[n]|G. The third theorem is
concerned with the concentration behavior of an individual mixing measure Qi given the data.

Geometric sparseness conditions for G0. Our theory is developed for a class of atomic base
measure G0. A simple example is the case G0 has a finite number of support points. We also
consider the case G0 has infinite support, which admits a geometrically sparse structure that we
now define.

Definition 2.1. Given c1 ∈ (0,1), c2 > 0 and a nonincreasing function K :R+ → R+. A subset
S of metric space � is (c1, c2,K)-sparse if for any sufficiently small δ > 0 there is ε ∈ (c1δ, δ)

according to which S can be covered by at most K(ε) closed balls of radius ε, and every pair of
such balls is separated by a distance at least c2ε.

Probability measure G0 is said to be sparse, if its support is a (c1, c2,K)-sparse for a valid
combination of c1, c2 and K . A gauge function for a sparse measure G0, denoted by g :R+ → R,
is defined as the maximal function such that for each sufficiently small ε, there is a valid ε-
covering specified by the definition and that the G0 measure on each of the covering ε-balls is
bounded from below by g(ε). g is clearly a nondecreasing function.

We say G0 is supersparse with nonnegative parameters (γ0, γ1), if function K satisfies
K(ε) � [log(1/ε)]γ0 , and function g satisfies g(ε) � [log(1/ε)]−γ1 . G0 is ordinary sparse with
parameters (γ0, γ1) if K(ε) � (1/ε)γ0 , and g(ε) � εγ1 .

Examples. If � = [0,1] and S = {1/2k|k ∈ N, k ≥ 1} ∪ {0}, then S is (c1, c2,K)-sparse with
c1 = 1/2, c2 = 2 and K(ε) = log(1/2ε)/ log 2. If S is the support of G0, and G0({1/2k}) ∝ k−γ1

for any k ∈ N and some γ1 > 1, then G0 is clearly a supersparse measure with parameters γ0 = 1
and γ1. Ordinary sparse measures as we defined typically arise in fractal geometry [6], where
parameter γ0 is analogous to the Hausdorff dimension of a set, while γ1 is analogous to the
packing dimension (see, e.g., [9]). Now, if � = [0,1] and S is the classical Cantor set, then S is
(c,K)-sparse with c1 = 1/3, c2 = 2 and K(ε) = exp[log(1/2ε) log 2/ log 3]. Set S has Hausdorff
dimension equal γ0 = log 2/ log 3. Let G0 be the γ0-dimension Hausdorff measure on set S, then
G0 is ordinary sparse with γ0 = γ1 = log 2/ log 3.

Conditions on kernel density f . The main theorems in this paper are established independently
of the specific choices of kernel density f except some minor assumptions (A1), (A2) in the
sequel. However, to obtain concrete rates in m and n, we will make additional assumptions on
the smoothness of f when needed. Such assumptions are chosen mainly so we can make use
of the concrete rates of demixing in a deconvolution problem, that is, the convergence rate of a
point estimate of a mixing measure Q given an i.i.d. sample from the mixture density Q ∗ f .

For that purpose, f is a density function on R
d that is symmetric around 0, that is, f (x|θ) :=

f (x − θ) such that
∫
B

f (x)dx = ∫
−B

f (x)dx for any Borel set B ⊂R
d . In addition, the Fourier

transform of f satisfies f̃ (ω) �= 0 for all ω ∈ R
d . We say f is ordinary smooth with parameter

β > 0 if
∫
[−1/δ,1/δ]d f̃ (ω)−2 dω � (1/δ)2dβ as δ → 0. Say f is supersmooth with parameter

β > 0 if
∫
[−1/δ,1/δ]d f̃ (ω)−2 dω � exp(2dδ−β) as δ → 0. These definitions are somewhat simpler
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and more general than what is employed in [19]. Depending on the form of f , it was shown by
[19] that there is a strictly increasing function � :R+ → R+ that there holds

W2
(
Q,Q′) � �

(
V

(
Q ∗ f,Q′ ∗ f

))
(13)

for any pair Q,Q′ ∈ P(�), provided that � is a bounded subset of Rd , and W2(Q,Q) is suf-
ficiently small. In particular, if f is ordinary smooth with parameter β , then �(u) = u1/(2+βd ′)

for any d ′ > d . If f is supersmooth, then �(u) = (− logu)−1/β (cf. Theorem 2 of [19]).

2.2. Main theorems

The following list of assumptions are required throughout the paper:

(A1) For some r ≥ 1,C1 > 0, h(f (·|θ), f (·|θ ′)) ≤ C1‖θ − θ ′‖r and K(f (·|θ), f (·|θ ′)) ≤
C1‖θ − θ ′‖r ∀θ, θ ′ ∈ �.

(A2) There holds M = supθ,θ ′∈� χ(f (·|θ), f (·|θ ′)) < ∞.
(A3) H ∈ P(�) is nonatomic, and for some constant η0 > 0, H(B) ≥ η0ε

d for any closed
ball B of radius ε.

It is simple to observe that (A1) holds for r = 2 for the Gaussian kernel density f , and holds
for r = 1 for almost all standard kernel densities in the modeling literature (Laplace, Cauchy,
Gamma, etc.). (A2) holds naturally for most choices of kernel densities, as long as � is bounded.
(A3) is often satisfied by almost all (noninformative) prior choices made in practice.

We are ready to state the first theorem, which establishes the posterior concentration of the
marginal density of n-vector Y[n] under the above assumptions.

Theorem 2.1. Let � be a bounded subset of Rd and G0 ∈ P(�). Given assumptions (A1)–
(A3), parameters α > 0, γ > 0 and H ∈ P(�) are known. Let m tend to infinity, while n can
be either fixed to a constant, or n tending to infinity at a rate relatively to m. Then there is a
large constant C independent of both m and n such that the posterior induced by the model of
equations (9) and (10) satisfies

�G

(
h(pY[n]|G0 ,pY[n]|G) ≥ C

[
n3d log(mn)

m

]1/(2d+2)∣∣∣Y [m]
[n]

)
−→ 0

in P m
Y[n]|G0

-probability. Moreover,

(i) If f is a Gaussian kernel with a fixed variance, then the rate is improved to

εmn =
[
n2d(logm)2d+1 logn

m

]1/2

.

(ii) If G0 has a finite and known number of support points, then the rate is improved to

εmn =
[

log(mn)

m

]1/2

.
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Remarks. 1. When n is fixed, the dependence of the rate on n carries no consequence. The
theorem establishes in several cases that the concentration rate with respect to m is the optimal
m−1/2 up to a logarithmic quantity. This includes the parametric case (i.e., G0 is assumed to
have a known finite number of support points). But the much more interesting case is when one
uses a Gaussian density kernel f , despite the possibility that G0 may still have infinite support.
In the general setting, where almost nothing is assumed of G0 and f (except relatively mild
assumptions in (A1)–(A3)), the nonparametric rate of m−1/(2d+2) appears quite natural.

2. When n is allowed to vary along with m, increasing n has the effect of worsening our upper
bound for the posterior concentration rate. An explanation for this phenomenon is that as n gets
large, the marginal density pY[n]|G may become more degenerate. More concretely, in the calcu-
lations that we shall present later, the (estimate of the) entropy of the space of marginal densities
{pY[n]|G|G ∈ P(�)} under Hellinger metric is shown to increase with n (cf. Lemma 3.3). Only
in the case of a parametric model (i.e., the number of support points of G0 is known) do we
observe that the effect of n is the negligible (logn). We do not know whether the presence of n in
the rate’s numerator is optimal – a definitive answer regarding the optimality of these rates may
be settled by a minimax analysis, which is beyond the scope of this paper.

Next, we turn to the posterior concentration of the base measure G per se. An easy bound can
be deduced for the case n = 1 from Theorem 2.1. Due the basic property of the Dirichlet measure
that

∫
Q(dθ)DαG(dQ) = G(dθ), and by an application of Fubini’s theorem, the marginal density

for a single data point takes the form:

pY[1]|G(Y[1]) =
∫ ∫

f (Y1 − θ)Q(dθ)DαG(dQ)

=
∫

f (Y1 − θ)G(dθ) = G ∗ f (Y1).

Provided that all conditions stated in Theorem 2.1 hold, so that the posterior concentrate rate
εm1 
 [log(m)/m]1/(2d+2) is attained for the marginal density pY[1]|G, as n = 1 and m → ∞.
Combining this concentration rate with equation (13) gives the following:

�G

(
W2(G,G0) ≤ �(εm1)|Y [m]

[1]
) −→ 1

in P m
Y[1]|G0

-probability, as m → ∞.
Unfortunately, we do not know how to extend this bound to the case where n is fixed to a

constant greater than 1. In the following, we shall work in a regime where both m and n = n(m)

tend to infinity. Let (εn, δn)n≥1 be two nonnegative vanishing sequences, where δn = �(εn) such
that exp−nε2

n = o(δn) and that the following holds: for any Q ∈ P(�), there exists a point
estimate Q̂n given an n-i.i.d. sample from the mixture distribution Q∗f , such that the following
inequality holds:

P
(
W2(Q̂n,Q) ≥ δn

) ≤ 5 exp
(−cnε2

n

)
, (14)

where constant c is universal, the probability measure P is given by the mixture density Q ∗ f .
We refer to δn as the demixing rate. The exact nature of (εn, δn) is not of concern at this point. In
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addition, define

α∗ := α inf
θ∈sptG0

G0
({θ}).

Note that α∗ > 0 if G has finite support, and α∗ = 0 otherwise.

Theorem 2.2. Let � be a bounded subset of Rd and G0 ∈ P(�). Given assumptions (A1)–(A3),
parameters α ∈ (0,1], γ > 0 and H ∈ P(�) are known. Then, as m → ∞ and n = n(m) →
∞, there is a sequence εmn and �n dependent on m and n such that under the model given
equations (9) and (10), there holds:

�G

(
W1(G,G0) ≤ C(εmn + �n)|Y [m]

[n]
) −→ 1

in P m
Y[n]|G0

-probability for a large constant C independent of m and n. In particular, εmn is any
posterior concentration rate for the marginal densities such as the ones established by Theo-
rem 2.1. Regarding the nature of �n,

(i) If G0 has finite (but unknown) number of support points, then

�n 
 δ
α∗/(α∗+1)
n .

(ii) If G0 has infinite and supersparse support with parameters (γ0, γ1), then

�n 
 exp−[
log(1/δn)

]1/(1∨γ0+γ1).

(iii) If G0 has infinite and ordinary sparse support with parameters (γ0, γ1), then

�n 
 [
log(1/δn)

]−1/(γ0+γ1).

Remarks. 1. Section 5 establishes the existence of a point estimate which admits the finite-
sample probability bound (14). In particular, εn is given as follows: εn 
 (logn/n)r/2d , if d >

2r ; εn 
 (logn/n)r/(d+2r) if d < 2r , and εn 
 (logn)3/4/n1/4 if d = 2r . Constant r is from
assumption (A1). The rate of demixing δn is determined according to an additional condition on
the smoothness of the kernel density f :

(a) If f is ordinary smooth with parameter β > 0, then δn = ε
1/(2+βd ′)
n for any d ′ > d .

(b) If f is supersmooth with parameter β > 0, then δn = [− log εn]−1/β .

2. In the parametric case, the number of support points of G0 is k < ∞ and k is known, H is
taken to be a probability measure with k support points. Then we obtain the following parametric
rate of posterior concentration for a finite admixture model for continuous data:

εmn + �n = [
log(mn)/m

]1/2 + δα∗
n .

Under identifiability conditions for kernel density f , such as those considered by [19] (Theo-
rem 1), one has εn = (logn)n−1/2 and δn = ε

1/2
n = (logn)1/2n−1/4. Finite admixtures for cate-

gorical data exhibit a quite different kind of geometry, and were investigated in [20].
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3. The above theorem establishes that the posterior concentration rate is bounded from above
by two quantities εmn and �n. The former captures the contraction of the marginal density of
observed data, while the latter captures the demixing (deconvolution) aspect of each individual
mixing measure Qi . It is natural to expect that �n � δn, to account for the fact that the mixing
measures Qi are not observed directly. It is interesting how quantity �n depends on the geo-
metric sparsity of the support of the true base measure G0: as G0 becomes less sparse, �n gets
slower:

δn � δα∗
n � δ

α∗/(α∗+1)
n � exp−[

log(1/δn)
]1/(1∨γ0+γ1) � [

log(1/δn)
]−1/(γ0+γ1).

Our final main result is about the posterior concentration behavior of the latent mixing mea-
sures Qi , as the base measure G is integrated out, and the amount of data increases. For the ease
of presentation, we isolate a particular mixing measure to be denoted by Q0, and we shall assume
that Q0 is attached to the hierarchical Dirichlet process in the same way as the Q1, . . . ,Qm, that
is,

G ∼ DγH , Q0,Q1, . . . ,Qm|G i.i.d.∼ DαG. (15)

Suppose that an i.i.d. ñ-sample Y 0
[ñ] drawn from a mixture model Q0 ∗ f is available, where

Q0 = Q∗
0 ∈ P(�) is unknown:

Y 0
[ñ]|Q0

i.i.d.∼ Q0 ∗ f. (16)

In addition, as before, m × n data set is available:

Y i[n] := (Yi1, . . . , Yin)|Qi
i.i.d.∼ Qi ∗ f for i = 1, . . . ,m. (17)

The relationship among quantities of interest is illustrated by the following diagram:

DγH G

DαG

Q0 Q1 . . . Qm

Y 0
[ñ] ∼ Q0 ∗ f Y 1[n] ∼ Q1 ∗ f . . . Ym[n] ∼ Qm ∗ f

The following theorem shows that the posterior distribution �(Q0|Y 0
[ñ], Y

[m]
[n] ), defined with

respect to specifications (15), (16) and (17), concentrates most its mass toward Q∗
0, as n,m and
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ñ → ∞ appropriately. The intuition for this result is rather simple. As the data size m × n grows
appropriately, the posterior distribution for base measure G concentrates around the true G0,
which shall be assumed to be a discrete measure with a finite, but unknown number of support
point. This benefits the inference of density Q0 ∗ f . Indeed, the (conditional) Dirichlet prior on
the mixing measure Q0 (given the m× n data) can be shown to be very thick, due to the fact that
its base measure G0 is conditionally close to a measure with a finite number of support points.
In addition, one can identify subsets of the support of the (conditional) Dirichlet prior for Q0

which take up most of its probability mass, while remaining small in size, as evaluated by the
entropy/covering number. A combination of these two facts result in very favorable posterior
concentration for the marginal density Q0 ∗ f . In fact, the rates become parametric, as they are
independent of the parameter dimensionality d . By contrary, if we do not have the concentra-
tion of base measure G, there is very little control of the space over which Q0 may vary. As
a result, one can only establish the standard nonparametric rate of convergence under general
conditions.

A complete statement of the theorem is the following. Motivated by the conclusion of The-
orem 2.2 we shall assume that the posterior distribution of G concentrates at a certain rate δmn

toward the true base measure G0, which is now assumed to have a finite (but unknown) number
of support points. This concentration behavior can in turn be translated to a sharp concentration
behavior for the mixture density Q0 ∗ f .

Theorem 2.3. Let � be a bounded subset of Rd , G0,Q
∗
0 ∈ P(�). Suppose that assumptions

(A1) and (A2) hold for some r ≥ 1. Given parameters α ∈ (0,1], γ > 0, and H ∈ P(�) known.
Assume further that:

(a) G0 has k < ∞ support points in �; Q∗
0 ∈ P(�) such that sptQ∗

0 ⊆ sptG0.
(b) For each ñ, there is a net δmn = δmn(ñ) ↓ 0 indexed by m,n such that under the model

specifications (15), (16) and (17), there holds: �G(W1(G,G0) ≥ Cδmn|Y [m]
[n] , Y 0

[ñ]) −→ 0 in
P m

Y[n]|G0
× PY 0

[ñ]|Q∗
0
-probability, as m → ∞ and n = n(m) → ∞ at a suitable rate with respect

to m. Here, C is a constant independent of ñ,m,n.

Then, as ñ → ∞ and then m and n = (m) → ∞, we have

�Q

(
h
(
Q0 ∗ f,Q∗

0 ∗ f
) ≥ δm,n,ñ|Y 0

[ñ], Y
[m]
[n]

) −→ 0

in PY 0
[ñ]|Q∗

0
× P m

Y[n]|G0
-probability, where the rates δm,n,ñ are given as follows:

(i) δm,n,ñ 
 (log ñ/ñ)1/(d+2) + δ
r/2
mn log(1/δmn).

(ii) δm,n,ñ 
 (log ñ/ñ)1/2 if f is ordinary smooth with smoothness β > 0, and n and m grow
sufficiently fast so that δmn is sufficiently small relatively to ñ (see details in the remarks below).

(iii) δm,n,ñ 
 (1/ñ)1/(β+2), if f is supersmooth with smoothness β > 0, n and m grow suffi-
ciently fast so that δmn is sufficiently small relatively to ñ.

Remarks. 1. Condition (a) that sptQ∗
0 ⊆ sptG0 motivates the incorporation of mixture distribu-

tion Q0 ∗ f into the Bayesian hierarchy as specified by equation (15). According to the model,



Posterior concentration of the Dirichlet base measure 1549

Q0 shares the same supporting atoms with Q1, . . . ,Qm, as they all inherit from random base
measure G. Note also that the condition on the posterior of G as stated in (b) is closely related
to but nonetheless different from the conclusion reached by Theorem 2.2, due to the additional
conditioning on Y 0

[ñ]. This condition may be proved directly under additional assumptions on
Q∗

0 and G0, by a technically cumbersome (but conceptually simple) modification of the proof of
Theorem 2.2. We avoid this unnecessary complication as it is not central to the main message of
the present theorem.

2. In the statement of part (ii), m and n are required to grow at a rate so that δmn �
ñ−(α+k+M0)(log ñ)−(α+k−2), for some constant M0 > 0 depending only on d, k,β and diam(�).
In part (iii), we require δmn � ñ−2(α+k)/(β+2)(log ñ)−2(α+k−1) exp(−4ñβ/(β+2)).

3. To appreciate the statistical content of this theorem, recall a stand-alone setting in which
Q0 is endowed with an independent Dirichlet prior: Q0 ∼ Dα0H0 for some known α0 > 0
and nonatomic base measure H0 ∈ P(�). Combining with the model specification expressed
by (16), we obtain the posterior distribution for mixture density Q0 ∗ f , which admits the fol-
lowing concentration behavior under some mild conditions (cf. [19]):

�Q

(
h
(
Q0 ∗ f,Q∗

0 ∗ f
) ≥ (log ñ/ñ)1/(d+2)|Y 0

[ñ]
) −→ 0 (18)

in PY 0
[ñ]|Q∗

0
-probability. Now, the rate in the above display should be compared to the general

rate given by claim (i) of Theorem 2.3: (log ñ/ñ)1/(d+2) + δ
r/2
mn log(1/δmn). The extra quantity

δ
r/2
mn log(1/δmn) can be viewed as the general “overhead cost” for maintaining the latent hierarchy

involving the random Dirichlet prior DαG in the hierarchical model.
4. Claims (ii) and (iii) demonstrate the benefits of hierarchical modeling for groups of data

with relatively small sample size: when n � ñ (and m = m(n) → ∞ suitably) so that δmn is
sufficiently small, we obtain parametric rates for the mixture density Q0 ∗ f : (log ñ/ñ)1/2 for
ordinary smooth kernels, and (1/ñ)1/(β+2) for supersmooth kernels. This is a sharp improvement
over the standard rate (log ñ/ñ)1/(d+2) one would get for fitting a stand-alone mixture model
Q0 ∗ f using a Dirichlet process prior. Technically, this improvement is due to the confluence of
two factors: By attaching Q0 to the Bayesian hierarchy one is able to exploit the assumption that
random measure Q0 shares the same supporting atoms as the random base measure G. This is
translated to a favorable level of thickness of the conditional prior for Q0 (given the m × n data
Y

[m]
[n] ), as measured by small Kullback–Leibler neighborhoods. The second factor is due to our

new construction of a sieves (subsets of) P(�) over which the Dirichlet measure concentrates
most its mass on, but which have suitably small entropy numbers. These details will be elaborated
in Section 6.

Summarizing our results: Theorem 2.1 establishes posterior concentration of the marginal den-
sities generating the observed data, while Theorem 2.2 establishes posterior concentration of the
latent Dirichlet base measure in a hierarchical setting. Theorem 2.3 demonstrates dramatic gains
in the efficiency of statistical inference of individual groups of data with relatively small sample
size. For groups with relatively large sample size, the concentration rate appears to be weaken
due to the overhead of maintaining the latent hierarchy. This quantifies the effects of “borrowing
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of strength”, from large groups of data to smaller groups. This is arguably a good virtue of hier-
archical models: it is the populations with smaller sample sizes that need improved inference the
most.

2.3. Method of proof

The major part of the proof of Theorem 2.1 and 2.2 lies in our attempt to establish the relationship
between the three important quantities: (1) a Wasserstein distance between two base measures,
Wr(G,G′), (2) a suitable notion of distance between Dirichlet measures DαG and DαG′ , and (3)
the variational distance/Kullback–Leibler divergence between the marginal densities of n-vector
Y[n], which are obtained by integrating out the mixing measure Q, which is a Dirichlet process
distributed by DαG and DαG′ , respectively. The link from G (resp., G′) to the induced PY[n]|G
(resp., PY[n]|G′ ) is illustrated by the following diagram:

G DαG Q Q ∗ f Y[n]

Wr(G,G′) Wr(DαG,DαG′) V (PY[n]|G,PY[n]|G′)

G′ DαG′ Q′ Q′ ∗ f Y[n]

In order to establish the relationship among the aforementioned distances, we need to inves-
tigate the geometry of the support of individual Dirichlet measures, and the geometry of test
sets that arise when a given Dirichlet measure is tested (discriminated) against a large class of
Dirichlet measures. This study forms the bulk of the paper in Section 3, Section 4 and Sec-
tion 5.

Transportation distances for Bayesian hierarchies. To begin, in Section 3 we develop a general
notion of transportation distance of Bayesian hierarchies of random measures. This notion plays
a fundamental role in our theory, and we believe is also of independent interest. Using trans-
portation distances, it is possible to compare between not only two probability measures defined
on �, but also two probability measures on the space of measures on �, and so on. Transporta-
tion distances are natural for comparing between Bayesian hierarchies, because the geometry
of the space of support of measures is inherited directly in the definition of the transportation
distances between the measures. In particular, Wr(DαG,DαG′) is defined as the Wasserstein dis-
tance on the Polish space P(P(�)), by inheriting the Wasserstein distance on the Polish space
of measures P(�). (The notation Wr is reused as a harmless abuse of notation.) It can be shown
that

Wr(DαG,Dα′G′) ≥ Wr

(
G,G′).
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The above inequality holds generally if DαG and Dα′G′ are replaced by any pair of prob-
ability measures on P(�) that admit a suitable notion of mean measures G, and G′, re-
spectively. Moreover, the Dirichlet measures allow a remarkable identity: when α = α′, we
have

Wr(DαG,DαG′) = Wr

(
G,G′).

Repeated applications of Jensen’s inequality yield the following upper bound for the KL diver-
gence:2

h2(PY[n]|G,PY[n]|G′) ≤ K(PY[n]|G,pY[n]|G′) � nWr
r (DαG,DαG′) = nWr

r

(
G,G′).

Bounds on Wasserstein distances. The most demanding part of the paper lies in establish-
ing an upper bound of the Wasserstein distance Wr(G,G′) in terms of the variational distance
V (pY[n]|G,pY[n]|G′). This is ultimately achieved by Theorem 5.1 in Section 5, which states that
for a fixed G ∈ P(�) and any G′ ∈ P(�),

Wr
r

(
G,G′) � V (PY[n]|G,PY[n]|G′) + An

(
G,G′), (19)

where An(G,G′) is a quantity that tends to 0 as n → ∞. The rate at which An(G,G′) tends to
zero depends only on the geometrically sparse structure of G, not G′. The proof of this result
hinges on the existence of a suitable set Bn ⊂ P(�) measurable with respect to (the sigma
algebra induced by) the observed variables Y[n], which can then be used to distinguish G′ from G,
in the sense that

Wr
r

(
G,G′) � PY[n]|G′(Bn) − PY[n]|G(Bn) + An

(
G,G′). (20)

We develop two main lines of attack to arrive at a construction of Bn.
First, we establish the existence of a point estimate for the mixing measure on the basis of the

observed Y[n]. Moreover, such point estimates have to admit a finite-sample probability bound
of the following form: given Y[n] ∼ Q ∗ f , there exist a point estimate Q̂n such that under the
Q ∗ f probability, there holds

P
(
Wr(Q̂n,Q) ≥ δn

)
� exp−nε2

n,

where δn and εn are suitable vanishing sequences. These finite-sample bounds are presented
in Section 5. The existence of Q̂n will then be utilized in the construction of a suitable
set Bn. In particular, one may pretend to have direct observations from the Dirichlet mea-
sures to construct the test sets, with a possible loss of accuracy captured by the demixing
rate δn.

Regular boundaries in the support of Dirichet measures. Now, to control An(G,G′), we need
the second piece of the argument, which establishes the existence of a robust test that can be
used to distinguish a Dirichlet measure DαG from a class of Dirichet measures C = {Dα′G′ |G′ ∈

2Within this subsection, the details on the constants underlying � and � are omitted for the sake of brevity.
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P(�)}, where the robustness here is measured by Wasserstein metric Wr on P(�). The robust-
ness is needed to account for the possible loss of accuracy δn incurred by demixing, as alluded
to in the previous paragraph. A formal theory of robust tests is developed in Section 4. Central
to this theory is a notion of regularity for a given class of Dirichlet measures C with respect
to a fixed Dirichlet measure D := DαG. In particular, we say that C has regular boundary with
respect to D if for each element D′ = Dα′G′ ∈ C there is a measurable subset B ⊂ P(�) for
which the following holds: (i) D′(B) −D(B) � Wr

r (G,G′) and (ii)

D(Bδ \ B) → 0

as δ → 0. Set B can be thought of as a test set which is used to approximate the variation
distance between a fixed D and an arbitrary D′ which varies in C . Bδ is defined to be the set
of all P ∈ P(�) for which there is a Q ∈ B and Wr(Q,P ) ≤ δ. Various forms of regularity
are developed, which specifies how fast the quantity in the previous display tends to 0. Thus, the
achievement of this section is to show that the regularity behavior is closely tied to the geometry
of the support of base measure G. Theorems 4.1 and 4.2 provide a complete picture of regularity
for the case G has finite support, and the case G has infinite and geometrically sparse support.
Now, by controlling the rate at which D(Bδ \ B) tends to 0, we can control the rate at which
An(G,G′) tends to 0, completing the proof of (19).

Posterior concentration proofs. With the tools and inequalities established in Section 3 at our
disposal, the proof of Theorem 2.1 is easily available by appealing to a general theorem for
establishing posterior concentration of a density [13], and verifying the sufficient conditions in
terms of entropy numbers, the prior thickness in Kullback–Leibler divergence, and so on. The
proof of Theorem 2.2 follows by combining the result from Theorem 2.1 with Theorem 5.1
described above.

Finally, the proof of Theorem 2.3 follows from a posterior concentration result for the mixing
measure Q, which is distributed by the prior DαG, conditionally given the event that the base
measure G is perturbed by a small Wasserstein distance W1 from G0 that has k < ∞ support
points; see Lemma 6.4 in Section 6. The proof of this lemma also follows the standard strategy
of the posterior concentration proof mentioned earlier. The main novelty lies in the construction
of a sieves of subsets of P(�) which yields favorable rates of posterior concentration. This
construction is possible by showing that the Dirichlet measure places most its mass on subsets
(of P(�)) which can be covered by a relatively small number of balls in Wr . Such results about
the Wasserstein geometry of the support of a Dirichlet measure may be of independent interest,
and are collected in Section 6.2.

Due to the large number of technical results, many of which are new and rather nonstandard,
for the ease of the readers we include the following chart that illustrates the dependence structures
of the main theorems and accompanying lemmas. Also included are several existing theorems
(in bold) upon which our results are built in crucial ways.
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Lemma 3.1 Lemma 3.2 Lemma 3.3 [13] (Theorem 2.1)

Lemma 3.4 Lemma 3.5 T heorem 2.1

[21] Lemma 2.1 Lemma 4.1

[32] (Theorem 2) T heorem 4.1 T heorem 4.2

[19] (Theorem 2) Lemma 5.1 T heorem 5.1 T heorem 2.2

Lemma 6.1 Lemma 6.2 Lemma 6.3

[19] (Theorem 4) Lemma 6.4 T heorem 2.3

2.4. Concluding remarks and further development

In this paper, we study posterior concentration behaviors for the base measure of a Dirichlet
measure and related quantities, given observations associated with sampled Dirichlet processes,
using tools developed with optimal transport distances. There are a number of open questions
that remain. First, regarding Theorem 2.1, we still do not know whether the established (upper
bound) of the concentration rate is optimal or not, with respect to the number m of groups, and
more interestingly with respect to the sample size n per group. Perhaps a proper way to address
this question is to directly develop a minimax optimal theory for the variables residing in latent
hierarchies of models such as the one we have considered. Second, regarding Theorem 2.2, our
result is applicable only in the setting where both m and n grow, not the case where m grows
and n is fixed. Our proof method is not capable of saying much on the latter setting. Finally, it
may be of interest to consider the problem of estimating a nonatomic base measure, while the
Dirichlet processes are not directly observed.

3. Transportation distances of Bayesian hierarchies

Let � be a complete separable metric space (i.e., � is a Polish space) and P(�) be the space of
Borel probability measures on �. The weak topology on P(�) (or narrow topology) is induced
by convergence against Cb(�), that is, bounded continuous test functions on �. Since � is
Polish, P(�) is itself a Polish space. P(�) is metrized by the Wr Wasserstein distance: for
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G,G′ ∈ P(�) and r ≥ 1,

Wr

(
G,G′) = inf

κ∈T (G,G′)

[∫ ∥∥θ − θ ′∥∥r dκ
(
θ, θ ′)]1/r

.

By a recursion of notation, P(P(�)) is defined as the space of Borel probability measures
on P(�). This is a Polish space, and will be endowed again with a Wasserstein metric that is
induced by metric Wr on P(�):

Wr

(
D,D′) = inf

K∈T (D,D′)

[∫
Wr

r

(
G,G′)dK

(
G,G′)]1/r

. (21)

We can safely reuse notation Wr as the context is clear from the arguments. Since the cost func-
tion ‖θ − θ ′‖ is continuous, the existence of an optimal coupling κ ∈ T (G,G′) which achieves
the infimum is guaranteed due to the tightness of T (G,G′) (cf. Theorem 4.1 of [29]). Moreover,
Wr(G,G′) is a continuous function and T (D,D′) is again tight, so the existence of an optimal
coupling in T (D,D′) is also guaranteed.

Now we present a lemma on a monotonic property of Wasserstein metrics defined along the
recursive construction for every pair of centered random measures on �. Part (b) highlights a
very special property of the Dirichlet measure. In what follows, P denotes a generic measure-
valued random variable. By

∫
P dD = G we mean

∫
P(A)dD = G(A) for any measurable subset

A ⊂ �.

Lemma 3.1. (a) Let D,D′ ∈ P(P(�)) such that
∫

P dD = G and
∫

P dD′ = G′. For r ≥ 1, if
Wr(D,D′) is finite then Wr(D,D′) ≥ Wr(G,G′).

(b) Let D = DαG and D′ = DαG′ . Then Wr(D,D′) = Wr(G,G′) if both quantities are finite.

Recall the generative process defined by equations (9) and (10): The marginal density pY[n]|G
is obtained by integrating out random measures Q, which is distributed by DαG; see equa-
tion (11). By a repeated application of Jensen’s inequality, it is simple to establish upper bounds
on Kullback–Leibler distance K(pY[n]|G,pY[n]|G′) and other related distances in terms of trans-
portation distance between G and G′.

Lemma 3.2. (a) Under assumption (A1),

K(pY[n]|G,pY[n]|G′) ≤ C1nWr
r

(
G,G′),

h2(pY[n]|G,pY[n]|G′) ≤ C1nW 2r
2r

(
G,G′),

h2(pY[n]|G,pY[n]|G′) ≤ V (pY[n]|G,pY[n]|G′) ≤
√

1 − (
1 − C1W

2r
2r

(
G,G′))n

.

(b) Under assumption (A2), we have χ(pY[n]|G,pY[n]|G′) ≤ Mn.

The following lemma establishes an estimate of the entropy number for the space of marginal
densities {pY[n]|G|G ∈ P(�)}. Part (a) gives a very general entropy bound. Tightened bounds are



Posterior concentration of the Dirichlet base measure 1555

possible given when more is known either about the space of G, or the kernel density f . These
entropy bounds have direct consequences on the kind of concentration rates that we will get in
Theorem 2.1.

Lemma 3.3. (a) Under assumption (A1), for any ε ∈ (0,1/2),

logN
(
ε,

{
pY[n]|G|G ∈ P(�)

}
, h

) ≤ (
2C1ndiam(�)/ε2)d log

(
e + 2eC1ndiam(�)/ε2).

(b) Under assumption (A1), for any ε ∈ (0,1/2), k ∈N,

logN
(
ε, {pY[n]|G|G has k support points on �}, h)

≤ kd log
(
2C1ndiam(�)/ε2) + log

(
e + 2eC1ndiam(�)/ε2).

(c) If f is a Gaussian kernel on R
d , f (x) = 1

(2π)d/2σd e−‖x‖2/2σ 2
, for some σ > 0, then

logN
(
ε,

{
pY[n]|G|G ∈ P(�)

}
, h

)
�

(
log(1/ε)

)2d+1
n2d logn,

where the multiplying constant depends only on d,σ,� (and not on n).

Next, define the Kullback–Leibler neighborhood of a given G0 ∈ P(�) with respect to n-
vector Y[n] as follows:

BK(G0, δ) = {
G ∈ P(�)|K(pY[n]|G0 ,pY[n]|G) ≤ δ2,K2(pY[n]|G0 ,pY[n]|G) ≤ δ2}. (22)

The following result gives probability bound on small balls as defined by Wasserstein metric
(Lemma 5 of [19]):

Lemma 3.4. Suppose that law(G) = DγH , where H is a nonatomic probability measure on �.
For a small ε > 0, let D = D(ε,�,‖ · ‖) the packing number of � under ‖ · ‖. Then, for any
G0 ∈ P(�),

P
(
G: Wr

r (G0,G) ≤ (
2r + 1

)
εr

) ≥ �(γ )γ D

(2D)D−1

(
ε

diam(�)

)r(D−1)

sup
S

D∏
i=1

H(Si).

Here, (S1, . . . , SD) denotes the D disjoint ε/2-balls that form a maximal packing of �. � denotes
the gamma function. The supremum is taken over all packings S := (S1, . . . , SD).

Combine the previous lemmas to obtain an estimate of the thickness of the hierarchical Dirich-
let prior:

Lemma 3.5. Given assumptions (A1)–(A3), � a bounded subset of Rd .
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(a) Let D := (diam(�))d(n3/δ2)d/r and constants c,C depending only on C1,M,η0, γ,

diam(�) and r . Then, for any G0 ∈ P(�), δ > 0 and n > C log(1/δ), the following inequal-
ity holds under the probability measure DγH :

logP
(
G ∈ BK(G0, δ)

) ≥ c log
[
γ D

(
δ2/n3)(1+d/r)(D−1)+Dd/r]

.

(b) If in addition, G0 has exactly k support points in �, then

logP
(
G ∈ BK(G0, δ)

) ≥ c log
[
γ k

(
δ2/n3)kd/r+k/r(1/k diam�r

)k]
.

(c) If f is the Gaussian kernel (given in Lemma 3.3), then for any G0 ∈ P(�), the bound in
part (b) of the lemma continues to hold with k � (log(1/δ))2d(nd)2d .

The proofs of all lemmas presented in this section are deferred to [21].

Proof of Theorem 2.1. The proof is a straightforward application of a standard result in
Bayesian asymptotics for density estimation. In particular, we shall appeal to Theorem 2.1
of [13]. First, let n be fixed, so that n acts as the (fixed) dimensionality of the n-vector Y[n].
According to this theorem, as sample size m tends to infinity, as long as the constructed rate
sequence εmn satisfies the entropy condition on the class of marginal densities:

logD
(
εmn,

{
PY[n]|G|G ∈ P(�)

}
, h

) ≤ mε2
mn

and the condition on the prior thickness:

− logP
(
G ∈ BK(G0, εmn)

) ≤ Mmε2
mn

for some universal constant M > 0, then the conclusion of Theorem 2.1 is established for some
sufficiently large constant C > 0 not depending on m or n. Indeed, the entropy condition is an
immediate consequence of Lemma 3.3, while the prior thickness condition is immediate from
Lemma 3.5. Finally, an examination of the proof of [13] reveals that the conclusion also holds
by allowing n to vary as a function of m. �

4. Regular boundaries in the support of Dirichlet measures

In this section, we study the property of the boundary of certain sets (of measures) which can
be used to test one Dirichlet measure against another. Typically, such a test set can be defined
via the variational distance between the two measures. However, for the purpose of subsequent
development we need a more robust test in which the robustness can be expressed in terms of the
measure of the test set’s perturbation along its boundary. Recall the variational distance between
D,D′ ∈ P(P(�)) is given by

V
(
D,D′) = sup

B⊂P(�)

∣∣D(B) −D′(B)
∣∣.
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Here, the supremum is taken over all Borel measurable sets B ⊂ P(�). In what follows, fix
r ≥ 1. For a subset B ⊂ P(�) the boundary set bdB is defined as the set of all elements
P ∈ P(�) such that every Wr neighborhood for P has nonempty intersection with B as well as
the complement set Bc = P(�) \ B.

The primary objects in consideration are a pair of (D,C ), with D ∈ P(�), C ⊂ P(P(�)),
where D = DαG for some fixed G ∈ P(�) and α > 0. C is a class of Dirichlet measures C :=
{Dα′G′ |G′ ∈ G , α′ > 0} for some fixed G ⊂ P(�).

Definition 4.1. A class C ⊂ P(P(�)) of Dirichlet measures is said to have α∗-regular bound-
ary with respect to D = DαG for some constant α∗ > 0, if there are positive constants C0, c0
and c1 dependent only on D such that for each D′ = Dα′G′ ∈ C there exists a measurable subset
B ⊂ P(�) for which the following hold:

(i) D′(B) −D(B) ≥ c0W
r
r (G,G′),

(ii) D(Bδ \ B) ≤ C0(δ/Wr(G,G′))α∗
for any δ ≤ c1Wr(G,G′).

C is said to have strong α∗-regularity with respect to D if condition (ii) is replaced by

(iii) D(Bδ \ B) ≤ C0δ
α∗

for any δ ≤ c1.

C is said to have weak regularity with respect to D if condition (ii) is replaced by

(iv) D(Bδ \ B) = o(1) as δ → 0.

Remark. The nontrivial requirement here is that constants C0, c0 and c1 are independent of D′ ∈
C . Consider the following example: G := {G′ ∈ P(�)| sptG′ ∩ sptG = ∅}. Take D′ := Dα′G′
for some G′ ∈ G . By a standard fact of Dirichlet measures (e.g., see Theorem 3.2.4 of [14]),
sptD = {P : sptP ⊂ sptG} and sptD′ = {P : sptP ⊂ sptG′}. Thus, we also have sptD∩sptD′ =
∅. It follows that V (D,D′) = 1. If we choose δ1 = infθ∈sptG;θ ′∈sptG′ ‖θ − θ ′‖ > 0, and let B =
(sptD′)δ1/2, then D′(B) = 1 and D(B) = 0. Moreover, for any δ ≤ δ1/4, D(Bδ) = 0, so D(Bδ \
B) = 0. At the first glance, this construction appears to suggest that C := {Dα′G′ |G′ ∈ G } has
(strong) α∗-regular boundary with D for any α∗ > 0. This is not the case, because it is not
possible to guarantee that δ1 > c1Wr(G,G′) for some c1 independent of G′. That is, δ1 can be
arbitrarily close to 0 even as Wr(G,G′) remains bounded away from 0.

4.1. The case of finite support

We study the regularity of boundaries for the pair (D,C ), where the base measure G of D = DαG

has a finite number of support points, while class C consists of Dirichlet measures D′ = DαG′
where G′ may have infinite support in �. In the following subsection, we extend the theory to
handle the case that G has infinite and geometrically sparse support.

Theorem 4.1. Suppose that � is bounded. Let D = DαG, where G = ∑k
i=1 βiδθi

for some k <

∞ and α ∈ (0,1]. Let α1 > α0 > 0 be given. Define

C = {
Dα′G′ |G′ ∈ P(�);α′ ∈ [α0, α1]

}
.
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Then C has α∗r-regular boundary with respect to D, where α∗ = mini αβi .

Proof. Take any G′ ∈ P(�). Let ε := Wr(G,G′). Choose constants c1, c2 such that cr
1 +

c2 diam(�)r ≤ 1/2r and c1 diam(�) < m := min1≤i �=j≤k ‖θi − θj‖/4. Let S = ⋃k
i=1 Bi , where

Bi ’s for i = 1, . . . , k are closed Euclidean balls of radius c1ε and centering at θ1, . . . , θk , respec-
tively. Any G′ ∈ P(�) admits either (A) G′(Sc) ≥ c2ε

r , or (B) G′(Sc) < c2ε
r .

Case (A). G′(Sc) ≥ c2ε
r . Let B = {Q ∈ P(�)|Q(Sc) > 1/2}. Clearly, D(B) = 0. Moreover,

for any Q ∈ B and Q′ ∈ sptD, Wr
r (Q,Q′) ≥ (1/2)(c1ε)

r . So for any δ < (1/2)1/rc1ε, D(Bδ) =
0. Condition (ii) of Definition 4.1 is satisfied.

It remains to verify condition (i). If G′(S) = 0, then G′(Sc) = 1 and D′(B) = 1. So, D′(B)−
D(B) = 1. On the other hand, if G′(S) > 0 and suppose that law(Q) = D′, then law(Q(S)) =
Beta(α′G′(S),α′G′(Sc)). So,

D′(B) =
∫ 1/2

0

�(α′)
�(α′G′(S))�(α′G′(Sc))

xα′G′(S)−1(1 − x)α
′G′(Sc)−1 dx

≥ (1/2)α
′
�(α′)

�(α′G′(S))�(α′G′(Sc))

∫ 1/2

0
xα′G′(S)−1 dx

= (1/2)α
′
�(α′)

�(α′G′(S))�(α′G′(Sc))
× (1/2)α

′G′(S)

α′G′(S)

= (1/2)α
′+α′G′(S)�(α′)α′G′(Sc)

�(α′G′(S) + 1)�(α′G′(Sc) + 1)

≥ (1/2)2α′
�(α′)α′G′(Sc)

max1≤x≤α′+1 �(x)2
≥ (1/2)2α′

�(α′)α′c2ε
r

max1≤x≤α′+1 �(x)2
.

In the above display, the first inequality is due to (1 − x)γ ≥ 1 if γ ≤ 0, and (1 − x)γ ≥ (1/2)γ if
γ > 0 for x ∈ [0,1/2]. The third equality is due to x�(x) = �(x +1) for any x > 0. Condition (i)
is verified.

Case (B). β ′
0 := G′(Sc) < c2ε

r . Let β ′
i = G′(Bi) for i = 1, . . . , k. Consider the map

� :P(�) → �k−1, defined by

�(Q) := (
Q(B1)/Q(S), . . . ,Q(Bk)/Q(S)

)
.

Define P1 := Dir(αβ1, . . . , αβk) and P2 := Dir(α′β ′
1, . . . , α

′β ′
k). By a standard property of

Dirichlet measures, P1 and P2 are push-forward measures of D and D′, respectively, by �. (i.e.,
if law(Q) =D, then law(�(Q)) = P1. If law(Q) =D′ then law(�(Q)) = P2.) Define

B1 :=
{

q ∈ �k−1
∣∣∣∣dP2

dP1
(q) > 1

}
.

(This is exactly the same set defined by equation (4) of [21] in the proof of Lemma 4.1 that
we shall encounter in the sequel.) Now let B = �−1(B1). Then we have D′(B) − D(B) =
P2(B1) − P1(B1) = V (P1,P2).
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To verify condition (ii) of Definition 4.1, recall that

D(Bδ \ B) =D
({

Q =
k∑

i=1

qiδθi

∣∣∣∣Q /∈ B;Wr

(
Q,Q′) ≤ δ for some Q′ ∈ B

})
.

For a measure of the form Q = ∑k
i=1 qiδθi

, Wr(Q,Q′) ≤ δ entails Q(Bi) − Q′(Bi) = qi −
Q′(Bi) ≤ δr/(c1ε)

r , and Q′(Bi) − qi ≤ δr/(m − c1ε)
r < δr/(c1ε)

r , for any i = 1, . . . , k. As
well, Q′(Sc) ≤ δr/(c1ε)

r . This implies that

∣∣Q(Bi)/Q(S) − Q′(Bi)/Q
′(S)

∣∣ =
∣∣∣∣qi − Q′(Bi)

1 − Q′(Sc)

∣∣∣∣ ≤ 2δr/(c1ε)
r

1 − δr/(c1ε)r
≤ 4δr/(c1ε)

r ,

where the last inequality holds as soon as δ ≤ c1ε/21/r . In short, Wr(Q,Q′) ≤ δ implies that
‖�(Q) − �(Q′)‖∞ ≤ 4δr/(c1ε)

r . We have

D(Bδ \ B) ≤ D
({

Q|Q /∈ B;∥∥�(Q) − �
(
Q′)∥∥∞ ≤ 4δr/(c1ε)

r for some Q′ ∈ B
})

= P1
({

q|q /∈ B1;
∥∥q − q′∥∥∞ ≤ 4δr/(c1ε)

r for some q′ ∈ B1
})

≤ C0(δ/ε)
α∗r .

The equality in the previous display is due to the definition of B, while the last inequality is
essentially the proof of Lemma 4.1(b). C0 is a positive constant dependent only on D.

It remains to verify condition (i) in Definition 4.1. We have

V (P1,P2) = V (D∑k
i=1 αβiδθi

,D∑k
i=1 α′β ′

i δθi

)

≥ 1

(2 diam(�))r
Wr

r (DαG,D∑k
i=1 α′β ′

i δθi

) (23)

≥ 1

(2 diam(�))r
Wr

r

(
G,

k∑
i=1

β ′
i

1 − β ′
0
δθi

)
.

The first inequality in the above display is due to Theorem 6.15 of [29], while the second
inequality is due to Lemma 3.1(a). Now, we have

Wr
r

(
G′,

k∑
i=1

β ′
i

1 − β ′
0
δθi

)
≤ (c1ε)

r
k∑

i=1

(
β ′

i ∧ β ′
i

1 − β ′
0

)
+ diam(�)r

k∑
i=1

∣∣∣∣β ′
i − β ′

i

1 − β ′
0

∣∣∣∣
≤ (c1ε)

r + diam(�)r
k∑

i=1

β ′
iβ

′
0

1 − β ′
0

≤ εr
(
cr

1 + c2 diam(�)r
) ≤ εr/2r .
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The last inequalities in the above display is due to the hypothesis that β ′
0 < c2ε

r , and the choice
of c1, c2. By triangle inequality,

Wr

(
G,

k∑
i=1

β ′
i

1 − β ′
0
δθi

)
≥ Wr

(
G,G′) − Wr

(
G′,

k∑
i=1

β ′
i

1 − β ′
0
δθi

)
≥ ε − ε/2 = ε/2.

Combining with equation (23), we obtain that D′(B)−D(B) = V (P1,P2) ≥ 1
(2 diam(�))r

(ε/2)r .
This concludes the proof. �

The following lemma, which establishes strong regularity for a restricted class of Dirichlet
measures, supplies a key argument in the proof of the previous theorem. The proof of this lemma
is quite technical and deferred to [21].

Lemma 4.1. Let D = DαG, where G = ∑k
i=1 βiδθi

for some k < ∞, α,α′ > 0. Define

C = {
Dα′G′ |G′ ∈ P(�), sptG′ = sptG

}
.

(a) If mini αβi ≥ 1, then C has strong r-regular boundary with respect to D.
(b) If maxi αβi < 1, then C has strong α∗r-regular boundary with respect to D, where α∗ =

mini αβi .

4.2. The case of infinite and geometrically sparse support

In this subsection, we study a class of base measures G that have infinite support points, but that
remain amenable to our analysis of regular boundaries. In particular, we consider the class of
sparse measures on � (either ordinary sparse or supersparse) given by Definition 2.1.

Theorem 4.2. Assume that D = DαG for some α ∈ (0,1]. sptG is a (c1, c2,K)-sparse subset
of a bounded space � and that G is a sparse measure equipped with gauge function g. Let
α1 ≥ α0 > 0. Then, for any D′ ∈ C , where

C = {
D′ = Dα′G′ |G′ ∈ P(�),α′ ∈ [α0, α1]

}
there exists a measurable set B ⊂ P(�) for which

(i) D′(B) −D(B) � Wr
r (G,G′),

(ii) for any δ � Wr(G,G′),

D(Bδ \ B) � 24K(c0Wr(G,G′)) ×
(

δ

Wr(G,G′)

)αrg(c0Wr(G,G′))
.

Here, c0 and the multiplying constants in � and � depend only on D.

The proof of this result is similar to Theorem 4.1 and deferred to [21].
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5. Upper bounds for Wasserstein distances of base measures

The main purpose of this section is to obtain an upper bound of distance of Dirichlet base
measures Wr(G,G′) in terms of the variational distance of the marginal densities of observed
data V (pY[n]|G,pY[n]|G′). In particular, we will establish an inequality of the form: for a fixed
G ∈ P(�) and any G′ ∈ P(�),

Wr
r

(
G,G′) � V (PY[n]|G,PY[n]|G′) + An

(
G,G′), (24)

where An(G,G′) is a quantity that tends to 0 as n → ∞. The rate at which An(G,G′) tends
to 0 depends on the sparse structure of G, and the smoothness of the kernel density f (x|θ).
The full details are given in the statement of Theorem 5.1. It is worth contrasting this to the
relatively easier inequalities in the opposite direction, given by Lemma 3.2: V (pY[n]|G,pY[n]|G′) ≤
h(pY[n]|G,pY[n]|G′) � nW 2r

2r (G,G′) holds generally for any pair of G,G′.
The proof of inequality (24) hinges on the existence of a suitable set Bn ⊂ P(�) measurable

with respect to (the sigma algebra induced by) the observed variables Y[n], which can then be
used to distinguish G′ from G, in the sense that

Wr
r

(
G,G′) � PY[n]|G′(Bn) − PY[n]|G(Bn) + An

(
G,G′).

In the previous section, we have already shown the existence of subset B ⊂ P(�) for which

Wr
r

(
G,G′) � D′(B) −D(B).

To link up this result to the desired bound (24), the missing piece of the puzzle is the existence of
a point estimate for the mixing measures on the basis of observed variables Y[n]. In the following,
we shall establish the existence of such point estimators, which admit finite-sample probability
bounds that may also be of independent interest.

5.1. Finite-sample probability bounds for deconvolution problem

Let Q be a subset of P(�), and F = {Q ∗ f |Q ∈ Q}. Let Qk ⊂ P(�) be subset of measures
with at most k support points. Fk = {Q∗f |Q ∈Qk}. Given an i.i.d. n-vector Y[n] = (Y1, . . . , Yn)

according to the convolution mixture density Q0 ∗ f for some Q0 ∈ Q. Let ηn be a sequence
of positive numbers converging to zero. Following [32], we consider an ηn-MLE (maximum
likelihood estimator) f̂n ∈F such that

1

n

n∑
i=1

log f̂n(Yi) ≥ sup
g∈F

1

n

n∑
i=1

logg(Yi) − ηn.

By our construction, there exists Q̂n ∈Q such that f̂n = Q̂n ∗ f .

Lemma 5.1. Suppose that assumption (A1) holds for some r ≥ 1,C1 > 0. Let ηn satisfy ηn ≤
c1ε

2
n, εn → 0 at a rate to be specified. Then the ηn-MLE satisfies the following bound under
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Q0 ∗ f -measure, for any Q0 ∈ Q:

P
(
h(f̂n,Q0 ∗ f ) ≥ εn

) ≤ 5 exp
(−c2nε2

n

)
, (25)

P
(
W2(Q̂n,Q0) ≥ δn

) ≤ 5 exp
(−c2nε2

n

)
, (26)

where c1, c2 are some universal positive constants. εn and δn are given as follows:

(a) εn = C2(logn/n)r/2d , if d > 2r ; εn = C2(logn/n)r/(d+2r) if d < 2r , and εn =
(logn)3/4/n1/4 if d = 2r .

(b) εn = C2n
−1/2 logn, if Q=Qk and F =Fk for some k < ∞.

(c) If f is ordinary smooth with parameter β > 0, then δn = C3ε
1/(2+βd ′)
n for any d ′ > d .

(d) If f is supersmooth with parameter β > 0, then δn = C3[− log εn]−1/β .

Here, C2,C3 are different constants in each case. C2 depends only on d, r,� and C1, while C3
depends only on d,β,� and C2.

Proof. Recall Theorem 2 of [32], which is restated as follows: Suppose that ε = εn satisfies the
following inequality:

∫ √
2ε

ε2/28

[
logN(u/c3,F, h)

]1/2 du ≤ c4n
1/2ε2, (27)

where c3 and c4 are certain universal constants (cf. Theorem 1 of [32]). Then, for some universal
constants c1, c2 > 0, if ηn ≤ c1ε

2
n, the following probability bound holds under Q0 ∗ f -measure,

for any Q0 ∈ Q,

P
(
h(f̂n,Q0 ∗ f ) ≥ εn

) ≤ 5 exp
(−c2nε2

n

)
.

It remains to verify the entropy condition (27) given the rates specified in the statement of the
present lemma. We shall make use of the following entropy bounds (cf. Lemma 4 of [19]):

logN(2δ,Q,Wr) ≤ N
(
δ,�,‖ · ‖) log

(
e + e diam(�)r/δr

)
, (28)

log(2δ,Qk,Wr) ≤ k
(
logN

(
δ,�,‖ · ‖) + log

(
e + e diam(�)r/δr

))
. (29)

By assumption (A2) and Lemma 3.2, we have h2(Q ∗ f,Q′ ∗ f ) ≤ C1W
2r
2r (Q,Q′). This im-

plies that

N(u/c3,F, h) ≤ N
((

u2/c2
3C1

)1/2r
,Q,W2r

)
.

Since � ⊂R
d , N(δ,�,‖ · ‖) ≤ (diam(�)/δ)d . So, by (28),

∫ √
2ε

ε2/28

[
logN

((
u2/c2

3C1
)1/2r

,Q,W2r

)]1/2 du

≤
∫ √

2ε

ε2/28

[
N

(
u1/r

2c
1/r

3 C
1/2r

1

,�,‖ · ‖
)

log
(
e + e diam(�)2r22r c2

3C1/u
2)]1/2

du
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≤
∫ √

2ε

ε2/28

(
2 diam(�)

)d/2
c
d/2r

3 C
d/4r

1 u−d/2r
[
log

(
e + e diam(�)2r22r c2

3C1/u
2)]1/2 du.

For equation (27) to hold, it suffices to have the right-hand side of the inequality in the above
display bounded by c4n

1/2ε2. Indeed, this is straightforward to check for the rates given in part (a)
of the lemma.

Part (b) of the lemma is proved in the same way, by invoking a tighter bound on the covering
number via equation (29). Parts (c) and (d) are immediate consequences of part (a) and (b) by
invoking Theorem 2 of [19]. �

5.2. Key upper bound for the Wasserstein distance of base measures

We are ready to prove the key theorem of this section.

Theorem 5.1. Suppose that � is a bounded subset of Rd , (A1) holds for some C1 > 0 and some
r ∈ [1,2]. Let δn and εn be vanishing sequences for which equation (26) holds. Fix G ∈ P(�)

and α ∈ (0,1], while G′ varies in P(�). Let α∗ = α infθ∈sptG G({θ}). Then there are positive
constants c0, c1,C0 depending only on G, and c2 > 0 a universal constant, such that for any
G′ ∈ P(�), α′ ∈ [α1, α0] given and n sufficiently large so that δn � Wr(G,G′), the following
holds:

c0W
r
r

(
G,G′) ≤ V (PY[n]|G,PY[n]|G′) + 10 exp

(−c2nε2
n

) + An

(
Wr

(
G,G′)), (30)

where An(Wr(G,G′)) takes the form:

An(ω) =
{

C0(2δn/ω)α
∗r , if G has finite support,

C024K(c1ω)(2δn/ω)αrg(c1ω), if G is (γ1, γ2,K)-sparse with gauge g.
(31)

Proof. Suppose that G has finite support. By Theorem 4.1 (applied for Wr ) there are positive
constants C0, c0 independent of G′ such that for some measurable set B ⊂ P(�), (i) D′(B) −
D(B) ≥ c0W

r
r (G,G′) and (ii) D(Bδ \ B) ≤ C0(δ/Wr(G,G′))α∗r for all δ � Wr(G,G′).

Recall that Q̂n is a point estimate of Q defined earlier in this section. By the definition of
variational distance, for any δ > 0

V (PY[n]|G,PY[n]|G′) ≥ P
(
Q̂n ∈ Bδ|G′) − P(Q̂n ∈ Bδ|G).

Here, P(·|G) is taken to mean the probability of an event given that the observations are
generated according to the Dirichlet base measure G. Set Bδ := {Q ∈ P(�)| there is Q′ ∈
B such that Wr(Q,Q′) ≤ δ}. We have

P
(
Q̂n ∈ Bδ|G′) ≥ P

(
Q̂n ∈ Bδ,Wr(Q̂n,Q) < δ|G′)

≥ P
(
Q ∈ B,Wr(Q̂n,Q) < δ|G′)

≥ D′(B) − P
(
Wr(Q̂n,Q) ≥ δ|G′).
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We also have

P(Q̂n ∈ Bδ|G) ≤ P
(
Q̂n ∈ Bδ,Wr(Q̂n,Q) < δ|G) + P

(
Wr(Q̂n,Q) ≥ δ|G)

≤ P(Q ∈ B2δ|G) + P
(
Wr(Q̂n,Q) ≥ δ|G)

= D(B2δ) + P
(
Wr(Q̂n,Q) ≥ δ|G)

.

Hence,

V (PY[n]|G,PY[n]|G′)

≥D′(B) −D(B2δ) − 2 sup
Q∈Q

P
(
Wr(Q̂n,Q) ≥ δ

)
≥ (

D′(B) −D(B)
) −D(B2δ \ B) − 2 sup

Q∈Q
P
(
Wr(Q̂n,Q) ≥ δ

)
.

Since r ∈ [1,2], Wr(Q̂n,Q) ≤ W2(Q̂n,Q). Choose δ := δn such that equation (26) holds.
Then, as soon as 2δn � Wr(G,G′), for some multiplying constant depending only on G, we
have

V (PY[n]|G,PY[n]|G′) ≥ c0W
r
r

(
G,G′) − C0

(
2δn/Wr

(
G,G′))α∗r − 10 exp

(−c2nε2
n

)
.

The case that G has infinite support proceeds in a similar way by invoking Theorem 4.2. �

Remark. As we shall see shortly, Theorem 5.1 is instrumental in the proof of Theorem 2.2:
one can now deduce the convergence of the Dirichlet base measure G (toward G0) from the
convergence of the corresponding marginal density pY[n]|G (toward pY[n]|G0 ). We note that the
bound represented by (30) is not sharp in certain regimes, which carry immediate consequences
on the kind of posterior concentration rates that we can obtain for G. In particular, the right-hand
side of inequality (30) increases as n → ∞, due to the fact that V (PY[n]|G,PY[n]|G′) typically
increases as n increases, while the left-hand side is independent of n.

The root of this unnatural feature is due to a simple technique employed in the proof of The-
orem 5.1, which targets the regime that n → ∞, so that one can build on the machinery of the
existence of a robust test for Dirichlet base measures developed in Section 4. Ideally, one would
like to construct a test for base measure G given n-vector data Y[n], by integrating out the la-
tent variable Q. Instead, the bound (30) of Theorem (5.1) is derived by a decoupling approach:
one can first obtain a point estimate for Q on the basis of the data Y[n], and then relies on the
existence of a robust test for G based on the population of Q. Due to the decoupling approach,
we necessarily require n to grow so that the quality of the point estimate for Q is sufficiently
good. An artifact of this technique, however, is that the upper bound for Wr(G,G′) can only be
derived as a summation of several quantities, two of which vanish as n increases (as desired), but
the same cannot be said for the remaining quantity, that is, the variational distance of marginal
densities of n-vector Y[n].
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5.3. Proof of Theorem 2.2

Now we are ready to prove Theorem 2.2. By Theorem 2.1, as m → ∞, while n either varies with
m or is held fixed, we have

�G

(
V (pY[n]|G0 ,pY[n]|G) ≤ εmn|Y [m]

[n]
) → 1

in P m
Y[n]|G0

-probability. Here, we exploit the fact that V ≤ h. Now, by Theorem 5.1 applied to the
pair of G0,G, with the latter allowed to vary in P(�), there are positive constants c0, c1,C0

depending on G0 and c2 > 0 a universal constant such that

c0W1(G0,G) ≤ V (PY[n]|G0 ,PY[n]|G) + 10 exp
(−c2nε2

n

) + An

(
W1(G0,G)

)
, (32)

for any G ∈ P(�). So we have

�G

(
c0W1(G0,G) ≤ εmn + 10 exp

(−c2nε2
n

) + An

(
W1(G0,G)

)|Y [m]
[n]

) → 1

in P m
Y[n]|G0

-probability.
To derive concrete concentration rates, consider the case G0 has finite support. By Theorem 5.1

An(W1(G0,G)) 
 (2δn/W1(G0,G))α
∗
. Plugging to equation (32), we obtain

W1(G0,G) � V (PY[n]|G0 ,PY[n]|G) + exp
(−c2nε2) + δ

α∗/(α∗+1)
n

� V (PY[n]|G0 ,PY[n]|G) + δ
α∗/(α∗+1)
n ,

where we have exploited the fact that the term exp(−c2nε2) is negligible compared to the re-
maining terms. The conclusion of the theorem follows immediately.

Next, consider the case G0 has infinite support, and in fact has geometrically sparse support.
For the case that G0 is super sparse with parameters (γ0, γ1), that is, K(ε) � [log(1/ε)]γ0 , and
g(ε) � [log(1/ε)]−γ1 . It is simple to verify that as long as ε � δn, the constraint

ε � An(ε) = 24K(c1ε) × (2δn/ε)
c1g(c1ε)

implies that

ε � exp−[
log(1/δn)

]1/(γ1+1∨γ0).

Thus, equation (32) entails that

W1(G0,G) � V (PY[n]|G0 ,PY[n]|G) + exp−[
log(1/δn)

]1/(γ1+1∨γ0).

For the case that G0 is ordinary sparse with parameters (γ0, γ1), that is K(ε) � (1/ε)γ0 , and
g(ε) � εγ1 . Similarly, note that the inequality

ε � An(ε)
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entails that

ε �
[
log(1/δn)

]−1/(γ1+γ0).

Thus we have shown that

�G

(
W1(G0,G) � εmn + �n|Y [m]

[n]
) → 1

in P m
Y[n]|G0

-probability, for the choice of �n given in the statement of the theorem.
Examples of εn and δn are given in Lemma 5.1: If f is an ordinary smooth kernel den-

sity, log(1/δn) 
 1
2+βd ′ log(1/εn) 
 logn. If f is a supersmooth kernel density, log(1/δn) 


1
β

log log(1/εn) 
 log logn.

6. Borrowing strength in hierarchical Bayes

This section is devoted to the proof of Theorem 2.3. The proof is a simple consequence from
Lemma 6.4, which establishes the posterior concentration behavior for a mixture distribution
Q ∗ f , where Q is a Dirichlet process distributed by DαG, given that the base measure G is a
small perturbation from the true base measure G0 that is now assumed to have finite support.
A complete statement of Lemma 6.4 is given in Section 6.3. In the following we proceed to give
a proof of Theorem 2.3.

6.1. Proof of Theorem 2.3

Recall that for each ñ, δmn = δmn(ñ) is a net of scalars indexed by m,n that tend to 0. Define
A

(ñ)
mn := {G: W1(G,G0) ≥ δmn} and B

(ñ)
mn := {Q0: h(Q0 ∗ f,Q∗

0 ∗ f ) ≥ C((log ñ/ñ)1/(d+2) +
δ
r/2
mn log(1/δmn))} for some large constant C. Due to the conditional independence of Y 0

[ñ] and

Y
[m]
[n] given G,

�Q

(
Q0 ∈ B(ñ)

mn |Y 0
[ñ], Y

[m]
[n]

) =
∫

�Q

(
Q0 ∈ B(ñ)

mn |G,Y 0
[ñ]

)
d�G

(
G|Y 0

[ñ], Y
[m]
[n]

)
≤

∫
P(�)\A(ñ)

mn

�Q

(
Q0 ∈ B(ñ)

mn |G,Y 0
[ñ]

)
d�G

(
G|Y 0

[ñ], Y
[m]
[n]

)
+ �G

(
G ∈ A(ñ)

mn|Y 0
[ñ], Y

[m]
[n]

)
.

For each ñ, the second quantity in the upper bound tends to 0 in PY 0
[ñ]|Q∗

0
×PY[n]|G0 -probability,

as m,n → ∞ at suitable rates by condition (b) of the theorem. Now, as ñ → ∞, the first quantity
tends to 0 as a consequence of Lemma 6.4. This completes the proof for (i). Parts (ii) and (iii)
are proved in the same way.
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6.2. Wasserstein geometry of the support of a single Dirichlet measure

Before proceeding to a proof for Lemma 6.4, we prepare three technical lemmas, which provide a
detailed picture of the geometry of the support of a Dirichlet measure, and may be of independent
interest. The first lemma demonstrates gains in the thickness of the conditional Dirichlet prior
(given a perturbed base measure) compared to the unconditional Dirichlet prior. The second and
third lemma show that Dirichlet measure concentrates most its mass on “small” sets, by which
we mean sets that admit a small number of covering balls in Wasserstein metrics. This character-
ization enables the construction of a suitable sieves as required by the proof of Lemma 6.4.

Lemma 6.1. Given G0 = ∑k
i=1 βiδθi

and small ε > 0. Let G ∈ P(�) such that W1(G,G0) ≤ ε.
Suppose that law(Q) = DαG, where α ∈ (0,1].

(a) For any Q0 ∈ P(�) such that sptQ0 ⊂ sptG0, and any δ such that δ ≥ maxi≤k 2ε/βi

and δ ≤ mini,j≤k ‖θi − θj‖/2, any r ≥ 1, there holds

P
(
Wr(Q0,Q) ≤ 21/rδ

) ≥ �(α)(α/2)k
(

δr

2k diam(�)

)α+k−1 k∏
i=1

βi.

(b) In addition, suppose that (A1)–(A2) hold for some r ≥ 1. Then, there are constants C,c >

0 depending only on α, k,C1,M,diam(�), r and βi ’s such that for any δ such that δ/ log(1/δ) ≥
Cεr/2,

P
(
Q ∈ BK(Q0, δ)

) ≥ c
(
δ/ log(1/δ)

)2(α+k−1)
.

This should be contrasted with the general small ball probability bound of Dirichlet process
as stated by Lemma 3.4. In that lemma, the base measure is an arbitrary nonatomic measure,
while the lower bound is applied to any small Wr ball centering at an arbitrary measure. The
lower bound is exponentially small in the radius. In the present lemma, the base measure G is
constrained to being close to a discrete measure G0 with k < ∞ support points, while the lower
bound is applied to small Wr balls centering at Q0 that shares the same support as G0. As a
result, the lower bound is only polynomially small in the radius.

The following lemma relies on the intuition that the Dirichlet measure concentrates most its
mass on probability measures which place most their mass on a “small” number of support points.

Lemma 6.2. Let D := DαG and r ≥ 1. For any δ > 0, and for any k ∈N+, there is a measurable
set Bk ⊂ P(�) satisfies the following properties:

(a) supQ∈Bk
infQ′∈Qk

Wr(Q,Q′) ≤ δ.
(b) logN(δ,Bk,Wr) ≤ k(logN(δ/4,�,‖ · ‖) + log(e + 4e diam(�)r/δr )).
(c) There holds

D
(
P(�) \Bk

) ≤ k−k
(
δ/diam(�)

)αr[
eαr log

(
diam(�)/δ

)]k
.
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To see that the set Bk has small entropy relative to P(�), we note a general estimate for
P(�), which gives an upper bound that is exponentially large in terms of the entropy of � (cf.
equation (28)):

logN
(
δ,P(�),Wr

) ≤ N
(
δ/2,�,‖ · ‖) log

(
e + 2e diam(�)r/δr

)
.

In Lemma 6.2, the bound on entropy of Bk increases only linearly in the entropy of �. However,
it also increases with k, which controls the measure of the complement of Bk . Next, we consider
the additional assumption that the Dirichlet base measure is a small perturbation of a discrete
measure with k support points. The strength of this result compared to the previous lemma is that
the entropy estimate depends only linearly on the entropy of �, while k is fixed. The measure of
the complement set of B is controlled only by the amount of perturbation.

Lemma 6.3. Given ε > 0, k < ∞, r ≥ 1. Let G0,G ∈ P(�) such that G0 has k support points
and W1(G,G0) ≤ ε. Let D := DαG for some α > 0. For any δ > 0, there is a measurable set
B ⊂ P(�) that satisfies the following:

(a) logN(δ,B,Wr) ≤ k(logN(δ/4,�,‖ · ‖) + log(e + 4e diam(�)r/δr )).
(b) D(P(�) \B) ≤ ε diam(�)r−1/δr .

The proofs of all three lemmas are given in [21].

6.3. Posterior concentration under perturbation of base measure

Here, we state a key result that is needed in the proof of Theorem 2.3.

Lemma 6.4. Let � be a bounded subset of Rd . Assumptions (A1)–(A2) hold. Let Q0 ∈ P(�)

such that sptQ0 ⊂ sptG0, where G0 = ∑k
i=1 βiδθi

for some k < ∞. Let �G be an arbitrary
prior distribution on P(�). Consider the following hierarchical model:

G ∼ �G,Q|G ∼ �Q := DαG,

Y[n] = (Y1, . . . , Yn)|Q i.i.d.∼ Q ∗ f.

Let εn ↓ 0 and define events En := {W1(G,G0) ≤ εn}. Then the posterior distribution of Q given
Y[n] admits the following as n → ∞:

�Q

(
h(Q ∗ f,Q0 ∗ f ) ≥ δn|Y[n],En

) → 0, (33)

�Q

(
W2(Q,Q0) ≥ Mnδn|Y[n],En

) → 0 (34)

in (Q0 ∗ f ) × �G-probability, where the rates δn and Mnδn are given as follows:

(i) δn 
 (logn/n)1/(d+2) + ε
r/2
n log(1/εn).

(ii) If f is ordinary smooth with smoothness β > 0, Mnδn 
 δ
1/(2+βd ′)
n for any d ′ > d .

(iii) If f is supersmooth with smoothness β > 0, then Mnδn 
 (− log δn)
−1/β .
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If εn ↓ 0 suitably fast, then the following rates for δn are valid:

(iv) If f is ordinary smooth, and εn → 0 sufficiently fast such that εn � n−(α+k+4M0) ×
(logn)−(α+k−2), where M0 is some large constant, then δn 
 (logn/n)1/2.

(v) If f is supersmooth with smoothness β > 0, and εn → 0 sufficiently fast such that εn �
n−2(α+k)/(β+2)(logn)−2(α+k−1) exp(−4nβ/(β+2)), then δn 
 (1/n)1/(β+2).

We defer the proof of this lemma to [21]. The basic structure contains of mostly standard
calculations. The main novel part of the proof lies in the construction of suitable sieves that yield
fast rates of convergence. The existence of such sieves is a direct consequence of the geometric
lemmas presented in the previous subsection.
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Supplementary Material

Proofs of remaining results (DOI: 10.3150/15-BEJ703SUPP; .pdf). Due to space constraints,
we provide the proofs of the remaining technical results of this paper in [21].
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