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We study the adaptive estimation of copula correlation matrix � for the semi-parametric elliptical copula
model. In this context, the correlations are connected to Kendall’s tau through a sine function transforma-
tion. Hence, a natural estimate for � is the plug-in estimator �̂ with Kendall’s tau statistic. We first obtain
a sharp bound on the operator norm of �̂ − �. Then we study a factor model of �, for which we propose
a refined estimator �̃ by fitting a low-rank matrix plus a diagonal matrix to �̂ using least squares with a
nuclear norm penalty on the low-rank matrix. The bound on the operator norm of �̂ − � serves to scale
the penalty term, and we obtain finite sample oracle inequalities for �̃. We also consider an elementary
factor copula model of �, for which we propose closed-form estimators. All of our estimation procedures
are entirely data-driven.

Keywords: correlation matrix; elliptical copula; factor model; Kendall’s tau; nuclear norm regularization;
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1. Introduction

1.1. Background

A popular model for high dimensional data is the semi-parametric elliptical copula model [13,
23,24,29], the family of distributions whose dependence structures are specified by parametric
elliptical copulas but whose marginal distributions are left unspecified. The elliptical copula of a
d-variate distribution from the semi-parametric elliptical copula model is uniquely characterized
by a characteristic generator φ and a copula correlation matrix � ∈ R

d×d . We refer the readers
to Appendix A for a more detailed discussion about these concepts. For simplicity of presenta-
tion, we will make the blanket assumption that all random vectors we consider have continuous
marginals.

The semi-parametric elliptical copula model includes numerous families of distributions of
popular interest. For instance, we recover from this model distributions with Gaussian copulas,
sometimes referred to in recent literature as the nonparanormal model [30], by choosing the
particular characteristic generator φ(t) = exp(−t/2).

Throughout the paper, we assume that the random vector X ∈ R
d follows a distribution from

the semi-parametric elliptical copula model, and in particular we let X have copula correlation
matrix �. We let X1, . . . ,Xn ∈ R

d , with Xi = (Xi
1, . . . ,X

i
d)T , be a sequence of independent
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copies of X. We recall the formulas for (the population version of) Kendall’s tau between the kth
and �th coordinates,

τk� = E
[
sgn

(
X1

k − X2
k

)
sgn

(
X1

� − X2
�

)]
, (1.1)

and the corresponding Kendall’s tau statistic,

τ̂k� = 2

n(n − 1)

∑∑
1≤i<j≤n

[
sgn

(
Xi

k − X
j
k

)
sgn

(
Xi

� − X
j
�

)]
. (1.2)

We let (the population version of) the Kendall’s tau matrix T have entries

[T ]k� = τk� for all 1 ≤ k, � ≤ d,

and estimate T using the empirical Kendall’s tau matrix T̂ with entries

[T̂ ]k� = τ̂k� for all 1 ≤ k, � ≤ d. (1.3)

We note that T̂ is a matrix U -statistic because it can be written as

T̂ = 2

n(n − 1)

∑∑
1≤i<j≤n

[
sgn

(
Xi − Xj

)
sgn

(
Xi − Xj

)T ]
.

In addition, we note the basic facts that T is the correlation matrix of the centered random vector
sgn(X1 − X2) and so in particular is positive semidefinite, that T̂ , as a scaled sum of rank-one
positive semidefinite matrices sgn(Xi − Xj) sgn(Xi − Xj)T for 1 ≤ i < j ≤ n, is also positive
semidefinite, and that E[T̂ ] = T .

For the semi-parametric elliptical copula model, we can relate the elements of the copula corre-
lation matrix � to the elements of the Kendall’s tau matrix T independently of the characteristic
generator via the formula

� = sin

(
π

2
T

)
; (1.4)

see [14,21,22,26,27]. Here and throughout the paper, we use the convention that the sign, sine and
cosine functions act component-wise when supplied with a vector or a matrix as their argument;
hence equation (1.4) specifies that

[�]k� = sin

(
π

2
τk�

)
for all 1 ≤ k, � ≤ d.

This simple and elegant relationship has contributed to the popularity of elliptical distributions
and the semi-parametric elliptical copula model, and has led to the widespread application of the
plug-in estimator �̂ of � given by

�̂ = sin

(
π

2
T̂

)
; (1.5)
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see, for instance, [11,13,23,24,28,47]. Here, we briefly review some recent advances involving
the plug-in estimator. [23] studies the property of �̂ as an estimator of � in the asymptotic setting
with the dimension d fixed under the assumption of an elliptical copula correlation factor model,
whose precise definition will be introduced later in Section 1.2. For distributions with Gaussian
copulas, [28] employs �̂ to study the estimation of precision matrix, that is, �−1, under a sparsity
assumption on �−1, and a sharp bound on the element-wise �∞ norm of �̂ −� is central to their
analysis.1

1.2. Proposed research

We aim to present in this paper precise estimators of the copula correlation matrix �.
In Section 2, we focus on the plug-in estimator �̂, and present a sharp (upper) bound on

the operator norm of �̂ − �, which we denote by ‖�̂ − �‖2. To the best of our knowledge,
our bound on ‖�̂ − �‖2 is new, even for distributions with Gaussian copulas. Here, we list
some of the potential applications of this bound. First, it has often been observed that the plug-in
estimator �̂ is not always positive semidefinite [11,23]. This not only is a discomforting problem
by itself but also limits the potential application of the plug-in estimator; for example, certain
Graphical Lasso algorithms [16] may fail on input that is not positive semidefinite. We refer
the readers to [45] for a more detailed discussion and another example involving the Markowitz
portfolio optimization problem. Our bound on ‖�̂ − �‖2 will precisely quantify the extent to
which the nonpositive semidefinite problem may happen; for instance, if the smallest eigenvalue
of � exceeds the bound on ‖�̂ − �‖2, then �̂ will be positive definite.

As we were completing this manuscript, we became aware of a result by Fang Han and Han
Liu in [17] that is similar to (our) inequality (2.7a) in Theorem 2.2. In deriving their result, they
also employed matrix concentration inequalities to arrive at a version of inequality (2.1a); then
they invoked different proof techniques to arrive at a version of Lemma 4.3, which led to their
version of inequality (2.6). Our work is independent.

A second application of the bound on ‖�̂ − �‖2 appears in Section 3. Here, we study the
elliptical copula correlation factor model, which postulates that the copula correlation matrix �

of X admits the decomposition

� = �∗ + V ∗ (1.6)

for some low-rank or nearly low-rank, positive semidefinite matrix �∗ ∈ R
d×d and some di-

agonal matrix V ∗ ∈ R
d×d with nonnegative diagonal entries. In this case, if �∗ admits the

decomposition �∗ = LLT for some L ∈ R
d×r , then there exists elliptically distributed ξ ∈

Er+d(0, Ir+d,φ) (here we invoke the notation of Definition A.1) for the (r +d)× (r +d) identity

1We note that, under the setting of distributions with Gaussian copulas, analogous to equation (1.4), we also have � =
2 sin((π/6)R) for R the matrix of (the population version of) Spearman’s rho. Inspired by this observation, both [28]
and [46] employ �̂ρ , a variant of �̂ using Spearman’s rho statistic, to study the estimation of precision matrix under this
setting. In contrast to Kendall’s tau, however, once we generalize from distributions with Gaussian copulas to the semi-
parametric elliptical copula model, Spearman’s rho is no longer invariant within the family of distributions with the same
copula correlation matrix [21], that is, a simple relationship analogous to equation (1.4) ceases to exist for Spearman’s
rho in this wider context. Hence, we do not pursue an estimation procedure using Spearman’s rho.
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matrix Ir+d and some characteristic generator φ such that X and (L,V ∗1/2)ξ have the same cop-
ula. Here, we note that the components of ξ are merely uncorrelated, instead of independent as in
the case for standard factor analysis where normality is assumed. Consideration of the potential
dimension reduction offered by the factor model and the fact that the diagonal elements of the
target copula correlation matrix � are all equal to one leads us to propose a refined estimator �̃

of �. In short, we fit the off-diagonal elements of a low-rank matrix to the off-diagonal elements
of �̂ using least squares with a nuclear norm penalty on the low-rank matrix; then we obtain the
refined estimator �̃ from the low-rank matrix by setting the diagonal elements of the latter to
one. The bound on ‖�̂ − �‖2 will serve to scale the penalty term. As we will discuss in detail
in Section 3.3, our problem is a variant of the matrix completion problem, but in contrast to the
existing literature, the special diagonal structure of V ∗ enables us to perform much more precise
analysis. In the end, our oracle inequality for �̃ holds under a single, very mild condition on the
low-rank component �∗, and balances the approximation error with the estimation error, with
the latter roughly proportional to the number of parameters in the model divided by the sample
size.

As a warm-up to the general setting above, we will also consider the elementary factor copula
model, a special instance of the elliptical copula correlation factor model in which V ∗ is propor-
tional to the d × d identity matrix Id . For this model, we will propose and study closed-form
estimators.

Throughout our studies, we will provide entirely data-driven estimation procedures involving
explicit constants and measurable quantities. In addition, we will establish positive semidefi-
nite versions of the plug-in estimator, the closed-form estimator and the refined estimator of the
copula correlation matrix, with minimal loss in performance.

1.3. Notation

For any matrix A, we will use [A]k� to denote the k, �th element of A (i.e., the entry on the kth
row and �th column of A). For a vector x ∈ R

m, we denote by diag	(x) ∈ R
m×m the diagonal

matrix with [diag	(x)]ii = xi for i = 1, . . . ,m. We let the constant α with 0 < α < 1 be arbitrary,
but typically small; we will normally bound stochastic events with probability at least 1 −O(α).
We let Id denote the identity matrix in R

d×d . In this paper, the majority of the vectors will
belong to R

d , and the majority of the matrices will be symmetric and belong to R
d×d ; notable

exceptions to the latter rule include some matrices of left or right singular vectors. For notational
brevity, we will not always explicitly specify the dimension of a matrix when such information
could be inferred from the context. The Frobenius inner product 〈·, ·〉 on the space of matrices
is defined as 〈A,B〉 = tr(AT B) for commensurate matrices A,B . For norms on matrices, we
use ‖ · ‖2 to denote the operator norm, ‖ · ‖∗ the nuclear norm (i.e., the sum of singular values),
‖ · ‖F the Frobenius norm resulting from the Frobenius inner product, ‖ · ‖∞ the element-wise
�∞ norm (i.e., ‖A‖∞ = maxk,� |[A]k�|), and ‖ · ‖1 the element-wise �1 norm. The effective rank
of a positive semidefinite matrix A is defined as re(A) = tr(A)/‖A‖2. We let λmax(·) and λmin(·)
denote the largest and the smallest eigenvalues, respectively, and let Sd+ be the set of d × d

correlation matrices, that is, positive semidefinite matrices with all diagonal elements equal to
one. We use ◦ to denote the Hadamard (or Schur) product. For notational brevity when studying
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the factor model, for an arbitrary matrix A ∈ R
d×d , we let Ao ∈ R

d×d be the matrix with the
same off-diagonal elements as A, but with all diagonal elements equal to zero, that is,

Ao = A − Id ◦ A. (1.7)

Again for notational brevity, this time when establishing probability bounds involving Kendall’s
tau statistics, we will assume throughout that the number of samples, n, is even, and denote

f (n, d,α) =
√

16

3
· d · log(2α−1d)

n
.

Remark. When n is odd, the appropriate f to use is

f (n, d,α) =
√

16

3
· d · log(2α−1d)

2
n/2� .

This is due to the fact that when n is odd, we can group X1, . . . ,Xn into at most 
n/2� pairs of
(Xi,Xj )’s such that the different pairs are independent.

2. Plug-in estimation of the copula correlation matrix

In this section, we focus on the plug-in estimator �̂ of the copula correlation matrix � and in
particular provide a bound on ‖�̂ −�‖2. We recall that � is related to the Kendall’s tau matrix T

via a sine function transformation as in equation (1.4), and �̂ is related to the empirical Kendall’s
tau matrix T̂ via the same transformation as in equation (1.5). We note that a typical proof for a
bound on ‖�̂ − �‖∞ in the existing literature first establishes a bound on ‖T̂ − T ‖∞ through a
combination of Hoeffding’s classical bound for the (scalar) U -statistic applied to each element
of T̂ −T and a union bound argument, and then establishes the bound on ‖�̂ −�‖∞ through the
Lipschitz property of the sine function transformation [28]. Our proof for the bound on ‖�̂−�‖2
is similarly divided into two essentially independent stages:

1. First, in Section 2.1, we establish a bound on ‖T̂ −T ‖2. This stage can be considered as the
matrix counterpart in terms of the operator norm to Hoeffding’s classical bound for the (scalar)
U -statistic;

2. Next, in Section 2.2, we bound ‖�̂ − �‖2 by a constant times ‖T̂ − T ‖2 up to an additive
quadratic term in f (n, d,α). This stage can be considered as the matrix counterpart in terms of
the operator norm to the Lipschitz property of the sine function transformation. Then, combined
with the bound on ‖T̂ − T ‖2, we establish the bound on ‖�̂ − �‖2.

2.1. Bounding ‖̂T − T ‖2

In this section, we bound ‖T̂ −T ‖2, establishing both data-driven and data-independent versions.
We rely on the results from [42] out of the vast literature on matrix concentration inequalities (see
[4,43] for a glimpse of the literature).
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Theorem 2.1. We have, with probability at least 1 − α,

‖T̂ − T ‖2 < max
{√‖T ‖2f (n, d,α), f 2(n, d,α)

}
(2.1a)

≤
√

‖T̂ ‖2f 2(n, d,α) + 1
4f 4(n, d,α) + 1

2f 2(n, d,α) (2.1b)

< max
{√‖T ‖2f (n, d,α), f 2(n, d,α)

} + f 2(n, d,α). (2.1c)

Remark. By decoupling the matrix U -statistic T̂ − T using (4.5), and [42], inequality (6.1.3)
in Theorem 6.1.1, we can also obtain a bound on E[‖T̂ − T ‖2]. We omit the details.

Proof of Theorem 2.1. The proof can be found in Section 4. �

We elaborate the results presented in Theorem 2.1. First, we note that the bound offered by
inequality (2.1a) is the tightest, but contains the possibly unknown population quantity ‖T ‖2.
Hence, we also derive a data-driven bound (2.1b), whose performance is in turn guaranteed
by (2.1c) in terms of the deterministic ‖T ‖2. Theorem 2.1 also shows that the right-hand side of
(2.1b) is no more than f 2(n, d,α) away from the right-hand side of (2.1a). This is because the
former is sandwiched between the right-hand sides of (2.1a) and (2.1c), and the latter two terms
differ by f 2(n, d,α).

Next, for latter convenience, we note that when n is large enough such that

‖T ‖2 ≥ f 2(n, d,α) = 16

3
· d · log(2α−1d)

n
, (2.2)

the first term dominates the second term in the curly bracket on the right-hand side of (2.1a), that
is,

max
{√‖T ‖2f (n, d,α), f 2(n, d,α)

} = √‖T ‖2f (n, d,α). (2.3)

Finally, we discuss the optimality of Theorem 2.1, specifically inequality (2.1a). First, we com-
pare our result to some recent upper bounds established by other authors under conditions related
to but more restrictive than the semi-parametric elliptical copula model. Under the same model
but with the additional “sign sub-Gaussian condition,” [17] establishes in their Theorem 4.10 that

‖T̂ − T ‖2 =O
(

‖T ‖2

√
d + log(α−1)

n

)
(2.4)

with probability at least 1 − 2α. Meanwhile, for distributions with Gaussian copulas, [33] es-
tablishes in their Corollary 3 a more complicated bound which, in the regime n ≥ d , ‖T ‖2 ≥
max{log(d), log(α−1)} and ‖�‖2,max ≤ ‖�‖1/2

2 , reduces to that inequality (2.4) holds with prob-
ability at least 1 − α. Here ‖�‖2,max = max‖u‖=1 ‖�u‖max with ‖ · ‖ and ‖ · ‖max being the
Euclidean norm and the element-wise �∞ norm for vectors, respectively.

Such bounds, which are based on Gaussian concentration inequalities, are of a different flavor.
Nevertheless, here we will attempt a very crude comparison. We set α = 1/d so that both our
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inequality (2.1a) and inequality (2.4) hold with probability at least 1 −O(1/d). We also assume
that n is large enough such that inequality (2.2) holds. Then the right-hand sides of (2.1a) and
(2.4) are O(

√‖T ‖2d log(d)/n) and O(‖T ‖2
√

d/n), respectively. Hence, the bound provided by
our inequality (2.1a) sheds an operator norm factor

√‖T ‖2 at the expense of an extra log factor√
log(d).
From another angle, we contrast our upper bound (2.1a) to the corresponding lower bound

implied by the argument presented in the proof of [31], Theorem 2, in the context of covariance
matrix estimation. Such a comparison reveals that our bound (2.1a) is optimal up to the (afore-
mentioned) operator norm factor

√‖T ‖2 and the log factor
√

log(d) in f (n, d,α). The study
of if and when these factors can be removed is beyond the scope of this paper.2 We also note
that, by [42], Chapter 7, in inequality (2.1a), we could replace the ambient dimension d inside
the log function in f (n, d,α) by d̃ = 4d/‖T ‖2. Here, d̃ is the effective rank of a semidefinite
upper bound of E[(T̃ − T )2] with T̃ defined in equation (4.1). Hence, if ‖T ‖2 is comparable
to d , then the log factor is effectively removed. In large sample size or large dimension setting, it
is customary to set α to be 1/max{n,d} so that the exclusion probability α tends to zero as n or
d increases. For such a setting of α, we shed at most a constant multiplicative factor in the bound
on ‖T̂ − T ‖2 by setting d to d̃ inside the log function. Thus, for brevity of presentation in later
sections, we have avoided invoking the effective rank.

2.2. Bounding ‖̂� − �‖2 in terms of ‖̂T − T ‖2

In this section, we establish in Theorem 2.2 the promised link between ‖�̂ −�‖2 and ‖T̂ −T ‖2.
Based on this result, we establish bounds on ‖�̂ − �‖2 in the same theorem.

We also establish in Theorem 2.2 a link between ‖T̂ ′ − T ‖2 and ‖�̂′ − �‖2, for T̂ ′ that is any
generic estimator of T (i.e., T̂ ′ is not necessarily the empirical Kendall’s tau matrix T̂ ), and �̂′
the resulting generic plug-in estimator, that is,

�̂′ = sin

(
π

2
T̂ ′

)
.

Possibilities of generic estimators T̂ ′ of T include regularized estimators such as thresholding
[2,6] or tapering [5] estimator. Such generic estimators T̂ ′ of T and the resulting generic plug-
in estimators �̂′ of � have the potential to provide faster convergence rate than the empirical
Kendall’s tau matrix T̂ and the plug-in estimator �̂ if appropriate structure of T is known in
advance so a regularized estimator T̂ ′ could be used. Hence, we briefly include the consideration
of generic estimators in Theorem 2.2.

An auxiliary result relating ‖T ‖2 to ‖�‖2 is provided by Theorem 2.3.

2By our proof of Theorem 2.1, inequality (2.1a) also holds with the replacement of T̂ by its decoupled version T̃ defined
in (4.1). Then, by the argument of [42], Section 6.1.2, we can show that the operator norm factor

√‖T ‖2 is in fact
necessary in this variant of (2.1a) in terms of T̃ at least in certain scenarios. Unfortunately, the same argument does not
apply directly to (2.1a) in terms of the matrix U -statistic T̂ .
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Theorem 2.2. Let T̂ ′ be a generic estimator of T , and �̂′ the resulting generic plug-in estimator
of �. We have, for some absolute constants C′

1,C
′
2 (we may take C′

1 = π and C′
2 = π2/8 < 1.24),∥∥�̂′ − �

∥∥
2 ≤ C′

1

∥∥T̂ ′ − T
∥∥

2 + C′
2

∥∥T̂ ′ − T
∥∥2

2. (2.5)

Recall T̂ as defined in equation (1.3) and the resulting plug-in estimator �̂ as defined in
equation (1.5). We have, for some absolute constants C1,C2 (we may take C1 = π and C2 =
3π2/16 < 1.86), with probability at least 1 − 1

4α2,

‖�̂ − �‖2 ≤ C1‖T̂ − T ‖2 + C2f
2(n, d,α). (2.6)

Recall that Theorem 2.1 bounds ‖T̂ − T ‖2. Hence, starting from inequality (2.6), we have,
with probability at least 1 − α − 1

4α2,

‖�̂ − �‖2 < C1 max
{√‖T ‖2f (n, d,α), f 2(n, d,α)

} + C2f
2(n, d,α) (2.7a)

≤ C1

√
‖T̂ ‖2f 2(n, d,α) + 1

4f 4(n, d,α) + ( 1
2C1 + C2

)
f 2(n, d,α) (2.7b)

< C1 max
{√‖T ‖2f (n, d,α), f 2(n, d,α)

} + (C1 + C2)f
2(n, d,α). (2.7c)

Proof. The proof can be found in Section 4. �

We elaborate the results presented in Theorem 2.2. First, the relationship between the
bounds (2.7a), (2.7b) and (2.7c) is analogous to the relationship between the bounds (2.1a),
(2.1b) and (2.1c) as has been discussed following Theorem 2.1. Next, we discuss the relative
merits of inequalities (2.5) and (2.6). We note that

1. For the plug-in estimator �̂, instead of starting from inequality (2.6), we can also start
from inequality (2.5), take the particular choices T̂ ′ = T̂ and �̂′ = �̂, and establish a bound on
‖�̂ − �‖2 via inequality (2.1a) in Theorem 2.1 as

‖�̂ − �‖2 ≤ max
{
C′

1

√‖T ‖2f (n, d,α) + C′
2‖T ‖2f

2(n, d,α),C′
1f

2(n, d,α) + C′
2f

4(n, d,α)
}

with probability at least 1 − α. However, it is obvious that this bound is not as tight as the one
presented in inequality (2.7a), which we obtained via inequality (2.6).

2. On the other hand, suppose that we have a generic plug-in estimator �̂′ of � based on a
generic estimator T̂ ′ of T that achieves a rate ‖T̂ ′ − T ‖2 � f (n, d,α) (a rate faster than the one
for ‖T̂ − T ‖2). Then, inequality (2.5) would yield∥∥�̂′ − �

∥∥
2 � C′

1f (n, d,α) + C′
2f

2(n, d,α),

which is tighter than the bound offered by inequality (2.7a).

Therefore, whether inequality (2.5) or (2.6) should be preferred depends on the available estima-
tor of T and the rate of convergence of the estimator.

Inequalities (2.7a) and (2.7c) in Theorem 2.2 contain the term ‖T ‖2. Using the result of The-
orem 2.3, we could relate ‖T ‖2 back to ‖�‖2, so that we bound ‖�̂ − �‖2 directly in terms of
the copula correlation matrix �.
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Theorem 2.3. We have

2

π
‖�‖2 ≤ ‖T ‖2 ≤ ‖�‖2. (2.8)

Hence, inequalities (2.7a) and (2.7c) hold with ‖T ‖2 replaced by ‖�‖2.

Remark. The second half of inequality (2.8) is tight: ‖T ‖2 = ‖�‖2 when T = � = Id .

Proof of Theorem 2.3. The proof can be found in Section 4. �

2.3. Obtaining a positive semidefinite estimator ̂�+ from the plug-in
estimator ̂�

As has been mentioned in Section 1.2, the plug-in estimator �̂ may fail to be positive semidefi-
nite. In this section, we demonstrate a procedure that, in such an event, obtains an explicitly pos-
itive semidefinite estimator �̂+ of � from �̂ with minimal loss in performance. The procedure
is suggested by a referee and is inspired by [45]. Note that, when �̂ is not positive semidefinite,
we cannot simply set all the negative eigenvalues of �̂ to zero, because the resulting estimator
will still not be a correlation matrix, specifically because some of the diagonal elements of the
resulting estimator will exceed one.

In order to also cover the closed-form estimator and the refined estimator when we study a fac-
tor model for �, we will consider a more general situation. We let ‖ · ‖ be a generic matrix norm
and �̂generic a generic estimator of �. We do not require �̂generic to be a correlation matrix. We let
the feasible region F ⊂R

d×d be such that F is nonempty, closed and convex, satisfies F ⊂ Sd+,
but is otherwise arbitrary at this stage. From �̂generic, we construct an estimator �̂generic+ as

�̂generic+ = arg min
�′∈F

∥∥�′ − �̂generic
∥∥. (2.9)

We note that a solution to the right-hand side of (2.9) always exists. If the norm ‖ · ‖ is strictly
convex (which is the case for the Frobenius norm), the solution �̂generic+ is uniquely determined,
while if multiple solutions to the right-hand side of (2.9) exist, we arbitrarily choose one of the
solutions to be �̂generic+. By construction, �̂generic+ is a correlation matrix and so in particular
is positive semidefinite. In addition, Theorem 2.4 shows that, when � ∈ F , the performance of
�̂generic+ is comparable to the performance of �̂generic as measured by the deviation from � in
the norm ‖ · ‖.

Theorem 2.4. Suppose that � ∈F . Then the estimator �̂generic+ in (2.9) satisfies∥∥�̂generic+ − �
∥∥ ≤ 2

∥∥�̂generic − �
∥∥.

Proof. The proof can be found in Section 4. �

Theorem 2.4 enables us to obtain from the plug-in estimator �̂ a positive semidefinite estima-
tor �̂+ of � such that ‖�̂+ − �‖2 is comparable to ‖�̂ − �‖2 and, if necessary, ‖�̂+ − �‖∞
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is comparable to ‖�̂ − �‖∞, as we demonstrate in Corollary 2.5. As we have mentioned in Sec-
tion 1.1, a sharp bound on the element-wise �∞ norm is central in some existing procedures for
estimating the precision matrix �−1.

Corollary 2.5. In (2.9), we let the generic matrix norm ‖ · ‖ be replaced by the operator norm
‖ · ‖2, the generic estimator �̂generic be replaced by the plug-in estimator �̂, and the solution
�̂generic+ be replaced by �̂+. First, we choose F = Sd+. Then, �̂+ satisfies∥∥�̂+ − �

∥∥
2 ≤ 2‖�̂ − �‖2. (2.10)

Alternatively, we choose C3 = √
3π2/8 < 1.93, and

F = {
�′: �′ ∈ Sd+ and

∥∥�′ − �̂
∥∥∞ ≤ C3d

−1/2f (n, d,α)
}
. (2.11)

Then, with probability at least 1 − 1
4α2, �̂+ satisfies inequality (2.10) and∥∥�̂+ − �

∥∥∞ ≤ 2C3d
−1/2f (n, d,α) (2.12)

simultaneously. We recall that ‖�̂ − �‖2 is bounded as in Theorem 2.2.

Proof. The proof can be found in Section 4. �

3. Estimating the copula correlation matrix in the factor model

In this section, we assume an elliptical copula correlation factor model for X ∈ R
d . Recall that,

under this assumption, the copula correlation matrix � of X can be written as

� = �∗ + V ∗

as in equation (1.6), with �∗ ∈R
d×d a low-rank or nearly low-rank positive semidefinite3 matrix,

and V ∗ ∈ R
d×d a diagonal matrix with nonnegative diagonal entries. Our goal of this section is to

present estimators that take advantage of the potential dimension reduction offered by the factor
model and the special diagonal structure of V ∗.

As a prelude to the main result of this section, in Section 3.1, we first consider the elementary
factor copula model, for which we study closed-form estimators. Sections 3.2 and 3.3 form an
integral part: in the former, we introduce additional notation, while in the latter we present our
main result of Section 3, specifically by constructing the refined estimator �̃ of � based on the
plug-in estimator �̂ and establishing its associated oracle inequality.

3The case that �∗ is not positive semidefinite, though unnatural because in the factor model �∗ should equal LLT for
some matrix L, can be easily accommodated. We restrict our argument to positive semidefinite matrices only to take
advantage of the notational brevity offered by the fact that their singular value decomposition and eigen-decomposition
coincide.
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3.1. Analysis of closed-form estimators in the elementary factor copula
model

The elementary factor copula model assumes that �∗ ∈ R
d×d is a positive semidefinite matrix of

unknown rank r with positive eigenvalues λ1(�
∗) ≥ · · · ≥ λr(�

∗), and

V ∗ = σ 2Id (3.1)

with σ 2 > 0. In other words, the copula correlation matrix � admits the decomposition

� = �∗ + σ 2Id .

Comparison of the eigen-decomposition

�∗ + σ 2Id = U diag	
(
λ1

(
�∗) + σ 2, . . . , λr

(
�∗) + σ 2, σ 2, . . . , σ 2)UT

of �, with the eigen-decomposition
∑d

k=1 λ̂kûkû
T
k (with λ̂1 ≥ · · · ≥ λ̂d ) of the plug-in estima-

tor �̂, leads us to propose the following closed-form estimators:

r̂ =
d∑

k=1

1{̂λk − λ̂d ≥ μ},

σ̂ 2 = 1

d − r̂

∑
k>̂r

λ̂k, (3.2)

�̂ =
r̂∑

k=1

(̂
λk − σ̂ 2)̂ukû

T
k

to estimate r , σ 2 and �∗, respectively. Here, μ is a regularization parameter specified by (3.4) in
Theorem 3.1 below, and is based on the bounds on ‖�̂ − �‖2 established earlier. Then we let

�̃e = �̂o + Id (3.3)

be the closed-form estimator of �. Note that we do not require �̃e = �̂ + σ̂ 2Id . Such a require-
ment could be imposed by solving a convex program like (3.13) with the additional constraint
that the diagonal elements of � are all equal and are between 0 and 1, but in this section we focus
on closed-form estimators.

Note that, by the construction of �̂ as in (3.2), the estimated nonzero eigenvalues of �̂, namely
λ̂k − σ̂ 2 for 1 ≤ k ≤ r̂ , are always positive. Thus, �̂ is positive semidefinite. On the other hand,
σ̂ 2 may become negative in the pathological case when �̂ is not positive semidefinite. To address
this problem, we could impose a large enough lower bound on σ 2 so that σ̂ 2 > 0 with high prob-
ability. Alternatively, we could replace �̂ by its positive semidefinite version �̂+ as constructed
in Corollary 2.5 from the very beginning, and avoid the pathological case altogether. With the
bound on ‖�̂+ − �‖2 established in the same corollary, all our analysis will follow except for
some minor changes in absolute constants. For brevity we omit the details of these changes.

The following theorem summarizes the performance of our closed-form estimators.
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Theorem 3.1. Let 0 < α < 1/2, C1 = π and C2 = 3π2/16 < 1.86. We set the regularization
parameter μ as

μ = 2
{
C1

√
‖T̂ ‖2f 2(n, d,α) + 1

4f 4(n, d,α) + ( 1
2C1 + C2

)
f 2(n, d,α)

}
, (3.4)

and set

μ̄ = 2
{
C1

√‖T ‖2f (n, d,α) + (C1 + C2)f
2(n, d,α)

}
. (3.5)

Suppose that �∗ satisfies 0 < r < d and λr(�
∗) ≥ 2μ̄, and n is large enough such that inequality

(2.2) holds. Then, on an event with probability exceeding 1 − 2α,

r̂ = r, (3.6)∥∥�̃e − �
∥∥2

F
≤ ∥∥�̂ − �∗∥∥2

F
≤ 2rμ̄2, (3.7)∣∣̂σ 2 − σ 2

∣∣ ≤ 1
2 μ̄ (3.8)

hold simultaneously. If, in addition, the common value of the diagonal elements of �∗ is upper
bounded by 1 − √

2rμ̄2, then �̃e is positive semidefinite on the same event.

Proof. The proof can be found in Section 5. �

We elaborate the results presented in Theorem 3.1. First, the regularization parameter μ, and
hence our closed-form estimators are constructed entirely with explicit constants and measur-
able quantities. In addition, in the regime specified by (2.2), that is, (roughly) when n‖T ‖2 �
d log(2α−1d), the rate 2rμ̄2 = O(‖T ‖2 · rd log(2α−1d)/n) in (3.7) is, up to the operator norm
factor ‖T ‖2 and the logarithmic factor log(2α−1d), proportional to the number of parameters
in the model divided by the sample size. Hence, our estimation procedure achieves correct rank
identification for the low-rank component �∗, and near-optimal recovery rate in terms of Frobe-
nius norm deviation for both �∗ and the copula correlation matrix �, in a fully data-driven
manner.

Theorem 3.1 also shows that, under appropriate conditions, if the diagonal elements of �∗ are
sufficiently less than one, then the estimator �̃e is positive semidefinite with high probability.
In any case, if �̃e is not positive semidefinite, we can employ Theorem 2.4 to obtain from �̃e a
positive semidefinite estimator �̃e+ of � such that ‖�̃e+ − �‖F is comparable to ‖�̃e − �‖F .
We defer the details of this treatment to Corollary 3.3.

3.2. Analysis of the refined estimator: Preliminaries

We denote

r∗ = rank
(
�∗).

Let �∗ have the eigen-decomposition

�∗ = U∗ diag	
(
λ1

(
�∗), . . . , λr∗

(
�∗))U∗T .
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Here, λ1(�
∗) ≥ · · · ≥ λr∗(�∗) are the positive eigenvalues of �∗ in descending order, and

U∗ = (
u1, . . . , ur∗)

is the d ×r∗ matrix of the orthonormal eigenvectors of �∗, with the eigenvector ui corresponding
to the eigenvalue λi(�

∗).
Furthermore, for all r with 0 ≤ r ≤ r∗, we let

U∗
r = (

u1, . . . , ur
)

(3.9)

be the d × r truncated matrix of orthonormal eigenvectors of �∗, let

γr = ∥∥U∗
r U∗T

r

∥∥∞, (3.10)

and let �∗
r be the best rank-r approximation to �∗ in the Frobenius norm, that is, �∗

r =
arg min�∈Rd×d ,rank(�)=r ‖� − �∗‖F . We note that γr is nondecreasing in r on 0 ≤ r ≤ r∗,
and γr∗ ≤ 1. In addition, by Schmidt’s approximation theorem [39] or the Eckart–Young the-
orem [12], for 0 ≤ r ≤ r∗, we have

�∗
r = U∗

r diag	
(
λ1

(
�∗), . . . , λr

(
�∗))U∗T

r , (3.11)

and ‖�∗
r − �∗‖2

F = ∑
j : r<j≤r∗ λ2

j (�
∗).

3.3. Analysis of the refined estimator: Main result

We first observe that in the elliptical copula correlation factor model, alternative to (1.6), we can
write the copula correlation matrix � as

� = �∗
o + Id .

This motivates us to set our refined estimator �̃ of � to be

�̃ = �̃o + Id . (3.12)

Here, �̃ is our estimator of the low-rank component �∗, and is obtained as the solution to a
convex program:

�̃ = arg min
�∈Rd×d

{ 1
2‖�o − �̂o‖2

F + μ‖�‖∗
}
. (3.13)

(By its optimality, �̃ must be symmetric, though this particular property is not used in our sub-
sequent analysis.) In (3.13), μ is a regularization parameter chosen according to (3.15) in Theo-
rem 3.2 below, and is based on the bounds on ‖�̂ − �‖2 established earlier.

We now elaborate the construction of the refined estimator. Note that:

1. In the factor model, the off-diagonal elements of � and �∗ agree, so the off-diagonal
elements of �̂ are natural estimators of the corresponding elements of �∗;
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2. The plug-in estimator �̂, similar to the target copula correlation matrix �, has all its diag-
onal elements equal to one irrespective of the low-rank component �∗. As a consequence, we
critically lack estimators for the diagonal elements of �∗.

Because of these observations, when constructing the estimator �̃ of �∗ through the convex pro-
gram (3.13), we minimize the Frobenius norm for only the off-diagonal elements of the deviation
between �̂ and the estimator of �∗ subject to a penalty. The penalty is the nuclear norm of the
estimator of �∗ scaled by the regularization parameter μ, and is implemented to encourage the
estimator of �∗ to be appropriately low-rank while keeping (3.13) convex [15]. Then, when con-
structing the refined estimator �̃ of � from the estimator �̃ of �∗ through (3.12), we explicitly
set all the diagonal elements of �̃ to one. It is clear that any bound on �̃ − � also acts as a
bound on the off-diagonal elements of �̃ − �∗ and vice versa. We bound the diagonal elements
of �̃ − �∗ in Appendix C.

We briefly contrast our refined estimator �̃, which is tailor-made for our special setting of
the elliptical copula correlation factor model, to some of the existing estimation procedures in
related but different contexts.

1. Our setting is an extension of the low-rank matrix approximation problem [31,34,37]. In
particular, [31] studies the estimation of �∗ that is a covariance matrix4 with low effective rank,
with the added complication that the observations X1, . . . ,Xn are masked at random coordinates.
[31] constructs an unbiased initial estimator �̂ of �∗, and further obtains a refined estimator �̃

as the solution of a convex program that is identical to (3.13) but with the term ‖�o − �̂o‖2
F

replaced by ‖� − �̂‖2
F , which is a sum over all entries of the matrix � − �̂.

Contrary to the setting of [31], � in the factor model (1.6) typically has neither low effective
rank nor low rank: because tr(�) = d , the effective rank of � is re(�) = d/‖�‖2, which is large
unless ‖�‖2 becomes comparable to d ; in addition, because �∗ is positive semidefinite, if the
diagonal elements of V ∗ are all strictly positive, then � = �∗ +V ∗ has full rank. Hence, a naive
application of the method of [31] to our setting amounts to seeking a low-rank approximation to
a matrix that is in fact not low-rank. In contrast, our program (3.13) seeks to estimate the genuine
low-rank or nearly low-rank component �∗ of �, even though this choice leads to technical
challenges in our proof as compared to [31].

2. By the observations we made earlier, our problem can be rephrased as follows: Estimate
the off-diagonal elements of �∗ given only their noisy observations, taking advantage of the fact
that �∗ is low-rank or nearly low-rank. Hence, as mentioned in Section 1.2, our problem is a
variant of the matrix completion problem, in particular the version in which a matrix � (not
necessarily a correlation matrix) admits a decomposition into the sum of a low-rank component
�∗ and a sparse component S∗ with a general sparsity pattern (i.e., the locations of the nonzero
entries of the sparse component are unknown but fixed), and the goal is to estimate � based on
its noisy observation �̂ [1,9,10,20,32,48]. In particular, [9,20] let �̃, the estimator of �∗, and S̃,
the estimator of S∗, be the solution of

(�̃, S̃) = arg min
�,S∈Rd×d

{ 1
2‖� + S − �̂‖2

F + μ‖�‖∗ + λ‖S‖1
}
. (3.14)

4For this paragraph only, we use �∗ to denote the covariance matrix, because in the setting of [31] it is the covariance
matrix itself that has low effective rank.
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This scenario is the closest to our setting. However, even though V ∗ in the factor model is indeed
a sparse matrix, and thus one could apply (3.14) to our setting, such an approach would not be
optimal because it obviously takes no advantage of our knowledge of the sparsity pattern of V ∗,
namely the diagonal pattern. For instance, [9,20] require nontrivial specification of an additional
regularization parameter λ = λ(μ) for the element-wise �1 penalty of the sparse component.
Because (3.13) and (3.14) are distinct programs, it is also not possible to infer the properties of
our refined estimator �̃ directly from the results of [9,20].

3. Finally, the low-rank and diagonal matrix decomposition problem in the noiseless setting is
treated in [38]. These authors employ a semidefinite program, the minimum trace factor analysis
(MTFA), to minimize the trace of the low-rank component (subject to the constraint that the
sum of the low-rank component and the diagonal component agrees with the given matrix to be
decomposed). The optimality condition from semidefinite programming then gives fairly simple
conditions for the MTFA to exactly recover the decomposition.

We adopt the primal-dual certificate approach advocated by [20,48]5 to analyze (3.13). Our
oracle inequality for the refined estimator �̃ is collected in the following theorem.

Theorem 3.2. Let 0 < α < 1/2, C1 = π, C2 = 3π2/16 < 1.86, and C = 6. We set the regular-
ization parameter μ as

μ = C
{
C1

√
‖T̂ ‖2f 2(n, d,α) + 1

4f 4(n, d,α) + ( 1
2C1 + C2

)
f 2(n, d,α)

}
, (3.15)

and set

μ̄ = C
{
C1 max

[√‖T ‖2f (n, d,α), f 2(n, d,α)
] + (C1 + C2)f

2(n, d,α)
}
. (3.16)

Recall γr as defined in (3.10). We set

R = max
{
r: 0 ≤ r ≤ r∗, γr ≤ 1/9

}
. (3.17)

Then, with probability exceeding 1 − 2α, the refined estimator �̃, as introduced in (3.12), of �

satisfies

‖�̃ − �‖2
F ≤ min

0≤r≤R

{ ∑
j : r<j≤r∗

λ2
j

(
�∗) + 8rμ̄2

}
. (3.18)

Remark. Theorem 3.2 is a specific instance of Corollary 6.8 which is a more general result; in
particular the constant C = 6 in (3.15) and (3.16) and the upper bound 1/9 on γr in (3.17) are
chosen for ease of presentation but are not specifically optimized. For instance, we could specify
a smaller C at the expense of a more stringent upper bound on γr .

5Through delicate analysis, [9] (which builds upon their earlier work [10] in the noiseless setting) guarantees optimal
convergence rate in terms of the operator norm, as well as consistent rank recovery, for the estimator �̃ of the low-rank
component �∗ . On the other hand, their analysis requires that the minimum nonzero singular value of the low-rank
component �∗ satisfies a nontrivial lower bound, and hence at this stage is not particularly well suited to study the case
where the low-rank requirement only holds approximately.
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Proof of Theorem 3.2. The proof can be found in Section 6. �

We elaborate the results presented in Theorem 3.2.
The oracle inequality (3.18) in fact represents the minimum of a collection of upper bounds,

and the minimum is taken over all r that satisfies γr = ‖U∗
r U∗T

r ‖∞ ≤ 1/9, a range specified
by (3.17). Thus, for the oracle inequality (3.18) to be as tight as possible, we should ideally have
a large range of r such that γr ≤ 1/9. We discuss two concrete examples in which this condition
is satisfied:

1. If for some given r , the entries of ui , 1 ≤ i ≤ r are all bounded by c/
√

d for some constant
c ≥ 1, then γr ≤ c2r/d ;

2. Next, we consider the random orthogonal model as in [8]. The first result of their
Lemma 2.2 shows that, if ui , 1 ≤ i ≤ r are sampled uniformly at random among all families
of r orthonormal vectors independently of each other, then there exist constants C and c such
that γr ≤ C max{r, log(d)}/d with probability at least 1 − cd−3 logd .

In both cases, γr ≤ 1/9 is satisfied for all r’s that are small compared to d (in the second case
when d is large enough and with high probability to be precise).

The estimation procedure (3.13) is fully data-driven; in particular, the penalty term in (3.13) is
scaled by a regularization parameter μ specified by (3.15) with explicit constants and measurable
quantities. In addition, procedure (3.13) automatically balances the approximation error with the
estimation error as if it knows the right model in advance to arrive at the oracle inequality (3.18)
with near-optimal recovery rate in terms of Frobenius norm deviation. Specifically,

1. The primal-dual certificate approach yields an approximation error term, that is, the first
term in the curly bracket on the right-hand side of (3.18), with leading multiplicative constant
one. Such a feature has become increasingly common with the results obtained through convex
optimization with nuclear norm penalty [25,31];

2. Meanwhile, the estimation error term, that is, the second term in the curly bracket on the
right-hand side of (3.18), achieves a rate 8rμ̄2 = O(‖T ‖2 · rd log(2α−1d)/n) with probability
exceeding 1 − 2α if we focus on the regime specified by (2.2), that is, (roughly) when n‖T ‖2 �
d log(2α−1d). Again, this rate is, up to the operator norm factor ‖T ‖2 and the logarithmic factor
log(2α−1d), proportional to the number of parameters in the model divided by the sample size.6

6Again by the lower bound argument presented in the proof of [31], Theorem 2, the rate of the estimation error term in
(3.18) is optimal up to the operator norm factor and the log factor. We note that the lower bounds (and in particular the
one for Frobenius norm deviation) established by [31], Theorem 2, contain explicit dependence on the operator norm
‖�‖2 of the target covariance matrix � in the form of a multiplicative factor. However, a closer inspection of the proof
of [31], Theorem 2, reveals that this particular ‖�‖2 is in fact restricted to be at most two times the maximum of the
diagonal elements of �, and thus in our case can at most be two because � is a correlation matrix. This restriction is
not ideal because ‖�‖2 in general can be as large as d . In our opinion, it remains to be seen how a proper dependence
on operator norm can be obtained in lower bound for Frobenius norm deviation under our setting of correlation matrix
estimation. From another angle, we have shown in the proof of Corollary 2.5 that the plug-in estimator �̂ achieves
‖�̂ − �‖∞ = O(

√
log(2α−1d)/n) (with probability at least 1 − 1

4 α2); thus ‖�̂ − �‖2
F

= O(d2 · log(2α−1d)/n) (with

the same probability). This rate is slower than rμ̄2 so long as r‖T ‖2 � d . Therefore, the presence of ‖T ‖2 in (3.7) and
(3.18) entails an upper bound on the rank of the low-rank component �∗ below which the refined estimator and the
closed form estimator in their respective contexts are preferable to the plug-in estimator �̂ in terms of Frobenius norm
deviation.
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Finally, if the diagonal elements of the deviation �̃ − �∗ can be appropriately bounded, for
instance, through Theorem C.2 in Appendix C, and if the diagonal elements of �∗ are sufficiently
smaller than one, then the estimator �̃ is positive semidefinite. Because the argument is similar to
the proof of the last statement of Theorem 3.1, we omit its details. In any case, if �̃ is not positive
semidefinite, we can employ Theorem 2.4 to obtain from �̃ a positive semidefintie estimator �̃+
of � such that ‖�̃+ − �‖F is comparable to ‖�̃ − �‖F , as Corollary 3.3 demonstrates.

Corollary 3.3. In (2.9), we let the generic matrix norm ‖ · ‖ be replaced by the Frobenius norm
‖ · ‖F , and let F = Sd+. In addition, in the context of the elementary factor copula model, we
let the generic estimator �̂generic be replaced by the closed-form estimator �̃e, and the solution
�̂generic+ be replaced by �̃e+, while in the context of the (general) elliptical copula correlation
factor model, we let the generic estimator �̂generic be replaced by the refined estimator �̃, and
the solution �̂generic+ be replaced by �̃+. Then �̃e+ and �̃+ satisfy∥∥�̃e+ − �

∥∥
F

≤ 2
∥∥�̃e − �

∥∥
F
,

∥∥�̃+ − �
∥∥

F
≤ 2‖�̃ − �‖F . (3.19)

We recall that ‖�̃e −�‖F and ‖�̃ −�‖F are bounded as in Theorems 3.1 and 3.2, respectively.

Remark. We refer the readers to [36] and the references therein for the computational aspect
of (2.9) in this context of Frobenius norm minimization.

Proof of Corollary 3.3. With the choice F = Sd+, we clearly have � ∈ F . Then (3.19) follows
straightforwardly from Theorem 2.4. �

For both Corollaries 2.5 and 3.3, we have obtained positive semidefinite, rather than strictly
positive definite, versions of the existing estimators. To obtain strictly positive definite estima-
tors, we could replace the existing feasible regions F in Corollaries 2.5 and 3.3 by an intersection
of F and the convex set {�′ ∈R

d×d : λmin(�
′) ≥ ε} for some ε > 0. Then the resulting estimator

from (2.9) will be positive definite, with the smallest eigenvalue lower bounded by ε. If in ad-
dition the copula correlation matrix � satisfies λmin(�) ≥ ε, the conclusions of Corollaries 2.5
and 3.3 will continue to hold.

4. Proofs for Section 2

4.1. Proof of Theorem 2.1

The proof of Theorem 2.1 is further divided into two stages. In Section 4.1.1, we prove inequal-
ity (2.1a); in Section 4.1.2, we prove the data-driven bound, inequality (2.1b), and its performance
guarantee, inequality (2.1c).

4.1.1. Proof of inequality (2.1a)

We wish to apply a Bernstein-type inequality, specifically [42], Theorem 6.6.1, to bound the tail
probability P{‖T̂ − T ‖2 ≥ t}. We note that this theorem on bounding the tail probability of the
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maximum eigenvalue of a sum of random matrices requires that the summands be independent.
Clearly, the matrix U -statistic T̂ −T does not satisfy this condition. On the other hand, this theo-
rem relies on the Chernoff transform technique to convert the tail probability into an expectation
of a convex function of T̂ − T . A technique by Hoeffding [18] then allows us to convert the
problem of bounding ‖T̂ −T ‖2 into a problem involving a sum of independent random matrices.

Proposition 4.1. We define

T̃ = 2

n

n/2∑
i=1

T̃ i (4.1)

with

T̃ i = sgn
(
X2i−1 − X2i

)
sgn

(
X2i−1 − X2i

)T
. (4.2)

Then the tail probability P{‖T̂ − T ‖2 ≥ t} satisfies

P
{‖T̂ − T ‖2 ≥ t

} ≤ inf
θ>0

{
e−θt ·E[

tr eθ(T̃ −T )
]} + inf

θ>0

{
e−θt ·E[

tr eθ(T −T̃ )
]}

.

Proof. First, note that, because T̂ − T is symmetric, we have

‖T̂ − T ‖2 = max
{
λmax(T̂ − T ),−λmin(T̂ − T )

} = max
{
λmax(T̂ − T ),λmax(T − T̂ )

}
.

Hence,

P{‖T̂ − T ‖2 ≥ t} = P
{{

λmax(T̂ − T ) ≥ t
} ∪ {

λmax(T − T̂ ) ≥ t
}}

(4.3)
≤ P

{
λmax(T̂ − T ) ≥ t

} + P
{
λmax(T − T̂ ) ≥ t

}
.

Next we bound the first term on the right-hand side of inequality (4.3), that is, P{λmax(T̂ − T ) ≥
t}. Applying the Chernoff transform technique (e.g., [42], Proposition 3.2.1), we have

P
{
λmax(T̂ − T ) ≥ t

} ≤ inf
θ>0

{
e−θt ·E[

tr eθ(T̂ −T )
]}

. (4.4)

Now we introduce the technique of Hoeffding. We note the following facts:

1. We can equivalently write T̂ as

T̂ = 1

n!
∑
n,n

V
(
Xi1, . . . ,Xin

)
. (4.5)

Here, the function V is defined as

V
(
Xi1, . . . ,Xin

) = 2

n

{
g
(
Xi1,Xi2

) + g
(
Xi3,Xi4

) + · · · + g
(
Xin−1,Xin

)}
,
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the kernel g is defined as

g
(
Xi,Xj

) = sgn
(
Xi − Xj

)
sgn

(
Xi − Xj

)T
,

and the sum
∑

n,n is taken over all permutations i1, i2, . . . , in of the integers 1,2, . . . , n.
2. The trace exponential function is convex on the set of Hermitian matrices [35].

Therefore, using first (4.5) and then Jensen’s inequality, we have

tr eθ(T̂ −T ) = tr exp

{∑
n,n

1

n!θ
[
V

(
Xi1, . . . ,Xin

) − T
]}

(4.6)

≤
∑
n,n

1

n! tr exp
{
θ
[
V

(
Xi1, . . . ,Xin

) − T
]}

.

Then, plugging inequality (4.6) into inequality (4.4), we have

P
{
λmax(T̂ − T ) ≥ t

} ≤ inf
θ>0

{
e−θt ·E

[∑
n,n

1

n! tr eθ [V (Xi1 ,...,Xin )−T ]
]}

= inf
θ>0

{
e−θt ·E[

tr eθ [V (X1,X2,...,Xn)−T ]]}
= inf

θ>0

{
e−θt ·E[

tr eθ(T̃ −T )
]}

.

The second term on the right-hand side of inequality (4.3) can be similarly bounded. The
conclusion of the proposition then follows. �

In Proposition 4.1, the argument of the trace exponential function is proportional to

T̃ − T =
n/2∑
i=1

2

n

(
T̃ i − T

)
,

with now independent summands 2n−1(T̃ i − T ), 1 ≤ i ≤ n/2, which are also symmetric.
Therefore, we can proceed as in the proof of [42], Theorem 6.6.1, to bound E[tr eθ(T̃ −T )] and
E[tr eθ(T −T̃ )]. We calculate the quantities necessary for applying the proof. First, (for any i) we
clearly have E[T̃ i − T ] = 0. Next, by the representation of T̃ i as in (4.2), we conclude that the
only nonzero eigenvalue of T̃ i is d which corresponds to the eigenvector sgn(X2i−1 −X2i ); thus,
λmax(T̃

i) = d . This, together with Weyl’s inequality and the facts that T is positive semidefinite
and ‖T ‖2 ≤ d · ‖T ‖∞ ≤ d , imply that

λmax
(
T̃ i − T

) ≤ λmax
(
T̃ i

) = d, (4.7a)

λmax
(
T − T̃ i

) ≤ λmax(T ) ≤ d. (4.7b)
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Finally, we calculate

σ 2 =
∥∥∥∥∥

n/2∑
i=1

E

{[
2

n

(
T̃ i − T

)]2}∥∥∥∥∥
2

,

the matrix variance statistic of the sum as defined in [42], Theorem 6.6.1. Note that(
T̃ i

)2 = sgn
(
X2i−1 − X2i

)
sgn

(
X2i−1 − X2i

)T sgn
(
X2i−1 − X2i

)
sgn

(
X2i−1 − X2i

)T

= sgn
(
X2i−1 − X2i

)[
sgn

(
X2i−1 − X2i

)T sgn
(
X2i−1 − X2i

)]
sgn

(
X2i−1 − X2i

)T

= d · sgn
(
X2i−1 − X2i

)
sgn

(
X2i−1 − X2i

)T

= d · T̃ i .

Then (
n

2

)2

σ 2 =
∥∥∥∥∥

n/2∑
i=1

E
[
d · T̃ i − T 2]∥∥∥∥∥

2

= n

2

∥∥d · T − T 2
∥∥

2 ≤ n

2
d‖T ‖2. (4.8)

Hence, by Proposition 4.1 and the proof of [42], inequality (6.6.3) in Theorem 6.6.1, as well as
(4.7a), (4.7b) and (4.8), we obtain the matrix Bernstein inequality

P
(‖T̂ − T ‖2 ≥ t

) ≤ 2d · exp

(
− nt2

4d‖T ‖2 + 4 dt/3

)
(4.9)

≤ 2d · max

{
exp

(
− 3

16

nt2

d‖T ‖2

)
, exp

(
− 3

16

nt

d

)}
.

(By Proposition 4.1 and the proof of [41], Theorem 6.1, we can also obtain the tighter matrix
Bennett inequality.) Finally, setting the right-hand side of inequality (4.9) to α and solving for t

yields that inequality (2.1a) holds with probability at least 1 − α.

4.1.2. Proof of inequalities (2.1b) and (2.1c)

We abbreviate f (n, d,α) by f , ‖T ‖2 by t , ‖T̂ ‖2 by t̂ , and ‖T̂ − T ‖2 by δ. We have already
established that we have an event with probability at least 1 − α on which inequality (2.1a), that
is, δ < max{f √

t, f 2}, holds, and we concentrate on this event.
We proceed to prove inequality (2.1b), which states

max
{
f

√
t, f 2} ≤

√
t̂f 2 + ( 1

2f 2
)2 + 1

2f 2. (4.10)

Now, if f
√

t ≤ f 2 and so max{f √
t, f 2} = f 2, then inequality (4.10) clearly holds. Thus, we

focus on the case f
√

t > f 2. In this case, by inequality (2.1a), we must have

δ < f
√

t . (4.11)
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By the triangle inequality,

f
√

t ≤ f
√

δ + t̂ . (4.12)

Then, from inequalities (4.11) and (4.12) we deduce

f
√

t < f

√
f

√
t + t̂ . (4.13)

Squaring both sides of inequality (4.13) yields tf 2 < f 3√t + t̂f 2, or equivalently(
f

√
t − 1

2f 2)2
< t̂f 2 + ( 1

2f 2)2
. (4.14)

Because in the current case f
√

t > f 2 > 1
2f 2, inequality (4.14) implies

f
√

t <

√
t̂f 2 + ( 1

2f 2
)2 + 1

2f 2,

which, together with f
√

t > f 2, again implies inequality (4.10). Hence, we have proved inequal-
ity (2.1b).

Next, we prove inequality (2.1c). By the triangle inequality,√
t̂f 2 + ( 1

2f 2
)2 + 1

2f 2 ≤
√

tf 2 + δf 2 + ( 1
2f 2

)2 + 1
2f 2. (4.15)

First, assume that δ < f
√

t . Then, from inequality (4.15) we deduce√
t̂f 2 + ( 1

2f 2
)2 + 1

2f 2 <

√
tf 2 + f 3

√
t + ( 1

2f 2
)2 + 1

2f 2

(4.16)
= (

f
√

t + 1
2f 2) + 1

2f 2.

Next, suppose instead δ ≥ f
√

t , so by inequality (2.1a) we must have f
√

t ≤ δ < f 2. Then, from
inequality (4.15) we deduce√

t̂f 2 + ( 1
2f 2

)2 + 1
2f 2 <

√
f 4 + f 4 + ( 1

2f 2
)2 + 1

2f 2 = 3
2f 2 + 1

2f 2. (4.17)

Both inequalities (4.16) and (4.17) further imply that√
t̂f 2 + ( 1

2f 2
)2 + 1

2f 2 < max
{
f

√
t, f 2} + f 2,

which is just inequality (2.1c).

4.2. Proof of Theorem 2.2

The proof of Theorem 2.2 will be established through the following three lemmas. Recall that
we use ◦ to denote the Hadamard product.
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Lemma 4.2. We have

∥∥�̂′ − �
∥∥

2 ≤ π

2
·
∥∥∥∥cos

(
π

2
T

)
◦ (

T̂ ′ − T
)∥∥∥∥

2
+ π2

8
·
∥∥∥∥sin

(
π

2
T

)
◦ (

T̂ ′ − T
) ◦ (

T̂ ′ − T
)∥∥∥∥

2
.

Here, T is a symmetric, random matrix such that each entry [T ]k� is a random number on the
closed interval between [T ]k� and [T̂ ′]k�.

Proof. By Taylor’s theorem, we have

�̂′ − � = sin

(
π

2
T̂ ′

)
− sin

(
π

2
T

)
(4.18)

= cos

(
π

2
T

)
◦ π

2

(
T̂ ′ − T

) − 1

2
sin

(
π

2
T

)
◦ π

2

(
T̂ ′ − T

) ◦ π

2

(
T̂ ′ − T

)
,

for some matrix T as specified in the theorem. Next, applying the operator norm on both sides of
equation (4.18) and then using the triangle inequality on the right-hand side yields the lemma. �

Hence, it suffices to establish appropriate bounds separately for a first-order term, ‖ cos(π
2 T )◦

(T̂ ′ − T )‖2, and a second-order term, ‖ sin(π
2 T ) ◦ (T̂ ′ − T ) ◦ (T̂ ′ − T )‖2.

Lemma 4.3. For the first-order term, we have∥∥∥∥cos

(
π

2
T

)
◦ (

T̂ ′ − T
)∥∥∥∥

2
≤ 2

∥∥T̂ ′ − T
∥∥

2.

Proof. Recall that sin(π
2 T ) = �. Then, with Jd denoting a d × d matrix with all entries identi-

cally equal to one, and the square root function acting component-wise, we have

cos

(
π

2
T

)
=

√
Jd − sin

(
π

2
T

)
◦ sin

(
π

2
T

)
= √

Jd − � ◦ �. (4.19)

Next, using the generalized binomial formula

(1 + x)α =
∞∑

k=0

(
α

k

)
xk

on equation (4.19) with α = 1
2 and x being the components of −� ◦ � (so the sum converges, in

fact absolutely, since α > 0 and ‖� ◦ �‖∞ ≤ 1), we have

cos

(
π

2
T

)
=

∞∑
k=0

(
1/2
k

)
(−1)k� ◦2k �.
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Here, by � ◦l � we mean the Hadamard product of l �’s, that is, � ◦ · · · ◦ � with a total of l

terms. Hence,∥∥∥∥cos

(
π

2
T

)
◦ (

T̂ ′ − T
)∥∥∥∥

2
=

∥∥∥∥∥
[ ∞∑

k=0

(
1/2
k

)
(−1)k� ◦2k �

]
◦ (

T̂ ′ − T
)∥∥∥∥∥

2
(4.20)

≤
∞∑

k=0

∣∣∣∣(1/2
k

)∣∣∣∣ · ∥∥(� ◦2k �) ◦ (
T̂ ′ − T

)∥∥
2.

Because � is positive semidefinite (since it is a correlation matrix), by the Schur product theo-
rem, � ◦2k � is positive semidefinite for all k; moreover, � ◦2k �’s all have diagonal elements
identically equal to one. Then, by [19], Theorem 5.5.18, we have, for all k,∥∥(� ◦2k �) ◦ (

T̂ ′ − T
)∥∥

2 ≤ ∥∥T̂ ′ − T
∥∥

2. (4.21)

Plugging (4.21) into (4.20) and then using the fact that
∑∞

k=0

∣∣(1/2
k

)∣∣= 2 yield

∥∥∥∥cos

(
π

2
T

)
◦ (

T̂ ′ − T
)∥∥∥∥

2
≤

[ ∞∑
k=0

∣∣∣∣(1/2
k

)∣∣∣∣
]

· ∥∥T̂ ′ − T
∥∥

2 = 2
∥∥T̂ ′ − T

∥∥
2, (4.22)

which is the conclusion of the lemma. �

Lemma 4.4. For the second-order term, we have∥∥∥∥sin

(
π

2
T

)
◦ (

T̂ ′ − T
) ◦ (

T̂ ′ − T
)∥∥∥∥

2
≤ ∥∥T̂ ′ − T

∥∥2
2. (4.23)

Alternatively, for the particular case T̂ ′ = T̂ , we have, with probability at least 1 − 1
4α2,∥∥∥∥sin

(
π

2
T

)
◦ (T̂ − T ) ◦ (T̂ − T )

∥∥∥∥
2
≤ 8 · d · log(2α−1d)

n
. (4.24)

Proof. First, we observe a simple fact: for two matrices M,N ∈ R
k×� (for arbitrary k, �), if

|[M]ij | ≤ [N ]ij for all 1 ≤ i ≤ k,1 ≤ j ≤ �, then ‖M‖2 ≤ ‖N‖2.
To see this, we fix an arbitrary vector u = (u1, . . . , u�)

T ∈ R
� with ‖u‖ = 1, with ‖ · ‖ being

the Euclidean norm for vectors. Let ũ = (ũ1, . . . , ũ�)
T ∈R

� be the vector such that ũj = |uj | for
j = 1, . . . , �, that is, each component of ũ is the absolute value of the corresponding component
of u. Clearly, ‖ũ‖ = 1 as well. Then we have, for all 1 ≤ i ≤ k,

∣∣[Mu]i
∣∣ =

∣∣∣∣∣
�∑

j=1

[M]ij uj

∣∣∣∣∣ ≤
�∑

j=1

∣∣[M]ij
∣∣|uj | ≤

�∑
j=1

[N ]ij ũj = ∣∣[Nũ]i
∣∣.
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Here, [Mu]i and [Nũ]i are the ith component of the vectors Mu and Nũ, respectively. Hence,
clearly, ‖Mu‖ ≤ ‖Nũ‖, which further implies that

sup
{‖Mu‖: ‖u‖ = 1

} ≤ sup
{‖Nu‖: ‖u‖ = 1

}
,

and we conclude that ‖M‖2 ≤ ‖N‖2.
Now, it is easy to see that∣∣∣∣[sin

(
π

2
T

)
◦ (

T̂ ′ − T
) ◦ (

T̂ ′ − T
)]

ij

∣∣∣∣ ≤ [(
T̂ ′ − T

) ◦ (
T̂ ′ − T

)]
ij

∀1 ≤ i, j ≤ d.

Hence, by the preceding observation, we have∥∥∥∥sin

(
π

2
T

)
◦ (

T̂ ′ − T
) ◦ (

T̂ ′ − T
)∥∥∥∥

2
≤ ∥∥(

T̂ ′ − T
) ◦ (

T̂ ′ − T
)∥∥

2. (4.25)

By [19], Theorem 5.5.1, we further have∥∥(
T̂ ′ − T

) ◦ (
T̂ ′ − T

)∥∥
2 ≤ ∥∥T̂ ′ − T

∥∥2
2. (4.26)

Then inequality (4.23) follows from inequalities (4.25) and (4.26).
Next, we prove the second half of the lemma. We have∥∥∥∥sin

(
π

2
T

)
◦ (T̂ − T ) ◦ (T̂ − T )

∥∥∥∥
2
≤ ∥∥(T̂ − T ) ◦ (T̂ − T )

∥∥
2 ≤ d‖T̂ − T ‖2∞. (4.27)

Here, the first inequality follows by inequality (4.25) with the choice T̂ ′ = T̂ , and the second
inequality follows by the bound that ‖M ◦ M‖2 ≤ d‖M ◦ M‖∞ = d‖M‖2∞ for arbitrary M ∈
R

d×d . By Hoeffding’s inequality for the scalar U -statistic [18],

P
(|T̂jk − Tjk| ≥ t

) ≤ 2 exp

(
−nt2

4

)
,

and so, by the union bound,

P
(‖T̂ − T ‖∞ ≥ t

) ≤ d2 exp

(
−nt2

4

)
.

Thus, there exists an event A with probability at least 1 − 1
4α2 such that

‖T̂ − T ‖2∞ ≤ 4 · log(4α−2d2)

n
= 8 · log(2α−1d)

n
(4.28)

on the event A. Plugging inequality (4.28) into inequality (4.27) yields that inequality (4.24)
holds on the same event. This finishes the proof of the lemma. �
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The conclusions of Theorem 2.2 now follow immediately. In particular, inequality (2.5) fol-
lows from Lemmas 4.2, 4.3 and inequality (4.23) in Lemma 4.4, while inequality (2.6) follows
from Lemmas 4.2 and 4.3 with T̂ ′ set to T̂ and �̂′ set to �̂, and inequality (4.24) in Lemma 4.4,
which holds with probability at least 1 − 1

4α2.

4.3. Proof of Theorem 2.3

We let the arcsin function have the series expansion arcsin(x) = ∑∞
k=0 g(k)xk for |x| ≤ 1. The

exact form of the g(k)’s for all k is not important; we only need g(0) = 0, g(1) = 1, all the
g(k)’s are nonnegative, and

∑∞
k=0 g(k) = π/2. With the arcsin function acting component-wise,

and with � ◦k � denoting the Hadamard product of k �’s, we have

T = 2

π
arcsin(�) = 2

π

∞∑
k=0

g(k)� ◦k �.

Because � is positive semidefinite, by the Schur product theorem, � ◦k �, and thus g(k)� ◦k �,
are positive semidefinite for all k ≥ 0. In addition, T is positive semidefinite. Hence, by Weyl’s
inequality and the triangle inequality,

2

π
g(1)‖�‖2 ≤ ‖T ‖2 ≤ 2

π

∞∑
k=0

g(k)‖� ◦k �‖2. (4.29)

The first half of inequality (4.29) yields the first half of inequality (2.8). Next, note that the
� ◦k �’s, in addition to being positive semidefinite, all have diagonal elements identically equal
to one. Then, by [19], Theorem 5.5.18, we have for all k ≥ 2, ‖� ◦k �‖2 = ‖(� ◦k−1 �)◦�‖2 ≤
‖�‖2. Therefore, the second half of inequality (4.29) yields

‖T ‖2 ≤ 2

π

∞∑
k=0

g(k)‖�‖2 = ‖�‖2,

which is the second half of inequality (2.8). �

4.4. Proof of Theorem 2.4

Because � belongs to the feasible region F , and �̂generic+ minimizes ‖�′ − �̂generic‖ over
�′ ∈ F by (2.9), we conclude that∥∥�̂generic+ − �̂generic

∥∥ ≤ ∥∥� − �̂generic
∥∥. (4.30)

Then, plugging inequality (4.30) into the triangle inequality∥∥�̂generic+ − �
∥∥ ≤ ∥∥�̂generic+ − �̂generic

∥∥ + ∥∥�̂generic − �
∥∥

yields the conclusion of the theorem.
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4.5. Proof of Corollary 2.5

First, with the choice F = Sd+, we clearly have � ∈ F . Then inequality (2.10) follows straight-
forwardly from Theorem 2.4. Next, we consider the choice of F as in (2.11). With argument
similar to that used in the proof of Lemma 4.4, we conclude that there exists an event A with
probability at least 1 − 1

4α2 such that T̂ satisfies

‖T̂ − T ‖∞ ≤
√

3
2d−1/2f (n, d,α) (4.31)

on the event A. For the rest of the proof, we concentrate on the event A. By (1.4), (1.5), (4.31)
and the Lipschitz property of the sine function, we have

‖�̂ − �‖∞ ≤ π

2

√
3

2
d−1/2f (n, d,α) = C3d

−1/2f (n, d,α), (4.32)

which further implies that � ∈ F . Then inequality (2.10) again follows from Theorem 2.4. Fi-
nally, inequality (2.12) follows because ‖�̂+ − �̂‖∞ ≤ C3d

−1/2f (n, d,α) by the choice (2.11)
of F , inequality (4.32), and the triangle inequality ‖�̂+ − �‖∞ ≤ ‖�̂+ − �̂‖∞ + ‖�̂ − �‖∞.

5. Proof of Theorem 3.1

We first establish a proposition, which serves as the main ingredient for the proof of Theorem 3.1.
For brevity of presentation, we denote

E = �̂ − �.

Proposition 5.1. Assume that �∗ satisfies 0 < r < d and λr(�
∗) ≥ 2μ. On the event {2‖E‖2 <

μ}, we have

r̂ = r, (5.1)∥∥�̂ − �∗∥∥2
F

≤ 8r‖E‖2
2, (5.2)∣∣̂σ 2 − σ 2

∣∣ ≤ ‖E‖2. (5.3)

Proof. Let λ1(M) ≥ · · · ≥ λd(M) be the ordered eigenvalues of a generic symmetric matrix
M ∈ R

d×d . Note that

r̂ > r ⇐⇒ λ̂r+1 − λ̂d ≥ μ, (5.4)

r̂ < r ⇐⇒ λ̂r − λ̂d < μ. (5.5)

We obtain, using Weyl’s inequality,

λ̂r+1 − λ̂d = λr+1(� + E) − λd(� + E) ≤ λr+1(�) + 2‖E‖2 − λd(�) = 2‖E‖2, (5.6)

λ̂r − λ̂d = λr(� + E) − λd(� + E) ≥ λr(�) − 2‖E‖2 − λd(�)
(5.7)

= λr

(
�∗) − 2‖E‖2.
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Together, (5.4), (5.5), (5.6), (5.7) and the condition λr(�
∗) ≥ 2μ lead to

{̂r �= r} ⊆ {
2‖E‖2 ≥ min

(
μ,λr

(
�∗) − μ

)} ⊆ {
2‖E‖2 ≥ μ

}
. (5.8)

A similar reasoning is used in the proof of [3], Theorem 2. Consequently, equation (5.1), that is,
r̂ = r , holds on the event {2‖E‖2 < μ}, and for the rest of the proof we concentrate on this event.
Then we have

∥∥�̂ − �∗∥∥
F

≤ √
2r

∥∥�̂ − �∗∥∥
2 = √

2r

∥∥∥∥∥
r∑

k=1

(̂
λk − σ̂ 2)̂ukû

T
k − �∗

∥∥∥∥∥
2

= √
2r

∥∥∥∥∥
d∑

k=1

λ̂kûkû
T
k −

d∑
k=r+1

λ̂kûkû
T
k −

r∑
k=1

σ̂ 2ûkû
T
k − �∗

∥∥∥∥∥
2

= √
2r

∥∥∥∥∥�̂ − � + σ 2Id −
r∑

k=1

σ̂ 2ûkû
T
k −

d∑
k=r+1

λ̂kûkû
T
k

∥∥∥∥∥
2

(5.9)

= √
2r

∥∥∥∥∥E +
d∑

k=1

(
σ 2 − λ̃k

)̂
ukû

T
k

∥∥∥∥∥
2

≤ √
2r

[
‖E‖2 + max

1≤k≤d

∣∣̃λk − σ 2
∣∣].

Here, we have denoted

λ̃k =
{

σ̂ 2, if k ≤ r ,

λ̂k, if k ≥ r + 1.

We use Weyl’s inequality again to observe that

max
1≤k≤d

∣∣̃λk − σ 2
∣∣ = max

(∣∣λr+1(�̂) − σ 2
∣∣, . . . , ∣∣λd(�̂) − σ 2

∣∣, ∣∣̂σ 2 − σ 2
∣∣)

= max
(∣∣λr+1(�̂) − λr+1(�)

∣∣, . . . , ∣∣λd(�̂) − λd(�)
∣∣) (5.10)

≤ ‖E‖2,

which implies inequality (5.3). Finally, inequalities (5.9) and (5.10) together imply inequal-
ity (5.2). �

Note that the regularization parameter μ should both be large enough such that the event
{2‖E‖2 < μ} has high probability, and be small enough such that the condition λr(�

∗) ≥ 2μ

is not too stringent. However, these requirements cannot always be met at the same time, as we
demonstrate next. For brevity, we set f = f (n, d,α).

First, on the one hand, it is clear from Theorem 2.2 that we should choose, for some absolute
constants c1, c2 and α < 1/2,

μ ≈ c1
√‖T ‖2f + c2f

2, (5.11)
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to guarantee that the event {2‖E‖2 < μ} has probability larger than 1−2α. (In practice, we need a
procedure that determines μ based on ‖T̂ ‖2 instead of ‖T ‖2, and at the same time guarantees the
convergence rates in (5.2) and (5.3) in terms of ‖T ‖2. Theorem 3.1 describes such a procedure in
detail, using the results from Theorem 2.2.) On the other hand, by Theorem 2.3 and the condition
λr(�

∗) ≥ 2μ, the following string of inequalities

π

2
‖T ‖2 ≥ ‖�‖2 ≥ λmax

(
�∗) ≥ λr

(
�∗) ≥ 2μ (5.12)

hold. Now, if ‖T ‖2 � f 2, then μ � f 2 as well by (5.12), contradicting (5.11). Therefore, the
interesting case is (roughly) when inequality (2.2) holds.

Proof of Theorem 3.1. Let

μ̄′ = 2
{
C1 max

[√‖T ‖2f (n, d,α), f 2(n, d,α)
] + (C1 + C2)f

2(n, d,α)
}
. (5.13)

Then Theorem 2.2 guarantees that P{2‖E‖2 < μ < μ̄′} ≥ 1−α−α2/4 > 1−2α with the choices
(3.4) and (5.13) of μ and μ̄′, and for the rest of the proof we concentrate on this event. Assume
that �∗ satisfies 0 < r < d and λr(�

∗) ≥ 2μ̄, and n is large enough such that condition (2.2),
which is in place for the reasons discussed in the remarks following Proposition 5.1, holds.
Because condition (2.2) also ensures that equation (2.3) holds, we have μ̄′ = μ̄. Hence, the
assumption λr(�

∗) ≥ 2μ̄ further implies that λr(�
∗) ≥ 2μ̄′ > 2μ. Then Proposition 5.1 states

that equation (3.6) and inequalities (5.2), (5.3) hold. Next, we can replace ‖E‖2 in inequalities
(5.2) and (5.3) by μ̄′/2 using the bound ‖E‖2 < μ̄′/2, and further replace μ̄′ by μ̄. Inequality
(3.8) and the second half of inequality (3.7) then follow. The first half of inequality (3.7) follows
because by (3.3), we have∥∥�̃e − �

∥∥2
F

= ∥∥�̂o − �∗
o

∥∥2
F

≤ ∥∥�̂ − �∗∥∥2
F
.

It remains to establish the last statement of the theorem. We let diag(�∗) be the common value of
the diagonal elements of �∗. We assume that diag(�∗) ≤ 1 − √

2rμ̄2 as in the statement of the
theorem, and show that �̃e is positive semidefinite. Inequality (3.7) implies that ‖�̂ − �∗‖∞ ≤√

2rμ̄2. Thus, the values of the diagonal elements of �̂ cannot exceed diag(�∗) + √
2rμ̄2 ≤ 1.

Hence, in this case, by (3.3), �̃e is obtained by adding to �̂ a diagonal matrix with nonnegative
diagonal entries. Because �̂ is positive semidefinite by construction, we conclude that �̃e is
positive semidefinite as well. �

6. Proof of Theorem 3.2

6.1. Preliminaries

We let M ∈ R
d×d be an arbitrary matrix of rank r , with the (reduced) singular value decomposi-

tion M = U�V T . Here, U,V ∈ R
d×r are, respectively, matrix of the left and right orthonormal
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singular vectors of M corresponding to the nonzero singular values that are the diagonal ele-
ments of � ∈ R

r×r . Following the exposition in [10], the tangent space T (M) ⊂ R
d×d at M

with respect to the algebraic variety of matrices with rank at most r = rank(M), or the tangent
space T (M) for short, is given by

T (M) = {
UXT + YV T |X,Y ∈R

d×r
}
.

We denote the orthogonal complement of T (M) by T (M)⊥. In addition, we denote the projector
onto the tangent space T (M) by PT (M), and the projector onto T (M)⊥ by PT (M)⊥ . Then, for an
arbitrary matrix N ∈R

d×d , the explicit forms of PT (M) and PT (M)⊥ are given by

PT (M)(N) = UUT N + NV V T − UUT NV V T ,

PT (M)⊥(N) = (
Id − UUT

)
N

(
Id − V V T

)
,

respectively. One basic fact involving the projectors PT (M) and PT (M)⊥ is∥∥PT (M)(N)
∥∥

2 ≤ 2‖N‖2 and
∥∥PT (M)⊥(N)

∥∥
2 ≤ ‖N‖2.

We denote the set of d × d diagonal matrices by �. We let the projector onto � be denoted by
P�. Recall that ◦ denotes the Hadamard product. Then, for an arbitrary matrix N ∈ R

d×d , the
explicit form of P� is given by

P�(N) = Id ◦ N.

We also prove a simple lemma.

Lemma 6.1. Let A,B,C ∈R
d×d be arbitrary matrices. Then

‖ACB‖∞ ≤
√∥∥AAT

∥∥∞
∥∥BT B

∥∥∞‖C‖2.

Proof. The proof can be found in Appendix B. �

6.2. Recovery bound with primal-dual certificate

We let �̄,Q ∈R
d×d but otherwise be arbitrary at this stage. Eventually, we will set �̄ to be some

low-rank approximation to �∗, and set Q to be a primal-dual certificate [48], or certificate for
short, in the sense defined in equation (6.12) below. For notational brevity, we denote

T̄ = T (�̄) and T̄ ⊥ = T (�̄)⊥

for the tangent space T (�̄) and its orthogonal complement T (�̄)⊥, respectively.
We now state two lemmas toward the general recovery bound for the refined estimator �̃ in

terms of �̄ and the (soon-to-be) certificate Q.
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Lemma 6.2. We have

1
2

∥∥�̃o − �∗
o

∥∥2
F

+ 1
2‖�̃o − Qo‖2

F + 〈−Qo + �̄o − �∗
o + �̃o, �̄o − �̃o

〉
(6.1)

= 1
2

∥∥�̄o − �∗
o

∥∥2
F

+ 1
2‖�̄o − Qo‖2

F .

Proof. The identity follows from straightforward algebra, and can also be obtained from the
proof for [48], Theorem 3.2. �

We define, for any constant c ≥ 1,

Gc = {
� ∈R

d×d : � ∈ μ∂‖�̄‖∗ and ‖PT̄ ⊥�‖2 ≤ μ/c
}
. (6.2)

Here, ∂‖A‖∗ denotes the subdifferential with respect to the nuclear norm at the matrix A; we
refer to [44] for its explicit form. Note that Gc is a subset of the subdifferential μ∂‖�̄‖∗, and
coincides with the latter when c = 1.

Lemma 6.3. Assume that

−Qo + �̄o − �∗
o + �̂o ∈ Gc. (6.3)

Then 〈−Qo + �̄o − �∗
o + �̃o, �̄o − �̃o

〉 ≥ (1 − 1/c)μ‖PT̄ ⊥�̃‖∗. (6.4)

Proof. We follow the proof of [48], Proposition 3.2. Let �,� ∈ R
d×d satisfy � ∈ μ∂‖�̃‖∗,

�o ∈ μ∂‖�̄‖∗ but otherwise be arbitrary at this stage. By the definition of subgradient, we have

〈�o, �̄ − �̃〉 ≥ μ‖�̄‖∗ − μ‖�̃‖∗ ≥ 〈�,�̄ − �̃〉. (6.5)

Now we impose on � the stronger condition that �o ∈ Gc . Then the first half of inequality (6.5)
can be strengthened by [20], Lemma 6, to

〈�o, �̄ − �̃〉 ≥ (1 − 1/c)μ‖PT̄ ⊥�̃‖∗ + μ‖�̄‖∗ − μ‖�̃‖∗. (6.6)

Next, combining inequality (6.6) and the second half of inequality (6.5) yields

〈�o, �̄ − �̃〉 ≥ 〈�,�̄ − �̃〉 + (1 − 1/c)μ‖PT̄ ⊥�̃‖∗. (6.7)

Let L(�) = 1
2‖�o − �̂o‖2

F denote the loss function in the convex program (3.13) and ∇L(�) =
�o − �̂o denote its gradient. Then, adding 〈∇L(�̃), �̄ − �̃〉 to both sides of inequality (6.7)
yields 〈

�o + ∇L(�̃), �̄ − �̃
〉 ≥ 〈

� + ∇L(�̃), �̄ − �̃
〉 + (1 − 1/c)μ‖PT̄ ⊥�̃‖∗. (6.8)

We now fix our choices of � and �. First, by the optimality of �̃ for the convex pro-
gram (3.13), we have 0 ∈ ∇L(�̃) + μ∂‖�̃‖∗. Hence, we can fix � ∈ μ∂‖�̃‖∗ such that

∇L(�̃) + � = 0. (6.9)
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Then, plugging equation (6.9) into inequality (6.8) yields〈
�o + ∇L(�̃), �̄ − �̃

〉 ≥ (1 − 1/c)μ‖PT̄ ⊥�̃‖∗. (6.10)

Next, we set � = −Q+�̄−�∗+�̂, so �o ∈ Gc by assumption. We also use ∇L(�̃) = �̃o−�̂o.
Then inequality (6.10) becomes〈−Qo + �̄o − �∗

o + �̃o, �̄ − �̃
〉 ≥ (1 − 1/c)μ‖PT̄ ⊥�̃‖∗. (6.11)

Finally, observe that, for arbitrary commensurate matrices A and B , we have 〈Ao,B〉 =
tr(AT

o B) = tr(AT
o Bo) = 〈Ao,Bo〉. Hence, we are free to replace the term �̄ − �̃ in the angle

bracket on the left-hand side of inequality (6.11) by �̄o − �̃o. The corollary then follows. �

We are now ready to derive the general recovery bound for the refined estimator �̃ in terms of
�̄ and the certificate Q. We denote E = �̂ − � again, and note that Eo = E.

Theorem 6.4. If

−Qo + �̄o + E ∈ Gc, (6.12)

then

1
2‖�̃ − �‖2

F + (1 − 1/c)μ‖PT̄ ⊥�̃‖∗ ≤ 1
2

∥∥�̄o − �∗
o

∥∥2
F

+ 1
2‖�̄o − Qo‖2

F . (6.13)

Proof. We start from Lemma 6.2. By the construction of �̃ as in (3.12), the off-diagonal ele-
ments of �̃ and �̃ agree, that is, �̃o = �̃o. In addition, �∗

o = �o. Hence, �̃o −�∗
o = �̃o −�o =

�̃ − �. Thus, after discarding the term 1
2‖�̃o − Qo‖2, equation (6.1) becomes

1
2‖�̃ − �‖2

F + 〈−Qo + �̄o − �∗
o + �̃o, �̄o − �̃o

〉
(6.14)

≤ 1
2

∥∥�̄o − �∗
o

∥∥2
F

+ 1
2‖�̄o − Qo‖2

F .

Next we invoke Lemma 6.3. Because −�∗
o + �̂o = −�o + �̂o = Eo = E, condition (6.12)

translates into condition (6.3), and hence inequality (6.4) holds. Finally, plugging inequality (6.4)
into inequality (6.14) yields the theorem. �

6.3. Certificate construction

From Theorem 6.4, it is clear that the recovery bounds on ‖�̃ − �‖2
F and ‖PT̄ ⊥�̃‖∗ depend

crucially on an appropriate certificate Q such that ‖Qo − �̄o‖2
F can be tightly bounded. This

section is dedicated to the construction of such a certificate.
Recall that �̄ ∈ R

d×d , which is intended to be some low-rank approximation to �∗, has been
left unspecified so far. Now we restrict �̄ to be a positive semidefinite matrix of rank r , with the
eigen-decomposition

�̄ = Ū�̄ŪT . (6.15)
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Here, Ū ∈ R
d×r is the matrix of the orthonormal eigenvectors of �̄ corresponding to the positive

eigenvalues that are the diagonal elements of �̄ ∈ R
r×r . Recall from Section 6.2 that T̄ denotes

the tangent space T (�̄), and T̄ ⊥ denotes its orthogonal complement T (�̄)⊥. Then, with our
specific choice of �̄, the projectors PT̄ and PT̄ ⊥ are given by

PT̄ (N) = Ū ŪT N + NŪŪT − Ū ŪT NŪŪT , (6.16a)

PT̄ ⊥(N) = (
Id − Ū ŪT

)
N

(
Id − Ū ŪT

)
(6.16b)

for arbitrary N ∈ R
d×d . For notational brevity, from now on we will omit the parentheses sur-

rounding the argument when applying the projectors. Again with our specific choice of �̄, we
can give a more explicit characterization of Gc, defined earlier in (6.2), as

Gc = {
� ∈ R

d×d : PT̄ � = μŪŪT and ‖PT̄ ⊥�‖2 ≤ μ/c
}
. (6.17)

We also define

γ = ∥∥Ū ŪT
∥∥∞ = max

1≤i≤d

[
Ū ŪT

]
ii

≤ 1. (6.18)

The second equality in (6.18) is due to the fact that Ū ŪT is positive semidefinite, while the
inequality follows since Ū is a matrix of orthonormal eigenvectors.

Next, we obtain some technical results stating that, under certain conditions, the operators
PT̄ and P�PT̄ are contractions under certain matrix norms (Lemma 6.5), and the operator Id −
PT̄ P�, with Id the identity operator in R

d×d , is invertible (Lemma 6.6). These results essentially
follow from [20] (e.g., their Lemmas 4, 8 and 10), but we offer tighter bounds specialized to our
study.

Lemma 6.5. For any diagonal matrix D ∈R
d×d , we have

‖PT̄ D‖∞ ≤ 3γ ‖D‖∞. (6.19)

For any matrix M ∈R
d×d , we have

‖PT̄ M‖∞ ≤ 2
√

γ ‖M‖2 (6.20)

and

‖P�PT̄ M‖1 ≤ 3γ ‖M‖1. (6.21)

Proof. The proof can be found in Appendix B. �

Lemma 6.6. Assume that γ < 1/3. Then the operator Id −PT̄ P� :Rd×d → R
d×d is a bijection,

and hence is invertible. Moreover, Id −PT̄ P� satisfies, for any matrix M ∈ R
d×d ,

∥∥(Id −PT̄ P�)−1M
∥∥∞ ≤ 1

1 − 3γ
‖M‖∞. (6.22)
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Proof. The proof can be found in Appendix B. �

We demonstrate in Theorem 6.7 that, under appropriate conditions, we can solve for Qo − �̄o

in an equation of the form (6.12), such that Q − �̄ has low rank and ‖Q − �̄‖2 is small, which
further implies that ‖Qo − �̄o‖2

F is tightly bounded, as is desired. The techniques we use are
based on the proofs of [9], Proposition 5.2 and [20], Theorem 5.

Theorem 6.7. Assume that �̄ is positive semidefinite and has the eigen-decomposition (6.15).
Let T̄ = T (�̄). Let Gc and γ be defined as in (6.17) and (6.18), respectively. Suppose that γ

satisfies

γ <
1

c + 3
. (6.23)

Let A be the event on which

μ ≥
(

1

c
− γ

1 − 3γ

)−1( 2
√

γ

1 − 3γ
+ 1

)
‖E‖2 (6.24)

holds. Then, on the event A, there exists some � ∈ T̄ such that

−�o + E ∈ Gc (6.25)

and

‖�‖2 ≤
(

2

c
+ 1

)
μ. (6.26)

Remark. Note that inequality (6.23) ensures that the multiplicative factor ( 1
c

− γ
1−3γ

)−1 in
inequality (6.24) is positive.

Proof of Theorem 6.7. We focus on the event A. Note that assumption (6.23) entails that γ <

1/4 since c ≥ 1. As a result, we can apply Lemma 6.6 to conclude that Id −PT̄ P� is invertible,
and that inequality (6.22) holds. Then we can set

� = (Id −PT̄ P�)−1(PT̄ E − μŪŪT
)
. (6.27)

We show that � has all the desired properties.
First, we apply the operator Id −PT̄ P� on both sides of equation (6.27), and obtain

� =PT̄ P�� +PT̄ E − μŪŪT , (6.28)

from which it is clear that � ∈ T̄ .
Relationship (6.25) is equivalent to

−(� −P��) + E ∈ Gc, (6.29)
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which is further equivalent to the following two conditions by the characterization (6.17) of Gc .
The first condition is obtained by applying the operator PT̄ and the second one is obtained by
applying the operator PT̄ ⊥ on both sides of (6.29):

−(Id −PT̄ P�)� +PT̄ E = μŪŪT , (6.30a)∥∥PT̄ ⊥(� −P�� − E)
∥∥

2 ≤ μ/c. (6.30b)

Equation (6.30a) is equivalent to equation (6.28), and hence is satisfied. Next, we check that
inequality (6.30b) holds. By equation (6.27), inequalities (6.22) and (6.20), we have

‖�‖∞ ≤ 1

1 − 3γ

∥∥PT̄ E − μŪŪT
∥∥∞ ≤ 1

1 − 3γ

(‖PT̄ E‖∞ + ∥∥μŪŪT
∥∥∞

)
(6.31)

≤ 1

1 − 3γ

(
2
√

γ ‖E‖2 + γμ
)
.

Using inequality (6.31) and ‖PT̄ ⊥P��‖2 ≤ ‖P��‖2 = ‖P��‖∞ ≤ ‖�‖∞, we have∥∥PT̄ ⊥(� −P�� − E)
∥∥

2 ≤ ‖PT̄ ⊥�‖2 + ‖PT̄ ⊥P��‖2 + ‖PT̄ ⊥E‖2
(6.32)

≤ 0 + ‖�‖∞ + ‖E‖2 ≤
(

2
√

γ

1 − 3γ
+ 1

)
‖E‖2 + γ

1 − 3γ
μ.

Then it is easy to see that inequality (6.32), assumptions (6.23) and (6.24) together imply in-
equality (6.30b). Hence, we have verified (6.25).

Finally, starting from equation (6.28), we have

‖�‖2 ≤ ‖PT̄ P��‖2 + ‖PT̄ E‖2 + ∥∥μŪŪT
∥∥

2 ≤ 2‖�‖∞ + 2‖E‖2 + μ
∥∥Ū ŪT

∥∥
2

≤ 2

1 − 3γ

(
2
√

γ ‖E‖2 + γμ
) + 2‖E‖2 + μ = 2

(
2
√

γ

1 − 3γ
+ 1

)
‖E‖2 +

(
2γ

1 − 3γ
+ 1

)
μ

≤ 2

(
1

c
− γ

1 − 3γ

)
μ +

(
2γ

1 − 3γ
+ 1

)
μ =

(
2

c
+ 1

)
μ.

Here, the second inequality follows from the fact that ‖PT̄ P��‖2 ≤ 2‖P��‖2 ≤ 2‖�‖∞, the
third inequality follows from inequality (6.31), and the fourth inequality follows by assump-
tion (6.24). Hence, inequality (6.26) is established. �

6.4. Recovery bound for the refined estimator ˜�

In this section, we state in Corollary 6.8 the main recovery bound that will lead to the oracle
inequality for the refined estimator �̃. We recall U∗

r , γr and �∗
r as introduced in equations (3.9),

(3.10) and (3.11).
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Corollary 6.8. Let r be such that 0 ≤ r ≤ r∗ and

γr <
1

c + 3
. (6.33)

Let A be the event on which the regularization parameter μ satisfies

μ ≥
(

1

c
− γr

1 − 3γr

)−1( 2
√

γr

1 − 3γr

+ 1

)
‖E‖2. (6.34)

(Note that inequalities (6.33) and (6.34) are just inequalities (6.23) and (6.24) with the substitu-
tion of γ by γr .) Then, on the event A we have

‖�̃ − �‖2
F + (2 − 2/c)μ‖PT (�∗

r )
⊥�̃‖∗ ≤

∑
j : r<j≤r∗

λ2
j

(
�∗) + 2(1 + 2/c)2rμ2. (6.35)

Remark. We can now see that the choice c = 1 in Gc is sufficient for proving a bound on
‖�̃ − �‖2

F . With this choice of c, inequality (6.33) states that U∗
r , the truncated matrix of the

orthonormal eigenvectors of �∗ corresponding to the r largest eigenvalues, should satisfy the
mild condition ‖U∗

r U∗T
r ‖∞ < 1/4. On the other hand, the choice c > 1 leads to a bound on

‖P�(�̃ − �∗)‖1 as we will see in Appendix C.

Proof of Corollary 6.8. We start with the general recovery bound, Theorem 6.4. In the context of
Theorem 6.4, �̄ and Q should satisfy relationship (6.12) but are otherwise completely arbitrary.

We now set �̄ = �∗
r , so �̄ is positive semidefinite. We also concentrate on the event A. Then,

by assumptions (6.33) and (6.34), inequalities (6.23) and (6.24) hold with the substitution of
γ by γr . Hence, Theorem 6.7 applies. We let � be constructed according to Theorem 6.7 for
the chosen �̄ = �∗

r , so that � ∈ T̄ = T (�∗
r ), −�o + E ∈ Gc , and ‖�‖2 ≤ (1 + 2/c)μ. We

set Q = �̄ + � so Q − �̄ = �. Then relationship (6.12) is satisfied, and Theorem 6.4 further
states that inequality (6.13) holds. We proceed to bound the two terms on the right-hand side of
inequality (6.13) separately.

First, we consider the term ‖�̄o −�∗
o‖2

F . Here and below, for brevity, we sometimes abbreviate
the summation range j : r < j ≤ r∗ by j > r . We have∥∥�̄o − �∗

o

∥∥2
F

≤ ∥∥�̄ − �∗∥∥2
F

= ∥∥�∗
r − �∗∥∥2

F
=

∑
j>r

λ2
j

(
�∗).

Next, we consider the term ‖�̄o −Qo‖2
F . Using the fact that � ∈ T (�∗

r ) and so rank(�) ≤ 2r ,
and ‖�‖2 ≤ (1 + 2/c)μ, we have

‖�̄o − Qo‖2
F = ‖�o‖2

F ≤ ‖�‖2
F ≤ 2r‖�‖2

2 ≤ 2(1 + 2/c)2rμ2.

Combining both displays, we conclude that inequality (6.35) holds. �

The bound on ‖�̃ − �‖F obtained in Corollary 6.8 can be further refined by optimizing the
balance between the approximation error and the estimation error. We can also fix our choice of
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the regularization parameter μ according to inequality (6.34). These considerations finally lead
to our proof of Theorem 3.2.

Proof of Theorem 3.2. We fix c = 2, and γ ′ = 1/9. Then inequality (6.33) holds with the sub-
stitution of γr by γ ′. Let A be the event

A =
{(

1

c
− γ ′

1 − 3γ ′

)−1( 2
√

γ ′
1 − 3γ ′ + 1

)
‖E‖2 ≤ μ ≤ μ̄

}
. (6.36)

That is, A is the event on which both μ ≤ μ̄ and inequality (6.34) with the substitution of γr

by γ ′ hold. Note that the multiplicative factor in front of ‖E‖2 on the right-hand side of (6.36)
exactly equals C = 6 with our choices of c and γ ′. Then, by Theorem 2.2 and our choices (3.15)
and (3.16) of μ and μ̄, we conclude that P(A) ≥ 1 − α − α2/4 > 1 − 2α, and for the rest of the
proof we concentrate on the event A.

We let R be chosen according to (3.17), so in particular γR ≤ 1/9 = γ ′. Because γr is non-
decreasing in r , and inequalities (6.33) and (6.34) hold with the substitution of γr by γ ′, it
is straightforward to conclude that inequalities (6.33) and (6.34) hold in terms of γr for all
0 ≤ r ≤ R. Hence, by Corollary 6.8, inequality (6.35) holds for all 0 ≤ r ≤ R. Then, after dis-
carding the term (2 − 2/c)μ‖PT (�∗

r )
⊥�̃‖∗ on the left-hand side of inequality (6.35), we obtain,

for all 0 ≤ r ≤ R, that

‖�̃ − �‖2
F ≤

∑
j>r

λ2
j

(
�∗) + 2(1 + 2/c)2rμ2 ≤

∑
j>r

λ2
j

(
�∗) + 8rμ̄2. (6.37)

Here, the second inequality in (6.37) follows because c = 2 and μ ≤ μ̄. Finally, the theorem
follows by taking the minimum of inequality (6.37) over 0 ≤ r ≤ R. �

Appendix A: Discussion of some basic concepts

In this section, we present formal definitions of some basic concepts in this paper and then discuss
the characterization of the semi-parametric elliptical copula model. We first present the definition
of an elliptical distribution; see, for instance, [7].

Definition A.1. A random vector Y = (Y1, . . . , Yd)T ∈ R
d has an elliptical distribution if for

some μ ∈ R
d and some positive semidefinite matrix � ∈ R

d×d , the characteristic function
ϕY−μ(t) of Y − μ is a function of the quadratic form tT �t , that is, ϕY−μ(t) = φ(tT �t) for
some function φ. We write Y ∼ Ed(μ,�,φ), and call φ the characteristic generator.

Next, we present the definition of a copula [40]; see, for instance, [13], Theorem 2.2.

Definition A.2. The copula C : [0,1]d → [0,1] of a continuous random vector Y = (Y1, . . . ,

Yd)T ∈ R
d is the joint distribution function of the transformed random vector U = (F1(Y1), . . . ,

Fd(Yd))T ∈ R
d on the unit cube [0,1]d , using the marginal distribution functions Fj (y) =

P{Yj ≤ y} for 1 ≤ j ≤ d .
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We recall the basic property that copulas are invariant under strictly increasing transforma-
tions of the individual vector components of the underlying distribution; see, for instance, [13],
Theorem 2.6. It follows from this invariance property that, if the random vector X ∈ R

d follows
a distribution from the semi-parametric elliptical copula model, and if X has the same copula
with an elliptically distributed random vector Y ∈R

d such that Y ∼ Ed(μ,�,φ), then the copula
of X is uniquely characterized by the same characteristic generator φ and a copula correlation
matrix �, defined as [�]k� = [�]k�/([�]kk[�]��)1/2 for all 1 ≤ k, � ≤ d .

Appendix B: Auxiliary proofs for Section 6

This section contains the proofs of some auxiliary lemmas in Section 6.

Proof of Lemma 6.1. We let ei ∈ R
d denote the vector with one at the ith position and zeros

elsewhere, and ‖ · ‖ denote the Euclidean norm for vectors. Then we have

‖ACB‖∞ = max
i,j

∣∣eT
i ACBej

∣∣ ≤ max
i,j

∥∥eT
i A

∥∥‖CBej‖ ≤ max
i,j

∥∥eT
i A

∥∥‖C‖2‖Bej‖

= max
i,j

√
eT
i AAT ei‖C‖2

√
eT
j BT Bej ≤

√∥∥AAT
∥∥∞

√∥∥BT B
∥∥∞‖C‖2.

Here, the first equality follows from an observation in the proof of [10], Proposition 4, and the
first inequality follows by the Cauchy–Schwarz inequality. The lemma follows. �

Proof of Lemma 6.5. Let D ∈R
d×d be an arbitrary diagonal matrix, and M ∈R

d×d an arbitrary
matrix. We first prove inequality (6.19). Using equation (6.16a), we have

‖PT̄ D‖∞ ≤ ∥∥(
Ū ŪT

)
D

∥∥∞ + ∥∥D
(
Ū ŪT

)∥∥∞ + ∥∥(
Ū ŪT

)
D

(
Ū ŪT

)∥∥∞. (B.1)

We bound the terms on the right-hand side of inequality (B.1) separately. Note that, although
‖ · ‖∞, the element-wise �∞ norm, is not submultiplicative, it is easy to see that the inequality
‖AB‖∞ ≤ ‖A‖∞‖B‖∞ holds when at least one of A,B is a diagonal matrix. Hence, we have

max
{∥∥(

Ū ŪT
)
D

∥∥∞,
∥∥D

(
Ū ŪT

)∥∥∞
} ≤ ‖Ū ŪT ‖∞‖D‖∞ = γ ‖D‖∞. (B.2)

Next, setting A = B = Ū ŪT and C = D in Lemma 6.1 yields∥∥(
Ū ŪT

)
D

(
Ū ŪT

)∥∥∞ ≤
√∥∥Ū ŪT Ū ŪT

∥∥∞
∥∥Ū ŪT Ū ŪT

∥∥∞‖D‖2
(B.3)

=
√∥∥Ū ŪT

∥∥∞
∥∥Ū ŪT

∥∥∞‖D‖2 = γ ‖D‖∞.

Here, the final equality follows because D is diagonal and so ‖D‖2 = ‖D‖∞. Finally, plugging
inequalities (B.2) and (B.3) into inequality (B.1) yields inequality (6.19).

To prove inequality (6.20), note that, again by equation (6.16a), we have

‖PT̄ M‖∞ ≤ ∥∥(
Ū ŪT

)
M

∥∥∞ + ∥∥(
Id − Ū ŪT

)
M

(
Ū ŪT

)∥∥∞. (B.4)
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Setting A = UUT , B = Id and C = M in Lemma 6.1 yields∥∥(
Ū ŪT

)
M

∥∥∞ ≤ √
γ ‖M‖2, (B.5)

while setting A = (Id − Ū ŪT ), B = UUT and C = M in Lemma 6.1 yields∥∥(
Id − Ū ŪT

)
M

(
Ū ŪT

)∥∥∞ ≤ √
γ ‖M‖2. (B.6)

Inequality (6.20) then follows from inequalities (B.4), (B.5) and (B.6).
Finally, we prove inequality (6.21). Note that ‖ · ‖∞ and ‖ · ‖1 are dual norms. Then

‖P�PT̄ M‖1 = sup
N : ‖N‖∞≤1

〈P�PT̄ M,N〉 = sup
N : ‖N‖∞≤1

〈PT̄ M,P�N〉 = sup
N : ‖N‖∞≤1

〈M,PT̄ P�N〉

≤ sup
N : ‖N‖∞≤1

‖M‖1‖PT̄ P�N‖∞ ≤ 3γ sup
N : ‖N‖∞≤1

‖M‖1‖P�N‖∞

≤ 3γ sup
N : ‖N‖∞≤1

‖M‖1‖N‖∞ ≤ 3γ ‖M‖1,

using first Hölder’s inequality and then inequality (6.19) on the diagonal matrix P�N . �

Proof of Lemma 6.6. We assume that γ < 1/3. Let M ∈ R
d×d be an arbitrary matrix. Applying

inequality (6.19) in Lemma 6.5 on the diagonal matrix P�M , we obtain

‖PT̄ P�M‖∞ ≤ 3γ ‖P�M‖∞ ≤ 3γ ‖M‖∞.

Then, by the triangle inequality,∥∥(Id −PT̄ P�)M
∥∥∞ ≥ ‖M‖∞ − ‖PT̄ P�M‖∞ ≥ (1 − 3γ )‖M‖∞.

Because γ < 1/3, ‖(Id − PT̄ P�)M‖∞ = 0 if and only if ‖M‖∞ = 0, or equivalently M = 0.
Thus, the null space of the operator Id − PT̄ P� is the zero matrix. Hence, Id − PT̄ P� is a
bijection, and thus invertible.

Next, we prove inequality (6.22). Let (Id − PT̄ P�)−1M = M ′, or equivalently M = (Id −
PT̄ P�)M ′. Then, analogues to the derivation above, we have

‖M‖∞ = ∥∥(Id −PT̄ P�)M ′∥∥∞ ≥ (1 − 3γ )
∥∥M ′∥∥∞ = (1 − 3γ )

∥∥(Id −PT̄ P�)−1M
∥∥∞,

which is inequality (6.22). �

Appendix C: Bounding the diagonal deviation of the low-rank
matrix estimator

We commented in the remark following Corollary 6.8 that the choice c = 1 in Gc is sufficient
for proving a bound on ‖�̃ − �‖2

F . On the other hand, exactly as commented in [48], and as
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is apparent from Theorem 6.4, choosing c > 1 leads to a bound for PT̄ ⊥�̃, that is, the portion
of �̃ orthogonal to the tangent space T̄ . As in [20], such a bound can be further exploited to
control P�(�̃ − �∗), which in our case is the deviation of �̃ from �∗ on the diagonal. We first
present a lemma toward the bound for P�(�̃−�∗). The proof of the lemma is a straightforward
modification of the proof of [20], Theorem 7; for completeness, we include it here. We employ
the same notation as in Section 6.3, and we denote E = �̂ − � again.

Lemma C.1. Let r = rank(�̄). We have

(1 − 3γ )
∥∥P�

(
�̃ − �∗)∥∥

1 ≤ ∥∥PT̄ ⊥
(
�̃ − �∗)∥∥∗ + 4r

(‖E‖2 + μ
)
. (C.1)

Proof. Let �̃� = �̃ − �∗. The optimality of �̃ for the convex program (3.13) implies that we
can fix � ∈ μ∂‖�̃‖∗ such that equation (6.9) holds. Using ∇L(�̃) = �̃o − �̂o, equation (6.9) is
equivalent to

�̃� =P��̃� + E − �. (C.2)

Applying P�PT̄ on both sides of equation (C.2) gives

P�PT̄ �̃� =P�PT̄ P��̃� +P�PT̄ E −P�PT̄ �. (C.3)

Then, using equation (C.3), we have

P��̃� = P�PT̄ ⊥�̃� +P�PT̄ �̃�
(C.4)

= P�PT̄ ⊥�̃� +P�PT̄ P��̃� +P�PT̄ E −P�PT̄ �.

We apply ‖ · ‖1 on both sides of equation (C.4). Note that, for any matrix M ∈ R
d×d , ‖P�M‖1 =

‖P�M‖∗. In addition, inequality (6.21) implies that ‖P�PT̄ P��̃�‖1 ≤ 3γ ‖P��̃�‖1. Hence,
we have

‖P��̃�‖1 ≤ ‖P�PT̄ ⊥�̃�‖1 + ‖P�PT̄ P��̃�‖1 + ‖P�PT̄ E‖1 + ‖P�PT̄ �‖1
(C.5)

≤ ‖P�PT̄ ⊥�̃�‖∗ + 3γ ‖P��̃�‖1 + ‖P�PT̄ E‖∗ + ‖P�PT̄ �‖∗.

Note that, for any matrix M ∈ R
d×d , we have P�M = Id ◦ M . By [19], Theorem 5.5.19, ‖Id ◦

M‖∗ ≤ ‖M‖∗. In addition, rank(PT̄ M) ≤ 2r , and so ‖PT̄ M‖∗ ≤ 2r‖PT̄ M‖2 ≤ 4r‖M‖2. Hence,
from inequality (C.5), we further deduce

(1 − 3γ )‖P��̃�‖1 ≤ ‖PT̄ ⊥�̃�‖∗ + ‖PT̄ E‖∗ + ‖PT̄ �‖∗ ≤ ‖PT̄ ⊥�̃�‖∗ + 4r‖E‖2 + 4r‖�‖2.

The corollary then follows by noting that ‖�‖2 ≤ μ. �

We now state a concrete bound for P�(�̃ − �∗).

Theorem C.2. Let μ and μ̄ be as in (3.15) and (3.16), respectively, and let

μ′ = C
{
C1 max

[√‖T ‖2f (n, d,α), f 2(n, d,α)
] + C2f

2(n, d,α)
}
, (C.6)
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all with 0 < α < 1/2, C1 = π, C2 = 3π2/16 < 1.86, and C = 6. We recall R as defined in (3.17).
Then, with probability exceeding 1 − 2α, we have∥∥P�

(
�̃ − �∗)∥∥

1
(C.7)

≤ min
0≤r≤R

{
3

2μ′
∑

j : r<j≤r∗
λ2

j

(
�∗) + 3

2

∑
j : r<j≤r∗

λj

(
�∗) + 19rμ̄

}
.

Proof. We fix c = 2, and γ ′ = 1/9. Then inequality (6.33) holds with the substitution of γr

by γ ′. Let A be the event

A =
{(

1

c
− γ ′

1 − 3γ ′

)−1( 2
√

γ ′
1 − 3γ ′ + 1

)
‖E‖2 ≤ μ′ ≤ μ ≤ μ̄

}
. (C.8)

Hence, on the event A, both μ′ ≤ μ ≤ μ̄, and inequality (6.34) with the substitution of γr by γ ′,
hold. Note that the multiplicative factor in front of ‖E‖2 on the right-hand side of (C.8) exactly
equals C = 6 with our choices of c and γ ′. Then, by Theorem 2.2 and our choices (C.6), (3.15)
and (3.16) of μ′, μ and μ̄, we conclude that P(A) ≥ 1 − α − α2/4 > 1 − 2α, and for the rest of
the proof we focus on the event A.

Note that Lemma C.1 provides a bound on ‖P�(�̃ − �∗)‖1 through the chosen �̄ and the
associated T̄ ⊥. We fix an arbitrary 0 ≤ r ≤ R, and choose �̄ = �∗

r , which implies that γ = γr .
Then

PT̄ ⊥
(
�̃ − �∗) = PT (�∗

r )
⊥�̃ −PT (�∗

r )
⊥�∗

= PT (�∗
r )

⊥�̃ − (
�∗ − �∗

r

)
and so ∥∥PT̄ ⊥

(
�̃ − �∗)∥∥∗ ≤ ‖PT (�∗

r )
⊥�̃‖∗ +

∑
j>r

λj

(
�∗). (C.9)

Plugging inequality (C.9) into inequality (C.1) with the substitution of γ by γr yields∥∥P�

(
�̃ − �∗)∥∥

1
(C.10)

≤
(

1

1 − 3γr

)[
‖PT (�∗

r )
⊥�̃‖∗ +

∑
j>r

λj

(
�∗) + 4r

(‖E‖2 + μ
)]

.

As argued in the proof of Theorem 3.2, because inequalities (6.33) and (6.34) hold with the
substitution of γr by γ ′, we conclude that inequalities (6.33) and (6.34) hold in terms of γr .
Hence, by Corollary 6.8, inequality (6.35) applies, and we have

‖PT (�∗
r )

⊥�̃‖∗ ≤ 1

μ

[∑
j>r

λ2
j

(
�∗) + 8rμ2

]
. (C.11)
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Plugging inequality (C.11) into inequality (C.10), we have

∥∥P�

(
�̃ − �∗)∥∥

1 ≤
(

1

1 − 3γr

){
1

μ

[∑
j>r

λ2
j

(
�∗) + 8rμ2

]
+

∑
j>r

λj

(
�∗) + 4r

(‖E‖2 + μ
)}

≤ 3

2

{
1

μ

∑
j>r

λ2
j

(
�∗) +

∑
j>r

λj

(
�∗) + 38

3
rμ

}
(C.12)

≤ 3

2

{
1

μ′
∑
j>r

λ2
j

(
�∗) +

∑
j>r

λj

(
�∗) + 38

3
rμ̄

}
.

Here, the second inequality follows because γr ≤ 1/9 and ‖E‖2 ≤ μ/6, and the last inequality
follows because μ′ ≤ μ ≤ μ̄. Then inequality (C.7) is obtained by minimizing inequality (C.12)
over 0 ≤ r ≤ R. �
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