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This work is concerned with the detection of a mixture distribution from a R-valued sample. Given a sample
X1, . . . ,Xn and an even density φ, our aim is to detect whether the sample distribution is φ(·−μ) for some
unknown mean μ, or is defined as a two-component mixture based on translations of φ. We propose a
procedure which is based on several spacings of the order statistics, which provides a level-α test for all n.
Our test is therefore a multiple testing procedure and we prove from a theoretical and practical point of view
that it automatically adapts to the proportion of the mixture and to the difference of the means of the two
components of the mixture under the alternative. From a theoretical point of view, we prove the optimality
of the power of our procedure in various situations. A simulation study shows the good performances of our
test compared with several classical procedures.
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1. Introduction

In this paper, the detection problem of a mixture distribution from a R-valued sample is consid-
ered. Let (X1, . . . ,Xn) be i.i.d. random variables from an unknown distribution F . All along the
paper, F is assumed to admit a density f w.r.t. the Lebesgue measure on R. The sample is said
to be distributed from a mixture when f belongs to the set

F1 = {
x ∈ R �→ (1 − ε)φ(x − μ1) + εφ(x − μ2); ε ∈]0,1[, (μ1,μ2) ∈R

2,μ1 < μ2
}
, (1.1)

where φ(·) denotes a density. In this paper, φ(·) is assumed to be an even known density, and
when Gaussian mixtures are considered, φ(·) = φG(·) with

φG(x) = 1√
2π

exp

(
−x2

2

)
, ∀x ∈ R.

For a complete introduction about mixtures, we refer to [18]. The two-component mixtures are
often encountered in practice, for instance, in biology and health science. They allow to model
situations where a population can be discriminated into two different groups. The first subpop-
ulation is then assumed to be distributed following the density φ(· − μ1) while the second one
follows the density φ(· − μ2). The probability that an observation Xi arises from the first (resp.
the second) subpopulation is then modeled by 1 − ε (resp. ε).
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This model has been intensively studied and many paths have been explored in order to pro-
vide a satisfying inference. In particular, the detection problem has attracted a lot of attention
in the last two decades. The main goal is not to provide the best estimation of the parameters
of interest (ε,μ1,μ2) but rather to decide whether the incoming observations are following a
mixture distribution or not. In other words, one wants to detect if the sample of interest comes
from a homogeneous or heterogeneous population. Let F0 be the density set defined as

F0 = {
x ∈ R �→ φ(x − μ);μ ∈R

}
. (1.2)

Formally, one wants to test

“f ∈ F0” against “f ∈ F1”. (1.3)

In various testing problems involving finite mixtures, the properties of the likelihood ratio
test have been widely investigated. We can mention for instance [2,10,11,14] among others. In
all these papers, the main challenge is to determine the asymptotic behaviour of the likelihood
ratio under the alternative hypothesis in order to investigate the power of the related test. Alter-
native methods have also been considered: modified likelihood ratio test [8], estimation of the
L2 distance between the densities associated to the null and the alternative hypotheses [7], EM
approach [9] or tests based on the empirical characteristic function [17].

The main challenge related to the problem (1.3) is to find (optimal) conditions on (ε,μ1,μ2)

for which a prescribed second kind error can be achieved. The first study in this way is due to
Ingster [15], in the particular case where the mean μ under the null hypothesis is known, the
term μ1 in the alternative is equal to μ, and φ(·) corresponds to a Gaussian density. Similar
results have also been obtained in [12]. In this last paper, the so-called Higher Criticism has
been investigated. This algorithm is very powerful in the sense that it is easy to implement, and
provides similar power than the usual likelihood ratio test. The asymptotic detection regions have
been carefully investigated in two different asymptotic regimes:

• the sparse regime where ε ∼
n→+∞n−δ and μ2 − μ1 ∼

n→+∞
√

2r log(n) with 1
2 < δ < 1 and

0 < r < 1. In this case, it is proved that the two hypotheses can be asymptotically separated
if {

r > δ − 1
2 when 1

2 < δ ≤ 3
4 ,

r > (1 − √
1 − δ)2 when 3

4 < δ < 1;
• the dense regime where ε ∼

n→+∞n−δ and μ2 −μ1 ∼
n→+∞n−r with 0 < δ ≤ 1

2 and 0 < r < 1
2 .

In this framework, the separation is asymptotically possible if r < 1
2 − δ.

In the equations above, the notation an ∼
n→+∞bn means that limn→+∞ an/bn = 1. We refer for

more details to [15] and [12]. Jager and Wellner [16] proposed a family of tests based on the
Renyi divergences which generalizes the procedure based on the Higher Criticism. We also men-
tion that generalizations of this procedure to heteroscedastic mixtures have been proposed by
Cai et al. in [4] while the problems of estimation and construction of confidence sets in sparse
mixture models are considered in [5]. Addario-Berry et al. [1] determine non-asymptotic sep-
aration rates of testing for the contamination of a standard Gaussian vector in R

n by non-zero
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mean components when the alternatives have particular combinatorial and geometric structures.
More recently, Cai and Wu [6] consider the detection of sparse mixtures in the situation where
the density of the observations under the null hypothesis is fixed, but not necessarily Gaussian.

In this paper, we consider a testing problem where the null hypothesis does not correspond
to a fixed density but rather to the set of densities F0 defined by (1.2) which corresponds to a
translation model. Thus the mean parameter μ under the null hypothesis is not assumed to be
known. The considered alternative F1 corresponds to the set of densities that are mixtures of two
densities of F0. Our aim is to decide whether the density f of the observations belongs to F0
or F1. To this end, we introduce a new testing procedure based on the order statistics. Contrary
to the Higher Criticism algorithm [12], the main advantage of this procedure is that the mean
μ under H0 is not fixed. Since one can find densities in F1 that are arbitrary close to F0, it is
impossible to build a level-α test that achieves a prescribed power on the whole set F1. Hence,
we introduce subsets of F1 over which our level-α test has a power greater than 1 − β . The
construction of such subsets more or less amounts to find conditions on (ε,μ1,μ2) which ensure
that both hypotheses H0 and H1 are separable. To this end, we consider as in [12] and [4] two
different regimes: the dense case where |μ2 − μ1| is assumed to be bounded and ε ≥ C/

√
n for

all n ∈ N
∗ and for some positive constant C, and the sparse regime where ε is allowed to be

much smaller than 1/
√

n.
The paper is organized as follows. In Section 2, a testing procedure based on the order statistics

is introduced. The Section 3 is dedicated to the dense regime: we provide non-asymptotic lower
and upper bounds for our testing problem in the Gaussian case. Then, we investigate the sparse
regime in Section 4 for both Gaussian and Laplace distributions. Some numerical simulations,
providing a comparison with existing procedures are displayed in Section 5. Proofs are gathered
in Section 6 and technical lemmas in the Appendix.

2. The testing procedure

2.1. A test based on the order statistics

Recall that given an i.i.d. sample X1, . . . ,Xn having a common density f w.r.t. the Lebesgue
measure on R, our aim is to consider the testing problem H0 : f ∈ F0 against H1 : f ∈ F1,
namely to decide whether f corresponds to a given even density function φ (up to a translation)
or is defined as a two-components mixture of translations of φ.

In this context, one of the most popular testing procedures is the Higher Criticism introduced in
[12], whose asymptotic behaviour has been widely investigated (see also references above). Nev-
ertheless, there exists up to our knowledge no description of the non-asymptotic performances of
this algorithm. Moreover, this procedure heavily depends on the knowledge of the mean under
H0. In this paper, we work in a slightly different framework in the sense that a translation model
under H0 is considered.

In this section, a new testing procedure based on spacings of the order statistics is proposed.
The order statistics are denoted by X(1) ≤ X(2) ≤ · · · ≤ X(n). The main underlying idea is that
the spacing of these order statistics are free with respect to the mean under H0: for some k <

l ∈ {1, . . . , n}, the mean value affects the spatial position of a given X(k), but not X(l) − X(k).
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Moreover, the distribution of the variables X(l) − X(k) is known under H0 and has a different
behavior under H1, provided k and l are well-chosen.

Let α ∈]0,1[ be a fixed level, Pf the distribution of X1, . . . ,Xn having common density
f , and Ef the corresponding expectation. In the following, a level-α test function Tα denotes
a measurable function of (X1, . . . ,Xn) with values in {0,1}, such that the null hypothesis is
rejected if Tα = 1 and supf ∈F0

Pf (Tα = 1) ≤ α. Assume that n ≥ 2 and consider the subset Kn

of {1,2, . . . , n/2} defined by

Kn = {
2j ,0 ≤ j ≤ [

log2(n/2)
]}

.

Our test statistics is defined as

�α := sup
k∈Kn

{1X(n−k+1)−X(k)>qαn,k
}, (2.1)

where, for all u ∈]0,1[, qu,k is the (1−u)-quantile of X(n−k+1) −X(k) under the null hypothesis
and

αn = sup
{
u ∈]0,1[,PH0(∃k ∈ Kn,X(n−k+1) − X(k) > qu,k) ≤ α

}
.

Note that, by construction, αn ≤ α. Since the distribution of X(n−k+1) − X(k) under the null
hypothesis is independent of the mean value μ of the Xi ’s, qαn,k and αn can be approximated
(via Monte-Carlo simulations for instance) under the assumption that the Xi ’s have common
density φ. Below (see in particular Section 6.1), we also provide explicit upper bounds for the
quantiles, which can be used instead of the true qα,k if necessary.

2.2. First and second kind errors

By definition, the test statistics �α introduced in (2.1) is exactly of level α, namely

PH0(�α = 1) = PH0(∃k ∈Kn,X(n−k+1) − X(k) > qαn,k) ≤ α,

thanks to the definition of αn. We point out that αn ≥ α/|Kn|, where |Kn| denotes the cardinality
of Kn. Indeed,

PH0(∃k ∈ Kn,X(n−k+1) − X(k) > qα/|Kn|,k) ≤
∑
k∈Kn

PH0(X(n−k+1) − X(k) > qα/|Kn|,k)

≤
∑
k∈Kn

α

|Kn| ≤ α.

In practice, the choice of αn, instead of the so-called Bonferroni correction α/|Kn|, allows a
numerical improvement of the performances of �α . We refer to [13] for an extended discussion
on this subject.

Now, we turn our attention to the control of the second kind error. We emphasize that the
test �α is a multiple testing procedure: we combine |Kn| different tests, which correspond to
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different spacing for the order statistics. We can remark that, for any f ∈F1

Pf (�α = 0) = Pf

(
sup
k∈Kn

{1X(n−k+1)−X(k)>qαn,k
} = 0

)

= Pf

( ⋂
k∈Kn

{1X(n−k+1)−X(k)>qαn,k
= 0}

)

≤ inf
k∈Kn

Pf (1X(n−k+1)−X(k)>qαn,k
= 0).

Hence, the second kind error of �α is close to the smallest one in the collection Kn. In some
sense, the “optimal” choice of k ∈ Kn is data-driven. The only price to pay for adaptation relies
in the “level” αn, which is smaller than α.

From now on, our aim is to evaluate precisely the power of the test for different kinds of
alternatives: dense mixtures (Section 3) or sparse mixtures (Section 4). A general non-asymptotic
result is provided in Section 6.1.

3. Dense mixtures

In this section, we assume that the difference between the means μ1 and μ2 of the two compo-
nents of the mixture is bounded. We will see that the settings of interest correspond to the case
where ε ≥ C/

√
n for some constant C > 0. In the literature, this regime is called the dense case.

We consider the set of alternatives

F1[M] = {
f (·) = (1 − ε)φ(· − μ1) + εφ(· − μ2), ε ∈]0,1[,0 < μ2 − μ1 ≤ M

}
with M > 0. When the density of the standard normal distribution is considered (φ = φG), this
set is denoted F1,G[M].

The aim of this section is to provide explicit conditions on the triplet (ε,μ1,μ2) that guarantee
a prescribed power for a test of mixture detection, provided that f ∈F1[M]. More precisely, we
measure the distance to the null hypothesis by the quantity d(ε,μ1,μ2) = ε(1 − ε)(μ2 − μ1)

2

and we assume that d(ε,μ1,μ2) ≥ ρ for some ρ > 0. The question can be therefore formulated
as follows: what is the minimal value of ρ to be able to detect the mixture? Under this condition,
is the test proposed in Section 2 powerful? We address these two questions for Gaussian mixture
models. We also provide a simple test based on the estimation of the variance which is powerful
(not only for Gaussian mixtures) in the framework considered in this section.

3.1. Lower bound for the detection of a Gaussian mixture model

In this section, we consider the same definition of non-asymptotic lower bounds for hypotheses
testing problems than the ones introduced in [3] for signal detection in a Gaussian regression
model or a Gaussian sequence model. Let us recall these definitions. Given β ∈]0,1[, the class
of alternatives F1[M], and a level-α test Tα with values in {0,1} (rejecting H0 when Tα = 1), we
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define the uniform separation rate ρ(Tα,F1[M], β) of Tα over the class F1[M] as the smallest
positive number ρ such that the test has a second kind error at most equal to β for all alternatives
f in F1[M] such that d(ε,μ1,μ2) = ε(1 − ε)(μ2 − μ1)

2 ≥ ρ. More precisely,

ρ
(
Tα,F1[M], β)= inf

{
ρ > 0, sup

f ∈F1[M],d(ε,μ1,μ2)≥ρ

Pf (Tα = 0) ≤ β
}
. (3.1)

Then, we introduce the (α,β)-minimax separation rate over F1[M] defined as

ρ
(
F1[M], α,β

)= inf
Tα

ρ
(
Tα,F1[M], β), (3.2)

where the infimum is taken over all level-α tests Tα .
We provide in the next theorem a non-asymptotic lower bound for ρ(F1[M], α,β) in the case

where φ corresponds to the standard Gaussian density.

Theorem 3.1. Let α ∈]0,1[ and β ∈]0,1 − α[. Let

ρ	 = 1

C(M)

(√−2 log[c(α,β)]
n

√
1 + log[c(α,β)]

2n

)
,

with c(α,β) = 1 − (1−α−β)2

2 and C(M) =
√

1
2 + 2M2

3 eM2/4. Then for all ρ < ρ	,

inf
Tα

sup
f ∈F1,G[M],d(ε,μ1,μ2)≥ρ

Pf (Tα = 0) > β,

where the infimum is taken over all level-α test Tα . This implies that

ρ
(
F1,G[M], α,β

)≥ ρ	.

Theorem 3.1 implies that whatever the level-α test Tα , if ρ < ρ	, there exists a density f ∈
F1,G[M] for which Pf (Tα = 0) > β . In particular, testing is not possible if μ2 − μ1 is too small
with respect to ε(1 − ε). We will show in Section 3.3 that this condition on (ε,μ1,μ2) is optimal
(up to constant).

3.2. Upper bound for the testing procedure �α in the Gaussian case

The goal of this section is to give explicit conditions on (ε,μ1,μ2) that ensure a prescribed
power for the test �α defined in (2.1), when φ is the standard Gaussian density.

Theorem 3.2. Let X1, . . . ,Xn be i.i.d. real random variables with common density f . Let α ∈
]0,1[ and consider the level-α test �α defined by (2.1). Let β ∈]0,1 − α[ and M > 0. Assume
that n fulfills n ≥ 3 and 8.25 × log(4 log2(n/2)/α)/n ≤ ∫∞

M
φG(x)dx.

Then, there exists a positive constant C(α,β,M) depending only on α, β and M, such that if

ρ ≥ C(α,β,M)

√
log log(n)

n
, (3.3)
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then,

sup
f ∈F1,G[M],d(ε,μ1,μ2)≥ρ

Pf (�α = 0) ≤ β.

Comments. The technical condition on n to get the result of Theorem 3.2 is satisfied for n ≥ 107
when M = 1/10 and α = 0.05.

Note that the value of ρ proposed in (3.3) differs from the lower bound ρ	 by a term of order√
log logn. This log log term is due to the multiple (adaptive) testing procedure: the optimal value

for k ∈ Kn in the test �α is chosen from the data. Hence, this
√

log log(n) term corresponds to
the price to pay in such a setting. This kind of logarithmic loss is quite classical in test theory:
see for instance [19] or [13] in slightly different settings.

Instead of considering the test statistics �α defined by (2.1), we could introduce the statistics

1X(n−k∗+1)−X(k∗)>qα,k∗ ,

where k∗ has to be suitably chosen and depends on M . By this way, we would avoid the loga-
rithmic loss in the minimax separation rate over the set F1,G[M] and obtain a rate that coincides
(up to constants) with the lower bound given in Theorem 3.1 (see the proof of Theorem 3.2). In
practice, using the test statistics �α is more satisfactory since it does not depend on M .

3.3. A testing procedure based on the variance

In this section, we do not assume that the Xi ’s are Gaussian random variables. We are interested
in a simple test based on the variance of the Xi ’s. We will prove that this test allows us to achieve
the lower bound obtained in Theorem 3.1.

Remark that under H0, Var(Xi) = σ 2, where σ 2 = ∫
R

x2φ(x)dx, while under H1, Var(Xi) =
σ 2 + ε(1 − ε)(μ2 − μ1)

2. Hence, we consider the test ψα defined by

ψα = 1{S2
n>vα,n}, where S2

n = 1

n − 1

n∑
i=1

(Xi − X̄n)
2, (3.4)

and vα,n denotes the (1−α)-quantile of the variable S2
n under H0. Then the following proposition

holds.

Proposition 3.1. Let α ∈]0,1[ and β ∈]0,1−α[. Assume that the density function φ has a finite
fourth moment:

∫
R

x4φ(x)dx ≤ B . There exists a positive constant C(α,β,M,B) depending on
(α,β,M,B) such that if

ρ ≥ C(α,β,M,B)/
√

n, (3.5)

then

sup
f ∈F1[M],d(ε,μ1,μ2)≥ρ

Pf (ψα = 0) ≤ β.
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In the Gaussian case,
∫
R

x4φG(x)dx = 3. Hence, Proposition 3.1 assesses the optimality of
the lower bound given in Theorem 3.1. Note that the value of ρ proposed in (3.5) differs from ρ	

by constant. Finding the optimal constant for our testing problem is a very difficult question that
is out of the scope of this paper. For interested reader, we mention the work of [15] in a slightly
different (asymptotic) setting.

The result given in Proposition 3.1 seems more efficient than the one stated in Theorem 3.2
since the condition to control by β the second kind error is ε(1 − ε)(μ2 − μ1)

2 > C/
√

n instead
of C

√
log log(n)/

√
n. Nevertheless, the test based on the variance would fail in the asymptotic

sparse regime (see Sections 4 and 4.3 for more details). This is not satisfactory from a practi-
cal point of view since our aim is to provide a testing procedure which adapts to all possible
situations.

3.4. An asymptotic study

The results stated in Theorems 3.1 and 3.2 are non-asymptotic. In this section, we will adopt
an asymptotic point of view for our testing problem in the Gaussian setting. As in [12], we will
work with the following parametrization

ε ∼
n→+∞n−δ and μ2 − μ1 ∼

n→+∞n−r with 0 < δ ≤ 1
2 and 0 < r < 1

2 . (3.6)

Corollary 3.1. The detection boundary in the dense regime (3.6) is r∗(δ) = 1
4 − δ

2 : the detection
is possible when r < r∗(δ) = 1

4 − δ
2 and impossible if r > r∗(δ).

In particular, setting f (·) = (1 − ε)φG(· − μ1) + εφG(· − μ2), we have, for n large enough,

Pf (�α = 0) ≤ β and Pf (ψα = 0) ≤ β,

provided r < r∗(δ), where the tests �α and ψα are respectively, defined in (2.1) and (3.4)

The proof of Corollary 3.1 is omitted since it can be obviously deduced from Theorems 3.1
and 3.2. These results are therefore different from the one obtained in a dense regime in a con-
tamination framework where one wants to test H0 : f = φG(·) against H1 : f ∈ {(1 − ε)φG(·) +
εφG(· − μ); ε ∈]0,1[,μ ∈ R}. In this case, as mentioned in introduction, the detection is pos-
sible in the dense regime for r < 1

2 − δ (see [12,15]). This difference is due to the fact that the
mean under H0 is unknown, which makes the testing problem harder.

4. Sparse mixtures

In the previous part, we have considered the case where the term μ2 − μ1 is bounded under
the alternative hypothesis. In this section, we will consider the situation where this quantity is
allowed to tend to infinity as n increases. It appears that in such a framework, the most interesting
cases correspond to the situation where ε  1√

n
as n → +∞. In the literature, this regime is

called the sparse case.
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This setting has been considered for several different kinds of distributions. In particular, opti-
mal separation conditions on the behavior of μ2 −μ1 as n → +∞ have been displayed in various
situations. In the following, we prove that our testing procedure provides a satisfying behavior
in this sparse setting: in particular, we prove that it reaches the optimal separation conditions
established in [12] in both the Gaussian and the Laplace cases.

4.1. The Gaussian case

Let F0 and F1 be the sets defined by (1.2) and (1.1) respectively. Given an i.i.d. sample
X1, . . . ,Xn having a common density f , we test in this part

“f ∈ F0” against “f ∈ F1”,

in the particular case where φ(·) = φG(·), the standard Gaussian density. In this setting, the so-
called sparse regime introduced in [12] is characterized by

ε ∼
n→+∞n−δ and μ2 − μ1 ∼

n→+∞
√

2r log(n) with 1
2 < δ < 1 and 0 < r < 1. (4.1)

Below, we analyze the performances of our testing procedure (2.1) in this sparse regime. The
corresponding proof is provided in Section 6.6.

Theorem 4.1. Let X1, . . . ,Xn be i.i.d. real random variables with common density f . Let α ∈
]0,1[ and consider the level-α test �α defined by (2.1). We consider the case where φ = φG.

We assume that the behavior of (ε,μ1,μ2) is governed by (4.1) and that r > r∗(δ) with

r∗(δ) =
{

δ − 1
2 if 1

2 < δ < 3
4 ,

(1 − √
1 − δ)2 if 3

4 ≤ δ < 1.

Then, setting f (·) = (1 − ε)φG(· − μ1) + εφG(· − μ2), we have, for n large enough,

Pf (�α = 0) ≤ β.

In the sparse regime, we exactly recover the separation boundaries that are already known in
the case where the null hypothesis is reduced to a standard normal density, and the alternative is
the mixture (1 − ε)φG(·)+ εφG(·−μ). Hence, the fact that the mean under H0 is unknown does
not affect the difficulty of the related testing problem in this specific framework.

This proves the optimality of our procedure in the sparse regime. Indeed, the lower bounds
established by [4,15] in the case where the null hypothesis is reduced to the standard Gaussian
density also provide lower bounds for our testing problem. This comes from the fact that

• a level-α test for our testing problem is also a level-α test for testing the null hypothesis
“f = φG”,

• the case where the null hypothesis is reduced to the centered Gaussian density is included
in our setting.
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4.2. The Laplace case

In this section, we address the testing problem (1.3) in the particular case where φ corresponds
to the Laplace density, namely φ = φL where

φL(x) = 1
2 e−|x|, ∀x ∈R.

In other words, given a sample X1, . . . ,Xn, our aim is to test whether the underlying density is
φL(· − μ) for some unknown parameter μ or (1 − ε)φL(· − μ1) + εφL(· − μ2) in the particular
case where ε = o(1/

√
n) as n → +∞.

In this context, [12] have proved that the cases of interest in the sparse regime correspond to
the following parametrization

ε ∼
n→+∞n−δ and μ2 − μ1 ∼

n→+∞ r log(n) with 1
2 < δ < 1 and 0 < r < 1. (4.2)

The performances of our testing procedure (2.1) are described in the following theorem, whose
proof is given in Section 6.7.

Theorem 4.2. Let X1, . . . ,Xn be i.i.d. real random variables with common density f . Let α ∈
]0,1[ and consider the level-α test �α defined by (2.1). We consider the case where φ = φL.

We assume that the behavior of (ε,μ1,μ2) is governed by (4.2) and that r > r∗(δ) with

r∗(δ) = 2δ − 1.

Then, setting f (·) = (1 − ε)φL(· − μ1) + εφL(· − μ2), we have, for n large enough,

Pf (�α = 0) ≤ β.

Remark that the detection boundary r∗(δ) is the same that have been exhibited by [12]. Once
again, these lower bounds remain valid since:

• a level-α test for our testing problem is also a level-α test for testing the null hypothesis
“f = φL”,

• the case where the null hypothesis is reduced to the centered Laplace density is included in
our setting.

4.3. The variance test for sparse mixtures: A heuristic discussion

We point out that the testing procedure introduced in Section 3.3 will not be convenient in this
asymptotic sparse setting. Indeed, we can remark that

Varφ(Xi) =
∫
R

x2φ(x)dx,
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while, for any f = (1 − ε)φ(· − μ1) + εφ(· − μ2)

Varf (Xi) =
∫
R

x2φ(x)dx + ε(1 − ε)(μ1 − μ2)
2.

For both Gaussian and Laplace mixtures, in the respective asymptotic schemes (4.1) and (4.2),
we get that

Varf (Xi) − Varφ(Xi) = ε(1 − ε)(μ1 − μ2)
2  1√

n
, as n → +∞.

Since the variance is estimated at a parametric “rate” 1/
√

n, the test ψα introduced in (3.4) will
fail in this setting: it will not be able to separate H0 from H1 with an appropriate power.

5. Simulation study

In this section, we provide some numerical experiments in order to enhance the performances of
our testing procedure �α . Comparisons with the Higher Criticism and the Kolmogorov–Smirnov
test are provided. Since these both procedures are not designed for the considered framework
(translated model with unknown mean), straightforward modifications are proposed. We have
also included in these numerical experiments the test based on the variance defined in Section 3.3.

5.1. Contamination of φG

In this section, we deal with the framework considered in [12]: the mean under H0 is assumed
to be known (equal to 0) and equal to μ1. More formally, given (X1, . . . ,Xn), i.i.d. random
variables with an unknown density function f , our aim is to test

H0 : f (·) = φG(·) against H1 : f ∈ {x �→ (1−ε)φG(x)+εφG(x −μ);μ ∈R, ε ∈]0,1[}. (5.1)

In this case, our testing procedure �α described in (2.1) can be easily adapted as follows:

�̃α = sup
k∈Kn

{1X(n−k+1)>qαn,k
},

where qα,k is the (1 − α)-quantile of X(n−k+1) under the null hypothesis, Kn = {2j ;0 ≤ j ≤
[log2(n/2)]} and

αn = sup
{
u ∈]0,1[,PH0(∃k ∈ Kn,X(n−k+1) > qu,k) ≤ α

}
.

For the sake of brevity, we do not exhibit a theoretical study of the performances of this procedure
for the testing problem (5.1). Indeed, the methodology is rather close to the one proposed in this
paper, up to some technical modifications. It is possible to see that this procedure achieves the
optimal asymptotic separation set in both the dense and sparse regimes, as described in [12].

The power of our testing procedure is compared with the one of
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• Kolmogorov–Smirnov test: The level-α test function is ψKS,α = 1TKS>qKS,α
where

TKS = sup
x∈R

√
n
∣∣Fn(x) − �G(x)

∣∣
with the empirical distribution function Fn(x) = 1

n

∑n
i=1 1Xi≤x , �G the cumulative distri-

bution function of the standard Gaussian variable, and qKS,α is the (1 − α) quantile of TKS

under H0.
• Higher Criticism [12]: Let pi = P(Z > Xi) where Z ∼ N (0,1) for all i ∈ {1, . . . , n} and

p(1) ≤ p(2) ≤ · · · ≤ p(n). This test is based on

HC = max
1≤i≤n

√
n(i/n − p(i))√
p(i)(1 − p(i))

.

The level-α test function is ψHC,α = 1HC>qHC,α
where qHC,α is the (1 − α) quantile of HC

under H0.
• The test based on the variance (see Section 3.3).

In order to study the power of these testing procedures, a Monte-Carlo procedure is consid-
ered with N = 100 000 samples of size n = 100 from a mixture distribution (1 − ε)φG(·) +
εφG(· − μ) with ε ∈ {0.05,0.15,0.25,0.35,0.45} and μ ∈ [0,10]. The power functions of these
testing procedures in the different scenarios are reported in Figure 1.

It appears that our procedure performs as well as the Higher Criticism when ε is small w.r.t.
the size of the sample, while the Kolmogorov–Smirnov test possesses a bad behavior. Such a
setting is close to the sparse regime. Nevertheless, the performances of the Higher Criticism
deteriorates as ε increases while the power of our test �̃α remains stable. In this setting, the test
based on the variance does not perform very well. The main reason is that, in this case, the mean
under H0 is known. Hence, a test based on the empirical mean of the observations would be more
appropriate.

5.2. Gaussian mixtures with unknown means

In this section, we deal with our testing problem. A simulation study is proposed in order to
investigate the power of our testing procedure �α described by (2.1). Our testing procedure is
compared with the following adaptations of Kolmogorov–Smirnov test and Higher Criticism:

• Kolmogorov–Smirnov test: The level-α test function is ψ̂KS,α = 1
T̂KS>q̂KS,α

where

T̂KS = sup
x∈R

√
n
∣∣Fn(x) − �G(x − X̄)

∣∣
with the empirical mean X̄, the empirical distribution function Fn(x) = 1

n

∑n
i=1 1Xi≤x , and

q̂KS,α is the (1 − α) quantile of T̂KS under H0.
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Figure 1. Power function of the three considered testing procedures (continuous line for our test �̃α ,
dashed line for Higher Criticism, dashed/dotted line for the Kolmogorov–Smirnov test and dotted line for
the test based on the variance) according to μ, for ε = 0.05 (top left), 0.15 (top right), 0.25 (middle left),
0.35 (middle right) and 0.45 (bottom) in a contamination framework.

• Higher Criticism [12]: Let p̂i = P(Z − X̄ > Xi) where Z ∼ N (0,1) for all i ∈ {1, . . . , n}
and p̂(1) ≤ p̂(2) ≤ · · · ≤ p̂(n). This test is based on

ĤC = max
1≤i≤n

√
n(i/n − p̂(i))√
p̂(i)(1 − p̂(i))

.
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The level-α test function is ψ̂HC,α = 1ĤC>q̂HC,α
where q̂HC,α is the (1 − α) quantile of ĤC

under H0.
• The test based on the variance (see Section 3.3).

In order to study the power of these testing procedures, a Monte-Carlo procedure is consid-
ered with N = 100 000 samples of size n = 100 from a mixture distribution (1 − ε)φG(·) +
εφG(· − μ2) with ε ∈ {0.05,0.15,0.25,0.35,0.45}. We deal with μ1 = μ = 0 and μ2 ∈ [0,10].
The power functions of these testing procedures in the different scenarios are reported in Fig-
ure 2.

Once again, our testing procedure appears to be competitive w.r.t. the existing procedures,
and even offers better performances in some particular cases. As in the previous experiment, the
behavior of the Higher Criticism deteriorates w.r.t. our procedure as ε increases, namely when
we leave the sparse regime to the dense one. In this setting, the test based on the variance is quite
competitive.

Remark that the considered setting is not asymptotic at all since the sample size is 100. As
explained in Section 4.3, one can expect that the performances of the test based on the variance
will deteriorate in a sparse asymptotic regime. In order to illustrate this discussion, we have
compared the test based on the variance and our procedure in a very sparse context where n =
1000 and ε = 0.001. The corresponding values of the power are displayed in Table 1.

5.3. Laplace mixtures with unknown means

Since our test �α is adapted for an even density function φ, a Laplace distribution is here con-
sidered: φL(x) = 1

2 exp(−|x|). As in Section 5.2, the power of �α is compared with the one of
Kolmogorov–Smirnov test and Higher Criticism. Note that these two last tests are adapted as in
Section 5.2 but where � and Z are now associated to the Laplace distribution. The variance-
based test introduced in Section 3.3 is also included in these simulations.

A Monte-Carlo procedure is proposed with N = 100 000 samples of size n = 100 from a
mixture distribution (1 − ε)φ(·) + εφ(· − μ2) with ε ∈ {0.05,0.15,0.25,0.35,0.45} and μ ∈
[0,10]. The power functions of these testing procedures in the different scenarios are reported in
Figure 3.

Apart in the case where ε = 0.05, our test outperforms Higher Criticism, Kolmogorov–
Smirnov and variance-based tests in all other conditions. As previously, the power of Higher
Criticism is deteriorated as ε increases.

6. Proofs

6.1. A preliminary result

In this section, we provide a general result that emphasizes the non-asymptotic performances of
our testing procedure.
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Figure 2. Power function of the three considered testing procedures (continuous line for our test �α ,
dashed line for Higher Criticism, dashed/dotted line for the Kolmogorov–Smirnov test and dotted line for
the test based on the variance) according to μ2, for ε = 0.05 (top left), 0.15 (top right), 0.25 (middle left),
0.35 (middle right) and 0.45 (bottom) in the Gaussian mixture framework.

Let �̄(x) = 1−�(x), where � is the cumulative distribution function associated to the density
function φ. For all α ∈]0,1[ and k ∈ {1,2, . . . , n/2}, let tα,k be a positive real number defined
by

�̄

(
tα,k

2

)
= k

n

[
1 −

√
2 log(4/α)

k

]
(6.1)
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Table 1. Comparison of the power of the variance based test (VB)
and our procedure (LMM) for ε = 0.001 and n = 1000

μ2 2 4 6 8

LMM 0.0642 0.3006 0.6131 0.6513
VB 0.0596 0.1147 0.2445 0.405

if k > 2 log( 4
α
), and tα,k = +∞ otherwise. For all α ∈]0,1[, ρ > 0, and k ∈ {1,2, . . . , n/2}, we

consider the subset S̄(α,ρ, k) of R3 defined by:

S̄(α,ρ, k)
(6.2)

=
⎧⎨
⎩

(ε,μ1,μ2) ∈]0,1[×R
2,μ2 > μ1; ∃c ∈ R such that:

(1 − ε)�̄
(
tα,k − c + ε(μ2 − μ1)

)+ ε�̄
(
tα,k − c − (1 − ε)(μ2 − μ1)

)
> ρ

(1 − ε)�̄
(
c − ε(μ2 − μ1)

)+ ε�̄
(
c + (1 − ε)(μ2 − μ1)

)
> ρ

⎫⎬
⎭ .

When tα,k = +∞, we use the convention S̄(α,ρ, k) =∅ for all ρ > 0.
The following proposition highlights the non-asymptotic performances of the test �α .

Theorem 6.1. Let α ∈]0,1[ and β ∈]0,1 − α[. Consider the test �α described in (2.1). We
assume that n ≥ 8 log(4/αn). Consider the alternative sets

F̄1[n,α,β] =
{
f (·) = (1 − ε)φ(· − μ1) + εφ(· − μ2); (ε,μ1,μ2) ∈

⋃
k∈Kn

S̄
(
αn,ρ(k,n), k

)}

where, for all k ∈ Kn, S̄(αn,ρ(k,n), k) is defined by (6.2) with

ρ(k,n) = k

n
+ 1 + √

1 + 2kβ

nβ
.

Then �α is a level-α test and

sup
f ∈F̄1[n,α,β]

Pf (�α = 0) ≤ β.

In this theorem, we have defined a set F̄1[n,α,β] over which the level-α test statistics �α

has a power greater than 1 − β . This result holds for all n, provided that n ≥ 8 log(4/αn), it is
non-asymptotic. The definition of the set S̄(α,ρ, k) is quite rough. Nevertheless, it will allow us
to describe several situations for which the power of our testing procedure will be assessed, in
both asymptotic and non-asymptotic cases.

The condition n ≥ 8 log(4/αn) ensures that there exists k ∈ Kn such that k > 2 log(4/αn).
Since αn ≥ α/|Kn|, and |Kn| ≤ log2(n/2), this condition is satisfied if n ≥ 8 log(4 log2(n/2)/α).
For α = 0.05, this condition holds at least for n ≥ 49.
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Figure 3. Power function of the three considered testing procedures (continuous line for our test �α ,
dashed line for Higher Criticism, dashed/dotted line for the Kolmogorov–Smirnov test and dotted line for
the test based on the variance) according to μ2, for ε = 0.05 (top left), 0.15 (top right), 0.25 (middle left),
0.35 (middle right) and 0.45 (bottom) in the Laplace mixture framework.

6.2. Proof of Theorem 6.1

Following the definition of αn, �α is ensured to be a level-α test. In order to control the second
kind error of the test �α , we first give an upper bound for qαn,k . Under the null hypothesis,
there exists μ ∈ R such that f (·) = φ(· − μ). Thus X(n−k+1) − X(k) is distributed as Y(n−k+1) −
Y(k) where (Y1, . . . , Yn) is a n sample from the density φ(·). Hence, if we find cαn,k such that
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P(Y(n−k+1) − Y(k) > cαn,k) ≤ αn then qαn,k ≤ cαn,k . For all d ∈R,

P(Y(n−k+1) − Y(k) > cαn,k) ≤ P(Y(n−k+1) > cαn,k + d) + P(Y(k) ≤ d).

According to Lemma A.1, if d fulfills �(d) ≤ k
n
[1 −

√
2 log(4/αn)

k
] then P(Y(k) ≤ d) ≤ αn

2 . More-

over, by the same lemma, if cαn,k is chosen such that �̄(cαn,k + d) ≤ k
n
[1 −

√
2 log(4/αn)

k
] then

P(Y(n−k+1) ≥ cαn,k + d) ≤ αn

2 . Choosing d and cαn,k exactly such that

�(d) = �̄(cαn,k + d) = k

n

[
1 −

√
2 log(4/αn)

k

]

and since φ(·) is an even continuous function, we obtain that d = − cαn,k

2 . Finally, choosing

cαn,k = tαn,k where �̄(
tαn,k

2 ) = k
n
[1 −

√
2 log(4/αn)

k
], PH0(X(n−k+1) − X(k) > tαn,k) ≤ αn and thus

qαn,k ≤ tαn,k .
Considering f ∈ F̄1[n,α,β], we want to control the second kind error of the test:

Pf (�α = 0) = Pf (∀k ∈Kn,X(n−k+1) − X(k) ≤ qαn,k)
(6.3)

≤ inf
k∈Kn

Pf (X(n−k+1) − X(k) ≤ qαn,k).

Since f ∈ F̄1[n,α,β], there exist ε ∈]0,1[ and (μ1,μ2) ∈ R
2, μ1 < μ2 such that

∀x ∈R, f (x) = (1 − ε)φ(x − μ1) + εφ(x − μ2)

and for some k ∈ Kn, there exists a real c such that (ε,μ1,μ2) fulfills the two following condi-
tions:

(1 − ε)�̄
(
tαn,k − c + ε(μ2 − μ1)

)+ ε�̄
(
tαn,k − c − (1 − ε)(μ2 − μ1)

)
> ρ(k,n), (6.4)

(1 − ε)�̄
(
c − ε(μ2 − μ1)

)+ ε�̄
(
c + (1 − ε)(μ2 − μ1)

)
> ρ(k,n), (6.5)

with ρ(k,n) = k
n

+ 1+√
1+2kβ
nβ

. Using (6.3) and the fact that qαn,k ≤ tαn,k ,

Pf (X(n−k+1) − X(k) ≤ qαn,k) ≤ Pf (X(n−k+1) − X(k) ≤ tαn,k)

≤ Pf

(
X(n−k+1) ≤ tαn,k +Ef [X1] − c

)
(6.6)

+ Pf

(
X(k) > Ef [X1] − c

)
.

For the first term in the right-hand side of (6.6),

Pf

(
X(n−k+1) ≤ tαn,k +Ef [X1] − c

) ≤ Pf

(
n∑

i=1

1{Xi≤tαn,k+Ef [X1]−c} > n − k

)

≤ Pf

(
n∑

i=1

{1{Xi≤tαn,k+Ef [X1]−c} − q1} > n(1 − q1) − k

)
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with

q1 = Pf

(
X1 ≤ tαn,k +Ef [X1] − c

)
= (1 − ε)�

(
tαn,k +Ef [X1] − c − μ1

)+ ε�
(
tαn,k +Ef [X1] − c − μ2

)
= (1 − ε)�

(
tαn,k − c + ε(μ2 − μ1)

)+ ε�
(
tαn,k − c − (1 − ε)(μ2 − μ1)

)
since Ef [X1] = (1 − ε)μ1 + εμ2. Condition (6.4) gives that n(1 − q1) − k > 0 and using
Markov’s inequality,

Pf

(
X(n−k+1) < tαn,k +Ef [X1] − c

)≤ nq1(1 − q1)

[n(1 − q1) − k]2
≤ n(1 − q1)

[n(1 − q1) − k]2
.

Note that the inequality nx

(nx−k)2 ≤ β
2 is fulfilled if and only if x /∈ [ k

n
+ 1

βn
±

√
1+2kβ
βn

]. Then, since

condition (6.4) ensures us that 1 − q1 /∈ [ k
n

+ 1
nβ

±
√

1+2kβ
nβ

],

Pf

(
X(n−k+1) < tαn,k +Ef [X1] − c

)≤ β

2
.

For the second term in the right-hand side of (6.6),

Pf

(
X(k) > Ef [X1] − c

)≤ Pf

(
n∑

i=1

{1{Xi>Ef [X1]−c} − q2} > n(1 − q2) − k

)

with

q2 = Pf

(
X1 > Ef [X1] − c

)
= (1 − ε)�̄

(
Ef [X1] − c − μ1

)+ ε�̄
(
Ef [X1] − c − μ2

)
= (1 − ε)�̄

(−c + ε(μ2 − μ1)
)+ ε�̄

(−c − (1 − ε)(μ2 − μ1)
)

= (1 − ε)�
(
c − ε(μ2 − μ1)

)+ ε�
(
c + (1 − ε)(μ2 − μ1)

)
.

Condition (6.5) gives that n(1 − q2) − k > 0 and using Markov’s inequality,

Pf

(
X(k) > Ef [X1] − c

)≤ nq2(1 − q2)

[n(1 − q2) − k]2
≤ n(1 − q2)

[n(1 − q2) − k]2
.

According to condition (6.5), 1 − q2 /∈ [ k
n

+ 1
nβ

±
√

1+2kβ
nβ

], thus

Pf

(
X(k) > Ef [X1] − c

)≤ β

2
.

Finally, Pf (�α = 0) ≤ β .
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6.3. Proof of Theorem 3.1

We define

F1,G[ρ,M] = {
f ∈F1,G[M], ε(1 − ε)(μ2 − μ1)

2 ≥ ρ
}
.

Let Tα be a level-α test. For all f ∈ F1,G[ρ,M],

Pf (Tα = 0) = PφG
(Tα = 0) + Pf (Tα = 0) − PφG

(Tα = 0)

≥ 1 − α − [
PφG

(Tα = 0) − Pf (Tα = 0)
]
.

Thus for a density f̃ ∈F1,G[ρ,M] which has to be specified after,

sup
f ∈F1,G[ρ,M]

Pf (Tα = 0) ≥ 1 − α − [
PφG

(Tα = 0) − P
f̃
(Tα = 0)

]
≥ 1 − α − ‖PφG

− P
f̃
‖TV,

where ‖P − Q‖TV denotes the total variation distance between two probability distributions P

and Q. Since ‖PφG
− P

f̃
‖TV ≤

√
2[1 − A(φG, f̃ )n] where A(φG, f̃ ) = ∫

R

√
φG(x)f̃ (x)dx is

the Hellinger affinity between the two density functions φG and f̃ ,

β
(
F1,G[ρ,M]) := inf

Tα

sup
f ∈F1,G[ρ,M]

Pf (Tα = 0) ≥ 1 − α −
√

2
[
1 − A(φG, f̃ )n

]
.

If we specify a density f̃ ∈F1,G[ρ,M] such that A(φG, f̃ ) ≥ c(α,β)1/n then β(F1,G[ρ,M]) ≥
1 − α − (1 − α − β) = β . Moreover, since

A(φG, f̃ ) ≥ 1 − 1

2
Eφ

[(
f̃ (X) − φG(X)

φG(X)

)2]
,

A(φG, f̃ ) ≥ c(α,β)1/n is obtained if EφG
[( f̃ (X)−φG(X)

φG(X)
)2] ≤ 2[1 − c(α,β)1/n].

In the sequel, we consider the density f̃ = (1 − ε)φ(· − μ1) + εφ(· − μ2), with

(1 − ε)μ1 = −εμ2, (6.7)

max
(
μ2

1,μ
2
2, |μ1μ2|

) ≤ ν2 = M2

4
, (6.8)

ε(1 − ε)(μ2 − μ1)
2 = ρ. (6.9)

In particular, f̃ ∈ F1,G[ρ,M] since (μ2 − μ1)
2 ≤ M2.
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For this choice,

EφG

[(
f̃ (X) − φG(X)

φG(X)

)2]

=
∫
R

[f̃ (x) − φG(x)]2

φG(x)
dx

=
∫
R

{(1 − ε)[φG(x − μ1) − φG(x)] + ε[φG(x − μ2) − φG(x)]}2

φG(x)
dx

= (1 − ε)2
[∫

R

φG(x − μ1)
2

φG(x)
dx − 1

]
+ ε2

[∫
R

φG(x − μ2)
2

φG(x)
dx − 1

]

+ 2ε(1 − ε)

[∫
R

φG(x − μ1)φG(x − μ2)

φG(x)
dx − 1

]
.

We have
∫
R

φG(x−μ1)φG(x−μ2)
φG(x)

dx = exp(μ1μ2), for all μ1,μ2 ∈R, hence

EφG

[(
f̃ (X) − φG(X)

φG(X)

)2]
= (1 − ε)2[eμ2

1 − 1
]+ ε2[eμ2

2 − 1
]+ 2ε(1 − ε)

[
eμ1μ2 − 1

]
.

Next, using that |eu − 1 − u − 1
2u2| ≤ eU2

3! |u|3 for all |u| < U with condition (6.8),

EφG

[(
f̃ (X) − φG(X)

φG(X)

)2]
≤ (1 − ε)2

[
μ2

1 + 1

2
μ4

1 + eν2

3! μ6
1

]

+ ε2
[
μ2

2 + 1

2
μ4

2 + eν2

3! μ6
2

]

+ 2ε(1 − ε)

[
μ1μ2 + 1

2
μ2

1μ
2
2 + eν2

3! |μ1μ2|3
]

≤ [
(1 − ε)μ1 + εμ2

]2 + 1

2

[
(1 − ε)μ2

1 + εμ2
2

]2

+ eν2

3!
[
(1 − ε)|μ1|3 + ε|μ2|3

]2
.

The parameters of f̃ are constrained such that (1 − ε)μ1 + εμ2 = 0 thus

EφG

[(
f̃ (X) − φG(X)

φG(X)

)2]

≤ 1

2

[
(1 − ε)ε(μ2 − μ1)

2]2 + eν2

3!
{
(1 − ε)ε|μ2 − μ1|3

[
ε2 + (1 − ε)2]}2
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≤ (1 − ε)2ε2(μ2 − μ1)
4
[

1

2
+ eν2

3! (μ2 − μ1)
2[ε2 + (1 − ε)2]2

]

≤ C2(M)
[
(1 − ε)ε(μ2 − μ1)

2]2 = C2(M)ρ2

with C2(M) = 1
2 + 2

3M2eM2/4. Moreover, if u < 0, 1 − eu ≥ −u − 1
2u2 thus 1 − c(α,β)1/n ≥

− 1
n

log c(α,β) − 1
2 (

log c(α,β)
n

)2. Then, the condition

ρ = (1 − ε)ε(μ2 − μ1)
2 <

1

C(M)

√
−2

n
log c(α,β) −

(
log c(α,β)

n

)2

:= ρ	

implies that β(F1,G[ρ,M]) > β .

6.4. Proof of Theorem 3.2

Let f (·) = (1−ε)φG(·−μ1)+εφG(·−μ2) ∈ F1,G[ρ,M] where ρ satisfies (3.3). We will prove
that f ∈ F̄1[n,α,β] and the result will be a consequence of Theorem 6.1. In the following, we
consider k ∈ Kn such that

0.99

2
�̄G(M) ≤ k

n
≤ 0.99�̄G(M).

Note that this is possible since, under the assumptions of Theorem 3.2, 0.99�̄G(M)n ≥ 1. Note
that |Kn| ≤ log2(n/2), hence αn ≥ α/|Kn| ≥ α/ log2(n/2). We will show that (ε,μ1,μ2) ∈
S̄(αn,ρ(k,n), k): Considering c = tαn,k/2 and denoting τ = μ2 − μ1, we want to prove that

(1 − ε)�̄G

(
tαn,k

2
+ ετ

)
+ ε�̄G

(
tαn,k

2
− (1 − ε)τ

)
> ρ(k,n), (6.10)

(1 − ε)�̄G

(
tαn,k

2
− ετ

)
+ ε�̄G

(
tαn,k

2
+ (1 − ε)τ

)
> ρ(k,n) (6.11)

hold, with ρ(k,n) = k
n

+ 1
nβ

+
√

1+2kβ
nβ

.
We use a Taylor expansion at the order 2, the terms of order 1 vanish and this leads to:

(1 − ε)�̄G

(
tαn,k

2
+ ετ

)
+ ε�̄G

(
tαn,k

2
− (1 − ε)τ

)

= �̄G

(
tαn,k

2

)
+ 1

2
(1 − ε)ετ 2[ε(−φ′

G(a)
)+ (1 − ε)

(−φ′
G(b)

)]
,

where a (resp. b) belongs to the interval ] tαn,k

2 ,
tαn,k

2 + ετ [ (resp. ] tαn,k

2 − (1 − ε)τ,
tαn,k

2 [).
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We recall that �̄G(
tαn,k

2 ) = k
n
[1 −

√
2 log(4/αn)

k
]. Hence, in order to prove that (6.10) holds, we

just have to show that

(1 − ε)ετ 2{ε[−φ′
G(a)

]+ (1 − ε)
[−φ′

G(b)
]}≥ 2

nβ
+

√
k

n

√
2 log(4/αn). (6.12)

Next, we want to prove that [ tαn,k

2 − (1 − ε)τ,
tαn,k

2 + ετ ] remains included in a fixed interval
[c1(M), c2(M)] with c1(M) > 0.

On one hand, we have

tαn,k

2
≥ �̄−1

G

(
k

n

)
≥ �̄−1

G

(
0.99�̄G(M)

)
and

tαn,k

2
− M ≥ �̄−1

G

(
0.99�̄G(M)

)− M := c1(M) > 0.

Moreover,

�̄G

(
tαn,k

2

)
≥ 0.99

2
�̄G(M) −

√
2 log(4/αn)√

n

√
0.99�̄G(M)

≥ �̄G(M)

200

since (8.25)log(4 log2(n/2)/α)/n ≤ �̄G(M). This implies that

tαn,k

2
+ τ ≤ �̄−1

G

(
�̄G(M)

200

)
+ M := c2(M).

Finally, the function −φ′
G is bounded from below on this interval by some positive con-

stant C(M) = minx∈[c1(M),c2(M)](−φ′
G(x)). This implies that (6.12) is satisfied if ε(1 − ε)τ 2 ≥

C(α,β,M)
√

log log(n)/
√

n for some suitable constant C(α,β,M). This concludes the proof of
(6.10). The proof of (6.11) follows the same arguments.

Remark. If we choose k∗ ∈ Kn such that

0.99

2
�̄G(M) ≤ k∗

n
≤ 0.99�̄G(M)

and consider the test statistics

1X(n−k∗+1)−X(k∗)>qα,k∗

then it is easy to prove that (6.10) and (6.11) are satisfied for k = k∗ if ε(1 − ε)τ 2 ≥
C′(α,β,M)/

√
n for some suitable constant C′(α,β,M) since in this case αn is replaced by

α and we do no more have the logarithmic loss in the rate of convergence.
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6.5. Proof of Proposition 3.1

Following the definition of the threshold vα,n, it is easy to see that ψα defined in (3.4) is a level-α
test. Now, our aim is to upper bound the term

Pf (ψα = 0) = Pf

(
S2

n ≤ vα,n

)
when f ∈F1[ρ,M] where, as previously,

F1[ρ,M] = {
f ∈F1[M], ε(1 − ε)(μ2 − μ1)

2 ≥ ρ
}
.

In a first time, a control of vα,n is required. If a real number cα,n is determined such that
PH0(S

2
n > cα,n) ≤ α, then vα,n ≤ cα,n. According to [20], page 200, if Y1, . . . , Yn are i.i.d. random

variables such that E[(Y1 −E[Y1])4] < +∞, then

Var

(
1

n − 1

n∑
i=1

(Yi − Ȳn)
2

)
≤ 1

n

{
E
[(

Y1 −E[Y1]
)4]− n − 3

n − 1
Var(Y1)

2
}
. (6.13)

Hence, since Eφ[X4
1] < B and Eφ[S2

n] = σ 2,

PH0

(
S2

n > cα,n

)= PH0

(
S2

n − σ 2 > cα,n − σ 2)≤ Varφ(S2
n)

(cα,n − σ 2)2
≤ B

n(cα,n − σ 2)2
.

In particular PH0(S
2
n > cα,n) ≤ α with cα,n = σ 2 +

√
B
nα

, and thus

vα,n ≤ σ 2 +
√

B

nα
.

Note that Ef [S2
n] = Varf (X1) = σ 2 + ε(1 − ε)(μ2 − μ1)

2. Hence, for all f ∈F1[ρ,M],

Pf (ψα = 0) ≤ Pf

(
S2

n ≤ σ 2 +
√

B

nα

)

= Pf

(
S2

n −Ef

[
S2

n

]≤ σ 2 +
√

B

nα
−Ef

[
S2

n

])

≤ Pf

(∣∣S2
n −Ef

[
S2

n

]∣∣≥ ε(1 − ε)(μ2 − μ1)
2 −

√
B

nα

)

≤ Varf (S2
n)

[ε(1 − ε)(μ2 − μ1)2 − √
B/(nα)]2

if ε(1 − ε)(μ2 − μ1)
2 >

√
B
nα

. Using equation (6.13), we get

Pf (ψα = 0) ≤ Ef [(X1 −Ef [X1])4]
n[ε(1 − ε)(μ2 − μ1)2 − √

B/(nα)]2
.
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In order to conclude, just remark that

Ef

[(
X1 −E[X1]

)4] = (1 − ε)

∫
R

[
x − (1 − ε)μ1 − εμ2

]4
φ(x − μ1)dx

+ ε

∫
R

[
x − (1 − ε)μ1 − εμ2

]4
φ(x − μ2)dx

= (1 − ε)

∫
R

[
y − ε(μ2 − μ1)

]4
φ(y)dy

+ ε

∫
R

[
y + (1 − ε)(μ2 − μ1)

]4
φ(y)dy

= Eφ

[
Z4]+ 6ε(1 − ε)(μ2 − μ1)

2
Eφ

[
Z2]

+ [
ε(1 − ε)4 + ε4(1 − ε)

]
(μ2 − μ1)

4

≤ B + 6

4

√
BM2 + M4 ≤ (

M2 + √
B
)2

.

Thus

Pf (ψα = 0) ≤ (M2 + √
B)2

n[ε(1 − ε)(μ2 − μ1)2 − √
B/(nα)]2

≤ β

as soon as

ε(1 − ε)(μ2 − μ1)
2 ≥ C(α,β,M,B)√

n
,

for some positive constant C(α,β,M,B). This concludes the proof of Proposition 3.1.

6.6. Proof of Theorem 4.1

We will prove that, under the assumptions of Theorem 4.1, f ∈ F̄1[n,α,β] and the result will
be a consequence of Theorem 6.1. We recall that |Kn| ≤ log2(n), hence α ≥ αn ≥ α/|Kn| ≥
α/ log2(n). We set τ = μ2 − μ1 and we have to prove that there exists k ∈ Kn and c ∈ R such
that

(1 − ε)�̄G(tαn,k − c + ετ) + ε�̄G

(
tαn,k − c − (1 − ε)τ

)
> ρ(k,n), (6.14)

(1 − ε)�̄G(c − ετ) + ε�̄G

(
c + (1 − ε)τ

)
> ρ(k,n), (6.15)

with ρ(k,n) = k
n

+ 1
nβ

+
√

1+2kβ
nβ

. Note that ρ(k,n) ≤ k
n

+ Cβ

√
k

n
with Cβ = 2

β
+
√

2
β

. We recall

that tαn,k is defined by

�̄G

(
tαn,k

2

)
= k

n

[
1 −

√
2 log(4/αn)

k

]
.
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In the following, we set Cαn = √
2 log(4/αn). Since αn ≥ α/ log2(n), note that 0 < Cαn ≤

C(α)
√

log log(n) for some constant C(α) depending only on α. We choose k ∈Kn such that

lim
n→+∞

k

log(n) log log(n)
= +∞ and lim

n→+∞
n

k
= +∞ (6.16)

and we define

c = tαn,k

2
−
√

2

k
Cαn. (6.17)

For the sake of simplicity, we omit the dependency with respect to n in the notation of k and c.
Let us first show that (6.15) holds for n large enough. First, note that

(1 − ε)�̄G(c − ετ) + ε�̄G

(
c + (1 − ε)τ

)
> (1 − ε)�̄G(c).

With the assumptions on k, we have that c > 0 for n large enough since tαn,k → +∞ and
Cαn/

√
k → 0 as n → +∞. Hence

�̄G(c) ≥ �̄G

(
tαn,k

2

)
+
√

2

k
CαnφG

(
tαn,k

2

)
.

Moreover, for all u > 0,

�̄G(u) ≤ 1

2
exp

(−u2/2
)=

√
π

2
φG(u),

hence

φG

(
tαn,k

2

)
≥
√

2

π
�̄G

(
tαn,k

2

)
.

This leads to

(1 − ε)�̄G(c) > (1 − ε)

(
1 + 2Cαn√

πk

)
�̄G

(
tαn,k

2

)
.

After some obvious computations, condition (6.15) is satisfied as soon as

(1 − ε)Cαn

(
2√
π

− 1

)√
k

n
> ε

k

n
+ Cβ

√
k

n
+ 2C2

αn√
πn

.

Since ε < 1/
√

n and k ≤ n, we have εk <
√

k. We recall that Cαn → +∞ as n → +∞ and with
the assumptions on k, we have that

√
k/Cαn → +∞ as n → +∞, and the above inequality holds

for n large enough.
It remains to prove that (6.14) is satisfied with the conditions on k imposed by (6.16) and the

value of c defined by (6.17). Let � satisfy 0 < r < � ≤ 1, we choose k ∈ Kn satisfying (6.16)
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and such that n1−� ≤ k ≤ 2n1−� log2(n). Note that such values of k exist for n large enough. It
follows from Lemma A.2 that tαn,k/2 ≤√

2� log(n). First,

�̄G(tαn,k − c + ετ) = �̄G

(
tαn,k

2
+
√

2

k
Cαn + ετ

)

≥ �̄G

(
tαn,k

2

)
−
(√

2

k
Cαn + ετ

)
φG

(
tαn,k

2

)

≥ k

n

[
1 − Cαn√

k

]
−
(√

2

k
Cαn + ετ

)
φG

(
tαn,k

2

)
.

We have to give an upper bound for φG(
tαn,k

2 ). We use the inequality

∀u > 0, �̄G(u) ≥
(

1

u
− 1

u3

)
φG(u),

this leads to

∀u > 0, φG(u) ≤ u3

u2 − 1
�̄G(u) ≤ u3�̄G(u),

provided that u2 − 1 ≥ 1. This is the case, for n large enough for u = tαn,k/2, hence we have

φG

(
tαn,k

2

)
≤
[
tαn,k

2

]3

�̄G

(
tαn,k

2

)

≤ [√
2� log(n)

]3 k

n

≤ 4
√

2
[
log(n)

]7/2
n−�.

Finally, we obtain that

�̄G(tαn,k − c + ετ) ≥ k

n
− Cαn

√
k

n
−
(√

2Cαn√
k

+ ετ

)
4
√

2
[
log(n)

]7/2
n−�.

Second, we want to lower bound �̄G(tαn,k − c − (1 − ε)τ ). We have that

�̄G

(
tαn,k − c − (1 − ε)τ

) = �̄G

(
tαn,k

2
+
√

2

k
Cαn − (1 − ε)τ

)

≥ �̄G

(√
2� log(n) − τ +

√
2

k
Cαn + ετ

)

≥ �̄G

(√
2� log(n) −√

2r log(n)
)

−
(

ετ +
√

2Cαn√
k

)
φG

(√
2� log(n) −√

2r log(n)
)
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since τ =√
2r log(n). Moreover, since φG(

√
2� log(n) −√

2r log(n)) = (
√

2π)−1n−(
√

�−√
r)2

,
and using again the inequality �̄G(u) ≥ ( 1

u
− 1

u3 )φG(u) which holds for all u > 0, we obtain that

�̄G

(
tαn,k − c − (1 − ε)τ

)≥ Cn−(
√

�−√
r)2
(

1√
log(n)

− ετ −
√

2Cαn√
k

)
,

for some positive constant C depending on � and r . Condition (6.14) is thus fulfilled if

Cεn−(
√

�−√
r)2
(

1√
log(n)

− ετ −
√

2

k
Cαn

)

> ε
k

n
+ (Cαn + Cβ)

√
k

n
+
(√

2

k
Cαn + ετ

)
4
√

2
[
log(n)

]7/2
n−�.

By (6.16), Cαn/
√

k = o(1/
√

log(n)), and the left-hand side of this inequality is equivalent as

n → +∞ to Cεn−(
√

�−√
r)2

/
√

log(n) and the right-hand side is equivalent as n → +∞ to
8Cαn(log(n))7/2n−�/

√
k. Hence, the condition (6.14) will be satisfied asymptotically if for some

� ∈]0,1],

δ + (
√

� − √
r)2 <

1 + �

2
.

• If 1
2 < δ ≤ 3

4 and 0 < r ≤ 1
4 , we set � = 4r and the above condition becomes r > δ − 1

2 .
• If 1

2 < δ ≤ 3
4 and r > 1

4 , the above condition is satisfied with � = 1 and no additional
condition is required.

• If δ > 3
4 , we set � = 1 and the above condition becomes r > (1 − √

1 − δ)2.

This concludes the proof of Theorem 4.1.

6.7. Proof of Theorem 4.2

We first provide an upper bound for the quantile qαn,k for all k ∈ {1, . . . , n/2}. We have seen in
the proof of Theorem 6.1 that

qαn,k ≤ tαn,k,

where

�̄L

(
tαn,k

2

)
= k

n

(
1 −

√
2 log(4/αn)

k

)
. (6.18)

This leads to

1

2
e−tαn,k/2 = k

n

(
1 −

√
2 log(4/αn)

k

)
.
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Hence,

tαn,k

2
= log

(
n

k

)
− log

(
1 −

√
2 log(4/αn)

k

)
− log(2). (6.19)

Then, applying Theorem 6.1 with c = tαn,k/2, we get that if, for some k ∈Kn,

(1 − ε)�̄L

(
tαn,k

2
+ ε(μ2 − μ1)

)
+ ε�̄L

(
tαn,k

2
− (1 − ε)(μ2 − μ1)

)
(6.20)

>
k

n
+ 1 + √

1 + 2kβ

nβ

and

(1 − ε)�̄L

(
tαn,k

2
− ε(μ2 − μ1)

)
+ ε�̄L

(
tαn,k

2
+ (1 − ε)(μ2 − μ1)

)

>
k

n
+ 1 + √

1 + 2kβ

nβ
,

then our test is powerful. For the sake of convenience, we will concentrate our attention to the
first inequality, the control of the second one following essentially the same lines.

From now on, we will only deal with possible values of k satisfying

tαn,k

2
> μ2 − μ1. (6.21)

Using the properties of the Laplace distribution and the equation (6.21), the condition (6.20)
becomes

(1 − ε) × 1

2
e−(tαn,k/2)−ε(μ2−μ1) + ε × 1

2
e−(tαn,k/2)+(1−ε)(μ2−μ1) >

k

n
+ 1 + √

1 + 2kβ

nβ

⇔ ε × 1

2
e−tαn,k/2+(1−ε)(μ2−μ1) >

k

n
+ 1 + √

1 + 2kβ

nβ

− (1 − ε) × 1

2
e−(tαn,k/2)−ε(μ2−μ1)

⇔ ε × 1

2
e−(tαn,k/2)+(1−ε)(μ2−μ1) >

k

n
+ 1 + √

1 + 2kβ

nβ

− (1 − ε)φL

(
− tαn,k

2

)
× e−ε(μ2−μ1).
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Since φL(x) = �̄L(x) for all x ≥ 0 and thanks to (6.18), we get that

(1 − ε) × 1

2
e−(tαn,k/2)−ε(μ2−μ1) + ε × 1

2
e−(tαn,k/2)+(1−ε)(μ2−μ1) >

k

n
+ 1 + √

1 + 2kβ

nβ

⇔ ε × 1

2
e−(tαn,k/2)+(1−ε)(μ2−μ1) >

k

n
+ 1 + √

1 + 2kβ

nβ
− (1 − ε)

k

n

[
1 −

√
2 log(4/αn)

k

]

× (
1 − ε(μ2 − μ1) + Vn

)
,

where Vn ≤ Cε2(μ2 − μ1)
2 for some C > 0. As in the proof of Theorem 6.1, we will deal with

values of k having the parametrization k/n = n−� for some � ∈]0,1[. In particular,

√
k = n(1−�)/2 and

√
k

n
= n−(1+�)/2.

A short investigation of the asymptotics of the term in the right-hand side of the previous inequal-
ity indicates that the dominating term is of order

√
k/n. Indeed, thanks to the parametrization of

k, ε an μ2 − μ1, we get that

ε
k

n
(μ2 − μ1) = o

(√
k

n

)
and

1

n
= o

(√
k

n

)
as n → +∞.

Hence, in order to guarantee that our test is powerful, we have to ensure that

ε × 1

2
e−tαn,k/2+(1−ε)(μ2−μ1) > C(α,β)

√
k

n
(6.22)

⇔ ε × 1

2
e−tαn,k/2+(μ2−μ1)

(
1 − o(1)

)
> C(α,β)

√
k

n
,

for some positive constant C(α,β), as n → +∞. Thanks to (6.19), the inequality (6.22) becomes

1

nδ
× 1

n�
× nr > n−(1+�)/2 ⇔ δ + � − r <

1 + �

2

⇔ r > δ + �

2
− 1

2
.

In practice, the smallest possible parameter � will provide the less restrictive separation condi-
tion. In the same time, we have to ensure that the condition (6.21) is satisfied. It follows from
(6.19) that tαn,k/2 ∼ � log(n) as n → ∞, and (6.21) holds for n large enough as soon as � > r .
Hence, choosing � = r + r0 for some positive r0, we can remark that

r > δ + �

2
− 1

2
⇔ r > 2(δ − 1/2) + r0,

which is satisfied as soon as

r > 2(δ − 1/2),

provided r0 is small enough. This concludes the proof.
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Appendix: Lemmas for the upper-bound

Lemma A.1. Let Y1, . . . , Yn be n random variables with a cumulative distribution function F

and the order statistics are denoted Y(1) ≤ Y(2) ≤ · · · ≤ Y(n). Let α ∈]0,1[ and let k ∈ {1, . . . , n}
such that k > 2 log( 2

α
). Let c and d be two real numbers such that

F(d) ∨ (
1 − F(c)

)≤ k

n

[
1 −

√
2 log(2/α)

k

]
. (A.1)

Then P(Y(n−k+1) ≥ c) ≤ α and P(Y(k) ≤ d) ≤ α.

Proof.

P(Y(n−k+1) ≥ c) = P

(
n∑

i=1

1{Yi≥c} ≥ k

)

= P

(
n∑

i=1

{
1{Yi≥c} − [

1 − F(c)
]}≥ k − n

[
1 − F(c)

])
.

According to condition (A.1),

k − n
[
1 − F(c)

]≥ k

√
2 log(2/α)

k
> 0.

Using a Bernstein’s inequality, we get

P(Y(n−k+1) ≥ c) ≤ 2 exp

[
−1

2

(k − n[1 − F(c)])2

v + (1/3)(k − n[1 − F(c)])
]

with v = ∑n
i=1 E[(1{Yi≥c} − [1 − F(c)])2] = ∑n

i=1 Var(1Yi≥c) = nF(c)[1 − F(c)] ≤ n[1 −
F(c)]. Thus, 3v + k − n[1 − F(c)] ≤ 2n[1 − F(c)] + k ≤ 3k − 2k

√
2 log(2/α)

k
≤ 3k. This im-

plies that

P(Y(n−k+1) ≥ c) ≤ 2 exp

[
−3

2

(k − n[1 − F(c)])2

3k

]
≤ 2 exp

[
− log

(
2

α

)]
= α.

In the same way,

P(Y(k) ≤ d) = P

(
n∑

i=1

1{Yi≥d} ≤ n − k

)

= P

(
n∑

i=1

{
1{Yi≥d} − [

1 − F(d)
]}≤ nF(d) − k

)
.
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Since nF(d) − k < 0 according to condition (A.1), a Bernstein’s inequality implies that

P(Y(k) ≤ d) ≤ P

(∣∣∣∣∣
n∑

i=1

{
1{Yi≥d} − [

1 − F(d)
]}∣∣∣∣∣≥ k − nF(d)

)

≤ 2 exp

[
−1

2

[nF(d) − k]2

v + (1/3)[k − nF(d)]
]

with v =∑n
i=1 E[(1{Yi≥d} − [1 − F(d)])2] =∑n

i=1 Var(Yi ≥ d) = nF(d)[1 − F(d)] ≤ nF(d).

Thus, 3v + k − nF(d) ≤ 2nF(d) + k ≤ 3k − 2k

√
2 log(2/α)

k
≤ 3k. This implies that

P(Y(k) ≤ d) ≤ 2 exp

[
−3

2

[nF(d) − k]2

3k

]
≤ 2 exp

[
− log

(
2

α

)]
= α.

�

Lemma A.2. If k ≥ 8 log(4/αn) and k
n

≥ n−� with � ∈]0,1[, then

tαn,k ≤ 2
√

2� log(n).

Proof.

�̄G

(
tαn,k

2

)
= k

n

[
1 −

√
2 log(4/αn)

k

]

≤ 1

2
exp

[
−1

2

(
tαn,k

2

)2]
,

thus

exp

[
1

2

(
tαn,k

2

)2]
≤ 1

2

[
1 −

√
2 log(4/αn)

k

]−1

n�.

If k ≥ 8 log(4/αn), then

2

[
1 −

√
2 log(4/αn)

k

]
≥ 1

which leads to tαn,k ≤ 2
√

2� log(n). �
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