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We show that all negative powers β−s
a,b

of the Beta distribution are infinitely divisible. The case b ≤ 1
follows by complete monotonicity, the case b > 1, s ≥ 1 by hyperbolically complete monotonicity and the
case b > 1, s < 1 by a Lévy perpetuity argument involving the hypergeometric series. We also observe that
β−s

a,b
is self-decomposable if and only if 2a + b + s + bs ≥ 1, and that in this case it is not necessarily

a generalized Gamma convolution. On the other hand, we prove that all negative powers of the Gamma
distribution are generalized Gamma convolutions, answering to a recent question of L. Bondesson.
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1. Introduction and statement of the results

This paper is a sequel to our previous article Bosch and Simon [8], where we have established
the infinite divisibility of all negative powers γ −s

a of the Gamma distribution γa , with density

xa−1

�(a)
e−x1(0,+∞)(x).

More precisely, in Bosch and Simon [8] we had completed the already known situation s ≥ 1 by
an argument involving the exponential functional of a spectrally negative Lévy process, valid in
the case s ≤ 1 and in this case only. We consider here the same problem for the Beta distribution
βa,b , with density

�(a + b)

�(a)�(b)
xa−1(1 − x)b−11(0,1)(x).

Recall that a positive random variable X is infinitely divisible, which we will denote by X ∈ I ,
if and only if its Laplace exponent ϕ(λ) = − logE[e−λX] is a Bernstein function, viz.

ϕ(λ) = aλ +
∫ ∞

0

(
1 − e−λx

)
ν(dx)

with a ≥ 0 (the drift coefficient) and ν a nonnegative measure on (0,+∞) (the Lévy measure)
whose integral along 1 ∧ x is finite. When ν is absolutely continuous with a density of the type
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x−1k(x) for some nonincreasing function k, this means that X is self-decomposable (X ∈ S for
short) in other words that for all c ∈ (0,1) there is a decomposition

X
d= cX + Xc,

where Xc is an independent random variable. The distribution of X is called a generalized
Gamma convolution, which we will denote by X ∈ G, when X is self-decomposable and its
above spectral function k is completely monotone (CM). From the probabilistic point of view,
the G-property means that X can be written as a Wiener-Gamma integral, that is the improper
integral of some deterministic function along the Gamma subordinator – see Proposition 1.1 in
James, Roynette and Yor [12]. From the analytical viewpoint, the complete monotonocity of k

means that the Laplace exponent of X is a Thorin–Bernstein function. We refer to Bondesson
[5], James et al. [12], Sato [16], Steutel and Van Harn [19] for various accounts on infinite divis-
ibility, self-decomposability and generalized Gamma convolutions, and to the recent monograph
Schilling et al. [17], which is devoted to Bernstein functions.

The positive powers of βa,b cannot be infinitely divisible because of their bounded support –
see Theorem 24.3 in Sato [16]. On the other hand, it is well known, see Example VI.12.21 in
Steutel and Van Harn [19] and the proof of Theorem 1 thereafter for details, that − log(βa,b) ∈ I
with an explicit Lévy measure. In the present paper, it will be shown that all negative powers of
βa,b belong to I . This allows to retrieve the I-property for

− log(βa,b) = lim
s→0+ s−1(β−s

a,b − 1
)
, (1.1)

and also for all the negative powers γ −s
a in view of the convergence in law

b−sβ−s
a,b

d−→ γ −s
a as b → +∞. (1.2)

The infinite divisibility of β−s
a,b is equivalent to that of β−s

a,b − 1, whose support is R+. In the case
s = 1, the latter random variable is known as the Beta random variable of the second kind, and
its infinite divisibility appears in the list of examples of Appendix B in Steutel and Van Harn
[19]. So far, the problem of infinite divisibility for other negative powers of the Beta distribution
seems to have escaped investigation. Having independent interest, these random variables appear
as multiplicative factors because of their moments of the Gamma type – see Janson [13]. For
instance, they are connected to real stable densities via the Kanter random variable – see (2.4)
and (7.1) in Simon [18]. It was conjectured in Jedidi and Simon [14] that β−s

a,b ∈ G for all s ≥ 1 –
see Conjecture 3.2 therein.

It does not seem possible to express the Laplace transform of β−s
a,b or β−s

a,b − 1 in a sufficiently
explicit way in order to show that it is a Bernstein function. We will hence proceed via different
methods, characterizing properties which are more informative than the sole infinite divisibility.
Let us first introduce the class M of positive random variables having a CM density on (0,+∞).
This class is included in I by Goldie’s criterion – see, for example, Theorem 51.6 in Sato [16].

Theorem 1. One has β−s
a,b − 1 ∈ M if and only if b ≤ 1.



2554 P. Bosch and T. Simon

Second, let us consider the class H of positive random variables having a hyperbolically com-
pletely monotone (HCM) density on (0,+∞). A function f : (0,+∞) → (0,+∞) is said to be
HCM if for every u > 0 the function f (uv)f (u/v) is CM in the variable v + 1/v. The fact that
H ⊂ G is a key-result in showing the infinite divisibility of a probability measure on R

+ with
explicit density but without explicit Laplace transform. It allows to prove the I-property of many
classical or less classical positive distributions, for which sometimes no other kind of argument is
known. We refer to Chapters 4–6 in Bondesson [5] for a complete account, and to Theorem 5.1.2
therein for a proof of the inclusion H ⊂ G.

Theorem 2. One has β−s
a,b −1 ∈ H if and only if one of the three following conditions is verified.

1. b ∧ s > 1.
2. b = 1 or s = 1.
3. b < 1, s ∈ [1/2,1) and a + b + s ≥ 1.

See Figure 1 for a visual presentation of the result. So far, we can deduce that β−s
a,b ∈ I if

b ≤ 1 or s ≥ 1. In order to handle the situation b > 1, s < 1, let us introduce the class of Lévy
perpetuities

E =
{
I (Z) =

∫ ∞

0
e−Zs ds,Z = {Zt , t ≥ 0} is a Lévy process with Zt → +∞ a.s.

}
.

Recall that I (Z) is an a.s. convergent integral if and only if Z drifts towards +∞ – see Theorem 1
in Bertoin and Yor [4]. Observe also that I (Z) has bounded support when Z is a subordinator
with positive drift, and hence may not be in I . However, more can be said when Z is spectrally

(a) (b)

Figure 1. (a) The case a < 1/2. (b) The case a ≥ 1/2.
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negative (Z is an SNLP for short), in other words that it has no positive jumps. Introduce the
subclass

E− =
{
I (Z) =

∫ ∞

0
e−Zs ds,Z = {Zt , t ≥ 0} is an SNLP with positive mean

}
.

Recall – see the introduction to Chapter 7 in Bertoin [2] – that an SNLP is characterized by its
moment generating function, whose logarithm reads

logE
[
eλZ1

] = aλ + bλ2 +
∫ 0

−∞
(
eλx − 1 − λx

)
ν(dx), λ ≥ 0,

with a ∈ R, b ∈ R
+ and ν a nonnegative measure on (−∞,0) whose integral along 1 ∧ x2 is

finite, and that an SNLP drifts towards +∞ if and only if it has a positive mean. The fact that
E− ⊂ S follows from the Markov property at the a.s. finite stopping time Tx = inf{t > 0,Zt = x}
with x > 0, which implies the decomposition

I (Z)
d= e−xI (Z) +

∫ Tx

0
e−Z̃s ds,

where Z̃ is an independent copy of Z. This observation, which is folklore and may be traced
back to Vervaat [21] in a more general framework, was used in Bosch and Simon [8] to prove the
self-decomposability of γ −s

a , s < 1.

Theorem 3. One has

β−s
a,b ∈ E− ⇐⇒ b ∧ s ≤ 1 ≤ 2a + b + s + bs.

As for Theorem 2, the domain characterizing the E−-property takes a different shape according
as a < 1/2 or a ≥ 1/2 – see Figure 2. Combining the three above theorems and an asymptotic
analysis which will be performed in the next section, entails the main result of the present paper.

Corollary. One has β−s
a,b ∈ I for all a, b, s > 0. Moreover, β−s

a,b ∈ S if and only if 2a + b + s +
bs ≥ 1.

Notice that by (1.1), the second statement of the corollary allows to recovers the criterion for
− log(βa,b) ∈ S which is known to be 2a + b ≥ 1 – see again Example VI.12.21 in Steutel and
Van Harn [19]. Towards the end of this paper we will observe that there are situations where
β−s

a,b ∈ S ∩Gc . It is also worth mentioning that the set of parameters where β−s
a,b ∈ E− ∩H, which

is characterized by the cases 2 and 3 of Theorem 2, is thicker than the set of parameters for
γ −s
a ∈ E− ∩ H which is the only line {s = 1} – see Remark 1(c) and Section 3.2 in Bosch and

Simon [8].
Our previous paper Bosch and Simon [8] had left unanswered the question whether γ −s

a ∈ G
for s < 1. This problem was motivated by the fact that γ −s

a ∈ H for s ≥ 1 but not for s < 1 since
otherwise γ s

a , which is not infinitely divisible, would be also in H – see Bosch and Simon [8] for
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(a) (b)

Figure 2. (a) The case a < 1/2. (b) The case a ≥ 1/2.

details and references. This question is also mentioned as an open problem in Section 4 (vi) of
Bondesson [6]. Our last result provides a positive answer.

Theorem 4. One has γ −s
a ∈ G for all a, s > 0.

The proof of this theorem is actually a simple consequence of the main result of Bondesson
[6], which states the important property that the class G is stable by independent multiplication.
Let us also give a few words about the proofs of the three other theorems. For Theorem 1,
we use Steutel’s characterization of exponential mixtures and a logarithmic transformation. The
proof of Theorem 2, which is not as immediate as for the HCM characterization of γ −s

a , relies
upon Stieltjes transforms and the maximum principle for harmonic functions. For Theorem 3,
we appeal to Bertoin–Yor’s characterization of E−, as well as several properties of the classical
hypergeometric series, old ones from Klein [15] and recent ones from Anderson et al. [1]. All
these proofs are given in the next section. We conclude the paper with several remarks.

2. Proofs

2.1. Proof of Theorem 1

The density of β−s
a,b − 1 reads

fa,b,s(x) = �(a + b)

s�(a)�(b)
(x + 1)(1−a−b)/s−1((x + 1)1/s − 1

)b−11(0,+∞)(x)
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and is not log-convex if b > 1 because

(logfa,b,s)
′(x) = 1

s(x + 1)

(
b − 1

(x + 1)1/s − 1
− a − s

)
∼ b − 1

x
as x → 0.

By the Schwarz inequality – see the proof of Theorem 51.6 in Sato [16], this shows the only
if part. The same computation shows that fa,b,s is log-convex for b ≤ 1, which is known to be
sufficient for infinite divisibility – see Theorem 51.4 in Sato [16]. However, it does not seem easy
to show directly the reinforcement that fa,b,s is actually CM whenever b ≤ 1.

To do so, we first observe that by the proof of Corollary 3.2 in Jedidi and Simon [14], we
have X ∈ M ⇒ eX − 1 ∈ M for every positive random variable X. Hence, it is enough to show
that − log(βa,b) ∈ M. This latter property follows from Steutel’s theorem as had already been
noticed in Example VI.12.21 in Steutel and Van Harn [19], but we will sketch the argument for
the sake of completeness. We first compute, using Malmsten’s formula for the Gamma function
– see, for example, formula 1.9(1), page 21, in Erdélyi et al. [10],

E
[
e−λ(− log(βa,b))

] = E
[
βλ

a,b

] = �(a + λ)

�(a)
× �(a + b)

�(a + b + λ)

= exp

(
−

∫ ∞

0

(
1 − e−λx

)e−ax − e−(a+b)x

x(1 − e−x)
dx

)
.

A further computation using an integration by parts similar to the proof of Lemma 3.2 in Jedidi
and Simon [14] – see also the expression of the function v(λ) in Example VI.12.21 of Steutel
and Van Harn [19] – shows that

e−ax − e−(a+b)x

x(1 − e−x)
=

∫ ∞

0
�{n ∈ N, a + n ≤ t < a + b + n}e−xt dt, x > 0.

The counting function inside the integral clearly satisfies the requirement of Theorem 51.12 in
Sato [16] (Steutel’s theorem) if and only if b ≤ 1. This completes the proof.

2.2. Proof of Theorem 2

Introduce the function

ga,b,s(x) = s�(a)�(b)

�(a + b)

(
x

s

)1−b

fa,b,s(x).

Since the density of β−s
a,b − 1 is fa,b,s(x) and since ga,b,s(0+) = 1, it follows from property (iv),

page 68, and Theorem 5.4.1 in Bondesson [5] that β−s
a,b − 1 ∈H if and only if

Ga,b,s = − log(ga,b,s)

is a Thorin–Bernstein function. By Theorem 8.2(ii) in Schilling et al. [17], this is equivalent to
G′

a,b,s being a Stieltjes transform in the sense of Definition 2.1 in Schilling et al. [17]. We will
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use the characterization of Stieltjes transforms given by Corollary 7.4 in Schilling et al. [17].
Compute

G′
a,b,s(x) = a + s

s(x + 1)
+ (b − 1)

(
1

x
− 1

s(x + 1)((x + 1)1/s − 1)

)
,

which is clearly a Stieltjes transform if b = 1 or s = 1. We henceforth suppose b �= 1 and s �= 1. If
s < 1/2, then G′

a,b,s has at least two poles at e±2iπs −1 and hence cannot be a Stieltjes transform.
On the other hand, if s ≥ 1/2 a computation shows that G′

a,b,s has an analytic continuation on
C \ (−∞,−1], with

G′
a,b,s(0) = s + a

s
+ (b − 1)(s + 1)

2s
.

We henceforth suppose s ≥ 1/2. Setting x = reiθ − 1 with r > 0 and θ ∈ (0,π), compute

Im
(
G′

a,b,s(x)
) = −(a + s) sin(θ)

sr

+ (1 − b)

(
r sin(θ)

|reiθ − 1|2 + sin(θ)

sr|r1/seiθ/s − 1|2 − sin((1 + 1/s)θ)

sr1−1/s |r1/seiθ/s − 1|2
)

.

Letting r → 0 and θ → θ0 ∈ [0,π) we obtain

Im
(
G′

a,b,s(x)
) = (1 − (a + b + s)) sin(θ)

sr
+ o

(
sin(θ)r−1),

which shows the necessity of the condition a + b + s ≥ 1. Letting now r → 0 and θ → π we
obtain

Im
(
G′

a,b,s(x)
) = (1 − b) sin(π/s)

sr1−1/s
+ (1 − (a + b + s)) sin(θ)

sr
+ o

(
sin(θ)r−1),

which shows the necessity of the condition (b − 1) sin(π/s) ≥ 0. All in all we have shown that
β−s

a,b − 1 ∈ H only if 1, 2 or 3 is satisfied, and to finish the proof it remains to prove that G′
a,b,s

is a Stieltjes transform whenever 1 or 3 holds. To do so, we will use the same argument as in
the main theorem of Bosch [7]. The function Im(G′

a,b,s) is harmonic on the open upper half-
plane as the imaginary part of an analytic function. Suppose there exists x0 such that Im(x0) > 0
and Im(G′

a,b,s(x0)) > 0. For any integer R ≥ 2, let CR be the following contour (see Figure 3)
and DR be the domain surrounded by the curve CR . Note that x0 ∈ DR for a sufficiently large
R. Moreover, G′

a,b,s extends to a continuous function on DR . From the maximum principle,
there exits xR ∈ CR such that Im(G′

a,b,s(xR)) ≥ Im(G′
a,b,s(x0)). Since G′

a,b,s(x) → 0 uniformly
as |x| → +∞, a compactness argument allows to suppose xR → x∞ ∈ R as R → +∞. Set
l = x∞ + 1. Necessarily l ≤ 0 since G′

a,b,s is real on (−1,+∞). If l < 0, a computation shows
that

Im
(
G′

a,b,s(xR)
) −→

R→+∞
(1 − b) sin(π/s)|l|1/s−1

s||l|1/seiπ/s − 1|2
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Figure 3. CR for R ≥ 2.

and is nonpositive if 1 or 3 holds. This shows that l = 0. Writing xR = ρReiθR − 1,
one has ρR → 0 as R → +∞, and θR ∈ [0,π]. Again, a compactness argument allows
to suppose that θR → θ∞ ∈ [0,π]. The above analysis for the only if part shows clearly
that lim supR→+∞ Im(G′

a,b,s(xR)) is also nonpositive, which contradicts the hypothesis
Im(G′

a,b,s(x0)) > 0.

2.3. Proof of Theorem 3

We will use the following criterion, which is an easy consequence of Proposition 2 in Bertoin
and Yor [3] and its proof.

Fact (Bertoin–Yor). Let X be a positive random variable. Then X ∈ E− if and only if there exists
t > 0 such that E[et/X] < ∞ and an SNLP with positive mean Z whose Laplace exponent � is
such that

�(u) = uE[X−(u+1)]
E[X−u]

for all u > 0. Moreover, one has then X
d= I (Z).

To be more precise, the if part and the identity in law are obtained directly from the statement
of Proposition 2 in Bertoin and Yor [3], whereas the only if part follows in replacing the integer
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k by a positive real number u in equation (7) and the two following equations of Bertoin and
Yor [3].

Notice that since 1/β−s
a,b = βs

a,b has bounded support, the first condition in the above fact is
always fulfilled. Computing

uE[βs(u+1)
a,b ]

E[βsu
a,b]

= u�(a + s + su)�(a + b + su)

�(a + b + s + su)�(a + su)

and applying the above criterion, we deduce that β−s
a,b ∈ E− if and only if

� :u �→ u × �(a + s + u)

�(a + b + s + u)
× �(a + b + u)

�(a + u)

is the Laplace exponent of an SNLP with positive mean. Observe that the expression of �(u) is
symmetric in b and s. Using Gauss’ summation formula – see, for example, formula 2.8.(46),
page 104 in Erdélyi et al. [10] – we obtain the two transformations

�(u) = u × 2F1(b,−s;a + b + u;1) = u × 2F1(s,−b;a + s + u;1),

where

2F1(λ,μ;ν; z) =
∑
n≥0

(λ)n(μ)n

(ν)nn! zn

is the classical hypergeometric series, which is defined via the Pochhammer symbols (x)0 = 1
and (x)n = x(x + 1) · · · (x + n − 1) if n ≥ 1. These transformations imply

�(u) = u − bsu
∑
n≥1

(1 + b)n−1(1 − s)n−1

(a + b + u)nn! (2.1)

= u − bsu
∑
n≥1

(1 + s)n−1(1 − b)n−1

(a + s + u)nn! . (2.2)

Using (2.1) and the partial fraction decomposition

(n − 1)!
(a + b + u)n

=
n−1∑
k=0

(
n − 1

k

)
(−1)k

a + b + k + u
=

∫ ∞

0
e−(a+b+u)x

(
1 − e−x

)n−1 dx,

we deduce from Fubini’s theorem

�(u) = u − bsu

∫ ∞

0
e−(a+b+u)x

(∑
n≥1

(1 + b)n−1(1 − s)n−1

n!(n − 1)!
(
1 − e−x

)n−1
)

dx

= u − u

∫ ∞

0
e−uxρa,b,s(x)dx
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with the notation

ρa,b,s(x) = bse−(a+b)x
2F1

(
1 + b,1 − s;2;1 − e−x

)
.

Above, the use of Fubini’s theorem is justified by the fact that the summands are all positive as
soon as n > s. Similarly, (2.2) entails

�(u) = u − u

∫ ∞

0
e−uxρa,s,b(x)dx,

from which we deduce ρa,b,s = ρa,s,b by Laplace inversion. The latter identity, in accordance
with the initial symmetry in (b, s) of our problem, can also be obtained from one of Kummer’s
formulæ for the hypergeometric function – see, for example, 2.1.4(23), page 64 in Erdélyi et al.
[10]. In the following, we hence may and will suppose that s ≥ b. If s > b, it follows again from
Gauss’ summation formula that

2F1
(
1 + b,1 − s;2;1 − e−x

) → �(s − b)

�(1 + s)�(1 − b)
, x → +∞

and this formula extends by continuity to the case s = b ∈ N, the right-hand side being replaced
by (−1)bb−1. If s = b /∈ N, the asymptotic expansion 2.3.1(2), page 74 in Erdélyi et al. [10]
yields

2F1
(
1 + b,1 − b;2;1 − e−x

) ∼ x

�(1 + b)�(1 − b)
, x → +∞.

In all cases, we deduce that ρa,b,s → 0 as x → +∞ and since ρa,b,s is clearly smooth on
[0,+∞), an integration by parts entails finally

�(u) = u +
∫ +∞

0

(
1 − e−ux

)
ρ′

a,s,b(x)dx = u −
∫ 0

−∞
(
eux − 1

)
ρ′

a,s,b(−x)dx, u ≥ 0.

It is now clear from the above that � is the Laplace exponent of an SNLP if and only if ρ ′
a,s,b is

nonpositive on [0,+∞). We first compute

ρ′
a,s,b(0) = −bs

2
(2a + b + bs + s − 1),

which shows the necessity of the condition 2a + b + bs + s ≥ 1. Moreover, if b = b ∧ s > 1, a
theorem of F. Klein (see formel (4), (18), Satz page 587 in Klein [15], and also the subsequent
paper Van Vleck [20] for an explanation of Klein’s results in the English language and further
results in the same vein) shows that x �→ 2F1(1 + b,1 − s;2;1 − e−x) vanishes [b] times on
(0,+∞), where [x] denotes the integer part of a real number x /∈ N and means x − 1 if x ∈ N.
Since ρa,b,s → 0 at infinity, this entails that ρ′

a,s,b takes positive values, concluding the proof of
the only if part.

We now suppose b ≤ 1 ≤ 2a + b + bs + s and show that ρ′
a,b,s is nonpositive. If b = 1, we

have 2F1(1 + s,0;2;1 − e−x) = 1 for all x > 0 and this leads to

ρa,1,s (x) = se−(a+s)x,
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a decreasing function. If b, s < 1, we have (s + 1)(1 − b) > 0 together with 1 − s > 0, and a
direct consequence of Theorem 1.3(2) in Anderson et al. [1] is the log-concavity of ρa,b,s . In
particular, this function is nonincreasing on (0,+∞) because ρ′

a,b,s(0) ≤ 0 by assumption. Last,
if b < 1 ≤ s, it is clearly enough to prove that the nonegative function z �→ 2F1(1+b,1− s;2; z)
is nonincreasing on (0,1). If s = 1 this function is constant, whereas if s > 1 its derivative equals

(1 + b)(1 − s)

2
2F1(2 + b,2 − s;3; z)

and is negative on (0,1) since, by Klein’s theorem, the function z �→ 2F1(2 + b,2 − s;3; z) does
not vanish on (0,1).

2.4. Proof of the Corollary

By Theorems 1, 2 and 3, it is enough to show that β−s
a,b − 1 /∈ S as soon as 2a + b + s + bs < 1.

Supposing β−s
a,b − 1 ∈ S , there exists a nonincreasing function ka,b,s such that

�(λ) = E
(
e−λ(β−s

a,b−1)
) = exp

(
−

∫ ∞

0

(
1 − e−λx

)ka,b,s(x)

x
dx

)
.

With the notation of Section 2.2, we write

−�′(λ)

�(λ)
=

∫ ∞
0 e−λxxbga,b,s(x)dx∫ ∞

0 e−λxxb−1ga,b,s(x)dx
.

Then, noticing that ga,b,s(x) = 1+ca,b,sx+o(x) as x → 0 with ca,b,s = (1−2a−b−s−bs)/2s,
for every α > 0 we obtain by dominated convergence

∫ ∞

0
e−λxxαga,b,s(x)dx = 1

λα+1

(
�(α + 1) + ca,b,s�(α + 2)

λ
+ o

(
λ−1)) as λ → +∞.

This shows the asymptotic expansion

−�′(λ)

�(λ)
= b

λ

(
1 + ca,b,s

λ
+ o

(
λ−1)) as λ → +∞,

and since

λ
�′(λ)

�(λ)
+ b =

∫ ∞

0
e−x

(
b − ka,b,s

(
x

λ

))
dx,

we first deduce ka,b,s(0+) = b. In the same way, writing

∫ ∞

0
xe−x

(
b − ka,b,s

(
x

λ

))
λ

x
dx = λ

(
λ

�′(λ)

�(λ)
+ b

)
−→

λ→+∞−bca,b,s
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shows that

k′
a,b,s(0+) = b(1 − (2a + b + s + bs))

2s
.

Hence, ka,b,s is a nonincreasing function only if 2a + b + s + bs ≥ 1.

2.5. Proof of Theorem 4

Since the class G is closed with respect to weak convergence, taking (1.2) along integers it is
enough to show that β−s

a,b ∈ G for all a, s > 0 and b ∈ N. By Theorem 3 in Bondesson [6],
the latter is a consequence of − log(βa,b) ∈ G. The aforementioned Malmsten’s formula for the
Gamma function entails

E
[
βλ

a,b

] = exp

(
−

∫ ∞

0

(
1 − e−λx

)e−ax − e−(a+b)x

x(1 − e−x)
dx

)
,

and we see that the G property for − log(βa,b) is equivalent to the complete monotonicity of the
function

x �→ e−ax − e−(a+b)x

1 − e−x
= e−ax

(
1 − e−bx

)∑
k≥0

e−kx,

which is easily characterized – see again Example VI.12.21 in Steutel and Van Harn [19] – by
b ∈N.

3. Further remarks

3.1. On the G-property for β−s
a,b

Let us first observe that contrary to those of the Gamma distribution, the negative powers of the
Beta distribution might belong to S∩Gc. Indeed, if β−s

a,b ∈ G then so does β−s
a,b −1, whose density

is

fa,b,s(x) ∼ �(a + b)

s�(a)�(b)

(
x

s

)b−1

as x → 0+.

Hence, by Theorem 4.1.4 in Bondesson [5] – see also the above proof of the Corollary – the
Thorin mass of β−s

a,b − 1 is then equal to b and, by Theorem 4.1.1 in Bondesson [5], the function
ga,b,s introduced during the proof of Theorem 2 must be CM. However, a computation shows
the first order expansion (log(ga,b,s))

′(x) = C1 + C2x + o(x) at zero, with

C1 = 1

2

(
1 − 2a

s
− 1

)
− b

2

(
1

s
+ 1

)
and C2 = 1 + a

s
+ (b − 1)

12

(
1

s
+ 1

)(
1

s
+ 5

)
.

The coefficient C2 is positive for b ∨ s ≥ 1, but for all a > 0 there are some b, s ∈ (0,1) such that
C2 < 0. In these cases the function ga,b,s is not log-convex and hence not CM, so that β−s

a,b /∈ G.
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Observe finally that these b, s can be chosen such that 2a + b + s + bs ≥ 1. At first sight, it
does not seem easy to characterize the G-property for β−s

a,b, as we did for the M,H,E− and
S-properties.

3.2. On the SNLP’s associated with β−s
a,b

Under the condition of Theorem 3, it follows from the Fact that β−s
a,b is the perpetuity of a certain

compound Poisson process with unit drift and negative jumps. More precisely, one has

β−s
a,b

d=
∫ ∞

0
e−(t−N

a,b,s
t ) dt, (3.1)

where, using the notation of Section I.1, page 12 in Bertoin [2], the process {Na,b,s
t , t ≥ 0} is

compound Poisson with Lévy measure νa,b,s(dx) = −s−2ρ′
a,b,s(s

−1x)dx on R
+. If s = 1, we

have

νa,b,1(dx) = b(a + b)e−(a+b)x dx

and this is a slight extension of Example 4, page 36 in Bertoin and Yor [3], erroneously attributed
to Gjessing and Paulsen [11] – we could not locate this special case therein. If b = 1, we have

νa,1,s (dx) = (1 + a/s)e−(1+a/s)x dx,

providing a representation, which we could not find in the literature, of each negative power U−c

of the uniform law U on (0,1) as the perpetuity of a compound Poisson process with unit drift
and exponential Lévy measure (1 + 1/c)e(1+1/c)x on R

−. Notice that νa,1,s has a mass always
equals to one (and a mean strictly less than one, in accordance with the positive mean of the
SNLP whose perpetuity is U−s/a), whereas νa,b,1 is not a probability when b �= 1.

When b or s is an integer, the hypergeometric series defining ρa,b,s is a Jacobi polynomial and
the Lévy measure νa,b,s takes a simpler form. For every n ≥ 2, some computations using formula
10.8(16) in Erdélyi et al. [10] show that the density of νa,n,s on R

+ equals

n−1∑
k=0

(
1 + (a + k)/s

)
ck,n,se−(1+(a+k)/s)x

with

ck,n,s =
n−1∏
p=0
p �=k

(
1 − s/(p − k)

)
.

It can also be checked from the number of roots of Jacobi polynomials that this density is indeed
nonnegative if and only if s ≤ 1. Similarly and with the same notation, the density of νa,b,n on
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R
+ equals

n−1∑
k=0

bn−2(a + b + k)ck,n,be−(a+b+k)x/n.

These two examples compute the perpetuities of certain compound Poisson processes with unit
drift and hyperexponential Lévy measures on R

−.
Changing the variable in (3.1), we obtain

b−sβ−s
a,b

d=
∫ ∞

0
e−(bs t−N

a,b,s

bs t
) dt

for all b ≥ 1, s ≤ 1, which is the perpetuity of an SNLP with Laplace exponent

�a,b,s(λ) = bsλ

(
1 − s−1

∫ ∞

0
e−λxρa,b,s

(
s−1x

)
dx

)
, λ ≥ 0.

If s = 1 and b → +∞ one has immediately �a,b,s(λ) → λ(a + λ), in accordance with (1.2) and
Dufresne’s result – see Example 3, page 36 in Bertoin and Yor [3]. If s < 1 and b → +∞, we
can also recover the SNLP with infinite variation whose perpetuity is distributed as γ −s

a . Indeed,
rewriting

�a,b,s(λ) = bs

(
1 −

∫ ∞

0
ρa,b,s(x)dx

)
λ + s−1λ

∫ ∞

0

(
1 − e−λx

)
bsρa,s,b

(
s−1x

)
dx,

we see on the one hand from formula 2.3.2(14), page 77 in Erdélyi et al. [10] and dominated
convergence that

s−1λ

∫ ∞

0

(
1 − e−λx

)
bsρa,s,b

(
s−1x

)
dx → λ

�(1 − s)

∫ ∞

0

(
1 − e−λx

) e−(1+a/s)x

(1 − e−x/s)1+s
dx

as b → +∞. The right-hand side transforms, after an integration by parts similar to the one used
for Theorem 3, into

∫ 0

−∞
(
eλx − 1 − λx

)e(1+a/s)x(s + ex/s + a(1 − ex/s))

s�(1 − s)(1 − ex/s)2+s
dx.

On the other hand, a change of variable and another integration by parts yields

bs

(
1 −

∫ ∞

0
ρa,b,s(x)dx

)
= bs

(
1 − bs

∫ 1

0
(1 − z)a+b−1

2F1(1 + b,1 − s;2; z)dz

)

= (a + b − 1)bs

∫ 1

0
(1 − z)a+b−2

2F1(b,−s;1; z)dz

= (a + b − 1)bs

∫ 1

0
(1 − z)a+s−1

2F1(1 + s,1 − b;1; z)dz
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= (a + b − 1)bs

a + s
2F1(1 + s,1 − b;a + s + 1;1)

= �(a + s)�(a + b)bs

�(a)�(a + b + s)
,

where the third equality follows from 2.9(2), page 105 in Erdélyi et al. [10], the fourth equality
from 2.4(2), page 78 in Erdélyi et al. [10], and the fifth equality from Gauss’ summation formula.
Alternatively, this identity can also be seen from the proof of Theorem 3 – see the beginning of
Section 3.3 thereafter. Putting everything together, we see that

�a,b,s(λ) →
(

�(a + s)

�(a)

)
λ +

∫ 0

−∞
(
eλx − 1 − λx

)e(1+a/s)x(s + ex/s + a(1 − ex/s))

s�(1 − s)(1 − ex/s)2+s
dx

as b → +∞, and the limit on the right-hand side is precisely the Laplace exponent of the Lemma
in Bosch and Simon [8].

When the conditions of Theorem 3 are not fulfilled, that is when ρ ′
a,b,s takes positive values, it

is easily seen that the function λ �→ �(iλ) is no more the Lévy–Khintchine exponent of a Lévy
process. By Proposition 2 in Bertoin and Yor [3], this shows that β−s

a,b is not distributed as the
perpetuity of a Lévy process having positive jumps and finite exponential moments, and we be-
lieve that it is not distributed as the perpetuity of any Lévy process at all. In a different direction,
let us recall that spectrally positive Lévy processes might have infinitely divisible perpetuities. It
follows indeed from Theorem 2.1(j) in Gjessing and Paulsen [11] that for every a > 0, b > 1 one
has

β−1
a,b

d= 1 +
∫ ∞

0
e−(N

a,b
t −t) dt,

where {Na,b
t , t ≥ 0} is a compound Poisson process with Lévy measure (a + b − 1)(b −

1)e(1−b)x dx on R
+. From this example of Gjessing and Paulsen [11] let us finally observe,

with our previous notation, the mysterious identity
∫ ∞

0
e−(t−N

a,b,1
t ) dt

d= 1 +
∫ ∞

0
e−(N

a,b
t −t) dt.

3.3. Other remarks

The proof of Theorem 3 shows that for every a, b, s > 0 the function

λ �→ �(a + b + λ)�(a + s + λ)

�(a + λ)�(a + b + s + λ)
=

(
1 −

∫ ∞

0
ρa,b,s(x)

)
+

∫ ∞

0

(
1 − e−λx

)
ρa,b,s(x)dx

= �(a + b)�(a + s)

�(a)�(a + b + s)
+

∫ ∞

0

(
1 − e−λx

)
ρa,b,s(x)dx

is Bernstein (without drift but with an additional murder coefficient) if and only if ρa,b,s is non-
negative, which, by the aforementioned theorem of F. Klein, occurs if and only if b ∧ s ≤ 1. It
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follows then from Theorem 3.6(ii) in Schilling et al. [17] that the function

λ �→ �(a + λ)�(a + b + s + λ)

�(a + b + λ)�(a + s + λ)

is CM. The fact that the latter function is CM for all a, b, s > 0 is an easy consequence of
Malmsten’s formula for the Gamma function – see Theorem 6 in Bustoz and Ismail [9].

The related random variables of the type

(
β−1

a,b − 1
)s d=

(
γb

γa

)s

, a, b, s > 0,

with an independent quotient on the right-hand side, appear in the literature as generalized Beta
random variables of the second kind, or GB2 random variables. Their density function is

�(a + b)

s�(a)�(b)

(
x1/s + 1

)−(a+b)
xb/s−11(0,+∞)(x)

and easily seen to be HCM if and only if s ≥ 1. Let us mention in passing that this contrasts with
the independent product (γa × γb)

s , which belongs to H if |b − a| ≤ 1/2 ≤ s – see Section 2.2
in Bosch [7]. It is also clear that the GB2 random variables do not have negative exponential
moments and hence cannot belong to E−. It would be interesting to know whether the GB2
random variables belong to I notwithstanding, when s < 1. It can be shown rather easily by the
γ2-criterion – see, for example, Theorem VI.4.5 in Steutel and Van Harn [19] – that this is indeed
the case for a ≤ 1/2 ≤ s ≤ b = 1 − a. We postpone the remaining cases to future research.
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