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dynamical systems
YURY A. KUTOYANTS

Laboratoire de Statistique et Processus, Université du Maine, 72085 Le Mans, France and Laboratory of
Quantitative Finance, Higher School of Economics, Moscow, Russia. E-mail: kutoyants@univ-lemans.fr

We consider the problem of construction of goodness-of-fit tests for diffusion processes with a small noise.
The basic hypothesis is composite parametric and our goal is to obtain asymptotically distribution-free tests.
We propose two solutions. The first one is based on a change of time, and the second test is obtained using
a linear transformation of the “natural” statistics.
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1. Introduction

We consider the following problem. Suppose that we observe a trajectory Xε = {Xt,0 ≤ t ≤ T }
of the following diffusion process:

dXt = S(t,Xt )dt + εσ (t,Xt )dWt, X0 = x0,0 ≤ t ≤ T , (1.1)

where Wt,0 ≤ t ≤ T is a Wiener process, σ(t, x) is known smooth function, the initial value x0

is deterministic and the trend coefficient S(t, x) is a unknown function. Here ε ∈ (0,1) is a given
parameter. We have to test the composite (parametric) hypothesis

H0 : dXt = S(ϑ, t,Xt )dt + εσ (t,Xt )dWt, X0 = x0,0 ≤ t ≤ T (1.2)

against alternative H1 : not H0. Here S(ϑ, t, x) is a known smooth function of ϑ and x. The
parameter ϑ ∈ � is unknown and the set � ⊂ Rd is open and bounded. Let us fix some value
α ∈ (0,1) and consider the class of tests of asymptotic (ε → 0) size α:

Kα = {
ψ̄ε : Eϑψ̄ε = α + o(1)

}
for all ϑ ∈ �.

The test ψ̄ε = ψ̄ε(X
ε) is the probability to reject the hypothesis H0 and Eϑ stands for the math-

ematical expectation under hypothesis H0.
Our goal is to find goodness-of-fit (GoF) tests which are asymptotically distribution free

(ADF), that is, we look for a test statistics whose limit distributions under null hypothesis do
not depend on the underlying model given by the functions S(ϑ, t, x), σ(t, x) and the parame-
ter ϑ . This work is a continuation of the study Kutoyants [9], where an ADF test was proposed
in the case of simple basic hypothesis.
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The behaviour of stochastic systems governed by such equations (called perturbed dynamical
systems) is well studied, see, for example, Freidlin and Wentzell [3] and the references therein.
Estimation theory (parametric and non-parametric) for such models of observations is also well
developped, see, for example, Kutoyants [8] and Yoshida [17,18].

Let us remind the well-known basic results in this problem for the i.i.d. model. We start with
the simple hypothesis. Suppose that we observe n i.i.d. r.v.’s (X1, . . . ,Xn) = Xn with a continu-
ous distribution function F(x), and the basic hypothesis is

H0 :F(x) ≡ F0(x), x ∈R.

Then the Cramér–von Mises statistic is

Dn = n

∫ [
F̂n(x) − F0(x)

]2 dF0(x), F̂n(x) = 1

n

n∑
j=1

1{Xj <x},

where F̂n(x) is the empirical distribution function. Denote by Kα the class of tests of asymptotic
(n → ∞) size α ∈ (0,1), that is,

Kα = {
ψ̄ : E0ψ̄ = α + o(1)

}
.

We have the convergence (under hypothesis H0)

Bn(x) = √
n
(
F̂n(x) − F0(x)

) 	⇒ B
(
F0(x)

)
,

where B(·) is a Brownian bridge process. Hence, it can be shown that

Dn 	⇒ δ ≡
∫ 1

0
B(s)2 ds,

and the Cramér–von Mises test

ψn

(
Xn

) = 1{Dn>cα} ∈ Kα, P{δ > cα} = α

is asymptotically distribution-free (ADF).
The situation changes in the case of parametric basic hypothesis:

H0 :F(x) = F(ϑ,x), ϑ ∈ �,

where � = (α,β). If we introduce the similar statistic

D̂n = n

∫ ∞

−∞
[
F̂n(x) − F(ϑ̂n, x)

]2 dF(ϑ̂n, x),

where ϑ̂n is the maximum likelihood estimator (MLE), then (under regularity conditions) we
have

Un(x) = √
n
(
F̂n(x) − F(ϑ̂n, x)

) = Bn(x) − √
n(ϑ̂n − ϑ)Ḟ (ϑ, x) + o(1).
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For the MLE, we can use its representation

√
n(ϑ̂n − ϑ) = 1√

n

n∑
j=1

�̇(ϑ,Xj )

I(ϑ)
+ o(1), 
(ϑ, x) = lnf (ϑ,x).

All this allows us to write the limit U(·) of the statistic Un(·) as follows:

Un(x) 	⇒ B
(
F(ϑ,x)

) −
∫


̇(ϑ, y)√
I(ϑ)

dB
(
F(ϑ,y)

) ∫ x

−∞

̇(ϑ, y)√

I(ϑ)
dF(ϑ,y)

= B(t) −
∫ 1

0
h(ϑ, v)dB(v)

∫ t

0
h(ϑ, v)dv ≡ U(ϑ, t),

where t = F(ϑ,x) and we put h(ϑ, t) = I(ϑ)−1/2
̇(ϑ,F−1
ϑ (t)).

If ϑ ∈ � ⊂Rd , then we obtain a similar equation

U(ϑ, t) = B(t) −
〈∫ 1

0
h(ϑ, v)dB(v),

∫ t

0
h(ϑ, v)dv

〉
, (1.3)

where 〈·, ·〉 is the scalar product in Rd .
This presentation of the limit process U(ϑ, t) can be found in Darling [2]. Of course, the test

ψ̂n = 1{D̂n>cα} is not ADF and the choice of the threshold cα can be a difficult problem. One way

to avoid this problem is, for example, to find a transformation LW [U ](t) = w(t), where w(·) is
the Wiener process. This transformation allows to write the equality

� =
∫ ∞

−∞
LW [U ](F(ϑ,x)

)2 dF(ϑ,x) =
∫ 1

0
w(t)2 dt.

Hence, if we prove the convergence

D̃n =
∫ ∞

−∞
LW [Un](x)2 dF(ϑ̂n, x) 	⇒ �,

then the test ψ̃n = 1{D̃n>cα}, with P(� > cα) = α is ADF. Such transformation was proposed in
Khmaladze [6].

In the present work, we consider a similar problem for the model of observations (1.1) with
parametric basic hypothesis (1.2). Note that several problems of GoF testing for the model of
observations (1.1) with simple basic hypothesis � = {ϑ0} were studied in Dachian and Kutoyants
[1], Iacus and Kutoyants [5], Kutoyants [9]. The tests considered there are mainly based on the
normalized difference ε−1(Xt − xt ), where xt = xt (ϑ0) is a solution of equation (1.2) for ε = 0.

This statistic is in some sense similar to the normalized difference
√

n(F̂n(x) − F0(x)) used in
the GoF problems for i.i.d. models. We propose two GoF ADF tests. Note that the construction
of the first test is in some sense close to the one considered in Kutoyants [11] and based on the
score function process. These tests are originated by the different processes but after our first
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transformation of the normalized difference ε−1(Xt − xt (ϑ̂ε)) we obtain the same integrals to
calculate as those in Kutoyants [11].

Let us remind the related results in the case of simple hypothesis (see Kutoyants [9]). Suppose
that the observed homogeneous diffusion process under null hypothesis is

dXt = S0(Xt )dt + εσ (Xt )dWt, X0 = x0,0 ≤ t ≤ T ,

where S0(x) is a known smooth function. Denote xt = Xt |ε=0. We have Xt → xt as ε → 0 and
we construct a GoF test based on statistic vε(t) = ε−1(Xt − xt ). The limit of this statistic is a
Gaussian process. This process can be transformed into the Wiener process as follows: introduce
the statistic

δε =
[∫ T

0

(
σ(xt )

S0(xt )

)2

dt

]−2 ∫ T

0

(
Xt − xt

εS0(xt )2

)2

σ(xt )
2 dt.

The following convergence:

δε 	⇒ � =
∫ 1

0
w(s)2 ds

was proved and therefore the test ψ̂ε = 1{δε>cα} with P(� > cα) = α is ADF.
Consider now the hypotheses testing problem (1.1) and (1.2). The solution xt of equation (1.2)

for ε = 0 depends on ϑ ∈ � ⊂ Rd , that is, xt = xt (ϑ). The statistic v̂ε(t) = ε−1(Xt − xt (ϑ̂ε))

(here ϑ̂ε is the MLE) is in some sense similar to Un(·). Denote by v̂(t) the limit of v̂ε(t) as ε → 0
and suppose that we know the transformation LU [v̂](·) of v̂(·) into the Gaussian process

U(ϑ, t) = W(t) −
〈∫ 1

0
h(ϑ, s)dW(s),

∫ t

0
h(ϑ, s)ds

〉
, 0 ≤ t ≤ 1

with a vector-function h(ϑ, s) satisfying

∫ 1

0
h(ϑ, s)h(ϑ, s)∗ ds = J.

Here J is the d × d unit matrix.
The next steps are two transformations of U(·): one transformation into the Brownian bridge

LB [U ](s) = B(s) and another one into the Wiener process LW [U ](s) = w(s), respectively. This
allows us to construct the ADF GoF tets as follows: let us introduce (formally) the statistics

δε =
∫ T

0

(
LB

[
LU [v̂ε]

]
(t)

)2 dt, �ε =
∫ T

0

(
LW

[
LU [v̂ε](t)

])2 dt,

and suppose that we have proved the convergences

δε 	⇒ δ =
∫ 1

0
B(s)2 ds, �ε 	⇒ � =

∫ 1

0
w(s)2 ds.



2434 Y.A. Kutoyants

Then the tests

ψ̂ε = 1{δε>dα}, P(δ > dα) = α, �̂ε = 1{�ε>cα}, P(� > cα) = α,

belong to the class Kα and are ADF. Our objective is to realize this program.
A similar result for ergodic diffusion processes is contained in Kutoyants [12] (simple basic

hypothesis) and Kleptsyna and Kutoyants [7] (parametric basic hypothesis).

2. Auxiliary results

We have the following stochastic differential equation:

dXt = S(ϑ, t,Xt )dt + εσ (t,Xt )dWt, X0 = x0,0 ≤ t ≤ T , (2.1)

where ϑ ∈ �, � is an open bounded subset of Rd and ε is a small parameter, that is, we study
this equation in the asymptotics of small noise ε → 0.

Introduce the Lipschitz condition and that of linear growth:
C1. The functions S(ϑ, t, x) and σ(t, x) satisfy the relations

∣∣S(ϑ, t, x) − S(ϑ, t, y)
∣∣ + ∣∣σ(t, x) − σ(t, y)

∣∣ ≤ L|x − y|,∣∣S(ϑ, t, x)
∣∣ + ∣∣σ(t, x)

∣∣ ≤ L
(
1 + |x|).

Recall that by these conditions the stochastic differential equation (2.1) has a unique strong
solution (Liptser and Shiryaev [14]), and moreover this solution Xε = {Xt,0 ≤ t ≤ T } converges
uniformly, with respect to t , to the solution xT = {xt ,0 ≤ t ≤ T } of the ordinary differential
equation

dxt

dt
= S(ϑ, t, xt ), x0,0 ≤ t ≤ T . (2.2)

Observe that xt = xt (ϑ) (for the proof see Freidlin and Wentzell [3], Kutoyants [8]).
C2. The diffusion coefficient σ(t, x)2 is bounded away from zero

inf
0≤t≤T ,x

σ (t, x)2 > 0.

Conditions C1 and C2 provide the equivalence of the measures {P(ε)
ϑ ,ϑ ∈ �} induced on the

measurable space (CT ,BT ) by the solutions of equation (2.1) (Liptser and Shiryaev [14]). Here
CT is the space of continuous functions on [0, T ] with uniform metrics and BT is the Borelian
σ -algebra of its subsets. The likelihood ratio function is

L
(
ϑ,Xε

) = exp

{∫ T

0

S(ϑ, t,Xt )

ε2σ(t,Xt )2
dXt −

∫ T

0

S(ϑ, t,Xt )
2

2ε2σ(t,Xt )2
dt

}
, ϑ ∈ �,

and the maximum likelihood estimator (MLE) ϑ̂ε is defined by the equation

L
(
ϑ̂ε,X

ε
) = sup

ϑ∈�

L
(
ϑ,Xε

)
.
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The following regularity conditions (smoothness and identifiability) provides us necessary
properties of the MLE. Below xt = xt (ϑ0).

C3. The functions S(ϑ, t, x) and σ(t, x) have two continuous bounded derivatives w.r.t. x and
the function S(ϑ, t, x) has two continuous bounded derivatives w.r.t. ϑ .

For any ν > 0

inf
ϑ0∈�

inf|ϑ−ϑ0|>ν

∫ T

0

(
S(ϑ, t, xt ) − S(ϑ0, t, xt )

σ (t, xt )

)2

dt > 0

and the information matrix (d × d)

I(ϑ0) =
∫ T

0

Ṡ(ϑ0, t, xt )Ṡ(ϑ0, t, xt )
∗

σ(t, xt )2
dt

is uniformly non-degenerate:

inf
ϑ0∈�

inf|λ|=1
λ∗
I(ϑ0)λ > 0.

We denote by a prime the derivatives w.r.t. x and t , and by a dot those w.r.t. ϑ , that is, for a
function f = f (ϑ, t, x) we write

f ′(ϑ, t, x) = ∂f (ϑ, t, x)

∂x
,

f ′
t (ϑ, t, x) = ∂f (ϑ, t, x)

∂t
,

ḟ (ϑ, t, x) = ∂f (ϑ, t, x)

∂ϑ
.

Of course, in the case of d > 1 the derivative ḟ(ϑ, t, x) is a column vector.
If the conditions C2 and C3 hold, then the MLE admits the representation

ε−1(ϑ̂ε − ϑ) = I(ϑ)−1
∫ T

0

Ṡ(ϑ, t, xt )

σ (t, xt )
dWt + o(1). (2.3)

Here, xt = xt (ϑ). For the proof see, Kutoyants [9].
Note that Xt = Xt(ε) (solution of equation (2.1)) under condition C3 is continuously differen-

tiable w.r.t. ε. Denote the derivatives

X
(1)
t = ∂Xt

∂ε
, x

(1)
t = ∂Xt

∂ε

∣∣∣
ε=0

, 0 ≤ t ≤ T .

The equations for X
(1)
t and x

(1)
t are

dX
(1)
t = S′(ϑ, t,Xt )X

(1)
t dt + [

εσ ′(t,Xt )X
(1)
t + σ(t,Xt )

]
dWt, X

(1)
0 = 0

and

dx
(1)
t = S′(ϑ, t, xt )x

(1)
t dt + σ(t, xt )dWt, x

(1)
0 = 0, (2.4)
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respectively. Hence x
(1)
t , 0 ≤ t ≤ T is a Gaussian process and it can be written as

x
(1)
t =

∫ t

0
exp

{∫ t

s

S′(ϑ, v, xv)dv

}
σ(s, xs)dWs. (2.5)

Denote

ψ(t) = exp

{∫ t

0
S′(ϑ, v, xv)dv

}
, ψε(t) = exp

{∫ t

0
S′(ϑ̂ε, v,Xv)dv

}
.

We can write

Xt − xt (ϑ̂ε)

ε
= Xt − xt (ϑ)

ε
+ xt (ϑ) − xt (ϑ̂ε)

ε

= X
(1)
t −

〈
(ϑ̂ε − ϑ)

ε
, ẋt (ϑ)

〉
+ o(1)

= x
(1)
t −

〈
I(ϑ)−1

∫ T

0

Ṡ(ϑ, s, xs)

σ (s, xs)
dWs, ẋt (ϑ)

〉
+ o(1)

= ψ(t)V (t) + o(1),

where

V (t) = ψ(t)−1x
(1)
t − ψ(t)−1

〈
I(ϑ)−1

∫ T

0

Ṡ(ϑ, s, xs)

σ (s, xs)
dWs, ẋt (ϑ)

〉
.

Introduce the random process

U(ϑ, t) =
∫ t

0

ψ(s)

σ (s, xs)
dV (s).

Lemma 1. We have the equality

U(ϑ, t) = Wt −
〈∫ T

0
h(ϑ, s)dWs,

∫ t

0
h(ϑ, s)ds

〉
, 0 ≤ t ≤ T , (2.6)

where

h(ϑ, t) = I(ϑ)−1/2 Ṡ(ϑ, t, xt )

σ (t, xt )
(2.7)

is a vector-valued function.

Proof. The solution of equation (2.4) can be written (see (2.5)) as

x
(1)
t =

∫ t

0

ψ(t)σ (s, xs)

ψ(s)
dWs.
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For the vector ẋt (ϑ), we can write

ẋt (ϑ) =
∫ t

0
S′(ϑ, s, xs)ẋs(ϑ)ds +

∫ t

0
Ṡ(ϑ, s, xs)ds.

The solution of this equation is

ẋt (ϑ) = ψ(t)

∫ t

0

Ṡ(ϑ, s, xs)

ψ(s)
ds.

Introduce two stochastic processes

v1(t) = ψ(t)−1x
(1)
t =

∫ t

0
ψ(s)−1σ(s, xs)dWs

and

v2(t) = ψ(t)−1ẋt (ϑ) =
∫ t

0
ψ(s)−1Ṡ(ϑ, s, xs)ds.

Then we can write

U(ϑ, t) =
∫ t

0

ψ(s)

σ (s, xs)
dV (s)

=
∫ t

0

ψ(s)

σ (s, xs)
dv1(s)

−
〈
I(ϑ)−1

∫ T

0

Ṡ(ϑ, s, xs)

σ (s, xs)
dWs,

∫ t

0

ψ(s)

σ (s, xs)
dv2(s)

〉

= W(t) −
〈
I(ϑ)−1/2

∫ T

0

Ṡ(ϑ, s, xs)

σ (s, xs)
dWs, I(ϑ)−1/2

∫ t

0

Ṡ(ϑ, s, xs)

σ (s, xs)
ds

〉

= Wt −
〈∫ T

0
h(ϑ, s)dWs,

∫ t

0
h(ϑ, s)ds

〉
.

Introduce the random process

u(ϑ, r) = T −1/2U(ϑ, rT ), 0 ≤ r ≤ 1

and denote

I1(ϑ) =
∫ 1

0

Ṡ(ϑ, rT , xrT )Ṡ(ϑ, rT , xrT )∗

σ(rT , xrT )2
dr,

h̃(ϑ, r) = I1(ϑ)−1/2 Ṡ(ϑ, rT , xrT )

σ (rT , xrT )
, wr = T −1/2WrT .



2438 Y.A. Kutoyants

Then we can write

u(ϑ, r) = wr −
〈∫ 1

0
h̃(ϑ, q)dwq,

∫ r

0
h̃(ϑ, q)dq

〉
, 0 ≤ r ≤ 1, (2.8)

and therefore
∫ 1

0
h̃(ϑ, q)h̃(ϑ, q)∗ dq = J. �

Note that u(·) is in some sense a universal limit which appears in the problems of goodness
of fit testing for stochastic processes. For example, the same limit is obtained in the case of
ergodic diffusion process and in the case of inhomogeneous Poisson process (Kutoyants [10]).
The main difference with the i.i.d. case is due to the Wiener process here, while in the i.i.d.
case the Brownian bridge B(t), 0 ≤ t ≤ 1 appears (see (1.3)). Of course, we can immediately
replace B(t) by a Wiener process B(t) = Wt − W1t and this will increase the dimension of the
vector h(ϑ, ·). In the case of vector-valued parameter ϑ , this change is not essential and will
slightly modify calculations of the test statistics for the first type test. At the same time if the
parameter ϑ is one-dimensional, then we can easily construct the second-type goodness-of-fit
test for stochastic processes and it remains unclear how to construct such tests in the i.i.d. case.
The difference will be explained in Section 3.2.

In the construction of a GoF test, we will use another condition.
C4. The functions S(ϑ, t, x), Ṡ(ϑ, t, x) and σ(t, x) have continuous bounded derivatives w.r.t.

t ∈ [0, T ].

3. Main results

Suppose that we observe a trajectory Xε = (Xt ,0 ≤ t ≤ T ) of the following diffusion process:

dXt = S(t,Xt )dt + εσ (t,Xt )dWt, X0 = x0,0 ≤ t ≤ T . (3.1)

We have to test the basic parametric hypothesis

H0 :S(t, x) = S(ϑ, t, x), 0 ≤ t ≤ T ,ϑ ∈ �,

that is, that the observed process (3.1) has the stochastic differential

dXt = S(ϑ, t,Xt )dt + εσ (t,Xt )dWt, X0 = x0,0 ≤ t ≤ T (3.2)

with some ϑ ∈ �. Here S(ϑ, t, x) and σ(t, x) are known strictly positive smooth functions and
� ⊂ Rd is an open convex set. We have to test this hypothesis in the asymptotics of a small noise
(as ε → 0).
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Our goal is to construct such statistics vε[Xε](·), Vε[Xε](·) that (under hypothesis H0)

δε =
∫ T

0
vε

[
Xε

]
(t)2 dt 	⇒ δ =

∫ 1

0
B(s)2 ds,

�ε =
∫ T

0
Vε

[
Xε

]
(t)2 dt 	⇒ � =

∫ 1

0
w(s)2 ds,

where B(·) and w(·) are the Brownian bridge and the Wiener process, respectively. Then we
introduce the tests

ψ̂ε = 1{δε>dα}, �̂ε = 1{�ε>cα}

with the thresholds cα and dα satisfying the equations

P(δ > dα) = α, P(� > cα) = α. (3.3)

These tests will belong to the class

Kα =
{
ψ̄ε : lim

ε→0
Eϑψ̄ε = α,∀ϑ ∈ �

}

and will be ADF.
We propose these tests in the Sections 3.1 and 3.2 below. We call ψ̂ε the first test and �̂ε the

second test.

3.1. First test

The construction of the first ADF GoF test is based on the following well known property. Sup-
pose that we have a Gaussian process U(t),0 ≤ t ≤ T satisfying the equation

U(t) = w(t) −
∫ T

0
h(s)dw(s)

∫ t

0
h(s)ds,

∫ T

0
h(s)2 ds = 1.

Introduce the process

b(t) =
∫ t

0
h(s)dU(s)

=
∫ t

0
h(s)dw(s) −

∫ T

0
h(s)dw(s)

∫ t

0
h(s)2 ds.

It is easy to see that b(0) = b(T ) = 0 and

E
[
b(t)b(s)

] =
∫ t∧s

0
h(v)2 dv −

∫ t

0
h(v)2 dv

∫ s

0
h(v)2 dv.
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Let us put

τ =
∫ s

0
h(v)2 dv, b(t) = B(τ), 0 ≤ τ ≤ 1.

Then

δ =
∫ T

0

(∫ t

0
h(s)dU(s)

)2

h(t)2 dt

=
∫ T

0
b(t)2h(t)2 dt =

∫ 1

0
B(τ)2 dτ.

Suppose that the parameter ϑ is one-dimensional, ϑ ∈ � = (a, b) and that we already proved
the convergence (see Lemma 1)

Uε(t) =
∫ t

0

ψε(s)

σ (s,Xs)
d

(
Xs − xs(ϑ̂ε)

εψε(s)

)
−→ U(ϑ, t), 0 ≤ t ≤ T ,

where

U(ϑ, t) = w(t) −
∫ T

0
h(ϑ, s)dw(s)

∫ t

0
h(ϑ, s)ds,

∫ T

0
h(ϑ, s)2 ds = 1.

Recall that

h(ϑ, s) = I(ϑ)−1/2 Ṡ(ϑ, s, xs)

σ (s, xs)
, I(ϑ) =

∫ T

0

Ṡ(ϑ, s, xs)
2

σ(s, xs)2
ds.

Introduce (formally) the statistic

δ̂ε =
∫ T

0

(∫ t

0
h(ϑ̂ε, s)dUε(s)

)2

h(ϑ̂ε, t)
2 dt.

If we prove that

∫ T

0

(∫ t

0
h(ϑ̂ε, s)dUε(s)

)2

h(ϑ̂ε, t)
2 dt

	⇒
∫ T

0

(∫ t

0
h(ϑ, s)dU(ϑ, s)

)2

h(ϑ, t)2 dt

then the test ψ̂ε = 1{δε>cα} will be ADF.
The main technical problem in carrying out this program is to define the stochastic integral

∫ t

0
h(ϑ̂ε, s)dUε(s)
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containing the MLE ϑ̂ε = ϑ̂ε(Xt ,0 ≤ t ≤ T ). We will proceed as follows: First, we formally
differentiate and integrate and then we take the final expressions, which do not contain stochastic
integrals, as starting statistics.

Introduce the statistics

D(ϑ, s,Xs) = S
(
ϑ, s, xs(ϑ)

) + S′(ϑ, s,Xs)
(
Xs − xs(ϑ)

)
,

R
(
ϑ, t,Xt

) =
∫ Xt

x0

Ṡ(ϑ, t, y)√
I(ϑ)σ (t, y)2

dy

−
∫ t

0

∫ Xs

x0

Ṡ′
s(ϑ, s, y)σ (s, y) − 2Ṡ(ϑ, s, y)σ ′

s(s, y)√
I(ϑ)σ (s, y)3

dy ds,

Q
(
ϑ, t,Xt

) =
∫ t

0

Ṡ(ϑ, s,Xs)D(ϑ, s,Xs)√
I(ϑ)σ (s,Xs)2

ds,

Kε(ϑ, t) = ε−1[R(
ϑ, t,Xt

) − Q
(
ϑ, t,Xt

)]
,

δε =
∫ T

0
Kε(ϑ̂ε, t)

2hε(ϑ̂ε, t)
2 dt.

The first test is given in the following theorem.

Theorem 1. Suppose that the conditions C1–C4 hold. Then the test

ψ̂ε = 1{δε>cα}, P{δ > cα} = α

is ADF and belongs to Kε .

Proof. We can write (formally)

Uε(t) =
∫ t

0

ψε(s)

σ (s,Xs)
dVε(s)

=
∫ t

0

ψε(s)

σ (s,Xs)
d

(
Xs − xs(ϑ̂ε)

ψε(s)ε

)
(3.4)

=
∫ t

0

dXs

εσ(s,Xs)
−

∫ t

0

[
S(ϑ̂ε, s, xs(ϑ̂ε))

εσ (s,Xs)
+ S′(ϑ̂ε, s,Xs)(Xs − xs(ϑ̂ε))

εσ (s,Xs)

]
ds

=
∫ t

0

dXs

εσ(s,Xs)
−

∫ t

0

D(ϑ̂ε, s,Xs)

εσ (s,Xs)
ds,

where we have used the equality

dxs(ϑ̂ε) = S
(
ϑ̂ε, s, xs(ϑ̂ε)

)
ds.
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Hence (formally), we obtain the following expression.

∫ t

0
hε(ϑ̂ε, s)dUε(s) =

∫ t

0

Ṡ(ϑ̂ε, s,Xs)√
I(ϑ̂ε)εσ (s,Xs)2

dXs

−
∫ t

0

Ṡ(ϑ̂ε, s,Xs)D(ϑ̂ε, s,Xs)√
I(ϑ̂ε)εσ (s,Xs)2

ds.

The estimator ϑ̂ε = ϑ̂ε(Xt ,0 ≤ t ≤ T ) and therefore the stochastic integral is not well defined

because the integrand Ṡ(ϑ̂ε, s,Xs) is not a non-anticipative random function. Note that in the
linear case S(ϑ, t, x) = ϑQ(s, x) we have no such problem (see example below). This difficulty
can be avoided in general case by at least two ways: The first one is to replace the stochastic
integral by it’s robust version as we show below. The second possibility is to use a consistent
estimator ϑ̄νε of the parameter ϑ constructed after the observations Xνε = (Xt ,0 ≤ t ≤ νε),
where νε → 0 but sufficiently slowly. With this estimator, we can calculate the integral

∫ t

νε

Ṡ(ϑ̄νε , s,Xs)

σ (s,Xs)2
dXs

without any problem, and all limits will be the same. Such construction is discussed for a different
problem in Kutoyants and Zhou [13].

Introduce the function

M(ϑ, t, x) =
∫ x

x0

Ṡ(ϑ, t, y)

σ (t, y)2
dy.

Then by the Itô formula

dM(ϑ, t,Xt ) = M ′
t (ϑ, t,Xt )dt + ε2σ(t,Xt )

2

2
M ′′

xx(ϑ, t,Xt )dt

+ M ′
x(ϑ, t,Xt )dXt

and therefore
∫ t

0

Ṡ(ϑ, s,Xs)

σ (s,Xs)2
dXs

= M(ϑ, t,Xt ) −
∫ t

0

[
M ′

s(ϑ, s,Xs) + ε2σ(s,Xs)
2

2
M ′′

xx(ϑ, s,Xs)

]
ds

=
∫ Xt

x0

Ṡ(ϑ, t, y)

σ (t, y)2
dy −

∫ t

0

∫ Xs

x0

Ṡ′
s(ϑ, s, y)

σ (s, y)2
dy

+
∫ t

0

∫ Xs

x0

2Ṡ(ϑ, s, y)σ ′
s(s, y)

σ (s, y)3
ds − ε2

2

∫ t

0
σ(s,Xs)

2M ′′
xx(ϑ, s,Xs)ds.
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Note that the contribution of the term

ε2
∫ t

0
σ(s,Xs)

2M ′′
xx(ϑ̂ε, s,Xs)ds

is asymptotically (ε → 0) negligible. Therefore,

Kε(ϑ, t) = ε−1[R(
ϑ, t,Xt

) − Q
(
ϑ, t,Xt

)]
is asymptotically equivalent to

K̃ε(ϑ, t) =
∫ t

0
hε(ϑ, s)dUε(s).

The difference is in the dropped term of order O(ε).
We have to verify the convergence of the integrals

δε =
∫ T

0

Kε(ϑ̂ε, t)
2Ṡ(ϑ̂ε, t,Xt )

2

I(ϑ̂ε)σ (t,Xt )2
dt −→

∫ T

0

K(ϑ, t)2Ṡ(ϑ, t, xt )
2

I(ϑ)σ (t, xt )2
dt.

Regularity conditions C1–C3 give the uniform convergences

sup
0≤t≤T

∣∣Xt − xt (ϑ)
∣∣ −→ 0, I(ϑ̂ε) −→ I(ϑ),

sup
0≤t≤T

∣∣hε(ϑ̂ε, t) − h(ϑ̂ε, t)
∣∣ = sup

0≤t≤T

∣∣∣∣ Ṡ(ϑ̂ε, t,Xt )√
I(ϑ̂ε)σ (t,Xt )

− Ṡ(ϑ, t, xt )√
I(ϑ)σ (t, xt )

∣∣∣∣ −→ 0.

Introduce two processes

Yε

(
ϑ̂ε, t,X

t
) =

∫ t

0

Ṡ(ϑ̂ε, s,Xs)[S(ϑ, s,Xs) − D(ϑ̂ε, s,Xs)]
σ(s,Xs)2

ds,

Z
(
ϑ̂ε, t,X

t
) = R

(
ϑ̂ε, t,X

t
) −

∫ t

0

Ṡ(ϑ̂ε, s,Xs)S(ϑ, s,Xs)

σ (s,Xs)2
ds.

Then

Kε(t) = ε−1[Yε

(
ϑ̂ε, t,X

t
) + Z

(
ϑ̂ε, t,X

t
)]

.

We have

S(ϑ, s,Xs) − D(ϑ̂ε, s,Xs)

= S(ϑ, s,Xs) − S(ϑ̂ε, s,Xs) + S(ϑ̂ε, s,Xs)

− S
(
ϑ̂ε, s, xs(ϑ̂ε)

) − S′(ϑ̂ε, s,Xs)
[
Xs − xs(ϑ̂ε)

]
= −(ϑ̂ε − ϑ)Ṡ(ϑ̃, s,Xs)
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+ [
S′(ϑ̂ε, s, X̃s) − S′(ϑ̂ε, s,Xs)

][
Xs − xs(ϑ̂ε)

]
= −(ϑ̂ε − ϑ)Ṡ(ϑ̃, s,Xs) + O

(
ε2).

Therefore

ε−1Yε

(
ϑ̂ε, t,X

t
) = − (ϑ̂ε − ϑ)

ε

∫ t

0

Ṡ(ϑ̂ε, s,Xs)
2

σ(s,Xs)2
ds + o(1).

Further,

ε−1(Z(
ϑ̂ε, t,X

t
) − Z

(
ϑ, t,Xt

)) = (ϑ̂ε − ϑ)

ε
Ż

(
ϑ, t,Xt

) + o(1),

where

Ż
(
ϑ, t,Xt

) =
∫ Xt

x0

S̈(ϑ, t, y)

σ (t, y)2
dy −

∫ t

0

S̈(ϑ, s,Xs)S(ϑ, s,Xs)

σ (s,Xs)2
ds

−
∫ t

0

∫ Xs

x0

S̈′
s(ϑ, s, y)σ (s, y) − 2S̈(ϑ, s, y)σ ′

s(s, y)

σ (s, y)2
dy ds.

We have uniform convergence of Xt to xt w.r.t. t . Hence,

sup
0≤t≤T

∣∣Ż(
ϑ, t,Xt

) − Ż
(
ϑ, t, xt

)∣∣ → 0.

Note that for any continuously differentiable function g(s, x) w.r.t. s we have the relation

∫ xt

x0

g(t, y)dy −
∫ t

0
g(s, xs)S(ϑ, s, xs)ds −

∫ t

0

∫ xs

x0

g′
s(s, y)dy ds = 0

since ∫ t

0
g(s, xs)S(ϑ, s, xs)ds =

∫ t

0
g(s, xs)dxs

and
∫ t

0
g(t, xs)dxs −

∫ t

0
g(s, xs)dxs =

∫ t

0

∫ t

s

∂g(v, xs)

∂v
dv dxs

=
∫ t

0

∫ t

0
1{v:xv>xs }

∂g(v, xs)

∂v
dv dxs

=
∫ t

0

∫ xv

x0

g′
v(v, y)dy dv.

Hence, Ż(ϑ, t, xt ) ≡ 0 for all t ∈ [0, T ].
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By the Itô formula,

Z(ϑ, t,Xt )

ε
= R(ϑ, t,Xt )

ε
−

∫ t

0

Ṡ(ϑ, s,Xs)S(ϑ, s,Xs)

εσ (s,Xs)2
ds

=
∫ t

0

Ṡ(ϑ, s,Xs)

εσ (s,Xs)2
dXs −

∫ t

0

Ṡ(ϑ, s,Xs)S(ϑ, s,Xs)

εσ (s,Xs)2
ds

+ ε

2

∫ t

0
σ(s,Xs)

2M ′′
xx(ϑ, s,Xs)ds

=
∫ t

0

Ṡ(ϑ, s,Xs)

σ (s,Xs)
dWs + O(ε).

Therefore, we obtain the convergence

Kε(t) −→ K(ϑ, t).

This convergence can be shown to be uniform w.r.t. t . This proves the convergence δε → δ.
Therefore the Theorem 1 is proved. �

Let us study the behaviour of the power function under the alternative. Suppose that the ob-
served diffusion process (1.1) has the trend coefficient S(t, x) which does not belong to the
parametric family. This family we described as follows:

F = {
S(·) :S

(
ϑ, t, xt (ϑ)

)
,0 ≤ t ≤ T ,ϑ ∈ �

}
.

Here xt (ϑ), 0 ≤ t ≤ T is the solution of equation (2.2).
We introduce a slightly more strong condition of separability of the basic hypothesis and the

alternative. Suppose that the function S(t, x) satisfies conditions C1, C2 and denote by yt , 0 ≤
t ≤ T the solution of the ordinary differential equation obtained for (ε = 0)

dyt

dt
= S(t, yt ), y0 = x0.

Then

ε−1(Xt − xt (ϑ̂ε)
) = ε−1(Xt − yt ) + ε−1(yt − xt (ϑ̂ε)

)
= y

(1)
t + ε−1(yt − xt (ϑ∗)

) − ε−1(ϑ̂ε − ϑ∗)ẋt (ϑ∗) + o(1),

where y
(1)
t is a solution of the equation

dy
(1)
t = S′(t, yt )y

(1)
t dt + σ(t, yt )dWt, y

(1)
0 = 0

and ϑ∗ is defined by the relation

inf
ϑ∈�

∫ T

0

(
S(ϑ, t, yt ) − S(t, yt )

σ (t, yt )

)2

dt =
∫ T

0

(
S(ϑ∗, t, yt ) − S(t, yt )

σ (t, yt )

)2

dt. (3.5)
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Suppose that this equation has a unique solution ϑ∗. Note that ε−1(ϑ̂ε − ϑ∗) is tight (see Kutoy-
ants [8] for details). Moreover, we also suppose that the basic hypothesis and the alternative are
separated in the following sense:

inf
ϑ∈�

∫ T

0

(
S(ϑ, t, yt ) − S(t, yt )

σ (t, yt )

)2

dt > 0.

First, formally, we write

∫ t

0
hε(ϑ̂ε, s)dUε(s)

=
∫ t

0

Ṡ(ϑ̂ε, s,Xs)√
I(ϑ̂ε)σ (s,Xs)

dWs −
∫ t

0

Ṡ(ϑ̂ε, s,Xs)[S(s,Xs) − D(ϑ̂ε, s,Xs)]√
I(ϑ̂ε)εσ (s,Xs)2

ds

=
∫ t

0

Ṡ(ϑ∗, s, ys)√
I(ϑ∗)σ (s, ys)

dWs −
∫ t

0

Ṡ(ϑ∗, s,Xs)[S(s,Xs) − S(ϑ∗, s,Xs)]√
I(ϑ∗)εσ (s,Xs)2

ds.

Further

S(s,Xs) − D(ϑ̂ε, s,Xs)

= S(s,Xs) − S
(
ϑ̂ε, s, xs(ϑ)

) − S′(ϑ̂ε, s,Xs)
(
Xs − xs(ϑ̂ε)

)
= S(s,Xs) − S(ϑ̂ε, s,Xs) + O

(
ε2)

= S(s,Xs) − S(ϑ∗, s,Xs) + S(ϑ∗, s,Xs) − S(ϑ̂ε, s,Xs) + O
(
ε2)

= S(s,Xs) − S(ϑ∗, s,Xs) + (ϑ̂ε − ϑ∗)Ṡ(ϑ∗, s,Xs) + O
(
ε2).

Therefore,

∫ t

0
hε(ϑ̂ε, s)dUε(s) =

∫ t

0

Ṡ(ϑ∗, s, ys)√
I(ϑ∗)σ (s, ys)

dWs −
∫ t

0

(ϑ̂ε − ϑ∗)Ṡ(ϑ∗, s, ys)
2

ε
√

I(ϑ∗)σ (s, ys)2
ds

− ε−1
∫ t

0

Ṡ(ϑ∗, s, ys)[S(s, ys) − S(ϑ∗, s, ys)]√
I(ϑ∗)σ (s, ys)2

ds + O
(
ε2)

= I1(t) − I2(t) − ε−1I3(t) + O
(
ε2)

with an obvious notation. For the statistic δε we have the relations
√

δε ≥ ε−1
∥∥I3(·)h(·)∥∥ − ∥∥I1(·)h(·)∥∥ − ∥∥I2(·)h(·)∥∥ + O(ε), (3.6)

where h(·) = h(ϑ∗, s) and ‖ · ‖ is the L2(0, T ) norm. Recall that the quantities ‖I1(·)h(·)‖ and
‖I2(·)h(·)‖ are bounded in probability.

Introduce the condition



ADF GoF tests for dynamical systems 2447

C5. The functions S(ϑ, t, x), S(t, x) and σ(t, x) are such that

∥∥I3(·)h(·)∥∥2

=
∫ T

0

(∫ t

0

Ṡ(ϑ∗, s, ys)[S(s, ys) − S(ϑ∗, s, ys)]
I(ϑ∗)σ (s, ys)2

ds

)2
Ṡ(ϑ∗, t)2

σ(t, yt )2
dt > 0.

This condition provides consistency of the test.

Theorem 2. Let conditions C1–C5 hold. Then the test ψ̂ε is consistent.

Proof. The proof follows from the convergence δε → ∞ under alternative (see (3.6)). �

Note that if ϑ∗ is an interior point of �, then

∫ T

0

Ṡ(ϑ∗, s, ys)[S(s, ys) − S(ϑ∗, s, ys)]
σ(s, ys)2

ds = 0.

If condition C5 does not hold, then

∫ t

0

Ṡ(ϑ∗, s, ys)[S(s, ys) − S(ϑ∗, s, ys)]
σ(s, ys)2

ds ≡ 0, for all t ∈ [0, T ].

This equality is possible if

Ṡ(ϑ∗, s, ys)
[
S(s, ys) − S(ϑ∗, s, ys)

] ≡ 0, for all s ∈ [0, T ].
An example of such invisible alternative can be constructed as follows: Suppose that the func-

tion S(ϑ, s, x) does not depend on ϑ for s ∈ [0, T /2], that is, S(ϑ, s, x) = S∗(s, x) for all ϑ ∈ �.

Then Ṡ(ϑ∗, s, ys) ≡ 0 for s ∈ [0, T /2]. Therefore if S(s, ys) = S(ϑ∗, s, ys) for s ∈ [T/2, T ] and
a corresponding ϑ∗ then condition C5 does not hold, but we can have S(s, ys) �= S∗(s, ys) for
s ∈ [0, T /2]. This implies that the test ψ̂ε is not consistent for this alternative.

3.2. Second test

The second test is based on the following well-known transformation. Suppose that we have a
Gaussian process U(t), 0 ≤ t ≤ 1 and d × d matrix N(t) defined by the relations

U(t) = Wt −
〈∫ 1

0
h(s)dWs,

∫ t

0
h(s)ds

〉
, (3.7)

N(t) =
∫ 1

t

h(s)h(s)∗ ds, N(0) = J, (3.8)

where J is the d × d unit matrix and h(t) is a continuous vector-valued function.
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Lemma 2. Suppose that the matrix N(t) is non-degenerate for all t ∈ [0,1). Then

U(t) +
∫ t

0
h(s)∗N(s)−1

∫ s

0
h(v)dU(v)ds = w(t), 0 ≤ t ≤ 1, (3.9)

where w(·) is a Wiener process.

Proof. This formula was obtained by Khmaladze [6]. The proof there is based on two results:
a result of Hitsuda [4] and another one of Shepp [16]. Observe that there are many publications
dealing with this transformation (see, e.g., the paper Maglaperidze et al. [15] and the references
therein). Another direct proof is given in Kleptsyna and Kutoyants [7]. �

Note that representation (3.7) and (3.8) implies that

∫ 1

0
h(s)dU(s) = 0. (3.10)

Suppose that ϑ ∈ �. Here � is an open bounded subset of Rd . Now h(ϑ, s), R(ϑ, t,Xt ) and
Q(ϑ, t,Xt ) are d-vectors and the Fisher information I(ϑ) is a d × d matrix.

Introduce the following stochastic processes:

h̄ε(ϑ, t) = Ṡ(ϑ, t,Xt )

σ (t,Xt )
,

N̄(ϑ, t) =
∫ T

t

Ṡ(ϑ, s, xs)Ṡ(ϑ, s, xs)
∗

σ(s, xs)2
ds,

N̄ε(ϑ, t) =
∫ T

t

Ṡ(ϑ, s,Xs)Ṡ(ϑ, s,Xs)
∗

σ(s,Xs)2
ds,

and put

�ε = 1

T 2

∫ T

0
Wε(t)

2 dt.

Here

Wε(t) =
∫ t

0

dXs

εσ(s,Xs)
−

∫ t

0

D(ϑ̂ε, s,Xs)

εσ (s,Xs)
ds

(3.11)

+ ε−1
∫ t

0
h̄ε(ϑ̂ε, s)

∗
N̄ε(ϑ̂ε, s)

−1+
[
R

(
ϑ̂ε, s,X

s
) − Q

(
ϑ̂ε, s,X

s
)]

ds.

We use the following convention for the matrix N̄:

N̄
−1+ =

{
N̄−1, if N̄ is non-degenerate,
0, if N̄ is degenerate.

We have the following result.
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Theorem 3. Suppose that conditions C2–C4 hold and the matrix N̄(ϑ, t) is uniformly in ϑ ∈ �

non-degenerate for all t ∈ [0,1). Then the test

�̂ε = 1{�ε>cα}, P
(∫ 1

0
w(s)2 ds > cα

)
= α

is ADF and belongs to Kα .

Proof. We have to show that under hypothesis H0 the convergence

�ε 	⇒ � =
∫ 1

0
w(s)2 ds (3.12)

holds.
The construction of the ADF GoF test is based on Lemmas 1 and 2. We have the similar to

(2.6) presentation (3.7) with h(ϑ, t) defined in (2.7). Let us denote Uε(·),hε(ϑ̂ε, ·), and Nε(·) the
empirical versions of U(·),h(ϑ, ·) and

N(ϑ, t) = I(ϑ)−1
∫ T

t

Ṡ(ϑ, s, xs)Ṡ(ϑ, s, xs)
∗

σ(s, xs)2
ds, N(ϑ,0) = J,

respectively:

Uε(t) =
∫ t

0

ψε(s)

σ (s,Xs)
dVε(s),

Vε(t) = Xt − xt (ϑ̂ε)

ψε(t)ε
,

hε(ϑ̂ε, t) = Iε(ϑ̂ε)
−1/2 Ṡ(ϑ̂ε, t,Xt )

σ (t,Xt )
,

Iε(ϑ̂ε) =
∫ T

0

Ṡ(ϑ̂ε, s,Xs)Ṡ(ϑ̂ε, s,Xs)
∗

σ(s,Xs)2
ds,

Nε(ϑ̂ε, t) = Iε(ϑ̂ε)
−1

∫ T

t

Ṡ(ϑ̂ε, s,Xs)Ṡ(ϑ̂ε, s,Xs)
∗

σ(s,Xs)2
ds.

Recall that there is a problem of definition of the integral for Uε(·) because the integrand depends
on the future. As convergence is uniform w.r.t. t ∈ [0, T − ν]:

hε(ϑ̂ε, t) −→ h(ϑ, t), Iε(ϑ̂ε) −→ I(ϑ), Nε(ϑ̂ε, t) −→ N(ϑ, t).

The required limits can be obtained.
Introduce (formally) the statistic

W�
ε (t) = Uε(t) +

∫ t

0
hε(ϑ̂ε, s)

∗
Nε(ϑ̂ε, s)

−1+
∫ s

0
hε(ϑ̂ε, v)dUε(v)ds. (3.13)
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Observe that

h(ϑ, s)∗N(ϑ, s)−1h(ϑ, v)

= Ṡ(ϑ, s, xs)
∗

σ(s, xs)

(∫ T

s

Ṡ(ϑ, r, xr )Ṡ(ϑ, r, xr )
∗

σ(r, xr)2
dr

)−1 Ṡ(ϑ, v, xv)

σ (v, xv)
.

Therefore this term does not depend on the information matrix I(ϑ) and we can replace the
statistics hε(ϑ̂ε, s) and Nε(ϑ̂ε, s) in (3.13) by h̄ε(ϑ̂ε, s) and N̄ε(ϑ̂ε, s).

For the process Uε(·), we have equality (3.4) (formally)

Uε(t) =
∫ t

0

dXs

εσ(s,Xs)
−

∫ t

0

D(ϑ̂ε, s,Xs)

εσ (s,Xs)
ds.

Hence, we obtain the vector-valued integral

∫ t

0
h̄ε(ϑ̂ε, s)dUε(s) =

∫ t

0

Ṡ(ϑ̂ε, s,Xs)

εσ (s,Xs)2
dXs −

∫ t

0

Ṡ(ϑ̂ε, s,Xs)D(ϑ̂ε, s,Xs)

εσ (s,Xs)2
ds.

Introduce the vector-function

M(ϑ, t, x) =
∫ x

x0

Ṡ(ϑ, t, y)

σ (t, y)2
dy.

Then by the Itô formula

∫ t

0

Ṡ(ϑ, s,Xs)

σ (s,Xs)2
dXs =

∫ Xt

x0

Ṡ(ϑ, t, y)

σ (t, y)2
dy −

∫ t

0

∫ Xs

x0

Ṡ′
s(ϑ, s, y)

σ (s, y)2
ds

+
∫ t

0

∫ Xs

x0

2Ṡ(ϑ, s, y)σ ′
s(s, y)

σ (s, y)3
ds + O

(
ε2).

Put

Kε(t) =
∫ t

0
h̄ε(ϑ̂ε, s)dUε(s) = ε−1[R(

ϑ̂ε, t,X
t
) − Q

(
ϑ̂ε, t,X

t
)]

.

Note that we have dropped the term of order O(ε2).
Then formal expression (3.13) for W�

ε (t) can be replaced by (3.11)

Wε(t) =
∫ t

0

dXs

εσ(s,Xs)
−

∫ t

0

D(ϑ̂ε, s,Xs)

εσ (s,Xs)
ds

+ ε−1
∫ t

0
h̄ε(ϑ̂ε, s)

∗
N̄ε(ϑ̂ε, s)

−1+
[
R

(
ϑ̂ε, s,X

s
) − Q

(
ϑ̂ε, s,X

s
)]

ds.
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For the first two terms of Wε(t) we have

Uε(t) =
∫ t

0

dXs

εσ(s,Xs)
−

∫ t

0

D(ϑ̂ε, s,Xs)

εσ (s,Xs)
ds

= Wt +
∫ t

0

S(ϑ, s,Xs) − S(ϑ̂ε, s, xs(ϑ̂ε)) − S′(ϑ̂ε, s,Xs)(Xs − xs(ϑ̂ε))

εσ (s,Xs)
ds

= Wt −
〈
ϑ̂ε − ϑ

ε
,

∫ t

0

Ṡ(ϑ̃, s,Xs)

σ (s,Xs)
ds

〉

+
∫ t

0

[S′(ϑ̂ε, s, X̃s) − S′(ϑ̂ε, s,Xs)](Xs − xs(ϑ̂ε))

εσ (s,Xs)
ds

= Wt −
〈
I(ϑ)−1

∫ T

0

Ṡ(ϑ, s, xs)

σ (s, xs)
dWs,

∫ t

0

Ṡ(ϑ, s, xs)

σ (s, xs)
ds

〉
+ o(1)

= U(ϑ, t) + o(1).

Here |ϑ̃ − ϑ | ≤ |ϑ̂ε| and

|X̃s − Xs | ≤ ∣∣xs(ϑ̂ε) − Xs

∣∣
≤ ∣∣xs(ϑ̂ε) − xs(ϑ)

∣∣ + ∣∣xs(ϑ) − Xs

∣∣ → 0.

This convergence is uniform w.r.t. s ∈ [0, T ]. Hence,

sup
0≤t≤T

∣∣Uε(t) − U(ϑ, t)
∣∣ −→ 0.

Further, similar arguments give the uniform convergence w.r.t. t ∈ [0, T ]

h̄ε(ϑ̂ε, t) = Ṡ(ϑ̂ε, t,Xt )

σ (t,Xt )
→ h̄(ϑ, t), N̄ε(ϑ̂ε, t) → N̄(ϑ, t).

We have to show that Kε(t) −→ K(ϑ, t), where

K(ϑ, t) =
∫ t

0
h̄(ϑ, s)dWs −

∫ T

0
h̄(ϑ, s)dWs

∫ t

0
h̄(ϑ, s)h̄(ϑ, s)∗ ds.

Denote

Yε

(
ϑ̂ε, t,X

t
) =

∫ t

0

Ṡ(ϑ̂ε, s,Xs)[S(ϑ, s,Xs) − D(ϑ̂ε, s,Xs)]
σ(s,Xs)2

ds,

Z
(
ϑ̂ε, t,X

t
) = R

(
ϑ̂ε, t,X

t
) −

∫ t

0

Ṡ(ϑ̂ε, s,Xs)S(ϑ, s,Xs)

σ (s,Xs)2
ds.
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Then

Kε(t) = ε−1[Yε

(
ϑ̂ε, t,X

t
) + Z

(
ϑ̂ε, t,X

t
)]

.

We have

S(ϑ, s,Xs) − D(ϑ̂ε, s,Xs)

= S(ϑ, s,Xs) − S(ϑ̂ε, s,Xs) + S(ϑ̂ε, s,Xs)

− S
(
ϑ̂ε, s, xs(ϑ̂ε)

) − S′(ϑ̂ε, s,Xs)
[
Xs − xs(ϑ̂ε)

]
= −〈

(ϑ̂ε − ϑ), Ṡ(ϑ̃, s,Xs)
〉

+ [
S′(ϑ̂ε, s, X̃s) − S′(ϑ̂ε, s,Xs)

][
Xs − xs(ϑ̂ε)

]
= −〈

(ϑ̂ε − ϑ), Ṡ(ϑ̃, s,Xs)
〉 + O

(
ε2).

Therefore

ε−1Yε

(
ϑ̂ε, t,X

t
) = − (ϑ̂ε − ϑ)

ε

∫ t

0

Ṡ(ϑ̂ε, s,Xs)Ṡ(ϑ̂ε, s,Xs)
∗

σ(s,Xs)2
ds.

Further,

ε−1(Z
(
ϑ̂ε, t,X

t
) − Z

(
ϑ, t,Xt

)) = ϑ̂ε − ϑ

ε
Ż

(
ϑ, t,Xt

) + o(1),

where

Ż
(
ϑ, t,Xt

) =
∫ Xt

x0

S̈(ϑ, t, y)

σ (t, y)2
dy −

∫ t

0

S̈(ϑ, s,Xs)S(ϑ, s,Xs)

σ (s,Xs)2
ds

−
∫ t

0

∫ Xs

x0

S̈′
s(ϑ, s, y)σ (s, y) − 2S̈(ϑ, s, y)σ ′

s(s, y)

σ (s, y)2
dy ds.

Here S̈(·) is the matrix of second derivatives w.r.t. ϑ . We have uniform convergence of Xt to xt

w.r.t. t , hence

sup
0≤t≤T

∣∣Ż(
ϑ, t,Xt

) − Ż
(
ϑ, t, xt

)∣∣ → 0.

Observe that for any continuously differentiable function g(s, x) w.r.t. s we have

∫ xt

x0

g(t, y)dy −
∫ t

0
g(s, xs)S(ϑ, s, xs)ds −

∫ t

0

∫ xs

x0

g′
s(s, y)dy ds = 0

since ∫ t

0
g(s, xs)S(ϑ, s, xs)ds =

∫ t

0
g(s, xs)dxs
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and ∫ t

0
g(t, xs)dxs −

∫ t

0
g(s, xs)dxs

=
∫ t

0

∫ t

s

∂g(v, xs)

∂v
dv dxs

=
∫ t

0

∫ t

0
1{v:xv>xs }

∂g(v, xs)

∂v
dv dxs =

∫ t

0

∫ xv

x0

g′
v(v, y)dy dv.

Hence, Ż(ϑ, t, xt ) ≡ 0 for all t ∈ [0, T ].
By the Itô formula

Z(ϑ, t,Xt )

ε
= R(ϑ, t,Xt )

ε
−

∫ t

0

Ṡ(ϑ, s,Xs)S(ϑ, s,Xs)

εσ (s,Xs)2
ds

=
∫ t

0

Ṡ(ϑ, s,Xs)

εσ (s,Xs)2
dXs −

∫ t

0

Ṡ(ϑ, s,Xs)S(ϑ, s,Xs)

εσ (s,Xs)2
ds

+ ε

2

∫ t

0
σ(s,Xs)

2M′′
xx(ϑ, s,Xs)ds

=
∫ t

0

Ṡ(ϑ, s,Xs)

σ (s,Xs)
dWs + O(ε).

Therefore, we obtain the convergence

Kε(t) = ε−1(R
(
ϑ̂ε, t,X

t
) − Q

(
ϑ̂ε, t,X

t
))

= ε−1(Y
(
ϑ̂ε, t,X

t
) + Z

(
ϑ̂ε, t,X

t
)) −→ K(ϑ, t).

Further, the matrix N̄ε(ϑ̂ε, s) converges uniformly in s ∈ [0, T ] to the matrix N̄(ϑ, s). Therefore,
for ν > 0 we have uniform on s ∈ [0, T −ν] convergence of N̄ε(ϑ̂ε, s)

−1+ to N(ϑ, s)−1. Introduce
the random function

yε(s) = ε−1h̄ε(ϑ̂ε, s)
∗
N̄ε(ϑ̂ε, s)

−1+
[
R

(
ϑ̂ε, s,X

s
) − Q

(
ϑ̂ε, s,X

s
)]

.

It is shown that we have convergence

sup
0≤s≤T −ν

∣∣yε(s) − y(ϑ, s)
∣∣ −→ 0,

where

y(ϑ, s) = h̄(ϑ, s)∗N̄(ϑ, s)−1K(ϑ, s).

Hence we also have convergence for all t ∈ [0,1)

Wε(t) −→ U(ϑ, t) +
∫ t

0
h̄(ϑ, s)∗N̄(ϑ, s)−1K(ϑ, s)ds = w(t).
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A similar argument can show that for any 0 ≤ t1 < · · · < tk ≤ T we have convergence of the
vectors (

Wε(t1), . . . ,Wε(tk)
) 	⇒ (

w(t1), . . . ,w(tk)
)
.

Further, a direct but cumbersome calculation allows us to write the estimate

Eϑ

∣∣Wε(t1) − Wε(t2)
∣∣2 ≤ C|t2 − t1|, t1, t2 ∈ [0, T − ν].

These two conditions provide weak convergence of the integrals

∫ T −ν

0
Wε(t)

2 dt 	⇒
∫ T −ν

0
w(t)2 dt

for any ν > 0. It can be shown that for any η > 0 there exist ν > 0 such that

∫ T

T −ν

EϑWε(t)
2 dt ≤ η.

The proof is close to that given in Maglaperidze et al. [15] for a similar integral. �

4. Examples

Example 1. We consider the simplest case which allows us to have an ADF GoF test for each ε,
that is, no need to study statistics as ε → 0. Observe that a similar situation is discussed in
Khmaladze [6] but for a different problem.

Suppose that the observed diffusion process (under hypothesis) is

dXt = ϑ dt + ε dWt, X0 = 0,0 ≤ t ≤ 1. (4.1)

Then

h(ϑ, t) = 1, I(ϑ) = 1, N(ϑ, t) = 1 − t,

ϑ̂ε = X1, ε−1(ϑ̂ε − ϑ) = W1 ∼N (0,1).

Further

xt (ϑ) = ϑt, x
(1)
t (ϑ) = Wt, U(ϑ, t) = Wt − W1t,

Vε(t) = Uε(t) = ε−1(Xt − X1t) = Wt − W1t = B(t).

Therefore,

Wε(t) = ε−1(Xt − X1t) + ε−1
∫ t

0
(1 − s)−1[Xs − X1s]ds
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and under the basic hypothesis we have

Wε(t) = B(t) +
∫ t

0

B(s)

1 − s
ds = w(t).

Therefore,

�ε =
∫ 1

0
Wε(t)

2 dt =
∫ 1

0
w(t)2 dt

and the test �̂ε = 1{�ε>cα} ∈ Kα satisfies the equality

Eϑ�̂ε = P
{∫ 1

0
w(t)2 dt > cα

}
= α.

Example 2. Consider the linear case

dXt = 〈
ϑ,H(t,Xt )

〉
dt + εσ (t,Xt )dWt, X0 = x0,0 ≤ t ≤ T ,

where ϑ ∈ � ⊂ Rd and assume that the functions H(t, x) and σ(t, x) satisfy regularity con-
ditions. In this case, we can take h̄ε(ϑ, t) = h̄ε(t), that is, this vector-valued function does not
depend on ϑ . Hence, the stochastic integral is well defined and the test has a simplified form. We
have

h̄ε(t) = H(t,Xt )

σ (t,Xt )
, N̄ε(ϑ, s) =

∫ T

s

H(t, xt (ϑ))H(t, xt (ϑ))∗

σ(t, xt (ϑ))2
ds,

dUε(t) = dXt

εσϕ(t,Xt )
− [〈ϑ̂ε,H(t, xt (ϑ̂ε))〉 + 〈ϑ̂ε,H′

x(t,Xt )〉(Xt − xt (ϑ̂ε))]dt

εσ (t,Xt )
,

Wε(t) = Uε(t) +
∫ t

0
H(s,Xs)

∗
N̄ε(ϑ̂ε, s)

−1
∫ s

0
H(v,Xv)dUε(v)ds

and so on.
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