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We write, for geometric index values, a probabilistic proof of the product formula for spherical Bessel
functions. Though our proof looks elementary in the real variable setting, it has the merit to carry over
without any further effort to Bessel-type hypergeometric functions of one matrix argument, thereby avoid
complicated arguments from differential geometry. Moreover, the representative probability distribution
involved in the last setting is shown to be closely related to the symmetrization of upper-left corners of
Haar-distributed orthogonal matrices. Analysis of this probability distribution is then performed and in case
it is absolutely continuous with respect to Lebesgue measure on the space of real symmetric matrices, we
derive an invariance-property of its density. As a by-product, Weyl integration formula leads to the product
formula for Bessel-type hypergeometric functions of two matrix arguments.

Keywords: conditional independence; hypergeometric functions; matrix-variate normal distribution;
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1. Reminder and motivation

The spherical Bessel function jν of index ν is defined for all complex z and all ν > −1 by Watson
[15]

jν(z) =
+∞∑
l=0

(−1)l

(ν + 1)l l!
(

z

2

)2l

,

where (ν + 1)l := �(ν + l + 1)/�(ν + 1) denotes the usual Pochhammer symbol. It provides a
basic example of one-variable special function satisfying a product formula that opened the way
to a rich harmonic analysis. More precisely, for ν ≥ −1/2 and nonnegative real numbers x, y, z,
it is well known that

jν(xy)jν(zy) =
∫
R+

jν(ξy)τ ν
x,z(dξ), (1.1)

where τ ν
x,z is a compactly-supported probability distribution. Recall that for ν > −1/2, (1.1) is

a trivial consequence of the addition theorem for Bessel functions (see, for instance, Chapter XI
in Watson [15]) while it obviously holds for ν = −1/2 since j−1/2(z) = cos(z). Nevertheless,
for an integer p ≥ 1 and for the so-called geometrical index values ν = (p/2) − 1, (1.1) may be
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derived from the following Poisson-type integral representation

j(p/2)−1
(|v|) =

∫
Sp−1

ei〈v,s〉σ1(ds), v ∈R
p, (1.2)

where σ1 is the uniform distribution on the unit sphere Sp−1 and 〈·, ·〉, | · | are respectively the
Euclidean inner product and the associated Euclidean norm in R

p . Indeed, if we set |v| = y, then

j(p/2)−1
(
x|v|)j(p/2)−1

(
z|v|) =

∫
Rp

ei〈v,s〉(σx � σz)(ds),

where σx,σz are the uniform distributions on spheres of radii x, z, respectively. But according
to Ragozin [11], Corollary 5.2, page 1149, the probability distribution σx � σz is absolutely con-
tinuous with respect to the Lebesgue measure in R

p and due to its rotational invariance it has
a radial density. The use of spherical coordinates yields then (1.1). Avoiding techniques from
differential geometry like the ones used to prove the absolute continuity of σx � σz, we write a
probabilistic proof of (1.1) for geometric index values and supply a probabilistic interpretation of
τ

(p/2)−1
x,z . Our starting point is the elementary fact that the conditional distribution of a standard

normal vector N in R
p given its radius |N | is the uniform distribution on the sphere of radius

|N |. The product of two spherical Bessel functions turns towards the conditional independence
of two independent standard normal vectors N1,N2 relative to the σ -field generated by their
radii |N1|, |N2| (Revuz [13]). The representative probability distribution τ

(p/2)−1
x,z is then seen to

be the conditional distribution of the radial part |N1 + N2| given (|N1| = x, |N2| = z). In fact,
N1 + N2 is again distributed as a standard Gaussian vector (up to a constant) and its angular part
is independent from both radii |N1| and |N2|. The reader will easily realize from the ingredients
needed in the proof that choosing any multivariate stable distribution in R

p whose density is a
radial function does not alter our proof. But the Fourier transform of a radial function is again
radial therefore the choice restricts uniquely to isotropic or rotationally invariant stable distri-
butions (whose Lévy exponents are given up to a constant by v �→ |v|α,α ∈ (0,2] (Sato [14],
page 86)).

Our proof has also the merit to carry over after mild modifications to some matrix analogues
of spherical Bessel functions, requiring no knowledge of the theory of Gelfand pairs and their
spherical functions. Those we consider here are known as Bessel-type hypergeometric functions
of one and two m×m real symmetric matrix arguments. This is by no means a loss of generality
since product formulas over the complex division algebra may be easily derived along the same
lines. For functions of one matrix argument, the proof is identical to that written for j(p/2)−1.
Besides, the representative probability distribution is seen to be the conditional distribution of
the radial part of the sum of two independent p × m (p ≥ m) standard matrix-variate normal
distributions given the radial part of each. We shall prove that this conditional distribution is
closely related to the distribution of the m × m upper-left corner of an orthogonal matrix of size
p, whence its absolute continuity (with respect to Lebesgue measure) is deduced for p ≥ m + 1.
For these values of p, one easily derives the product formula for functions of two arguments
using Weyl integration formula for the space of real symmetric matrices. As a matter of fact,
the corresponding representative probability distribution has an analogous description in terms
of singular values rather than matrices. Besides, when p ≥ 2m, a result due to Collins provides
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a detailed description of the distribution of the upper-left corner of an orthogonal matrix (see
remark at the end of the paper), agreeing with the variable change formula given in Lemma 3.7,
page 495 in Herz [9]. Note finally that since Bessel-type hypergeometric functions of two matrix
arguments we consider here are instances of generalized Bessel functions associated with B-type
root systems (see the last chapter in Chybiryakov et al. [3]), then our approach resembles the one
carried for proving Theorem 5.16 (ii) in Biane, Bougerol and O’Connell [1].

The paper is organized as follows. In the next section, we consider spherical Bessel functions
j(p/2)−1 and prove (1.1) for geometric index values. In Section 3, we extend our proof to Bessel-
type hypergeometric functions of one real symmetric matrix argument. In the last section, we
perform a detailed analysis of the representative probability distribution: it is absolutely continu-
ous for p ≥ m+1 and its density enjoys a certain averaged bi-invariance property with respect to
the orthogonal group. The product formula for functions of two real symmetric matrix arguments
follows then from Weyl integration formula on the space of real symmetric matrices.

2. Product formula for spherical Bessel functions

All random variables occurring below are defined on some probability space (	,F ,P) and we
denote E the corresponding expectation. Furthermore, for the σ -field σ(X) generated by a ran-
dom variable X, we write

E[·|X] for E
[·|σ(X)

]
,

and we recall that all equalities involving conditional expectations hold P-almost surely. Let N

be a standard normal vector1 in R
p and let N = R
 be its polar decomposition (R > 0 and


 ∈ Sp−1). Then, R and 
 are independent and 
 is uniformly distributed on Sp−1. It follows
that for any v ∈R

p

E
[
ei〈v,N〉|R] =

∫
Sp−1

ei〈v,Rs〉σ1(ds) = j(p/2)−1
(|v|R)

.

In fact, if X,Y are independent random variables valued in some measurable spaces and if DY

stands for the distribution of Y , then

E
[
f (X,Y )|X] =

∫
f (X,y)DY (dy)

for any bounded Borel function f (see Revuz [13], page 108, Exercise 4.27).
Now, let N1,N2 be two independent standard normal vectors in R

p with polar decompositions
N1 = R1
1,N2 = R2
2 respectively, and consider the product σ -field σ(R1,R2) generated by
R1,R2. Then, the independence of N1 and N2 implies that (Revuz [13])

E
[
ei〈v,N1〉|R1

] = E
[
ei〈v,N1〉|R1,R2

]
,

E
[
ei〈v,N2〉|R2

] = E
[
ei〈v,N2〉|R1,R2

]
.

1Its coordinates are independent centered normal distributions with unit variance.
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Besides, N1,N2 are conditionally independent relative to σ(R1,R2) (see Revuz [13], page 109,
Exercise 4.32). In fact, one has for any bounded Borel function f :Rp →R

E
[
f (N2)|N1,R1,R2

] = E
[
f (N2)|R2

] = E
[
f (N2)|R1,R2

]
.

Thus,

E
[
ei〈v,N1〉|R1

]
E

[
ei〈v,N2〉|R2

] = E
[
ei〈v,N1+N2〉|R1,R2

]
.

Write N1 + N2 := R3
3, then N1 + N2 is (up to a constant factor) a standard normal vector so
that 
3 is uniformly distributed on Sp−1 and is independent from R3. We claim that:

Proposition 2.1. 
3 is independent from σ(R1,R2).

Proof. Let f :Sp−1 → R, g :R+ ×R+ → R be bounded Borel functions, then the independence
of N1,N2 yields

E
[
f (
3)g(R1,R2)

]

= E

[
f

(
N1 + N2

|N1 + N2|
)

g
(|N1|, |N2|

)]

=
∫ ∞

0

∫ ∞

0
F(r1, r2)dr1 dr2

∫
Sp−1×Sp−1

f

(
r1θ1 + r2θ2

|r1θ1 + r2θ2|
)

σ1(dθ1)σ1(dθ2),

where

F(r1, r2) := 1

2p−2�2(p/2)
(r1r2)

p−1e−(r2
1 +r2

2 )/2g(r1, r2).

Let νr1,r2(dθ) be the pushforward of σ1 ⊗ σ1 under the map

(θ1, θ2) �→ r1θ1 + r2θ2

|r1θ1 + r2θ2| ,

then ∫
Sp−1×Sp−1

f

(
r1θ1 + r2θ2

|r1θ1 + r2θ2|
)

σ1(dθ1)σ1(dθ2) =
∫

Sp−1
f (θ)νr1,r2(dθ).

But νr1,r2 is obviously invariant under the action of O(p), therefore νr1,r2 = σ1 since σ1 is the
unique distribution on Sp−1 enjoying the rotational invariance property. �

We also need the following lemma.

Lemma 2.2. Let V,X,Y be random variables such that Y and (X,V ) are independent. Then,
for any bounded Borel function f

E
[
f (X,Y )|V ] =

∫
E

[
f (X,y)|V ]

DY (dy).
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Proof. This fact is easily proved for bounded functions f (x, y) = g(x)h(y) and then extended
to bounded Borel functions using the monotone class theorem (Revuz [12], page 5). �

Combining the proposition and the lemma, one gets

E
[
ei〈v,N1+N2〉|R1,R2

] =
∫

Sp−1
E

[
ei〈v,R3s〉|R1,R2

]
σ1(ds).

Finally, let μR3|(R1,R2) be a regular version of the conditional distribution of R3 given (R1,R2),
then Fubini theorem entails

j(p/2)−1
(|v|R1

)
j(p/2)−1

(|v|R2
) =

∫
R+

j(p/2)−1
(|v|ξ)

μR3|(R1,R2)(dξ).

Thus, (1.1) is proved and τ
(p/2)−1
x,z fits μR3|(R1,R2) on the event {R1 = x,R2 = z} as explained in

the following remark.

Remark 2.1. Let � be the angle between 
1,
2: cos� = 〈
1,
2〉. Then

R3 =
√

R2
1 + R2

2 + 2R1R2 cos�.

But the independence of 
1,
2 entails for any real w

E
[
eiw cos�

] =
∫

Sp−1

∫
Sp−1

eiw〈s,t〉σ1(ds)σ1(dt)

=
∫

Sp−1
j(p/2)−1

(
w|t |)σ1(dt)

= j(p/2)−1(w) = �(p/2)

�(1/2)�((p − 1)/2)

∫ 1

−1
eiwξ

(
1 − ξ2)(p−3)/2 dξ,

where we used Lemma 5.4.4, page 195 in Dunkl and Xu [5]. Performing the variable change

u =
√

x2 + z2 + 2xzξ, ξ ∈ [−1,1],

one recovers the density of τ
(p/2)−1
x,z derived in Proposition A.5, page 1153 in Ragozin [11].

3. Product formula for Bessel-type hypergeometric functions of
one real symmetric matrix argument

In this section, we consider matrix-variate normal distributions rather than vectors. Doing so
leads to a product formula for Bessel-type hypergeometric functions of one real symmetric matrix
argument (see below). To this end, we recall from Chikuse [2], Chapter I, the following needed
facts. Let p ≥ m ≥ 1 and let N be a real matrix-variate p × m standard normal distribution, that



2424 L. Deleaval and N. Demni

is a p×m matrix whose entries are independent centered normal distributions with unit variance.
Then N admits almost surely a unique polar decomposition N = Z(NT N)1/2 := ZH . Moreover,
Z and H are independent, H is almost surely invertible and Z is uniformly distributed on the
real Stiefel manifold

p,m := {
A ∈ Mp,m(R),AT A = Im

}
,

where Mp,m(R) is the space of p×m real matrices. Let O(p) be the orthogonal group, then p,m

is a homogeneous space p,m ≈ O(p)/O(p−m). It thereby admits a unique O(p)-invariant dis-
tribution we shall denote σp,m. More precisely, σp,m is the pushforward of the Haar distribution
on O(p) under the map

O �→ Oep,m, ep,m := Im ⊕ 0p−m,m.

Hence, for any C ∈ Mp,m(R)

E
[
ei tr(CT N)|H ] =

∫
p,m

ei tr(CT sH)σp,m(ds) =
∫

p,m

ei tr(HCT s)σp,m(ds).

Now, let N1,N2 be two independent p × m matrix-variate standard normal distributions with
respective polar decomposition N1 = Z1H1,N2 = Z2H2. Then, by considering the product σ -
field σ(H1,H2) generated by H1,H2 we easily derive

E
[
e2i tr(CT N1)|H1

]
E

[
e2i tr(CT N2)|H2

] = E
[
e2i tr(CT (N1+N2))|H1,H2

]
. (3.1)

Since N1 + N2 is up to a constant factor a p × m matrix-variate standard normal distribution,
then it admits almost surely a polar decomposition N1 + N2 = Z3H3, where Z3 is uniformly
distributed on p,m and is independent from H3. Similarly to the case m = 1, one proves that
Z3 is independent from σ(H1,H2) (analogue of proposition 2.1) using the following variable
change formula (Faraut and Korányi [7], Proposition XVI.2.1, page 351): let dA be the Lebesgue
measure on Mp,m(R), let S+

m(R) be the set of real positive definite matrices with Lebesgue
measure dr and γ = (p/2) − 1 − [m(m − 1)]/2. Then

∫
Mp,m(R)

f (A)dA =
∫

p,m

∫
S+

m(R)

f (s
√

r)
[
det(r)

]γ
σp,m(ds)dr.

Accordingly and with the help of Lemma 2.2, one gets

E
[
e2i tr(CT Z3H3)|H1,H2

] =
∫

p,m

E
[
e2i tr(CT sH3)|H1,H2

]
σp,m(ds),

and if μH3|(H1,H2) is the conditional distribution of H3 given (H1,H2), then Fubini theorem
entails

E
[
e2i tr(CT Z3H3)|H1,H2

] =
∫

S+
m(R)

[∫
p,m

e2i tr(CT sξ)σp,m(ds)

]
μH3|(H1,H2)(dξ).
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Using Herz [9], (3.5), page 493, one sees that

E
[
e2i tr(CT N)|H ] =

∫
p,m

e2i tr(HCT s)σd,m(ds) = 0F1

(
p

2
;−(

HCT CH
))

,

where 0F1 is the Bessel-type hypergeometric function of one real symmetric argument and of
geometrical index value (p/2) (it reduces when m = 1 to j(p/2)−1 (Muirhead [10])). Finally,
(3.1) yields the product formula

0F1

(
p

2
;−H1C

T CH1

)
0F1

(
p

2
;−H2C

T CH2

)

=
∫

S+
m(R)

0F1

(
p

2
;−ξCT Cξ

)
μH3|(H1,H2)(dξ).

4. Absolute continuity of μH3|(H1,H2) and product formula for
Bessel-type hypergeometric functions of two matrix
arguments

4.1. Absolute continuity of μH3|(H1,H2)

In contrast to the case m = 1, the absolute-continuity of μH3|(H1,H2) is not obvious and needs a
careful analysis we perform below.

Proposition 4.1. For any p ≥ m + 1, μH3|(H2,H1) is absolutely continuous with respect to the
Lebsegue measure on Sm(R) and its density, say f(H1,H2)(A), satisfies:

∫
O(m)×O(m)

f(O1H1O
T
1 ,O2H2O

T
2 )

(
OT

3 AO3
)

dO1 ⊗ dO2

(4.1)

=
∫

O(m)×O(m)

f(O1H1O
T
1 ,O2H2O

T
2 )(A)dO1 ⊗ dO2

almost surely for any O3 ∈ O(m), where dOi, i ∈ {1,2}, are two copies of the Haar distribution
on O(m). For p = m, μH3|(H2,H1) is singular.

Proof. Since

(H3)
2 = (H1)

2 + (H2)
2 + H1Z

T
1 Z2H2 + H2Z

T
2 Z1H1

then μH3|(H2,H1) is the pushforward of σp,m ⊗ σp,m under the map

(Z1,Z2) �→
√

(H1)2 + (H2)2 + H1Z
T
1 Z2H2 + H2Z

T
2 Z1H1
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for fixed H1,H2, where for a positive semi-definite matrix A,
√

A is its square root. But from
the very definition of σp,m, μH3|(H1,H2) is the pushforward of the Haar distribution dO ⊗ dO on
O(p) × O(p) under the map

(O1,O2) �→
√

(H1)2 + (H2)2 + H1eT
p,mOT

1 O2ep,mH2 + H2eT
p,mOT

2 O1ep,mH1

or equivalently

(O1,O2) �→
√

(H1)2 + (H2)2 + H1eT
p,mO1O2ep,mH2 + H2eT

p,mOT
2 OT

1 ep,mH1

since dO is invariant under O �→ OT . Besides, the random variable O1O2 ∈ O(p) is Haar dis-
tributed since it is O(p)-invariant. As a matter of fact, μH3|(H1,H2) is the pushforward of dO

under the map

O �→
√

(H1)2 + (H2)2 + H1eT
p,mOep,mH2 + H2eT

p,mOT ep,mH1.

Now observe that for fixed H1,H2,

O �→ (H1)
2 + (H2)

2 + H1e
T
p,mOep,mH2 + H2e

T
p,mOT ep,mH1

is a Lipschitz map from O(p) into Sm(R) whose differential is affine. Moreover, O(p) and
Sm(R) are real analytic manifolds such that dimO(p) = p(p − 1)/2, dimSm(R) = m(m+ 1)/2.
As a matter of fact:

• If p = m+ 1, then dimO(m+ 1) = dimSm(R) and Theorem 3.2.5, page 244 in Federer [8]
implies that the pushforward of the Haar distribution on O(p) under this map is absolutely
continuous with respect to the Lebesgue measure on Sm(R).

• If p ≥ m + 2, then dimO(p) > dimSm(R) and Theorem 3.2.12, page 249 in Federer [8]
yields the same conclusion.

Now, since the Jacobian of the transformation A �→ √
A on the space of positive definite ma-

trices is proportional to det(A)−1/2, then it suffices to prove (4.1) for the conditional dis-
tribution of H 2

3 |(H2,H1). But if g denotes its density then for any O1,O2,O3 ∈ O(m),
g(O1H1O

T
1 ,O2H2O

T
2 )(O

T
3 AO3) is the density of the random variable (for fixed H1,H2)

O3O1(H1)
2OT

1 OT
3 + O3O2(H2)

2OT
2 OT

3

+ O3O1H1O
T
1 ZT

1 Z2O2H2O
T
2 OT

3 + O3O2H2O
T
2 ZT

2 Z1O1H1O
T
1 OT

3

which can be written as

(O3O1)(H1)
2(OT

1 OT
3

) + (O3O2)(H2)
2(OT

2 OT
3

)
+ (O3O1)H1

(
OT

1 OT
3

)(
Z1O

T
3

)T (
Z2O

T
3

)
(O3O2)H2

(
OT

2 OT
3

)
+ (O3O2)H2

(
OT

2 OT
3

)(
Z2O

T
3

)T (
Z1O

T
3

)
(O3O1)H1

(
OT

1 OT
3

)
.
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But since σp,m is invariant under the right action of O(m) (Chikuse [2], page 28) and since
the Haar distribution dO is O(m)-bi-invariant, then the f(H1,H2) satisfies (4.1). Finally, since
dimO(m) < dimSm(R) then Theorem 3.2.5 in Federer [8] shows that for p = m, μH3|(H1,H2) is
singular with respect to the Lebesgue measure on Sm(R). �

Remark 4.1. Note that

eT
p,mOep,m = �m ⊕ 0p−m,p−m

where �m is the upper-left m × m corner of the orthogonal matrix O . According to Collins
[4], Remark 2.1, page 118, if p ≥ 2m then the distribution of �m is absolutely continuous with
respect to the Lebesgue measure on Mm,m(R): its density is given by

det
(
Im − AAT

)(p−2m−1)/21{‖A‖<1},

where ‖ · ‖ is the matrix norm induced by the Euclidian norm | · |. This fact should be compared
with Lemma 3.7, page 495 in Herz [9].

4.2. Product formula for functions of two matrix arguments

Let p ≥ m + 1 so that μH3|(H2,H1) is absolutely continuous with respect to Lebesgue measure
on Sm(R). Then one derives a product formula for the Bessel-type hypergeometric functions of
two real symmetric matrix arguments and of geometrical index values p/2,p ≥ 1: if A is a real
positive semi-definite matrix and C ∈ Mp,m(R), then these functions are related to those of one
real symmetric matrix argument by

0F1

(
p

2
;A;−CT C

)
(4.2)

=
∫

O(m)
0F1

(
p

2
;−O

√
AOT

(
CT C

)
O

√
AOT

)
dO

where dO is now the Haar distribution on O(m) (Theorem 7.3.3, page 260 in Muirhead [10]).
Keeping the same notations used in the previous section, one has

0F1

(
p

2
;A;−CT C

)
=

∫
O(m)

E
[
e2i tr(CT N)|H = O

√
AOT

]
dO

which in turn implies that for any positive semi-definite matrices A,B and any C ∈ Mp,m(R)

0F1

(
p

2
;A;−CT C

)
0F1

(
p

2
;B;−CT C

)

=
∫

O(m)×O(m)

∫
S+

m(R)
0F1

(
p

2
;−ξCT Cξ

)
μ

H3|(O1
√

AOT
1 ,O2

√
BOT

2 )
(dξ)dO ⊗ dO.
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Recall now that f(H1,H2) denotes the density of μH3|(H1,H2). Then Weyl integration formula for
Sm(R) (Faraut [6], Theorem 10.1.1, page 232), (4.1) and Fubini theorem entail

∫
O(m)×O(m)

∫
S+

m(R)
0F1

(
p

2
;−ξCT Cξ

)
f

(O1
√

AOT
1 ,O2

√
BOT

2 )
(ξ)dξ ⊗ dO ⊗ dO

= cm

∫
O(m)×O(m)

∫
O(m)×R

m+
0F1

(
p

2
;−ODOT

(
CT C

)
ODOT

)

× f
(O1

√
AOT

1 ,O2
√

BOT
2 )

(
ODOT

)
V (D)dD ⊗ dO ⊗ dO ⊗ dO

= cm

∫
O(m)×R

m+
0F1

(
p

2
;−ODOT

(
CT C

)
ODOT

)

×
{∫

O(m)×O(m)

f
(O1

√
AOT

1 ,O2
√

BOT
2 )

(D)dO ⊗ dO

}
V (D)dD ⊗ dO,

where D = diag(λ1 > λ2 > · · · > λm) is a positive definite diagonal matrix,

V (D) :=
∏

1≤n<j≤m

(λn − λj ), dD =
m∏

j=1

dλj ,

and cm is a normalizing constant. By the virtue of (4.2), one gets

0F1

(
p

2
;A;−CT C

)
0F1

(
p

2
;B;−CT C

)
= cm

∫
R

m+
0F1

(
p

2
;D2;−CT C

)
κA,B(D)dD,

where

κA,B(D) := V (D)1{λ1>···>λm>0}
∫

O(m)×O(m)

f
(O1

√
AOT

1 ,O2
√

BOT
2 )

(D)dO ⊗ dO.

Finally, one performs a change of variable λi �→ √
λi,1 ≤ i ≤ m in order to get the product

formula:

0F1

(
p

2
;A;−CT C

)
0F1

(
p

2
;B;−CT C

)

= cm

2m

∫
λ1>···>λm>0

0F1

(
p

2
;D;−CT C

)
κA,B(

√
D)√

λ1 · · ·λm

m∏
i=1

dλi.
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