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Optimal method in multiple regression with
structural changes
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In this paper, we consider an estimation problem of the regression coefficients in multiple regression models
with several unknown change-points. Under some realistic assumptions, we propose a class of estimators
which includes as a special cases shrinkage estimators (SEs) as well as the unrestricted estimator (UE) and
the restricted estimator (RE). We also derive a more general condition for the SEs to dominate the UE. To
this end, we generalize some identities for the evaluation of the bias and risk functions of shrinkage-type
estimators. As illustrative example, our method is applied to the “gross domestic product” data set of 10
countries whose USA, Canada, UK, France and Germany. The simulation results corroborate our theoretical
findings.
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1. Introduction

In this paper, we study the multivariate regression models with multiple change-points occur-
ring at unknown times. The target parameters are the regression coefficients while the unknown
change points are treated as nuisance parameters. More specifically, we are interested in scenario
where imprecise prior information about the regression coefficients is available, that is, the target
parameters may satisfy some restrictions.

The importance of change-points’ model in literature is a primary source of our motivation.
Indeed, the regression model with change-points has been applied in many fields. For example,
this model was used in Broemeling and Tsurumi [4] for the US demand for money, as well as in
Lombard [11] for the effect of sudden changes in wind direction of the flight of a projectile. It
was also analyse the DNA sequences (see, e.g., Braun and Muller [3] and Fu and Curnow [5,6]).
To give some recent references, we quote Bai and Perron [1], Zeileis et al. [20], Perron and Qu
[16] among others.

More specifically, the method in Perron and Qu [16] is based on a global least squares pro-
cedure. Generally, when the restriction holds, the restricted estimator (RE) dominates the unre-
stricted estimator (UE). However, it is well known that the RE may performs poorly when the
restrictions is seriously violated.

Over the years, shrinkage estimation has become a useful tool in deriving the method which
combines in optimal way both imprecise prior knowledge from a hypothesized restriction and the
sample information. For more details about such a technique, we refer to James and Stein [8],
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Baranchick [2], Judge and Bock [9], and the references therein. Also, to give some recent contri-
butions about shrinkage methods, we quote Saleh [18], Nkurunziza and Ahmed [15], Nkurunziza
[13] and Tan [19], among others.

To the best of our knowledge, in context of multiple regression model with unknown changes-
points, shrinkage method has received, so far, less attention. Thus, we hope to fill this gap by
developing a class of shrinkage-type estimators which includes as special cases the UE, RE,
James–Stein type and positive shrinkage estimators as well as pre-test estimators. We also prove
that the proposed shrinkage estimators (SEs) dominate in mean square error sense the UE. The
technique in this paper extends, in two ways the method given in literature.

First, the asymptotic dependance structure between the shrinking factor (i.e., the difference
between the UE and the RE) and the RE is more general than that given in the quoted papers. In
particular, the asymptotic variance of RE and the asymptotic variance of (UE−Re) are not posi-
tive definite matrices as in the problem studied in Judge and Mittelhammer [10]. This is justified
by the fact that, since the hypothesized restriction is linear, these quantities are asymptotically
equivalent to the nonsurjective linear (equivalent here to noninjective linear) transformations of
the UE for which the asymptotic variance is positive definite matrix. In this case, it is impossible
for the asymptotic variance of RE or that of (UE−Re) to be positive definite matrix. To make
the justification more precise, let A be a nonrandom n × m-matrix with the rank n0 < n, let B

be a nonrandom n-column vector, and let F be n-column random vector whose variance is a
positive definite matrix � . Further, let G = AF +B , that is a nonsurjective linear transformation
of the random vector F . Then, Var(G) = A�A′ which cannot be a positive definite matrix since
rank(A�A′) = n0 < n.

Second, we derive a more general condition for the SEs to dominate the UE. To this end, we
generalize Theorem 1 and Theorem 2 of Judge and Bock [9] which are useful in computing the
bias and the risk functions of shrinkage-type estimators. As far as the underlying asymptotic re-
sults are concerned, another difference, with the work in Judge and Mittelhammer [10], consists
in the fact that we derived the joint asymptotic normality under weaker conditions than that in the
quoted paper. Indeed, in Judge and Mittelhammer [10], the covariance–variance of the error terms
is a scalar matrix (see the first paragraph of Section 2 in Judge and Mittelhammer [10]) and thus,
the errors term are both homoscedastic and uncorrelated. In addition, in the quoted paper, the re-
gressors are assumed nonrandom. In this paper, the errors term do not need to be homoscedastic
and/or uncorrelated, and they may also be nonstationary stochastic processes. Further, the regres-
sors may be random and in addition, they may be correlated with the error terms. In summary,
the proposed method is applicable to the statistical model with familiar regularity conditions as
assumed in Judge and Mittelhammer [10], see the last sentence of Section 2.4, as well as in
unfamiliar regularity conditions for which the dependance structure of the errors and regressors
terms is as weak as that of mixingale array. The model considered here takes also an account
for the possibility of the change-points phenomenon and, because of this, the derivation of the
joint asymptotic normality between the UE and RE is mathematically challenging. Moreover, the
established results extend that given for example in Perron and Qu [16].

In concluding this introduction, note that due to the conditions discussed above which are
weaker than that in the literature, the construction of shrinkage-type estimators cannot be ob-
tained by applying the results given in the quoted papers. Further, the derivation of the asymp-
totic distributional risk (ADR) of shrinkage estimators (SEs) is challenging and the instrumental
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identities in Judge and Bock [9], Theorems 1 and 2, are not useful. This motivated us to gener-
alize these identities. This constitutes one of the aspects of the main results which are significant
in reflecting the difference with the quoted works. The second aspect, of the main results which
is significant in reflecting the difference with the quoted works, can be viewed from the fact that
the established ADR has some extra terms and the risk dominance condition of SEs looks quite
complicated.

The rest of this paper is organized as follows. Section 2 describes the statistical model and
outlines the proposed estimation strategies. Section 3 gives the joint asymptotic normality of
the unrestricted and restricted estimators. In Section 4, we introduce a class of shrinkage-type
of estimators for the coefficients and derive its asymptotic distribution risks. Section 5 presents
some simulation studies and an illustrative analysis of a real data set. Section 6 gives some
concluding remarks and, for the convenience of the reader, technical proofs are given in the
Appendix.

2. Statistical model and assumptions

In this section, we present the statistical model as well as the main regularity conditions. As
mentioned above, in this paper, we focus on the model with change-points. Nevertheless, the
proposed method is useful in linear model without change-points. In this last case, the derivation
of the joint asymptotic normality between the RE and UE is not as mathematically involved as
in case of the model with change-points.

2.1. The linear model without change-points

We consider the multiple linear regression model with T observations for which the response
is a T -column vector Y = (y1, . . . , yT )′, the regressors is a T × q0-matrix Z̄, the regression
coefficients is a q0-column vector δ, and the errors term is a T -column vector u. In particular, we
have let

Y = Z̄δ + u. (2.1)

Further, we consider the scenario where a prior knowledge about δ exists with some uncertainty.
More specifically, we consider the case where δ is suspected to satisfy the following restriction

Rδ = r, (2.2)

where R is a known k × q0-matrix with rank k ≤ q0, and r is a known k-column vector. Under
some regularities conditions on the error terms and the regressors, the shrinkage estimator for
the parameter δ is available in literature. To give some references, we quote Saleh [18], Hossain
et al. [7] among others. The shrinkage estimators given in the quoted papers are members of the
class of shrinkage estimators which is established in this paper. Further, the established condition
for the risk dominance of shrinkage estimators is more general than that given for example, in
Saleh [18], Hossain et al. [7].

The proposed methodology is applicable to the model in (2.1) and (2.2) provided that the
conditions on the error and regressors terms are such that, as T tends to infinity,
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1. the matrices T −1Z̄0′Z̄0 and T −1(Z̄0′uu′Z̄0) converge in probability to nonrandom q0 ×q0-
positive and definite matrices;

2. T −1/2Z̄0′u converges in distribution to a Gaussian random vector whose variance–
covariance is the limit in probability of T −1Z̄0′Z̄0.

These two points are generally satisfied in classical regression models where the error terms are
homoscedastic and independent, with linearly independent regressors. In the sequel, we consider
a very general model with change-points and heteroscedastic as well as possibly correlated errors
term. The assumptions of the model are discussed in the next subsection.

2.2. The model with change-points

Briefly, we consider the multiple linear regression model with T observations and m unknown
breaks points T1, . . . , Tm with 1 < T1 < · · · < Tm < T . Here, it is important to stress that the
number of change-points m is known. For convenience, let T0 = 1 and Tm+1 = T . Namely, let

Y = Z̄δ + u, (2.3)

where Y = (y1, . . . , yT )′ is a vector of T dependent variables, Z̄ is a T × (m + 1)q-matrix of
regressors given by Z̄ = diag(Z1, . . . ,Zm+1) with Z1 = (z1, . . . , zT1)

′, and for j = 2,3, . . . ,m+
1, Zj = (zTj−1+1, . . . , zTj

)′, zTi−1+1 is a q-column vector for i = 1,2, . . . ,m + 1. Here, u =
(u1, . . . , uT )′ is the set of disturbances and δ is the (m+1)q vector of coefficients. Also, let R be
a known k × (m + 1)q-matrix with rank k, k ≤ (m + 1)q and let r be a known k-column vector.
We consider the case where δ may satisfy or not the following restrictions

Rδ = r. (2.4)

Let {T 0
1 , . . . , T 0

m} be the true values of the break times {T1, . . . , Tm}, and Z̄0 = diag(Z0
1, . . . ,

Z0
m+1), where Z0

i = (zT 0
i−1+1, . . . , zT 0

i
)′. Set δ = (δ′

1, δ
′
2, . . . , δ

′
m+1)

′ where for i = 1,2, . . . ,m+1

δi is a q-column vector.
To estimate the unknown parameters (δ′

1, . . . , δ
′
m+1, T1, . . . , Tm+1)

′ based only on the sample
information given in {Y,Z}, one can use the least squares principle as described, for example
in Perron and Qu [16]. Also, in case the restriction in (2.4) holds, it is common to use the re-
stricted least squares methods in order to estimate the target parameter. This gives the restricted
estimator (RE) of (δ, T1, . . . , Tm). In particular, concerning the change-points, let {T̃1, . . . , T̃m}
denote the RE of the true change points from restricted OLS and let {T̂1, . . . , T̂m} be the unre-
stricted estimators (UE). Also, let δ̂ and δ̃ be, respectively, the UE and RE for the regression
coefficients δ. Then, following the framework in Perron and Qu [16], let SSRR

T (T1, . . . , Tm) and
SSRU

T (T1, . . . , Tm) be the sum of square residuals from the RE and UE OLS regression evaluated
at the partition {T1, . . . , Tm}, respectively. We have

(T̃1, . . . , T̃m) = arg min
T1,...,Tm

SSRR
T (T1, . . . , Tm),

(2.5)
(T̂1, . . . , T̂m) = arg min

T1,...,Tm

SSRU
T (T1, . . . , Tm).
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The optimality of the proposed method is based on the asymptotic properties of the UE and RE.
In particular, in Section 3, we establish as a preliminary step the joint asymptotic normality of
the UE and RE. To this end, we present below the regularities conditions. To simplify the no-
tation, let the L2-norm of random matrix X be defined by ‖X‖2 = (

∑
a

∑
bE|Xa,b|2)1/2, and

let {Fi , i = 1,2, . . .} be a filtration. Also, let op(a) denote a random quantity such that op(a)/a

converges in probability to 0, let Op(a) denote a random quantity such that Op(a)/a is bounded
in probability. Similarly, let o(a) denote a nonrandom quantity such that o(a)/a converges to
0, let O(a) denote a nonrandom quantity such that O(a)/a is bounded. We also use the nota-

tions
d−−−−→

T →∞ and
P−−−−→

T →∞ to stand for convergence in distribution and convergence in probability

respectively.

Assumptions (Regularity conditions).

(A1) Let Lp = (T 0
p+1 − T 0

p ), p = 1, . . . ,m, then (1/Lp)
∑T 0

p +[Lpv]
t=T 0

p +1
zt z

′
t

p−→ Qp(v) a non-

random positive definite matrix uniformly in v ∈ [0,1]. Besides, there exists an L0 > 0

such that for all Lp > L0, the minimum eigenvalues of (1/Lp)
∑T 0

p +Lp

t=T 0
p +1

zt z
′
t and of

(1/Lp)
∑T 0

p

t=T 0
p −Lp

zt z
′
t are bounded away from 0.

(A2) The matrix
∑i2

t=i1
zt z

′
t is invertible for 0 ≤ i2 − i1 ≤ ε0T for some ε0 > 0.

(A3) T 0
p = [T λ0

p], where p = 1, . . . ,m + 1 and 0 < λ0
1 < · · · < λ0

m < λ0
m+1 = 1.

(A4) The minimization problem defined by (2.5) is taken over all possible partitions such that
Ti − Ti−1 > τT (i = 1, . . . ,m + 1) for some τ > 0.

(A5) For each segment, (T 0
p−1, T

0
p ), p = 1, . . . ,m + 1, set Xpi = T −1/2zT 0

p−1+iuT 0
p−1+i and

set Fp,i = FT 0
p−1+i . We assume that {Xpi,Fp,i} forms a L2-mixingale array of size

−1/2. That is, there exist nonnegative constants {cpi : i ≥ 1} and ψ(j), j ≥ 0 such that
ψ(j) ↓ 0 as j → ∞ and for i ≥ 1, j ≥ 0, with

∥∥E(Xpi |Fp,i−j )
∥∥

2 ≤ cpiψ(j),∥∥Xpi − E(Xpi |Fp,i+j )
∥∥

2 ≤ cpiψ(j + 1), ψ(j) = O
(
j−1/2−ε

)
for some ε > 0. Also, let Lp = T 0

p+1 −T 0
p , and define lp , bp and rp = [Lp/bp] such that

bp ≥ lp + 1, lp ≥ 1, bp ≤ Lp . We assume that as bp −−−−→
Lp→∞ ∞, lp −−−−→

Lp→∞ ∞, bp/Lp →
0, and lp/bp → 0.

(A6) For p = 1, . . . ,m+1, for s = 1, . . . , q , {X2
pi,s/c

2
pi, i = 1,2, . . .} is uniformly integrable;

max
1≤i≤Lp

cpi = o
(
b

−1/2
p

); rp∑
i=1

(
max

(i−1)bp+1≤t≤ibp

cpt

)2 = O
(
b−1
p

)
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and

rp∑
i=1

( ibp∑
t=(i−1)bp+lp+1

Xpt

)( ibp∑
t=(i−1)bp+lp+1

Xpt

)′
p−−−−→

Lp→∞ �p.

Moreover, let Vj,i = ∑ibj

t=(i−1)bj +lj +1 Xj,t , j = 1,2, . . . ,m + 1. Let r(1) = min1≤j≤m(rpj
), let

r(m) = max1≤j≤m(rpj
), and let Lmin = min(L1, . . . ,Lm+1). We have

1.
∑r(m)

i=r(1)+1(max(i−1)bj +1≤t≤ibj
cjt )

2 = o(b−1
j ), j = 1,2, . . . ,m + 1.

2.
∑r(1)

i=1(V
′
1,i , V

′
2,i , . . . , V

′
m+1,i )

′(V ′
1,i , V

′
2,i , . . . , V

′
m+1,i )

p−−−−→
Lmin→∞�, where � is nonrandom

positive definite matrix.

For the interpretation of Assumptions (A1)–(A4), we refer to Perron and Qu [16]. In summary,
Assumptions (A1) and (A2) are usually imposed in multiple linear regressions with structural
changes. Further, Assumption (A3) guarantees to have asymptotically distinct change points and
Assumption (A4) puts a lower bound on the distance between breaks. As mentioned in Perron
and Qu [16], this assumption is stronger than the similar condition literature. As justified in
the quoted paper, this is the cost needed to allow the heterogeneity and serial correlation in the
errors. Assumptions (A5)–(A6) are needed to establish the asymptotic normality of the UE. Note
that Assumption (A5) considers the case of mixingale random variables, which allow both the
regressors and the errors in each break to be a form of different distributions and asymptotically
weak dependencies.

3. The joint asymptotic distribution of the UE and RE

In this section, we derive the asymptotic joint normality for the restricted and unrestricted OLS.
Under Assumptions (A1)–(A4), T −1Z̄0′Z̄0 converges in probability to a nonrandom q(m +
1) × q(m + 1)-positive and definite matrix. Hereafter, we denote this matrix by 	. Also, under
Assumption (A6), T −1(Z̄0′uu′Z̄0) converges in probability to �, which is a nonrandom q(m +
1)×q(m+1)-positive and definite matrix. Further, under Assumptions (A5)–(A6), we establish
the following lemma which is crucial in establishing the joint asymptotic of the UE and RE.

Lemma 3.1. Under Assumptions (A1)–(A6), T −1/2Z̄0′u d−−−−→
T →∞ N(m+1)q(0,�).

The proof is given in the Appendix B. Also, note that if the restriction in (2.4) does not hold,

the asymptotic distribution of δ̃ may degenerate. Thus, in order to derive the joint asymptotic
normality, we consider the following sequence of local alternative,

H1T : Rδ = r + μ√
T

, T = 1,2, . . . , (3.1)
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with ‖μ‖ < ∞. To simplify the notation, let δ̂ and δ̃ denote, respectively, the UE and RE of δ.
Let J0 = 	−1R′(R	−1R′)−1, and let Im denote m × m identity matrix. Further, let

μ1 = −J0μ, �11 = 	−1�	−1, �12 = 	−1�	−1(I(m+1)q − R′J ′
0

)
,

�21 = �′
12, �22 = (I(m+1)q − J0R)	−1�	−1(I(m+1)q − R′J ′

0

)
,


11 = J0R�11R
′J ′

0, 
12 = J0R�12, 
21 = 
′
12, 
22 = �22.

Lemma 3.2. Under Assumptions (A1)–(A6), and the sequence of local alternative in (3.1),(√
T

(
δ̂ − δ0

)
√

T
(
δ̃ − δ0

))
d−→

T →∞

(
ε3
ε4

)
∼N2(m+1)q

((
0
μ1

)
,

(
�11 �12
�21 �22

))
;

( √
T (δ̂ − δ̃)√
T

(
δ̃ − δ0

))
d−→

T →∞

(
ε5
ε4

)
∼N2(m+1)q

((−μ1
μ1

)
,

(

11 
12

21 
22

))
.

From the above result, it should be noted that (ε5, ε4)
′, the limit in distribution (

√
T (δ̂ −

δ̃),
√

T (δ̃−δ0)) are not uncorrelated as for example in Saleh [18], Theorem 3, page 375, Hossain
et al. [7], among others. Further, note that 
11 and 
22 are not positive definite matrices as
the case in Judge and Mittelhammer [10]. Because of that, the construction of shrinkage-type
estimators cannot be obtained by applying the results given in the literature.

4. Shrinkage estimator and related asymptotic properties

It is well known that under the restriction in (2.4), the RE dominates in mean square error sense
the UE. However, if the restriction in (2.4) is seriously violated, the RE performs poorly. In some
scenarios, the prior restriction in (2.4) is subjected to some uncertainty that may be induced by
the change in the phenomenon underlying the regression model in (2.3). Under such an uncer-
tainty, it is of interest to propose a statistical method which combine in optimal way the sample
information and an uncertain information given in (2.4).

In this section, we introduce a class of shrinkage estimators which encloses the UE, RE as well
as Stein-type estimator, and positive part Stein-type estimator. To simplify some notations, let

A = R′(R	−1�	−1R′)−1R, and Â = R′(R	̂−1�̂	̂−1R′)−1R, where �̂ and 	̂ denote consistent
estimators of � and 	, respectively. Also, as in Nkurunziza [14], let h be continuous (except on
a number of finite points), real-valued and integrable function (with respect to the Gaussian
measure). We consider the following class of estimators

β̂(h) = δ̃ + h
(
T (δ̃ − δ̂)′Â(δ̃ − δ̂)

)
(δ̂ − δ̃). (4.1)

It should be noted that for the case where h ≡ 0, β̂(0) is the RE δ̃. Also, if h ≡ 1, we have
the UE, that is, β̂(1) = δ̂. Further, by choosing a suitable h one can get the pretest estimators
as given for example in Saleh [18], Hossain et al. [7], among others. Finally, the James–Stein
estimator δ̂s and Positive-Rule Stein estimator δ̂s+ are members of the class in (4.1). Indeed, let
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k denote the rank of the matrix R as defined in (2.4). By taking h(x) = 1 − (k − 2)/x, x > 0, and
h(x) = max{0,1 − (k − 2)/x}, x > 0 we get δ̂s and δ̂s+, respectively. More precisely, we have
δ̂s = δ̃ + (1 − k−2

ψ
)(δ̂ − δ̃), δ̂s+ = δ̃ + (1 − k−2

ψ
)+(δ̂ − δ̃) where ψ = T (δ̃ − δ̂)′Â(δ̃ − δ̂), with

x+ = max(0, x).
In order to evaluate the performance of the proposed estimators, we consider the quadratic

loss function L(θ, d) = (d − θ)′W(d − θ), where W is a symmetric nonnegative definite matrix,
and use the asymptotic distributional risk (ADR) as defined, for example, in Saleh [18]. For the
convenience of the reader, we recall that the ADR of an estimator θ̂ is defined as ADR(θ̂ , θ;W) =
E[ρ ′

0Wρ0], with ρ0 the limit in distribution of
√

T (θ̂ − θ) as T tends to infinity, and W is a
certain weight nonnegative definite matrix.

In the sequel, we set  = μ′
1Aμ1 and assume that the weight matrix W satisfies W =

A1/2W ∗A1/2, with W ∗ a symmetric nonnegative definite matrix. We establish below a lemma
which gives the ADR of estimators which are members of the class in (4.1). Briefly, the deriva-
tion of this lemma is based on the identity, established in Appendix C, which generalizes Theo-
rem 2 in Judge and Bock [9]. In particular, this lemma is useful in deriving ADR of δ̂, δ̃, δ̂s and
δ̂s+.

Lemma 4.1. Suppose that Assumptions (A1)–(A6) and the sequence of local alternative in (3.1)
hold. Then

ADR
(
β̂(h), δ0,W

)
= ADR

(
δ̃, δ0,W

) − 2E
[
h
(
χ2

k+2()
)]

μ′
1Wμ1

− 2E
[
h
(
χ2

k+2()
)]

μ′
1A
12Wμ1 + 2E

[
h
(
χ2

k+2()
)]

trace(
12W
11A) (4.2)

+ 2E
[
h
(
χ2

k+4()
)]

μ′
1A
12Wμ1

+ E
[
h2(χ2

k+2()
)]

trace(W
11) + E
[
h2(χ2

k+4()
)]

μ′
1Wμ1.

Proof. The proof of this lemma follows directly by combining Lemma 3.2, Theorem C.2 and
Lemma C.3. �

From Lemma 4.1, by taking h(x) = 1, h(x) = 0, h(x) = 1 − k−2
x

and h(x) = max{0, (1 −
k−2
x

)}, we establish the following corollary which gives the ADR of the estimators δ̂, δ̃, δ̂s and

δ̂s+, respectively.

Corollary 4.1. Suppose that the conditions of Lemma 4.1 hold, then

ADR
(
δ̂, δ0,W

)
= trace

(
W	−1�	−1),

ADR
(
δ̃, δ0,W

)
= trace

[
W(Iq(m+1) − J0R)	−1�	−1(Iq(m+1) − R′J ′

0

)] + μ′
1Wμ1,
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ADR
(
δ̂s , δ0,W

)
= ADR

(
δ̂, δ0,W

) − 2(k − 2)E
[
χ−2

k+2()
]

trace
(
W(
11 + 
12)

)
+ (

k2 − 4
)
E
[
χ−4

k+4()
]
μ′

1Wμ1 + (k − 2)2E
[
χ−4

k+2()
]

trace(W
11)

+ 4(k − 2)E
[
χ−4

k+4()
]
μ′

1A
12Wμ1,

ADR
(
δ̂s+, δ0,W

)
(4.3)

= ADR
(
δ̂s , δ0,W

)
+ 2E

(
I
(
χ2

k+2() < k − 2
) − (k − 2)χ−2

k+2()I
(
χ2

k+2() < k − 2
))

μ′
1Wμ1

+ 2E
(
I
(
χ2

k+2() < k − 2
) − (k − 2)χ−2

k+2()I
(
χ2

k+2() < k − 2
))

μ′
1A
12Wμ1

− 2E
(
I
(
χ2

k+2() < k − 2
) − (k − 2)χ−2

k+2()I
(
χ2

k+2() < k − 2
))

trace(W
12)

− 2E
(
I
(
χ2

k+4() < k − 2
) − (k − 2)χ−2

k+4()I
(
χ2

k+4() < k − 2
))

μ′
1A
12Wμ1

− E
(
I
(
χ2

k+2() < k − 2
) − 2(k − 2)χ−2

k+2()I
(
χ2

k+2() < k − 2
)

+ (k − 2)2χ−4
k+2()I

(
χ2

k+2() < k − 2
))

trace(W
11)

− E
(
I
(
χ2

k+4() < k − 2
) − 2(k − 2)χ−2

k+4()I
(
χ2

k+4() < k − 2
)

+ (k − 2)2χ−4
k+4()I

(
χ2

k+4() < k − 2
))

μ′
1Wμ1.

It should be noted that the expressions in Corollary 4.1 are more general than that, for example,
in Saleh [18], page 377, and Hossain et al. [7] for which 
12 = 0.

From Corollary 4.1, we establish the following corollary which shows that shrinkage estima-
tors dominate the UE. It is noticed that, due to the asymptotic dependance structure between
the shrinking factor and the restricted estimator, the above dominance condition looks quite
complicated. To simplify the notation, let Chmax(�) denote the largest eigenvalue of �, and
let Chmin(�) denote the smallest eigenvalue of �. Further, let �0 = A1/2(
11 + 4
12/(k +
2))W
11A

1/2, �∗ = (�0 + �′
0)/2.

Corollary 4.2. Suppose that Assumptions (A1)–(A6) hold, and let W be nonnegative defi-
nite matrix such that trace(W
12) ≤ 0, −Chmin(W
11) ≤ Chmin(W
12) and trace(W(
11 +

12)) ≥ max(− trace(W
12), (k + 2)Chmax(�

∗)/4). Then,

ADR
(
δ̂s+, δ0,W

) ≤ ADR
(
δ̂s , δ0,W

) ≤ ADR
(
δ̂, δ0,W

)
, for all  ≥ 0. (4.4)

Remark 4.1. It should be noted that the conditions for the shrinkage estimators to dominate
the unrestricted estimator are more general than given for example in Hossain et al. [7], Corol-
lary 4.2, Saleh [18], pages 358, 360, 382, the relations (7.4.8), (7.4.31) and (7.8.35).
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Indeed, in the quoted work, we have 
12 = 0. In this special case, the above condition can be
rewritten as {W : trace(W
11)

Chmax(W
11)
≥ k+2

4 } and this set contains {W : trace(W
11)
Chmax(W
11)

≥ k+2
2 } which given

in the above quoted works.

5. Illustrative data set and numerical evaluation

5.1. Simulation study

In this section, we present some Monte Carlo simulation results to evaluate the performances of
the proposed estimators. This is done by comparing the relative mean square efficiencies (RMSE)
of the estimators with respect to the UE, δ̂. Recall that RMSE(δ∗) = risk(δ̂)/ risk(δ∗), where δ∗
is the proposed estimator. Note that, a relative efficiency greater than one indicates the degree of
superiority of the proposed estimator over δ̂. To save the space of this paper, we report only two
cases.

Case 1: the number of unknown parameters is small, with m = 3, q = 2; δ0 = (δ0′
1 , δ0′

2 , δ0′
3 , δ0′

4 )′
with δ0

1 = δ0
3 = (1,2)′ and δ0

2 = δ0
4 = 0 (i.e., the zero vector), and the sample sizes are set to be

T = 40 with the change points given by (10,20,30,40). Also, we set T = 100 with the change-
points (25,50,75,100). Further, the restriction is such that R = [E1,E2,E3,E4,−E1,−E2,

E5,E6] where, for j = 1,2, . . . ,6, Ej is a 6-column vector with all components equal to zero
except the j th component which equal to 1.

Case 2: the number of unknown parameters is relative large by setting m = 4, q = 5, δ0 =
(δ0′

1 , δ0′
2 , δ0′

3 , δ0′
4 , δ0′

5 )′ with δ0
1 = δ0

3 = δ0
5 = (1,2,3,4,5)′, δ0

2 = δ0
4 = 0 and the sample sizes are

T = 100 and T = 500 with the change-points (20,40,60,80,100) and (100,200,300,400,500),
respectively. Further, the restriction R is set to be a 8 × 25 matrix with

R1,1 = R2,2 = R3,3 = R4,4 = R5,5 = R6,6 = R7,19 = R8,20 = 1,

R1,11 = R2,12 = R3,13 = R4,14 = R5,15 = −1,

and the rest elements of R are set to be 0.
In each case, we let zTi

∼ Nq(1,�), where � is a q × q symmetric matrix such that �a,b =
|0.5||a−b|. Also, we let ui ∼N (0, σ 2), 1 ≤ σ 2 ≤ 2, and compute the related RMSE based on the
1000 replications.

The results of the simulation studies are given in Figures 1 and 2. In summary, the results
corroborate the theoretical finding (given in Corollary 4.2) for which the proposed shrinkage
estimators dominate the unrestricted estimator. We also construct, and present in Appendix C,
Figures 3–6 which give some histograms of the UE and RE of the change points. The results
given in Figures 3–6 suggest that both the unrestricted and the restricted methods work well in
estimating the change points.

5.2. Data analysis

In this subsection, we illustrate the application of the proposed estimation strategy to the real
data set. As a real data set, we consider a historical (log) gross domestic product (GDP) data set
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Figure 1. RMSE of the restricted and shrinkage estimators (case 1).

from 1870 to 1986 for 10 different countries. This data set is used for example in Perron and
Yabu [17], and these authors pointed out that most GDP series presented in the given data set
are characterized by at least one major shift and therefore change-point model is applicable. For

Figure 2. RMSE of the restricted and shrinkage estimators (case 2).
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each GDP series, we consider the following model:

Yt =
{

δ′
1

(
1, t, t1.5, t2

)′
, if t = 1, . . . , T1,

δ′
2

(
1, t, t1.5, t2

)′
, if t = T1 + 1, . . . ,117,

with 1 ≤ T1 ≤ 117, for i = 1,2, δi is a 4-column vector. The uncertain restriction is given by
Rδ = r with

R =

⎡
⎢⎢⎣

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤
⎥⎥⎦ ,

and r = {0,0,0,0}′. In practice, the hypothesized restriction means that the log(GDP) is sus-
pected to have a linear trend. For the given data, we first use the proposed method to calculate
the unrestricted and the restricted estimators of the change-point T̂1 and T̃1 as well as the es-
timators δ̂, δ̃, δ̂s and δ̂s+. For the change-point T1 which is a nuisance parameter here, we do
not compute the shrinkage estimators. The obtained unrestricted and restricted estimate of the
change-point T̂1 and T̃1 are given in Table 1. In order to save the space of this paper, we do
not report here the point estimates of δ̂, δ̃, δ̂s , δ̂s+, but these values are available upon request.
Further, we calculate the MSE of each type of estimators, by applying the bootstrap method to
the residuals. Recall that, in this paper, the change-points are treated as the nuisance parameters.
Thus, the construction of the shrinkage estimators for the change-points is beyond the scope of
this paper.

As we can see from Table 1, the MSE of the restricted estimator is much smaller the MSE
of the other estimators. This may indicate that the true value of the parameter vector lies in the
neighborhood of the chosen restriction. Further, the MSE of the proposed shrinkage estimators
is smaller than the MSE of the unrestricted estimator. The obtained result is in agreement with
the above simulation study.

Table 1. Change-points and MSE

Change-points MSE

Country (UE) (RE) δ̂ δ̃ δ̂s δ̂s+

Australia 1907 1929 1.67004021 0.03936242 1.64839567 1.64839567
Canada 1931 1930 2.96623326 0.05474518 2.87279365 2.87279365
Denmark 1939 1939 3.99038175 0.04765026 3.93532691 3.93532691
France 1943 1943 12.1123258 0.1253509 11.9030741 11.9030741
Germany 1945 1954 11.4218637 0.1704905 11.3279191 11.3279191
Italy 1943 1943 10.2462836 0.1211837 10.2079175 10.2079175
Norway 1944 1948 7.09593981 0.03606614 6.92396377 6.92396377
Sweden 1924 1916 0.72605495 0.02192452 0.70854206 0.70854206
U.K. 1918 1919 0.61037392 0.01496282 0.58916536 0.57701458
U.S. 1940 1929 3.97869572 0.05967521 3.91443168 3.91443168
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6. Conclusion

The goal of this research was to derive an improved estimation strategy for the regression co-
efficients in multiple linear model with unknown change-points under uncertain restrictions. In
summary, we introduced a class of estimators which includes the UE δ̂, RE δ̃, James–Stein Es-
timator δ̂s and Positive-Rule Stein Estimator δ̂s+. The main difficulty consists in the fact that
the random quantities δ̃ − δ and δ̂ − δ̃ are not asymptotically uncorrelated as this is the common
case in literature. To tackle this difficulty, we generalized (in the Appendix C) Theorems 1–2 in
Judge and Bock [9]. Under the conditions more general than that in literature, we established that
δ̂s and δ̂s+ dominate UE. The performance of SEs over the UE is confirmed by the simulation
studies. They also show that SEs perform better than the RE when one moves far away from
the hypothesized restriction. It should be noticed that, in this paper, the tools used for studying
shrinkage estimators are based on noncentral chi-squares. One of the referees suggested to inves-
tigate if the obtained results can be improved by using more recent tools such as Stein’s unbiased
risk estimate. Research on this interesting idea is ongoing.

Another highlight of this paper consists in the fact that, in deriving the joint asymptotic nor-
mality of the UE and RE, we relax some conditions given in recent literature. In particular, we
considered here the condition of L2-mixingale with size −1/2, which allow both the regres-
sors and the errors in each break to be a form of different distributions and asymptotically weak
dependencies.

Appendix

In this section, we give some technical proofs underlying the results established in this paper. To
set up additional notations, let ‖A‖ denote the Euclidean norm for vector A. For a matrix B , let
‖B‖ be the vector induced norm (i.e., ‖B‖ = supx �=0‖Bx‖/‖x‖).

Appendix A: Technical results underlying the asymptotic
properties

First, we establish the following proposition which plays a central role in deriving the joint
asymptotic normality between the UE and RE. For the sake of simplicity, we set Di,k∗ = Xpi −
E(Xpi |Fp,i+k∗) and set Di,k∗,s be the sth element in Di,k∗ .

Proposition A.1. Suppose that Assumptions (A5) and (A6) hold. Then,

E

( Lp∑
r=1

(Di,k∗−1,s − Di,k∗,s)
2

)
=

Lp∑
i=1

E
(
E2(Xpi,s |Fp,i+k∗)

) −
Lp∑
i=1

E
(
E2(Xpi,s |Fp,i+k∗−1)

)
,

Lp∑
i=1

i−1∑
j=l

E
[
(Di,k∗−1,s − Di,k∗,s)(Dj,k∗−1,s − Dj,k∗,s)

] = 0



2230 F. Chen and S. Nkurunziza

and

Lp∑
i=1

[
E
(
E2(Xpi,s |Fp,i+k∗)

) − E
(
E2(Xpi,s |Fp,i+k∗−1)

)] =
Lp∑
i=1

[
E
(
D2

i,k∗−1,s

) − E
(
D2

i,k∗,s
)]

.

Proof. One can verify that

Xpi =
∞∑

k∗=−∞

[
E(Xpi |Fp,i+k∗) − E(Xpi |Fp,i+k∗−1)

]
a.s.

Further, one can verify that

E

( Lp∑
r=1

(Di,k∗−1,s − Di,k∗,s)
2

)

=
Lp∑
i=1

E
[
E2(Xpi,s |Fp,i+k∗)

] +
Lp∑
i=1

E
[
E2(Xpi,s |Fp,i+k∗−1)

]

− 2

Lp∑
i=1

E
[
E(Xpi,s |Fp,i+k∗−1)E

(
E(Xpi,s |Fp,i+k∗)|Fp,i+k∗−1

)]
,

and then, by using the properties of the conditional expected value, we prove the first statement.
For the second statement, we have

Lp∑
i=1

i−1∑
j=1

E
[(

(Di,k∗−1,s − Di,k∗,s)(Dj,k∗−1,s − Dj,k∗,s)
)]

=
Lp∑
i=1

i−1∑
j=1

E
[
(Dj,k∗−1,s − Dj,k∗,s)

(
E
(
(Di,k∗−1,s − Di,k∗,s)|Fp,j+k∗

))] = 0.

The third statement of the proposition follows from the similar algebraic computations. �

Lemma A.1. Let v2
Lp

= ∑Lp

i=1c
2
pi and suppose that Assumptions (A5) and (A6) hold. Then

q∑
s=1

E

(
max
j≤Lp

(
j∑

i=1

Xpi,s

)2)
≤ 16v2

Lp

[ ∞∑
k∗=0

(
k∗∑
i=0

ψ−2(i)

)−1/2]2

.

The proof follows from Proposition A.1 and following the similar steps as in proof of
Lemma 3.2 in Mcleish [12]. By using this lemma, one establishes the following corollary which
plays a central role in establishing the joint asymptotic normality of UE and RE.
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Corollary A.1. Under Assumptions (A5) and (A6), then

q∑
s=1

E

[( Lp∑
i=1

Xpi,s

)2]
= O

(
v2
Lp

)
.

Proof. From Lemma A.1,

q∑
s=1

E

(
max
j≤Lp

(
j∑

i=1

Xpi,s

)2)
≤ 16v2

Lp

[ ∞∑
k∗=0

(
k∗∑
i=0

ψ−2(i)

)−1/2]2

, (A.1)

and then, the proof follows directly from the fact that
∑∞

k∗=0(
∑k∗

i=0ψ
−2(i))−1/2 < ∞. �

Corollary A.2. Let v2
i = ∑ibp

(i−1)bp+lp+1c
2
pt and suppose that Assumptions (A5) and (A6)

hold. Then, {∑q

s=1maxj≤ibp (
∑j

t=(i−1)bp+lp+1Xpt,s)
2/v2

i , i = 1, . . . , rp, rp ≥ 1} is uniformly in-

tegrable. In particular, {∑q

s=1(
∑ibp

t=(i−1)bp+lp+1Xpt,s)
2/(v2

i ), i = 1, . . . , rp, rp ≥ 1} is uniformly
integrable.

Proof. Let Sj,s = ∑j

i=1Xpi,s , s = 1, . . . , q . By using the same arguments as used in proof of

Lemma 3.5 in McLeish [12], one verifies that the set {maxj≤Lp

∑q

s=1
S2

j,s

v2
Lp

;Lp ≥ 1} is uniformly

integrable. This completes the proof. �

Further, by using Lemma A.1, we establish the following proposition which is also useful in
establishing the joint asymptotic normality of UE and RE. To simplify some notations, let rmin =
min1≤p≤m+1(rp), and let Lmin = min1≤p≤m+1(Lp). Further, let Hi be the σ -field generated by
{Uibp ,Uibp−1, . . .}, with Ui are random variables defined on (�,F ,P ) such that Hi−1 ⊆Fp,i−j ,

and let Vpi = ∑ibp

t=(i−1)bp+lp+1Xpt , let Wp,i = E(Vpi |Hi ) − E(Vpi |Hi−1), p = 1,2, . . . ,m + 1,
i = 1,2, . . . , rmin.

Proposition A.2. Suppose that Assumptions (A5) and (A6) hold. Then,

rmin∑
i=1

[(
V ′

1,i , . . . , V
′
m+1,i

)′(
V ′

1,i , . . . , V
′
m+1,i

)

− (
W ′

1,i , . . . ,W
′
m+1,i

)′(
W ′

1,i , . . . ,W
′
m+1,i

)] p−−−−→
Lmin→∞ 0.

The proof follows from Lemma A.1 along with some algebraic computations.
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Proposition A.3. Suppose that the conditions Proposition A.2 hold. Then,

rmin∑
i=1

(
W ′

1,i ,W
′
2,i , . . . ,W

′
m+1,i

)′(
W ′

1,i ,W
′
2,i , . . . ,W

′
m+1,i

) p−−−−→
Lmin→∞�

and

m+1∑
a=1

ra∑
i=1

q∑
s=1

E

[
(Wa,i,s)

2
I

(
q∑

s=1

W 2
a,i,s > ε

)]
−−−−→
Lmin→∞ 0, for all ε > 0.

Proof. By using Assumption (A6) along with Proposition A.2 and Slutsky’s theorem, we estab-
lish the first statement. For the second statement, one verifies that, for each a = 1,2, . . . ,m + 1,
{Wa,i,Hi} is a L2-mixingale array of size −1/2. Then the rest of the proof follows from Corol-
lary A.2. �

Appendix B: Asymptotic normality of the UE and RE

Proof of Lemma 3.1. Note that

T −1/2Z̄0′u ≡
(

L1∑
i=1

X′
1,i , . . . ,

Lm+1∑
i=1

X′
m+1,i

)′
,

then

T −1/2Z̄0′u =
rmin∑
i=1

Wi + �∗ +
(

r1∑
i=rmin

ib1∑
t=(i−1)b1+1

X′
1,i , . . . ,

rm+1∑
i=rmin

ibm+1∑
t=(i−1)bm+1+1

X′
m+1,i

)′
, (B.1)

with rmin = min1≤i≤m+1(ri) and �∗ = (�∗′
1 ,�∗′

2 , . . . ,�∗′
m+1)

′, where

�∗
j =

rmin∑
i=1

(
Vji − Wj,i +

i−1bj +lj∑
t=(i−1)bj +1

Xj,i

)
+

Lj∑
t=rj bj +1

Xpj ,t .

Further, it should be noted that, under Assumptions (A4) and (A5), T tends to infinity if and
only if Lmin = min1≤j≤m+1(Lj ) tends to infinity.

By using Lemma A.1 along with some algebraic computations, we have

(
�∗′

1 ,�∗′
2 , . . . ,�∗′

m+1

)′ P−−−−→
Lmin→∞ 0,

(B.2)(
r1∑

i=rmin

ib1∑
t=(i−1)b1+1

X′
1,i , . . . ,

rm+1∑
j=rmin

jbm+1∑
t=(j−1)bm+1+1

X′
m+1,j

)′
P−−−−→

Lmin→∞ 0.
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Therefore, the proof follows from the relations (B.1) and (B.2) along with the martingale differ-
ence sequence central limit theorem along with Slutsky’s theorem. �

Proposition B.1. Under (A1)–(A6), we have
√

T (δ̂ − δ0)
d−−−−→

T →∞ ε1 ∼Nq(m+1)(0,	−1�	−1).

The proof follows by combining Lemma 3.1 and Slutsky’s theorem.

Proof of Proposition 3.2. Let J = (Z̄0′Z̄0)−1R′(R(Z̄0′Z̄0)−1R′)−1, we have(√
T

(
δ̂ − δ0)′

,
√

T
(
δ̃ − δ0)′)′ .= (

I(m+1)q , I(m+1)q − R′J ′)′√
T

(
δ̂ − δ0) + (

0,−μ′J ′)′
.

Then, the first statement follows directly from Proposition B.1 and Slutsky’s theorem, along with
some algebraic computations. For the second statement, obviously(

(δ̂ − δ̃)′,
(
δ̃ − δ0)′)′ = (

(Iq(m+1),0)′, (−Iq(m+1), Iq(m+1))
′)′((

δ̂ − δ0)′
,
(
δ̃ − δ0)′)′

.

Then, the rest of the proof follows directly from the first statement of the proposition along with
Slutsky’s theorem. �

Appendix C: Some results for the derivation of risk functions

Theorem C.1. Let h be Borel measurable and real-valued integrable function, let X ∼
Np(μ,�), where � is a nonnegative definite matrix with rank k ≤ p. Let A be a p × p-
nonnegative definite matrix with rank k such that �A is an idempotent matrix, A�A = A;
�A� = �; and �Aμ = μ, and let W = A1/2W ∗A1/2 where W ∗ is a nonnegative definite ma-
trix. Then, E[h(X′AX)WX] = E[h(χ2

k+2(μ
′Aμ))]Wμ.

Proof. Let A1/2† be the Moore–Penrose pseudoinverse of A1/2. By the definition of Moore–
Penrose pseudo-inverse, we have WX = A1/2W ∗A1/2A1/2†A1/2X = WA1/2†A1/2X, and then,

E
[
h
(
X′AX

)
X′WX

] = E
[
h
(
X′AX

)
X′A1/2A1/2†WA1/2†A1/2X

]
. (C.1)

Further, since A1/2�A1/2 is a symmetric and idempotent matrix, there exists an orthog-

onal matrix G such that GA1/2�A1/2G′ = ([Ik,0]...[0,0])′. Define V = GA1/2X. Then,
E[h(X′AX)WA1/2†A1/2X] = E[h(V ′

1V1)WA1/2†G′[Ik,0]′V1] with V1 = [Ik,0]GA1/2V , and
then, the rest of the proof follows from Theorem 1 in Judge and Bock [9] along with some
algebraic computations. �

Remark C.1. For the special case where � is the p-dimensional matrix Ip , Theorem C.1 gives
Theorem 1 in Judge and Bock [9] with A = W ∗ = Ip . This shows that the provided theorem
generalizes the quoted classical result.

By using Theorem C.1, we establish the following corollary.
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Corollary C.1. Set μ2 = −μ1 and let ε5 be as defined in Lemma 3.2. Let h be a Borel mea-
surable and real-valued integrable function, let W = A1/2W ∗A1/2, W ∗ is a nonnegative definite
matrix. Then, we have E[h(ε′

5Aε5)Wε5] = E[h(χ2
k+2(μ

′
2Aμ2))]Wμ2.

Theorem C.2. Let D1 = trace(W�), D2 = μ′Wμ and assume the conditions of Theorem C.1
hold. Then, E[h(X′AX)X′WX] = E[h(χ2

k+2(μ
′Aμ))]D1 + E[h(χ2

k+4(μ
′Aμ))]D2.

Proof. By using the same transformation methods as in the proof of Theorem C.1, we have

E
[
h
(
X′AX

)
X′WX

] = E
[
h
(
V ′

1V1
)
V ′

1[Ik,0]GA1/2†WA1/2†G′[Ik,0]′V1
]
.

Therefore, the proof is completed by combining Theorem 2 in Judge and Bock [9] along with
some algebraic computations. �

Remark C.2. Note that Theorem C.2 generalizes Theorem 2 in Judge and Bock [9]. Indeed, if
� = Ip , the quoted result is obtained by taking A = Ip .

By using Theorem C.2, we establish the following corollary.

Corollary C.2. Let D1 = trace(W
11), D2 = μ′
2Wμ2 and suppose that the conditions of Corol-

lary C.1 hold. Then, E[h(ε′
5Aε5)ε

′
5Wε5] = E[h(χ2

k+2(μ
′
2Aμ2))]D1 + E[h(χ2

k+4(μ
′
2Aμ2))]D2.

Proof. This corollary directly follows from Theorem C.2. �

Theorem C.3. Let (
X

Y

)
∼N2p

((
μX

μY

)
,

(
�11 �12
�21 �22

))
,

where the rank of �11 is k ≤ p, with μY = −μX , A�11A = A; �11A�11 = �11; �11AμX = μX .
Further, we assume that W = A1/2W ∗A1/2, where W ∗ is a nonnegative definite matrix. Then,

E
[
h
(
X′AX

)
Y ′WX

]
= −E

[
h
(
χ2

k+2

(
μ′

XAμX

))]
μ′

XWμX − E
[
h
(
χ2

k+2

(
μ′

XAμX

))]
μ′

XA�12WμX

+ E
[
h
(
χ2

k+2

(
μ′

XAμX

))]
trace(
12W
11A) + E

[
h
(
χ2

k+4

(
μ′

XAμX

))]
μ′

XA
12WμX.

Proof. Using the similar transformation methods as in proof of Theorem C.1, we have

E
[
h
(
X′AX

)
Y ′WX

] = E
[
h
(
V ′

1V1
)
E[Y |V1]′WA1/2†G′[Ik,0]′V1

]
,

where E[Y |V1] = −μX + �21A
1/2G′[Ik,0]′(V1 − μv). Further, from Theorem C.1,

E
[
h
(
V ′

1V1
)
μ′

2WA1/2†G′[Ik,0]′V1
] = E

[
h
(
χ2

k+2

(
μ′

XAμX

))]
μ′

XWμX
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and

E
[
h
(
V ′

1V1
)
μ′

v[Ik,0]GA1/2�12WA1/2†G′[Ik,0]′V1
]

= E
[
h
(
χ2

k+2

(
μ′

XAμX

))]
μ′

XA�12WA1/2†μX,

and the proof is completed by some algebraic computations. �

By using this theorem, we establish the following corollary.

Corollary C.3. With ε5 and ε4 defined in Lemma 3.2, and let μ2 = −μ1. Then, we have

E
[
h
(
ε′

5Aε5
)
ε′

4Wε5
]

= −E
[
h
(
χ2

k+2

(
μ′

2Aμ2
))]

μ′
2W
11Aμ2 − E

[
h
(
χ2

k+2

(
μ′

2Aμ2
))]

μ′
2A
12W
11Aμ2

+ E
[
h
(
χ2

k+2

(
μ′

2Aμ2
))]

trace(
12W
11A)

+ E
[
h
(
χ2

k+4

(
μ′

2Aμ2
))]

μ′
2A
12W
11Aμ2.

Proof of Corollary 4.2. By some algebraic computations, we have,

ADR
(
δ̂s , δ0,W

) − ADR
(
δ̂, δ0,W

)
= −(k − 2)2 trace

(
W(
11 + 2
12)

)
E
[
χ−4

k+2()
]

− (k − 2)
(
4C1 − (k + 2)C2

)
E
[
χ−4

k+4()
]
,

where C1 = trace(W(
11 + 
12)), C2 = μ′
1A(
11 + 4
12/(k + 2))Wμ1, and C3 =

trace(W
11). Then, since k ≥ 2, ADR(δ̂s , δ0,W) ≤ ADR(δ̂, δ0,W) provided that
trace(W(
11 +2
12)) ≥ 0 and 4C1 − (k+2)C2 ≥ 0. Note that if C2 = 0, 4C1 − (k+2)C2 ≥
0 holds for any  ≥ 0, and if C2 > 0, 4C1 − (k + 2)C2 ≥ 0 holds for C1 ≥ (k + 2)C2/4,
which is equivalent to C1 ≥ (k + 2)C2/(4).

Since C2 = μ′
1A(
11 + 4
12/(k + 2))W
11Aμ1, and by Courant’s theorem, we have

Chmin
(
�∗) ≤ μ′

1A(
11 + 4
12/(k + 2))W
11Aμ1

μ′
1Aμ1

≤ Chmax
(
�∗),

where �∗ = (�0 + �′
0)/2, �0 = A1/2(
11 + 4
12/(k + 2))W
11A

1/2 and Chmin(�
∗),

Chmax(�
∗) are denoted as the smallest and largest eigenvalue of �∗, respectively. Then, 4C1 −

(k + 2)C2 ≥ 0 holds if C1 ≥ (k + 2)Chmax(�
∗)/4. In addition, since trace(W(
11 + 2
12)) ≥ 0

is equivalent to C1 ≥ − trace(W
12), it follows that

ADR
(
δ̂s , δ0,W

) ≤ ADR
(
δ̂, δ0,W

)
if trace(W(
11 + 
12)) ≥ max(− trace(W
12), (k + 2)Chmax(�

∗)/4). Further, by similar al-
gebraic computations, we prove that ADR(δ̂s+, δ0,W) ≤ ADR(δ̂s , δ0,W), this completes the
proof. �
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Figure 3. Histograms of the UE and RE of change points (case 1 with T = 40).
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Figure 4. Histograms of the UE and RE of change points (case 1 with T = 100).
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Figure 5. Histograms of the UE and RE of change points (case 2 with T = 100).
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Figure 6. Histograms of the UE and RE of change points (case 2 with T = 500).
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