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We derive explicit integrability conditions for stochastic integrals taken over time and space driven by a
random measure. Our main tool is a canonical decomposition of a random measure which extends the
results from the purely temporal case. We show that the characteristics of this decomposition can be chosen
as predictable strict random measures, and we compute the characteristics of the stochastic integral process.
We apply our conditions to a variety of examples, in particular to ambit processes, which represent a rich
model class.
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1. Introduction

Following Itô’s seminal paper [26], stochastic integration theory w.r.t. semimartingales was
brought to maturity during the 1970s and 1980s. One of the fundamental results in this area is the
Bichteler–Dellacherie theorem, which shows the equivalence between the class of semimartin-
gales and the class of finite L0-random measures. As a consequence, semimartingales constitute
the largest class of integrators that allow for stochastic integrals of predictable integrands satis-
fying the dominated convergence theorem. The natural analogue to semimartingale integrals in a
space–time setting are integrals of the form∫

R×E

H(t, x)M(dt,dx), (1.1)

where E is some space and M is an L0-random measure on R × E. The construction of such
integrals is discussed in [15] in its full generality, so the theory is complete from this point of
view.

However, whether H is integrable w.r.t. M or not, depends on whether

lim
r→0

sup

{
E

[∣∣∣∣
∫

S dM

∣∣∣∣ ∧ 1

]
: |S| ≤ |rH |, S is a simple integrand

}
= 0 (1.2)

or not, a property which is hard to check. Thus, the aim of this paper is to characterize (1.2)
in terms of equivalent conditions, which can be verified in concrete situations. In the purely
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temporal case, this subject is addressed in [12]. The result there is obtained by using the lo-
cal semimartingale characteristics corresponding to a random measure. Our approach parallels
this method, but it turns out that the notion of characteristics in the space–time setting is much
more complex. We will show that, if M has different times of discontinuity (cf. Definition 3.1
below), we can associate a characteristic triplet to it consisting of strict random measures (cf.
Definition 2.1(3)) that are jointly σ -additive in space and time. Moreover, we will determine the
characteristics of stochastic integral processes, which is more involved than in the temporal case,
since a concept is needed to merge space and time appropriately. Having achieved this step, inte-
grability conditions in the same fashion as in [12,46] can be given for space–time integrals. We
will also compare our results to those of [46], [51] and [28].

Applications of our theoretical results will be chosen from the class of ambit processes

Y(t, x) :=
∫
R×Rd

h(t, s;x, y)σ (s, y)M(ds,dy), t ∈R, x ∈R
d, (1.3)

which have been suggested for modelling physical space–time phenomena like turbulence, see,
for example, [5]. In the case, where σ = 1 and M is a Lévy basis (see Remark 4.4), such mul-
tiparameter integrals have already been investigated by many authors: for instance, [17,36,47]
discuss path properties of the resulting process Y , while [23,40] address the extremal behaviour
of Y ; mixing conditions are examined in [25].

As a broad model class, the applications of ambit processes go far beyond turbulence mod-
elling. For example, [43] describes the movement of relativistic quantum particles by equations
of the form (1.3). Moreover, solutions to stochastic partial differential equations driven by ran-
dom noise are often of the form (1.3), cf. [5,51] and Section 5.2. Furthermore, stochastic pro-
cesses like forward contracts in bond and electricity markets based on a Heath–Jarrow–Morten
approach also rely on a spatial structure, cf. [2,6]. Other applications include brain imaging [30]
and tumor growth [7,29].

The concept of an ambit process has also been successfully invoked to define superposi-
tions of stochastic processes like Ornstein–Uhlenbeck processes or, more generally, continuous-
time ARMA (CARMA) processes. In these models, only integrals of deterministic integrands
w.r.t. Lévy bases are involved, so the integration theory of [46] is sufficient. Our integrability
conditions, however, allow for a volatility modulation of the noise, which generates a greater
model flexibility. Moreover, in [13] ambit processes have been used to define superpositions of
continuous-time GARCH (COGARCH) processes. In its simplest case superposition leads to
multi-factor models, economically and statistically necessary extensions of the one-factor mod-
els; cf. [27]. As we shall see, the supCOGARCH model again needs the integrability criteria we
have developed since for this model the volatility σ and the random measure M are not indepen-
dent.

Our paper is organized as follows. Section 2 introduces the notation and gives a summary
on the concept of a random measure and its stochastic integration theory. Section 3 derives a
canonical decomposition for random measures as known for semimartingales and calculates the
characteristic triplet of stochastic integral processes. Section 4 presents integrability conditions
in terms of the characteristics from Section 3. Section 5 is dedicated to examples to highlight our
results.
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2. Preliminaries

Let (�,F , (Ft )t∈R,P ) be a stochastic basis satisfying the usual assumptions of completeness
and right-continuity. Denote the base space by �̄ := � × R and the optional (resp. predictable)
σ -field on �̄ by O (resp. P). Furthermore, fix some Lusin space E, equipped with its Borel σ -
field E . Using the abbreviations �̃ := � ×R × E and Õ := O ⊗ E (resp. P̃ := P ⊗ E ), we call
a function H : �̃ → R optional (resp. predictable) if it is Õ-measurable (resp. P̃-measurable).
We will often use the symbols O and P (resp. Õ and P̃) also for the collection of optional and
predictable functions from �̄ (resp. �̃) to R. We refer to [28], Chapter I and II, for all notions
not explicitly explained.

Some further notational conventions: we write At := A∩ (�× (−∞, t]) for A ∈P , and Ãt :=
Ã ∩ (� × (−∞, t] × E) for Ã ∈ P̃ . Bb(R

d) denotes the collection of bounded Borel sets in
R

d . Next, if μ is a signed measure and X a finite variation process, we write |μ| and |X| for the
variation of μ and the variation process of X, respectively. Finally, we equip Lp = Lp(�,F ,P ),
p ∈ [0,∞), with the topology induced by

‖X‖p := E
[|X|p]1/p

, p ≥ 1,

‖X‖p := E
[|X|p]

, 0 < p < 1, ‖X‖0 := E[|X| ∧ 1]
for X ∈ Lp . Among several definitions of a random measure in the literature, the following two
are the most frequent ones: in essence, a random measure is either a random variable whose real-
izations are measures on some measurable space (e.g., [28,31]) or it is a σ -additive set function
with values in the space Lp (e.g., [15,33,39,46,51]). Our terminology is as follows:

Definition 2.1. Let (Õk)k∈N be a sequence of sets in P̃ with Õk ↑ �̃. Set P̃M := ⋃∞
k=1 P̃|

Õk
,

which is the collection of all sets A ∈ P̃ such that A ⊆ Õk for some k ∈ N.

(1) An Lp-random measure on R× E is a mapping M : P̃M → Lp satisfying:
(a) M(∅) = 0 a.s.,
(b) For every sequence (Ai)i∈N of pairwise disjoint sets in P̃M with

⋃∞
i=1 Ai ∈ P̃M we

have

M

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

M(Ai) in Lp.

(c) For all A ∈ P̃M with A ⊆ �̃t for some t ∈ R, the random variable M(A) is Ft -
measurable.

(d) For all A ∈ P̃M , t ∈ R and F ∈ Ft , we have

M
(
A ∩ (

F × (t,∞) × E
)) = 1F M

(
A ∩ (

� × (t,∞) × E
))

a.s.

(2) If p = 0, we only say random measure; if Õk can be chosen as �̃ for all k ∈ N, M is
called a finite random measure; and finally, if E consists of only one point, M is called a
null-spatial random measure.
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(3) A strict random measure is a signed transition kernel μ(ω,dt,dx) from (�,F) to
(R× E,B(R) ⊗ E) with the following properties:
(a) There is a strictly positive function V ∈ P̃ such that

∫
R×E

V (t, x)|μ|(dt,dx) ∈ L1.

(b) For Õ-measurable functions W such that W/V is bounded, the process

W ∗ μt :=
∫

(−∞,t]×E

W(s, x)μ(ds,dx), t ∈ R,

is optional.

Remark 2.2.

(1) If we can choose Ok = � × O ′
k with O ′

k ↑ R × E, one popular choice for (Ft )t∈R is
the natural filtration (FM

t )t∈R of M which is the smallest filtration satisfying the usual
assumptions such that for all t ∈R we have M(�×B) ∈ FM

t if B ⊆ ((−∞, t]×E)∩O ′
k

with some k ∈ N.
(2) If μ is a positive transition kernel in Definition 2.1(3), μ is an optional P̃-σ -finite random

measure in the sense of [28], Chapter II, where also the predictable compensator of a strict
random measure is defined. Obviously, a strict random measure is a random measure. For
more details on that, see also [15], Examples 5 and 6.

Stochastic integration theory in space–time w.r.t. Lp-random measures is discussed in [15],
see also [14]. The special case of L2-integration theory is also discussed in [21,51]. Let us recall
the details involved: a simple integrand is a function �̃ → R of the form

S :=
r∑

i=1

ai1Ai
, r ∈N, ai ∈R,Ai ∈ P̃M, (2.1)

for which the stochastic integral w.r.t. M is canonically defined as

∫
S dM :=

r∑
i=1

aiM(Ai). (2.2)

Now consider the collection S↑
M of positive functions �̃ → R which are the pointwise supremum

of simple integrands and define the Daniell mean ‖ · ‖D
M,p :R�̃ → [0,∞] by

• ‖K‖D
M,p := supS∈SM,|S|≤K ‖ ∫

S dM‖p , if K ∈ S↑
M , and

• ‖H‖D
M,p := inf

K∈S↑
M,|H |≤K

‖K‖D
M,p for arbitrary functions H : �̃ → R.

An arbitrary function H : �̃ → R is called integrable w.r.t. M if there is a sequence of simple
integrands (Sn)n∈N such that ‖H − Sn‖D

M,p → 0 as n → ∞. Then the stochastic integral of H

w.r.t. M defined by ∫
H dM :=

∫
R×E

H(t, x)M(dt,dx) := lim
n→∞

∫
Sn dM (2.3)
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exists in Lp and does not depend on the choice of (Sn)n∈N. The collection of integrable functions
is denoted by L1,p(M) and can be characterized as follows ([14], Theorems 3.4.10 and 3.2.24):

Theorem 2.3. Let F 1,p(M) be the collection of functions H with ‖rH‖D
M,p → 0 as r → 0. If

we identify two functions coinciding up to a set whose indicator function has Daniell mean 0,
then

L1,p(M) = P̃ ∩ F 1,p(M). (2.4)

Moreover, the following dominated convergence theorem holds: Let (Hn)n∈N be a sequence in
L1,p(M) converging pointwise to some limit H . If there exists some function F ∈ F 1,p(M) with
|Hn| ≤ F for each n ∈ N, both H and Hn are integrable with ‖H − Hn‖D

M,p → 0 as n → ∞
and ∫

H dM = lim
n→∞

∫
Hn dM in Lp. (DCT)

Given a predictable function H ∈ P̃ , we can obviously define a new random measure H.M in
the following way:

K ∈ L1,0(H.M) :⇔ KH ∈ L1,0(M),

∫
K d(H.M) :=

∫
KH dM. (2.5)

This indeed defines a random measure provided there exists a sequence (Õk)k∈N ⊆ P̃ with
Õk ↑ �̃ and 1

Õk
∈ L1,0(H.M) for all k ∈ N. But this construction does not extend the class

L1,0(M) of integrable functions w.r.t. M . However, as shown in [15], Section 3, L1,p(M) can
indeed be extended further in the following way. Given an Lp-random measure M , fix some
P̃-measurable function H such that:

There exists a predictable process K : �̄ → R,K > 0, such that KH ∈ L1,p(M). (2.6)

Now set Ōk := {K ≥ k−1} for k ∈ N, which obviously defines predictable sets increasing
to �̄, and then PH ·M := {A ∈ P :A ⊆ Ōk for some k ∈ N}. Then we define a new null-spatial
Lp-random measure by

H · M :PH ·M → Lp, (H · M)(A) :=
∫

1AH dM.

The following is known from [15], see also [12], Theorem A.4:

(1) If H ∈ L1,p(M), H · M is a finite Lp-random measure and
∫

1 d(H · M) = ∫
H dM .

(2) If G : �̄ → R is a predictable process, we have G ∈ L1,p(H · M) if and only if
‖rGH‖M,p → 0 as r → 0, where for every P̃-measurable function H we set

‖H‖M,p := sup
F :�̄→R predictable,

|F |≤1,FH∈L1,p(M)

∥∥∥∥
∫

FH dM

∥∥∥∥
p

. (2.7)
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In this case, we have
∫

Gd(H · M) = ∫
GH dM .

Therefore, it is reasonable to extend the set of integrable functions w.r.t. M from L1,p(M) to

Lp(M) = {
H ∈ P̃ :H satisfies (2.6) and ‖rH‖M,p

r→0−→ 0
}

(2.8)

by setting ∫
H dM := (H · M)(�̄), H ∈ Lp(M).

We remark that in the null-spatial case L1,0(M) = L0(M). But in general, the inclusion
L1,p(M) ⊆ Lp(M) is strict, see [15], Section 3b, and Example 4.7 below.

Let us also remark that [20] introduces a stochastic integral for a Gaussian random measure
where the integrands are allowed to be distribution-valued. It is still an open question whether it
is possible to extend this to the general setting of Lp-random measures, in particular if p < 2;
we do not pursue this direction in the present paper.

In the sequel we will frequently use the following fact from [12], Example 3.1: If M is a
finite random measure, the process (M(�̃t ))t∈R has a càdlàg modification, which is then a semi-
martingale up to infinity w.r.t. to the underlying filtration (see [12], Section 2, for a definition).
This semimartingale will be also be denoted by M = (Mt)t∈R.

3. Predictable characteristics of random measures

Let us introduce three important subclasses of random measures:

Definition 3.1. Let M be a random measure where Õk = Ok ×Ek with Ok ↑ �̄ and Ek ↑ E. Set
EM := ⋃∞

k=1 E |Ek
.

(1) M has different times of discontinuity if for all k ∈ N and disjoint sets U1,U2 ∈ EM the
semimartingales 1Ok×Ui

· M , i = 1,2, a.s. never jump at the same time.
(2) M is called orthogonal if for all pairs of disjoint sets U1,U2 ∈ EM and k ∈ N we have

[(1Ok×U1 · M)c, (1Ok×U2 · M)c] = 0.
(3) M has no fixed time of discontinuity if for all U ∈ EM , k ∈ N and t ∈ R we have

�(1Ok×U · M)t = 0 a.s.

In the next theorem, we prove a canonical decomposition for random measures with different
times of discontinuity generalizing the results of [28] and [12]. Without this extra assumption
on the random measure, only non-explicit results such as [15], Theorem 4.21, or results for
p ≥ 2 as in [35], Theorem 1, are known. We also remark that the integrability conditions in
Theorem 4.1 will be stated in terms of this decomposition. Some notation beforehand: we write
B0(R) for the collection of Borel sets on R which are bounded away from 0. Furthermore, if X

is a semimartingale up to infinity, we write B(X) for its first characteristic, [X] for its quadratic
variation, Xc for its continuous part (all of them starting at −∞ with 0), μX for its jump measure
and νX for its predictable compensator. Finally, if U ∈ E , M|U denotes the random measure given
by M|U(A) = M(A ∩ (�̄ × U)) for A ∈ P̃M .



2196 C. Chong and C. Klüppelberg

Theorem 3.2. Let M have different times of discontinuity.

(1) The mappings

B(A) := B(1A · M)∞, Mc(A) := (1A · M)c∞, A ∈ P̃M,

are random measures, the mapping

C(A;B) := [
(1A · M)c, (1B · M)c]

∞, A ∈ P̃M,

is a random bimeasure (i.e., a random measure in both arguments when the other one is
fixed) and

μ(A,V ) := μ1A·M(R×V ), ν(A,V ) := ν1A·M(R×V ), A ∈ P̃M,V ∈ B0(R), (3.1)

can be extended to random measures on P̃M ⊗B0(R). Moreover, (B,C, ν) can be chosen
as predictable strict random (bi-)measures and form the characteristic triplet of M .

(2) Let A ∈ P̃M and τ be a truncation function (i.e., a bounded function with τ(y) = y in a
neighbourhood of 0). Then 1A(t, x)(y − τ(y)) (resp. 1A(t, x)τ (y)) is integrable w.r.t. μ

(resp. μ − ν), and we have

M(A) = B(A) + Mc(A) +
∫
R×E×R

1A(t, x)
(
y − τ(y)

)
μ(dt,dx,dy)

(3.2)

+
∫
R×E×R

1A(t, x)τ (y)(μ − ν)(dt,dx,dy),

(3) There are a positive predictable strict random measure A(ω,dt,dx), a P̃-measurable
function b(ω, t, x) and a transition kernel K(ω, t, x,dy) from (�̃, P̃) to (R,B(R)) such
that for a.e. ω ∈ �

B(ω,dt,dx) = b(ω, t, x)A(ω,dt,dx),

ν(ω,dt,dx,dy) = K(ω, t, x,dy)A(ω,dt,dx).

For the proof of Theorem 3.2, let us recall the semimartingale topology of [22] on the space
SM of semimartingales up to infinity, which is induced by

‖X‖SM := sup
|H |≤1,H∈P

∥∥∥∥
∫ ∞

−∞
Ht dXt

∥∥∥∥
0
, X ∈ SM.

The following results are known.

Lemma 3.3.

(1) Let (Xn)n∈N ⊆ SM and (Bn,Cn, νn) denote the semimartingale characteristics of Xn. If
Xn → 0 in SM, then each of the following semimartingale sequences converges to 0 in
SM as well: Bn, Xc,n, Cn, [Xn], (y − τ(y)) ∗ μn and τ(y) ∗ (μn − νn).
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(2) If W(ω, t, y) is a positive bounded predictable function, then W ∗ μn → 0 in probability
if and only if W ∗ νn → 0 in probability. Morever, W ∗ νn < ∞ a.s. implies W ∗ μn < ∞
a.s.

(3) The collection of predictable finite variation processes is closed under the semimartingale
topology.

For the first part of this lemma, see [12], Theorem 3.5, and [22], page 276. The second part is
taken from [12], Lemmas 3.1 and 3.3. The third assertion is proved in [38], Theorem IV.7.

Proof of Theorem 3.2. Let k ∈ N and consider the set function (S,U) �→ B(S × U) from the
semiring H := P|Ok

× E |Ek
to L0. Obviously, it is finitely additive in each component: for fixed

U , additivity in time holds by the definition of B , while for fixed S, additivity in space is due to
the assumption of different times of discontinuity. By a straightforward induction argument this
implies that B is also finitely additive jointly in space and time. Next, let

R(H) =
{

N⋃
n=1

Cn:N ∈N,Cn ∈ H pairwise disjoint

}

denote the ring generated by H. Setting B(
⋃N

n=1 Cn) := ∑N
n=1 B(Cn) one obtains a well-defined

extension of B to R(H), which is consistent with the original definition of B and still finitely
additive. Furthermore, since R(H) contains Ok × Ek , we can further extend B to a measure on
σ(H) = P̃|

Õk
using [34], Theorem B.1.1. We only have to show the implication

(An)n∈N ⊆R(H) with lim sup
n→∞

An =∅ �⇒ lim
n→∞B(An) = 0 in L0. (3.3)

In fact, under the assumption on the left-hand side of (3.3), 1An · M → 0 in SM:

‖1An · M‖SM = sup
|H |≤1,H∈P

∥∥∥∥
∫

H d(1An · M)

∥∥∥∥
0
= sup

|H |≤1,H∈P

∥∥∥∥
∫

H1An dM

∥∥∥∥
0

≤ sup
S∈SM,|S|≤1An

∥∥∥∥
∫

S dM

∥∥∥∥
0
= ‖1An‖D

M,0
n→∞−→ 0

by (DCT) with 1Ok×Ek
as dominating function. Using Lemma 3.3(1), equation (3.3) follows.

This extension still coincides with the definition of B in Theorem 3.2: From the construction
given in the proof of [34], Theorem B.1.1, we know that given A ∈ P̃|

Õk
, there is a sequence

of sets (An)n∈N in R(H) with lim sup((A \ An) ∪ (An \ A)) = ∅ and B(An) → B(A) in L0 as
n → ∞. As above we obtain 1An · M → 1A · M in SM, which implies the assertion. And of
course, B is unique and B(A) does not depend on the choice of k ∈N with A ⊆ Ok .

Finally, we prove that B corresponds to a predictable strict random measure. By [15], Theorem
4.10, it suffices to show that for H ∈ L1,0(B) the semimartingale H · B is predictable and has
finite variation on bounded intervals. If H ∈ SM , this follows from linearity and the fact that the
first characteristic of a semimartingale up to infinity is a predictable finite variation process. In
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the general case choose a sequence (Sn)n∈N ⊆ SM with Sn → H pointwise and |Sn| ≤ H for all
n ∈ N. As n → ∞, we have Sn · B → H · B in SM by (DCT). By Lemma 3.3(3) we conclude
that also H · B is a predictable finite variation process.

For C we fix one argument and apply the same procedure to the other argument; for Mc we
refer to [15], Theorem 4.13. Let us proceed to μ and ν, where in both cases we first fix some
V ∈ B0(R) with inf{|x|:x ∈ V } ≥ ε > 0 and ε < 1. In order to apply the same construction
scheme as for B , only the proof of (3.3) is different for μ and ν. To this end, let (An)n∈N be as
on the left-hand side of (3.3), that is, 1An · M → 0 in SM. Now define τ̃ (y) = (y ∧ ε) ∨ (−ε)

and choose K > 1 such that |τ̃ (y)| ≤ K(y2 ∧ 1) for |y| ≥ ε. Then

∥∥μ(An,V )
∥∥

0 =
∥∥∥∥1V (y)

|τ̃ (y)|
∣∣τ̃ (y)

∣∣ ∗ μ
1An ·M
∞

∥∥∥∥
0
≤ ε−1

∥∥1V (y)
∣∣τ̃ (y)

∣∣ ∗ μ
1An ·M
∞

∥∥
0

≤ Kε−1
∥∥(

y2 ∧ 1
) ∗ μ

1An ·M
∞

∥∥
0 ≤ Kε−1

∥∥[1An · M]∞
∥∥

0 → 0,

where the last step follows from Lemma 3.3(1). Part (2) of the same lemma yields that also
ν(An,V ) → 0 in L0 as n → ∞. Consequently, [15], Theorem 4.12, shows that μ(·,V ) and
ν(·,V ) can be chosen as positive strict random measures. Observing that μ(A, ·) (resp. ν(A, ·))
is clearly also a positive (and predictable) strict random measure for given A ∈ P̃M , μ (resp. ν)
can be extended to a positive (and predictable) strict random measure on the product P̃M ⊗B0(R)

(see [46], Proposition 2.4). Of course, ν is the predictable compensator of μ.
The integrability of 1A(t, x)(y − τ(y)) (resp. 1A(t, x)τ (y)) w.r.t. μ (resp. μ−ν) is an obvious

consequence of (3.1) and the corresponding statements in the null-spatial case. The canonical
decomposition of M follows since both sides of (3.2) are random measures coinciding on H.

Finally, part (3) of Theorem 3.2 can be proved analogously to [28], Proposition II.2.9. �

Remark 3.4. If M is additionally orthogonal, we have C(A;B) = C(A ∩ B;A ∩ B) for all
A,B ∈ P̃M . Consequently, we may identify C with C(A) := [(1A · M)c]∞ for A ∈ P̃M . Of
course, C can then be chosen as a predictable strict random measure.

Next, we calculate the characteristics introduced in Theorem 3.2 in two concrete situations:
first, for the random measure of a stochastic integral process, and second, for a random mea-
sure under an absolutely continuous change of measure. Although the results in both cases are
comparable with the purely temporal setting, the first task turns out to be the more difficult one.
Moreover, the characteristics for stochastic integral processes are of particular importance for
our integrability conditions in Section 4.

Beforehand, we need some bimeasure theory: it is well known that bimeasures cannot be
extended to measures on the product σ -field in general and that integration theory w.r.t. bimea-
sures differs from integration theory w.r.t. measures. Following [18], let two measurable spaces
(�i,Fi ), i = 1,2, and a bimeasure β:F1 × F2 → R be given. We call a pair (f1, f2) of Fi -
measurable functions fi , i = 1,2, strictly β-integrable if

(1) f1 (resp. f2) is integrable w.r.t. β(·;B) for all B ∈ F2 (resp. β(A; ·) for all A ∈F1),
(2) f2 is integrable w.r.t. the measure B �→ ∫

�1
f1(ω1)β(dω1;B) and f1 is integrable w.r.t.

the measure A �→ ∫
�2

f2(ω2)β(A;dω2),
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(3) for all A ∈F1 and B ∈ F2, the following integrals are equal:∫
A

f1(ω1)

(∫
B

f2(ω2)β(dω1;dω2)

)
=

∫
B

f2(ω2)

(∫
A

f1(ω1)β(dω1;dω2)

)
. (3.4)

The strict β-integral of (f1;f2) on (A;B), denoted by
∫
(A;B)

(f1;f2)dβ , is then defined as the
common value (3.4).

The next theorem determines the characteristics of stochastic integral processes, which is [28],
Proposition IX.5.3, in the null-spatial case.

Theorem 3.5. Let M be a random measure with different times of discontinuity and H ∈ P̃
satisfy (2.6) with some K > 0. Then the null-spatial random measure H · M has characteristics
(BH ·M,CH ·M,νH ·M) given by

BH ·M(A) = (H · B)(A)
(3.5)

+
∫
R×E×R

1A(t)
[
τ
(
H(t, x)y

) − H(t, x)τ (y)
]
ν(dt,dx,dy),

CH ·M(A) =
∫
R

K−2
t d

(∫
(At×E;At×E)

(HK;HK)dC

)
, (3.6)

W(t, y) ∗ νH ·M = W
(
t,H(t, x)y

) ∗ ν (3.7)

for all A ∈PH ·M and P ⊗B(R)-measurable functions W such that W(t, y) ∗ νH ·M exists.
Moreover, if in addition M is orthogonal, then

CH ·M(dt) =
∫

E

H 2(t, x)C(dt,dx). (3.8)

Proof. The second part of this theorem is clear as soon as we have proved the first part. Since
characteristics are defined locally, we may assume that H ∈ L1,0(M). We first consider the con-
tinuous part CH ·M : to this end, let (Hn)n∈N be a sequence of simple integrands with |Hn| ≤ |H |
for all n ∈ N and Hn → H pointwise. Since for simple integrands the claim follows directly from
the definition of C and the bimeasure integral, we would like to use the (DCT) and Lemma 3.3(1)
on the one hand and the dominated convergence theorem for bimeasure integrals (see [18], Corol-
lary 2.9) on the other hand to obtain the result. In order to do so, we only have to show that
(H ;H) is strictly C-integrable, which means by the symmetry of C the following two points:
first, that H is integrable w.r.t. the measure A �→ C(A;B) = [(1A · M)c, (1B · M)c]∞ for all
B ∈ P̃M , and second, that H is integrable w.r.t. the measure A �→ ∫

H(t, x)dC(A;dt,dx) =
[(1A · M)c, (H · M)c]∞.

Let G be 1B or H . From [35], Theorem 2 and its Corollary, we know that there exists
a probability measure Q equivalent to P such that M is an L2(Q)-random measure with
G,H ∈ L1,2(M;Q). Since the bounded sets in L0(P ) are exactly the bounded sets in L0(Q),
convergence in ‖·‖D

M,0;P is equivalent to convergence in ‖·‖D
M,0;Q. Similarly, stochastic integrals

and predictable quadratic covariation remain unchanged under Q (cf. [14], Proposition 3.6.20,
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and [28], Theorem III.3.13). Consequently, if we write γ (A) := [1A ·Mc,G ·Mc]∞ for A ∈ P̃M ,
it suffices to show that

sup
S∈SM,|S|≤|rH |

∥∥∥∥
∫

S dγ

∥∥∥∥
L0(Q)

= sup
S∈SM,|S|≤|rH |

∥∥[
(S · M)c, (G · M)c]

∞
∥∥

L0(Q)
→ 0 as r → 0.

Indeed, using Fefferman’s inequality (cf. [14], Theorem 4.2.7), we can find a constant R > 0,
which only depends on G, such that

sup
S∈SM,|S|≤|rH |

∥∥[
(S · M)c, (G · M)c]

∞
∥∥

L0(Q)

≤ R sup
S∈SM,|S|≤|rH |

EQ

[[
(S · M)c]

∞
]1/2

= R sup
S∈SM,|S|≤|rH |

∥∥(S · M)c∞
∥∥

L2(Q)
= R‖rH‖D

Mc,2;Q → 0

as r → 0, which finishes the proof for CH ·M .
For BH ·M and νH ·M , we first take some D ∈P ⊗B0(R) and claim that

1D(s, y) ∗ μH ·M = 1D

(
s,H(s, x)y

) ∗ μ. (3.9)

This identity immediately extends to finite linear combinations of such indicators and thus, by
(DCT), also to all functions W(ω, t, y) for which W ∗ μH ·M exists. By the definition of the
predictable compensator, this statement also passes to the case where μ is replaced by ν.

In order to prove (3.9), first observe that the jump process of the semimartingale H · M up to
infinity is given by �(H · M)t = (H · M)(� × {t} × E). Furthermore, we can assume that D

does not contain any points in �̄ ×{0}. Hence, in the case where H = 1A with A ∈ P̃M , we have
for all t ∈ R

1D(s, y) ∗ μH ·M
t = 1D(s, y) ∗ μ

1A·M
t = 1D(s, y)1A(s, x) ∗ μt = 1D

(
s,1A(s, x)y

) ∗ μt .

Now a similar calculation yields that (3.9) remains true for all functions H ∈ SM . Finally, let H ∈
L1,0(M). By decomposing H = H+ − H− into its positive and negative part, we may assume
that H ≥ 0 and choose a sequence (Hn)n∈N of simple functions with Hn ↑ H as n → ∞. As we
have already seen in the proof of Theorem 3.2, we have 1D(s, y) ∗ μHn·M → 1D(s, y) ∗ μH ·M in
SM. On the other hand, if D is of the form R × (a, b] with R ∈P and (a, b] ⊆ (0,∞) or of the
form R × [a, b) with [a, b) ⊆ (−∞,0), then 1D(ω, s,Hn(ω, s, x)y) → 1D(ω, s,H(ω, s, x)y)

as n → ∞ for every (ω, s, x, y) ∈ �̃×R, which shows that (3.9) holds up to indistinguishability.
For general D, use Dynkin’s π -λ-lemma ([16], Theorem 3.2).

Finally, we compute BH ·M . The results up to now yield that for all t ∈R,

(H · M)t − (
y − τ(y)

) ∗ μH ·M
t = (H · B)t + (

H · Mc)
t
+ H(s, x)

(
y − τ(y)

) ∗ μt

+ H(s, x)τ (y) ∗ (μ − ν)t − [
H(s, x)y − τ

(
H(s, x)y

)] ∗ μt .
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By definition, BH ·M is the finite variation part in the canonical decomposition of this special
semimartingale, which exactly equals H · B + [τ(H(t, x)y) − H(t, x)τ (y)] ∗ ν. �

Finally, we show a Girsanov-type theorem comparable to [28], Theorem III.3.24, for semi-
martingales. First, let us introduce some notation. We consider another probability measure P ′
on (�,F , (Ft )t∈R) such that P ′

t := P ′|Ft
is absolutely continuous w.r.t. Pt := P |Ft

for all t ∈ R.
Then denote by Z the unique P -martingale such that Z ≥ 0 identically and Zt is a version of the
Radon–Nikodym derivative dP ′

t /dPt for all t ∈R, cf. [28], Theorem III.3.4.
Now let M be a random measure with different times of discontinuity under the probability

measure P with characteristics (B,C, ν) w.r.t. the truncation function τ . We modify the sequence
(Õk)k∈N of Definition 2.1(1) by setting Õ ′

k := Õk ∩ (� × (−k, k] × E) for k ∈ N and P̃ ′
M :=⋃∞

k=1 P̃|
Õ ′

k
. Next, we denote the jump measure of M by μ and set MP

μ (W) := EP [W ∗ μ∞] for

all non-negative F ⊗ B(R) ⊗ E ⊗ B(R)-measurable functions W . Furthermore, for every such
W , there exists an MP

μ -a.e. unique P̃ ⊗B(R)-measurable function MP
μ (W |P̃ ⊗B(R)) such that

MP
μ (WU) = MP

μ

(
MP

μ

(
W |P̃ ⊗B(R)

)
U

)
for all P̃ ⊗B(R)-measurable U ≥ 0.

Finally, we set

Y(t, x, y) := MP
μ

(
Z/Z−1{Z−>0}|P̃ ⊗B(R)

)
(t, x, y), t ∈ R, x ∈ E,y ∈R,

CZ(A) := [(
Z−1− · Z)c

, (1A · M)c]
∞, A ∈ P̃ ′

M.

In the last line, the stochastic integral process Z−1− · Z is meant to start at t0, where t0 ∈ R is
chosen such that (1A · M)c = 0 on (−∞, t0]. Then CZ(A) is well defined by [28], Proposi-
tion III.3.5a, and does not depend on the choice of t0. Moreover, as in Theorem 3.2, one shows
that CZ can be chosen as a positive predictable strict random measure.

The following theorem extends [28], Theorem III.3.24, to the space–time framework.

Theorem 3.6. Under P ′, M is also a random measure with different times of discontinuity (w.r.t.
(Õ ′

k)k∈N). Its P ′-characteristics (B ′,C′, ν′) w.r.t. τ are versions of

B ′(dt,dx) := B(dt,dx) + CZ(dt,dx) + τ(y)
(
Y(t, x, y) − 1

)
ν(dt,dx,dy),

C′(dt,dx) := C(dt,dx),

ν′(dt,dx,dy) := Y(t, x, y)ν(dt,dx,dy).

Proof. Since each set in P̃ ′
M is Ft -measurable for some t ∈ R, properties (a), (b) and (d) of

Definition 2.1(1) still hold under P ′. Since (c) does not depend on the underlying probability
measure, M is also a random measure under P̃ . To show that M still has different times of
discontinuity under P ′, it suffices to notice the following: using the notation of Definition 3.1,
the event that 1Ok×U1 ·M and 1Ok×U2 ·M have a common jump in R is the union over n ∈ N of the
events that they have a common jump in (−∞, n]. Since these latter events are Fn-measurable,
their P ′-probability is 0, as desired. Finally, the characteristics under P ′ can be derived, up to
obvious changes, exactly as in [28], Theorem III.3.24. �
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4. An integrability criterion

The canonical decomposition of M in Theorem 3.2 together with Theorem 3.5 enables us to
reformulate (2.8) in terms of conditions only depending on the characteristics of M . This re-
sult extends the null-spatial case as found in [28], Theorem III.6.30, [19], Theorem 4.5, [12],
Theorem 3.2, or [34], Theorem 9.4.1. It also generalizes the results of [46], Theorem 2.7, to pre-
dictable integrands and also to random measures which are not necessarily Lévy bases. Our proof
mimics the approach in [12], Theorem 3.2, and takes care of the additional spatial structure.

Theorem 4.1. Let M be a random measure with different times of discontinuity whose char-
acteristics w.r.t. some truncation function τ are given by Theorem 3.2. Furthermore, let H ∈ P̃
satisfy (2.6). Then H ∈ L0(M) if and only if each of the following conditions is satisfied a.s.:

∫
R×E

∣∣∣∣H(t, x)b(t, x) +
∫
R

[
τ
(
H(t, x)y

) − H(t, x)τ (y)
]
K(t, x,dy)

∣∣∣∣A(dt,dx) < ∞, (4.1)

∫
R

K−2
t d

(∫
((−∞,t]×E;(−∞,t]×E)

(HK;HK)dC

)
< ∞, (4.2)

∫
R×E

∫
R

(
1 ∧ (

H(t, x)y
)2)

K(t, x,dy)A(dt,dx) < ∞. (4.3)

If M is additionally orthogonal, the spaces L0(M) and L1,0(M) are equal and condition (4.2) is
equivalent to ∫

R×E

H 2(t, x)C(dt,dx) < ∞. (4.4)

The following lemma is a straightforward extension of [46], Lemma 2.8. We omit its proof.

Lemma 4.2. For t ∈ R, x ∈ E and a ∈ R define

U(t, x, a) :=
∣∣∣∣ab(t, x) +

∫
R

(
τ(ay) − aτ(y)

)
K(t, x,dy)

∣∣∣∣, Ũ (t, x, a) := sup
−1≤c≤1

U(t, x, ca).

Then there exists a constant κ > 0 such that

Ũ(t, x, a) ≤ U(t, x, a) + κ

∫
R

(
1 ∧ (ay)2)K(t, x,dy).

Proof of Theorem 4.1. We first prove that H ∈ L0(M) implies (4.1)–(4.3). Since H · M is a
semimartingale up to infinity, BH ·M(R) and CH ·M(R) exist. Thus, Theorem 3.5 gives the first
two conditions. For the last condition observe that (1 ∧ y2) ∗ νH ·M∞ < ∞ a.s. is equivalent to
(1 ∧ y2) ∗ μH ·M∞ < ∞ a.s., which obviously holds since H · M is a semimartingale up to infinity.
This completes the first direction of the proof.
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For the converse statement, we define D := {G ∈ P : |G| ≤ 1,GH ∈ L1,0(M)}. By (2.8) we
have to show that the set {∫ GH dM:G ∈ D} is bounded in L0 (i.e., bounded in probability)
whenever H satisfies (4.1)–(4.3). By Theorem 3.5,

∫
GH dM =

∫
GH dMc + τ(GHy) ∗ (μ − ν)∞ + (

GHy − τ(GHy)
) ∗ μ∞ + BGH ·M(R).

We consider each part of this formula separately and show that each of the sets

{
BGH ·M(R):G ∈ D

}
, (4.5){∫

GH dMc:G ∈ D
}
, (4.6)

{
τ(GHy) ∗ (μ − ν)∞:G ∈ D

}
, (4.7){(

GHy − τ(GHy)
) ∗ μ∞:G ∈ D

}
(4.8)

is bounded in probability.
If G ∈ D and κ > 0 denotes the constant in Lemma 4.2, (4.1) and (4.3) imply

∫
R×E

U
(
t, x,GtH(t, x)

)
A(dt,dx)

≤
∫
R×E

Ũ
(
t, x,GtH(t, x)

)
A(dt,dx) ≤

∫
R×E

Ũ
(
t, x,H(t, x)

)
A(dt,dx)

≤
∫
R×E

U
(
t, x,H(t, x)

)
A(dt,dx) + κ

∫
R×E

∫
R

(
1 ∧ (

H(t, x)y
))

K(t, x,dy)A(dt,dx) < ∞

a.s., which shows that (4.5) is bounded in probability.
Next, consider (4.6) and fix some G ∈ D for a moment. Using Lenglart’s inequality [28],

Lemma I.3.30a, we have for all ε, η > 0

P

[∣∣∣∣
∫

GH dMc
∣∣∣∣ ≥ ε

]

≤ P
[
sup
t∈R

∣∣(GH · Mc)(�̄t )
∣∣ ≥ ε

]
= P

[
sup
t∈R

∣∣(GH · Mc)(�̄t )
∣∣2 ≥ ε2

]

≤ η

ε2
+ P

[[
GH · Mc]

∞ ≥ η
] = η

ε2
+ P

[
G2K−2 · [KH · Mc]

∞ ≥ η
]

≤ η

ε2
+ P

[
K−2 · [KH · Mc]

∞ ≥ η
]
.

Now (4.2) allows us to make the quantity on the left-hand side arbitrarily small, independently
of G ∈ D, by first choosing η > 0 and then ε > 0 large enough.
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For (4.7), we use the abbreviation W(t, x, y) = τ(GtH(t, x)y). Lenglart’s inequality again
yields

P
[∣∣W ∗ (μ − ν)∞

∣∣ ≥ ε
] ≤ P

[
sup
t∈R

∣∣W ∗ (μ − ν)t
∣∣2 ≥ ε2

]
≤ η

ε2
+ P

[〈
W ∗ (μ − ν)

〉
∞ ≥ η

]
(4.9)

for every ε, η > 0. Furthermore, by Theorem 3.5 and [28], Proposition II.2.17, we have〈
W ∗ (μ − ν)

〉
∞ = 〈

τ(y) ∗ (
μGH ·M − νGH ·M)〉

∞ ≤ τ(y)2 ∗ ν∞,

which is finite by (4.3) yielding the boundedness of (4.7).
Next, choose r , ε > 0 such that f (y) := r|y|1{|y|>ε} satisfies |y − τ(y)| ≤ f (y) for all y ∈ R.

Obviously, f is symmetric and increasing on R+ so that∣∣(GHy − τ(GHy)
) ∗ μ∞

∣∣ ≤ f (GHy) ∗ μ∞ ≤ f (Hy) ∗ μ∞.

Now the third condition and Lemma 3.3(2) imply that∑
t∈R

(
1 ∧ ε2)1{|�(H ·M)t |>ε} ≤ (

1 ∧ y2) ∗ μH ·M∞ = (
1 ∧ (

H(t, x)y
)2) ∗ μ∞ < ∞

a.s. such that {|�(H · M)t | > ε} only happens for finitely many time points. Hence,

f (Hy) ∗ μ∞ = f (y) ∗ μH ·M∞ = r
∑
t∈R

∣∣�(H · M)t
∣∣1{|�(H ·M)t |>ε} < ∞

a.s., which implies that the set in (4.8) is also bounded in probability.
Finally, in the case where M is also orthogonal, we show that (4.1), (4.4) and (4.3) imply

H ∈ L1,0(M). By Theorem 2.3 and the fact that for predictable functions H

‖H‖D
M,0 = sup

S∈SM,|S|≤|H |

∥∥∥∥
∫

S dM

∥∥∥∥
0
= sup

G∈P̃,|G|≤1,GH∈L1,0(M)

∥∥∥∥
∫

GH dM

∥∥∥∥
0
,

we have to show that the set {∫ GH dM:G ∈ D′} is bounded in L0, where D′ consists of all
functions G ∈ P̃ with |G| ≤ 1 and GH ∈ L1,0(M). Obviously, the previously considered set
D is a subset of D′. Intending to verify (4.5)–(4.8) with G taken from D′, we observe that all
calculations remain valid except those for (4.6). For (4.6) we argument as follows: for all ε,
η > 0, Lenglart’s inequality implies

P

[∣∣∣∣
∫

GH dMc
∣∣∣∣ ≥ ε

]

≤ P
[
sup
t∈R

∣∣(GH · M)c(�̄t )
∣∣2 ≥ ε2

]
≤ η

ε2
+ P

[[
(GH · M)c]

∞ ≥ η
]

= η

ε2
+ P

[∫
R×E

G2(t, x)H 2(t, x)C(dt,dx) ≥ η

]

≤ η

ε2
+ P

[∫
R×E

H 2(t, x)C(dt,dx) ≥ η

]
.
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This finishes the proof of Theorem 4.1. �

The remaining part of this section illustrates Theorem 4.1 by a series of remarks, examples
and useful extensions.

Remark 4.3. If M has summable jumps, which means that each of the semimartingales
(M(�̃t ∩ Õk))t∈R, k ∈ N, has summable jumps over finite intervals, it is often convenient to
construct the characteristics w.r.t. τ = 0, which is not a proper truncation function. Then one
would like to use τ = 0 in (4.1) and replace (4.3) by∫

R×E

∫
R

(
1 ∧ ∣∣H(t, x)y

∣∣)K(t, x,dy)A(dt,dx) < ∞. (4.10)

We show that (4.1) with τ = 0, (4.2) and (4.10) are together sufficient conditions for H ∈ L0(M).
First, note that we can choose κ = 0 in Lemma 4.2(2) since τ is identical 0 and therefore Ũ = U .
So the calculations done for (4.5) remain valid. Moreover, (4.6) does not depend on τ and the
boundedness of (4.7) becomes trivial. For (4.8) observe that

|GHy| ∗ μ∞ ≤ |Hy| ∗ μ∞ = |y| ∗ μH ·M∞ = |y|1{|y|≤1} ∗ μH ·M∞ + |y|1{|y|>1} ∗ μH ·M∞ . (4.11)

Now (4.10) implies by Lemma 3.3(2) that a.s.,

|y|1{|y|≤1} ∗ μH ·M∞ + 1{|y|>1} ∗ μH ·M∞ < ∞.

As a result, on the right-hand side of (4.11), the first summand converges a.s. and the second one
is in fact just a finite sum a.s.

The converse statement is not true, already in the null-spatial case: let (Nt )t≥0 be a standard

Poisson process and Ñt = Nt − t , t ≥ 0, its compensation. Set Ht := (1 + t)−1 for t ≥ 0. Then
H ∈ L0(Ñ) as one can see from (4.1)–(4.3) with the proper truncation function τ(y) = y1{|y|<1};
but

∫ ∞
0 Ht dt = ∞ violating both (4.1) with τ = 0 and (4.10).

However, if M is a positive (or negative) random measure, that is, M(A) is a positive (or
negative) random variable for all A ∈ P̃M , then C = 0 necessarily and (4.1) with τ = 0 and (4.10)
also become necessary conditions for H ∈ L0(M) = L1,0(M); cf. [15], Example 5, page 7, and
Theorem 4.12.

Next, we compare our results and techniques to the standard literature.

Remark 4.4 (Lévy bases [46]). Lévy bases are originally called infinitely divisible indepen-
dently scattered random measures in [46]. They are the space–time analogues of processes with
independent increments and have attracted interest in several applications in the last few years,
see Section 5 for some examples. The precise definition is as follows: Assume that we have
Õk = �×O ′

k in the notation of Definition 2.1, where (O ′
k)k∈N is a sequence increasing to R×E.

Set S := ⋃∞
k=1 B(R1+d)|O ′

k
. Then a Lévy basis � is a random measure on R × E with the fol-

lowing additional properties:
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(1) If (An)n∈N is a sequence of pairwise disjoint sets in S , then (�(� × An))n∈N are inde-
pendent random variables.

(2) For all A ∈ S , �(� × A) has an infinitely divisible distribution.

Note that we have altered the original definition of [46]: in order to perform stochastic integra-
tion, we need to single out one coordinate to be time and introduce a filtration based definition
of the integrator �. For notational convenience, we will write �(A) instead of �(� × A) in the
following. As shown in [46], Proposition 2.1 and Lemma 2.3, � induces a characteristic triplet
(B,C, ν) w.r.t. some truncation function τ via the Lévy–Khintchine formula:

E
[
eiu�(A)

] = exp

(
iuB(A) − u2

2
C(A) +

∫
R

(
eiuy − 1 − iuτ(y)

)
ν(A,dy)

)
, A ∈ S, u ∈ R.

It is natural to ask how this notion of characteristics compares with Theorem 3.2. Obviously, � is
an orthogonal random measure. In order that � has different times of discontinuity, it suffices
by independence to assume that � has no fixed times of discontinuity. In this case, recalling
the construction in the proof of Theorem 3.2 and using [49], Theorem 3.2, together with [28],
Theorem II.4.15, one readily sees that the two different definitions of characteristics agree in the
natural filtration of �. In particular, the canonical decomposition of � determines its Lévy–Itô
decomposition as derived in [44].

Consequently, the integrability criteria obtained in Theorem 4.1 extend the corresponding re-
sult of [46], Theorem 2.7, for deterministic functions (or, as used in [5], for integrands which are
independent of �) to allow for predictable integrands.

Remark 4.5 (Martingale measures [51]). In [51], a stochastic integration theory for predictable
integrands is developed with so-called worthy martingale measures as integrators. The concept
of worthiness is needed since a martingale measure in Walsh’s sense does not guarantee that it
is a random measure in the sense of Definition 2.1. What is missing is, loosely speaking, a joint
σ -additivity condition in space and time; see also the example in [51], page 305ff. The worthiness
of a martingale measure, that is, the existence of a dominating (σ -additive) measure, turns it into
a random measure.

In essence, the integration theory presented in [51] for worthy martingale measures is an L2-
theory similar to [21,26], where the extension from simple to general integrands is governed by
a dominating measure. The latter also determines whether a predictable function is integrable
or not in terms of a square-integrability condition; see [51], page 292. We see the main advan-
tages of the L2-theory as follows: it does not require the martingale measure to have different
times of discontinuity, works with fairly easy integrability conditions and produces stochastic
integrals again belonging to L2. However, many interesting integrators (e.g., stable noises) are
not L2-random measures. Moreover, even if the integrator M is an L2-random measure, the class
L0(M) is usually considerably larger than the class L2(M). Thus, in comparison to [51], it is the
compensation of these two shortages of the L2-theory that constitutes the main advantage of our
integrability conditions in Theorem 4.1. We will come back to this point in Section 5.2, where it
is shown that in the study of stochastic PDEs, solutions often do not exist in the L2-sense but in
the L0-sense.
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Remark 4.6 ((Compensated) strict random measures [28]). Chapters I and II of [28] are an
established reference for integration theory w.r.t. semimartingales. Moreover, they also cover
the integration theory w.r.t. strict random measures or compensated strict random measures as
follows: if M is a strict random measure, they define stochastic integrals w.r.t. M path-by-path.
More precisely, a measurable function H : �̃ → R is pathwise integrable w.r.t. M if for a.e. ω ∈ �∫

R×E

|H |(ω, t, x)|M|(ω,dt,dx) < ∞. (4.12)

If M̃ := M − Mp is the compensation of an integer-valued strict random measure M , we have
the following situation: let H ∈ P̃ and introduce an auxiliary process by

H̃t (ω) :=
∫

E

H(ω, t, x)M̃
(
ω, {t} × dx

)
, (ω, t) ∈ �̄, (4.13)

hereby setting H̃t (ω) := +∞ whenever (4.13) diverges. Then H is integrable in the sense of
[28], Definition II.1.27, if there exists a sequence of stopping times (Tn)n∈N with Tn ↑ +∞ a.s.
and

E

[( ∑
−Tn≤t≤Tn

H̃ 2
t

)1/2]
< ∞. (4.14)

How do these integrability conditions compare to those of Theorem 4.1? Obviously, path-
wise integrability w.r.t. M does not require the integrand to be predictable. Furthermore, if H

is predictable and (4.12) holds, then the pathwise integral coincides with the stochastic integral
H · M . Still, Theorem 4.1 provides a useful extension in some situations: first, there are exam-
ples H ∈ L0(M) which fail the condition (4.12) (see the example at the end of Remark 4.3). And
second, given some specific H , it may be difficult in general to determine whether (4.12) holds
or not (e.g., if M has no finite first moment). The characteristic triplet that is used in Theorem 4.1
is often easier to handle than |M|.

As for M̃ we have following situation: first, one should notice that (4.14) ensures integrability
on finite intervals, whereas Theorem 4.1 is concerned with global integrability on R. Second,
even on finite intervals, the conditions of Theorem 4.1 are more general than (4.14), see [15],
Proposition 3.10. Finally, whereas (4.14) involves a localizing sequence of stopping times and
moment considerations, Theorem 4.1 relates integrability only to the integrand itself and the
characteristics of M̃ , which is often more convenient.

In order to illustrate condition (4.2) in Theorem 4.1, we now discuss the example of a Gaussian
random measure, which is white in time but coloured in space. Such random measures are often
encountered as the driving noise of stochastic PDEs, see [20] and references therein.

Example 4.7. Let (M(� × B))B∈Bb(R
1+d ) be a mean-zero Gaussian process whose covariance

functional for B,B ′ ∈ Bb(R
1+d) is given by

C
(
B;B ′) := E

[
M(� × B)M

(
� × B ′)] =

∫
R

∫
B(t)×B ′(t)

f
(
x − x′)d

(
x, x′)dt, (4.15)
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where B(t) := {x ∈ R
d : (t, x) ∈ B}. For the existence of such a process, it is well known ([21],

Theorem II.3.1), that f :Rd → [0,∞) must be a symmetric and nonnegative definite function
for which the integral on the right-hand side of (4.15) exists. Under these conditions, C defines
a deterministic bimeasure which is symmetric in B,B ′ ∈ Bb(R

1+d).
For the further procedure let (Ft )t∈R be the natural filtration of M and set

M
(
F × (s, t] × U

) := 1F M
(
� × (s, t] × U

)
, F ∈ Fs .

By [15], Theorem 2.25, M can be extended to a random measure on R×R
d provided that

Sn → 0 pointwise, |Sn| ≤ |S| �⇒
∫

Sn dM → 0 in L0

for all step functions Sn and S over sets of the form F × (s, t] × U with F ∈ Fs , s < t and
U ∈ Bb(R

d). Indeed, using obvious notation and observing that 1F is independent of M(� ×
(s, t] × U) for F ∈ Fs since M is white in time, we have

E

[(∫
Sn dM

)2]

=
rn∑

i,j=1

an
i an

jE
[
M

(
An

i

)
M

(
An

j

)]

=
rn∑

i,j=1

an
i an

j P
[
Fn

i

]
P

[
Fn

j

]
Leb

(
(sn

i , tni ] ∩ (sn
j , tnj ])∫

Un
i ×Un

j

f
(
x − x′)d

(
x, x′)

=
∫

(R1+d ;R1+d )

(S̃n, S̃n)dC → 0

by dominated convergence [18], Corollary 2.9. Here S̃n arises from Sn by replacing an
i with

an
i P [Fn

i ].
Having established that M is a random measure, let us derive its characteristics. Obviously,

B and ν are identically 0. It is also easy to see that C is the second characteristic of M : it is
clear for sets of the form (s, t] × U , and extends to general sets in Bb(R

1+d) by dominated
convergence. Therefore, as shown in the proof of Theorem 3.5, L1,0(M) consists of those H ∈ P̃
such that (H ;H) is strictly C-integrable, or, equivalently,∫

R

∫
Rd×Rd

|H |(t, x)|H |(t, x′)f (
x − x′)d

(
x, x′)dt < ∞ a.s. (4.16)

The class L0(M), however, is the set of all H ∈ P̃ such that a.s. the inner integral in (4.16) is
finite for a.e. t ∈ R, and∫

R

∫
Rd×Rd

H(t, x)H
(
t, x′)f (

x − x′)d
(
x, x′)dt < ∞ a.s. (4.17)
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A (deterministic) function H ∈ L0(M) which is not in L1,0(M) is, for instance, given by
H(t, x) := th(x) where h is chosen such that∫

Rd×Rd

h(x)h
(
x′)f (

x − x′)d
(
x, x′) = 0.

One important example is a fractional correlation structure in space. In this case, we have
f (x1, . . . , xd) = ∏d

i=1 |xi |2Hi−2, where Hi ∈ (1/2,1) is the Hurst index of the ith coordinate.
Then L0(M) can be interpreted as the extension of the class |�H | studied in [45] to several pa-
rameters and stochastic integrands. However, in [45] as well as in [11], stochastic integrals are
constructed for even larger classes of integrands. These classes, denoted �H or �X , respectively,
are obtained as limits of simple functions under L2-norms (‖ · ‖�H

and ‖ · ‖�X
, resp.), which are

defined via fractional derivatives or Fourier transforms. In particular, the stochastic integrals de-
fined via these norms are no longer of Itô type, that is, no dominated convergence theorem holds
for these stochastic integrands. Indeed, L1,0(M) is the largest class of predictable integrands for
which a dominated convergence theorem holds (see Theorem 2.3), and L0(M) is its improper
extension to functions for which H · M is a finite measure.

The investigation of multi-dimensional stochastic processes often involves stochastic inte-
grals where the integrand H is a matrix-valued predictable function and the integrator M =
(M1, . . . ,Md) is a d-dimensional random measure, that is, M1, . . . ,Md are all random mea-
sures in the sense of Definition 2.1 w.r.t. the same underlying filtration and the same sequence
(Õk)k∈N. By considering each row of H separately, we can assume for the following that H is
an R

d -valued predictable function. It is obvious that the construction of stochastic integrals re-
quires no more techniques than those presented in Section 2. In fact, replacing E by Ed reduces
the multivariate case to the univariate one. However, there is a difference when we want to apply
the canonical decomposition as in Theorem 3.2 or the integrability conditions in Theorem 4.1: in
the multi-dimensional case, it is not reasonable to assume that Mi and Mj for i �= j have differ-
ent times of discontinuity. Instead, one would define d-dimensional characteristics (B,C, ν) for
M , similar to [28], Chapter II, or [12], Theorem 3.1, and use these to characterize integrability.

In the next theorem, we rephrase 4.1 for the multivariate setting. Since no novel argu-
ments are needed, we omit its proof. We will use the product notation in a self-explanatory
way: for instance, if x, y ∈ R

d , xy denotes their inner product; for A ∈ P̃M , 1A · M denotes
the d-dimensional semimartingale (1A · M1, . . . ,1A · Md); H · M denotes

∑d
i=1 Hi · Mi for

H ∈ L1,0(M) and is suitably extended to H ∈ L0(M), cf. Section 2. Similarly, given a matrix β =
(βij )di,j=1 of bimeasures from F1 ×F2 →R and Fi -measurable functions fi = (f 1

i , . . . , f d
i ) for

i = 1,2, we define

∫
(A;B)

(f1;f2)dβ :=
d∑

i,j=1

∫
(A;B)

(
f i

1 ;f j

2

)
dβij , A ∈ F1,B ∈ F2,

whenever the right-hand side exists.
Assume that M has different times of discontinuity, which means that 1Ok×Ui

· M , i = 1,2,
a.s. never jump at the same time for all disjoint sets U1,U2 ∈ EM and k ∈ N. Given a truncation
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function τ :Rd → R
d , define for A,B ∈ P̃M and V ∈ B0(R

d)

B(A) := B(1A · M)∞, μ(A,V ) := μ1A·M(R,V ), ν(A,V ) := ν1A·M(R,V )
(4.18)

Mc(A) := (1A · M)c, Cij (A;B) := [(
1A · Mi

)c
,
(
1B · Mj

)c]
∞.

As in Theorem 3.2 (B,C, ν) can be extended to predictable strict random (bi-)measures and give
rise to the following canonical decomposition of M :

M(A) = B(A) + Mc(A) +
∫
R×E×Rd

1A(t, x)
(
y − τ(y)

)
μ(dt,dx,dy)

(4.19)

+
∫
R×E×Rd

1A(t, x)τ (y)(μ − ν)(dt,dx,dy), A ∈ P̃M.

Moreover, there exist a positive predictable strict random measure A(ω,dt,dx), a P̃-measurable
R

d -valued function b(ω, t, x) and a transition kernel K(ω, t, x,dy) from (�̃, P̃) to (Rd ,B(Rd))

such that for all ω ∈ �,

B(ω,dt,dx) = b(ω, t, x)A(ω,dt,dx), ν(ω,dt,dx,dy) = K(ω, t, x,dy)A(ω,dt,dx).

The multi-dimensional version of Theorem 4.1 reads as follows.

Theorem 4.8. Let M be a d-dimensional random measure with different times of discontinuity
and H : �̃ → R

d be a predictable function such that there exists a strictly positive predictable
process K : �̄ → R with HK ∈ L1,0(M). Then H ∈ L0(M) if and only if each of the following
conditions is satisfied a.s.:

∫
R×E

∣∣∣∣H(t, x)b(t, x) +
∫
Rd

[
τ
(
H(t, x)y

) − H(t, x)τ (y)
]
K(t, x,dy)

∣∣∣∣A(dt,dx) < ∞,

∫
R

K−2
t d

(∫
((−∞,t]×E;(−∞,t]×E)

(HK;HK)dC

)
< ∞,

∫
R×E

∫
Rd

(
1 ∧ ∣∣H(t, x)y

∣∣2)
K(t, x,dy)A(dt,dx) < ∞.

5. Ambit processes

In this section, we present various applications, where the integrability conditions of Theorem 4.1
are needed. Given a filtered probability space satisfying the usual assumptions, our examples are
processes of the following form:

Y(t, x) :=
∫
R×Rd

h(t, s;x, y)M(ds,dy), t ∈R, x ∈ R
d, (5.1)
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where h :R×R×R
d ×R

d →R is a deterministic measurable function and M a random measure
with different times of discontinuity such that the integral in (5.1) exists in the sense of (2.3). If
the characteristics of M in the sense of Theorem 3.2 are known, (5.1) exists if and only if the
conditions of Theorem 4.1 are satisfied for each pair (t, x) ∈ R × R

d . We call processes of the
form (5.1) ambit processes although the original definition in [5] requires the random measure to
be a volatility modulated Lévy basis, that is, M = σ.� where � is a Lévy basis and σ ∈ P̃ . As
already explained in the Introduction, this class of models is relevant in many different areas of
applications. In the following subsections, we discuss two applications where interesting choices
for h and M will be presented.

5.1. Stochastic PDEs

The connection between stochastic PDEs and ambit processes is exemplified in [5] relying on
the integration theory of [46] or [51]. Let U be an open subset of R×R

d with boundary ∂U , P a
polynomial in 1 + d variables with constant coefficients and M a random measure with different
times of discontinuity. The goal is to find a solution Z to the stochastic PDE

P(∂t , ∂1, . . . , ∂d)Z(t, x) = ∂t ∂1 · · ·∂dM(t, x), (t, x) ∈ U, (5.2)

subjected to some boundary conditions on ∂U , where ∂t ∂1 · · · ∂dM(t, x) is the formal derivative
of M , its noise. We want to apply the method of Green’s function to our random setting: first, we
find a solution Y to (5.2) with vanishing boundary conditions, then we find a solution Y ′ to the
homogeneous version of (5.2) which satisfies the prescribed boundary conditions, and finally we
obtain a solution Z by the sum of Y and Y ′. Since the problem of finding Y ′ is the same as in
ordinary PDE theory, we concentrate on finding Y . However, since the noise of M does not exist
formally, there exists no solution Y ′ in the strong sense. One standard approach based on [51],
Section 3, is to interprete (5.2) in weak form and to define

Y(t, x) :=
∫

U

G(t, s;x, y)M(ds,dy), (t, x) ∈ U, (5.3)

as a solution, where G is the Green’s function for P in the domain U . Obviously, Y is then
an ambit process, where the integrand is determined by the partial differential operator and the
domain, and the integrator is the driving noise of the stochastic PDE. Therefore, Theorem 4.1
provides necessary and sufficient conditions for the existence of Y . Let us stress again that, in
contrast to [46] and [51], we need no distributional assumptions on M .

Finally, we want to come back to Remark 4.5 and explain why the L2-approach is too stringent
for stochastic PDEs. To this end, we consider the stochastic heat equation in R

d :

Example 5.1. We take P(t, x) = t − ∑d
i=1 xi , U = (0,∞) × R

d and M = σ.� where σ is
a predictable function and � a Lévy basis with characteristics (0,� dt dx, ν(dξ)dt dx), where
� ≥ 0 and ν is a symmetric Lévy measure. [51], Section 3, considers a similar equation with
ν = 0. The Green’s function for P and U is the heat kernel

G(t, s;x, y) = exp(−|x − y|2/(4(t − s)))

(4π(t − s))d/2
1{0<s<t}, s, t > 0, x, y ∈ R

d .
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Since for all (t, x) ∈ U the kernel G(t, ·;x, ·) ∈ Lp(U) if and only if p < 1 + 2/d , it is square-
integrable only for d = 1. Therefore, in the L2-approach function-valued solutions only exist for
d = 1. However, if � = 0, a sufficient condition for (4.3) and thus the existence of (5.3) is∫ t

0

∫
Rd

∣∣G(t, s;x, y)σ (s, y)
∣∣p ds dy < ∞ a.s., (t, x) ∈ U,

(5.4)∫
[−1,1]

|ξ |pν(dξ) < ∞

for some p ∈ [0,2). For instance, if σ is stationary in U with finite pth moment, (5.4) becomes∫
[−1,1]

|ξ |pν(dξ) < ∞ for some p < 1 + 2/d.

In particular, we see that function-valued solutions exist in arbitrary dimensions, which cannot
be “detected” in the L2-framework, even for integrators which are L2-random measures.

The stochastic heat equation or similar equations driven by non-Gaussian noise have already
been studied in a series of papers, for example, [1,3,41,42,48], partly also extending Walsh’s ap-
proach beyond the L2-framework. Although they do not only consider the linear case (5.2), there
are always limitations in dimension (e.g., only d = 1) or noise type (e.g., only stable noise with-
out volatility modulation). Thus, in the linear case, Theorem 4.1 provides a unifying extension
of the corresponding results in the given references.

5.2. Superposition of stochastic volatility models

In this subsection, we give examples of ambit processes, where the spatial component in the
stochastic integral has the meaning of a parameter space. First, we discuss one possibility of
constructing a superposition of COGARCH processes, following [13]. The COGARCH model
of [32] itself is designed as a continuous-time version of the celebrated GARCH model and
is defined as follows: Let (Lt )t∈R be a two-sided Lévy process with Lévy measure νL. Given
β,η > 0 the COGARCH model (V ϕ,Gϕ) with parameter ϕ ≥ 0 is given by the equations

dG
ϕ
t =

√
V

ϕ
t− dLt , G

ϕ
0 = 0, (5.5)

dV
ϕ
t = (

β − ηV
ϕ
t

)
dt + ϕV

ϕ
t− dSt , t ∈R, (5.6)

where S := [L]d denotes the pure-jump part of the quadratic variation of L. By [32], Theo-
rem 3.1, (5.6) has a stationary solution if and only if∫

R+
log

(
1 + ϕy2)νL(dy) < η. (5.7)

Let us denote the collection of all ϕ ≥ 0 satisfying (5.7) by �, which by (5.7) must be of the form
[0, ϕmax) with some 0 < ϕmax < ∞. Although the COGARCH model essentially reproduces the
same stylized features as the GARCH model, there are two unsatisfactory aspects:
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(1) Right from the definition, the COGARCH shows a deterministic relationship between
volatility and price jumps, an effect shared by many continuous-time stochastic volatility
models [27]. More precisely, we have

�V
ϕ
t = ϕV

ϕ
t−(�Lt)

2 = ϕ
(
�G

ϕ
t

)2
, t ∈ R. (5.8)

A realistic stochastic volatility model should allow for different scale parameters ϕ.
(2) The autocovariance function of the COGARCH volatility is, when existent and ϕ > 0,

always of exponential type: Cov[V ϕ
t ,V

ϕ
t+h] = Ce−ah for h ≥ 0, t ∈ R and some constants

C,a > 0. A more flexible autocovariance structure is desirable.

In [13], three approaches to construct superpositions of COGARCH processes (supCO-
GARCH) with different values of ϕ are suggested in order to obtain a stochastic volatility model
keeping the desirable features of the COGARCH but avoiding the two disadvantages mentioned
above. One of them is the following: With β and η remaining constant, take a Lévy basis � on
R× � with characteristics (bdtπ(dϕ),�dtπ(dϕ), νL(dy)dtπ(dϕ)), where b ∈ R, � ≥ 0, π is a
probability measure on � and νL the Lévy measure of the Lévy process given by

Lt := �L((0, t] × �), t ≥ 0, Lt := −�L((−t,0] × �), t < 0,

Furthermore, define another Lévy basis by �S(dt,dϕ) := ∫
R

y2μ�(dt,dϕ,dy), where μ� is
the jump measure of � as in Theorem 3.2. Next define V ϕ for each ϕ ∈ � as the COGARCH
volatility process driven by L with parameter ϕ. Motivated by (5.6), the supCOGARCH V̄ is
now defined by the stochastic differential equation

dV̄t = (β − ηV̄t )dt +
∫

�

ϕV
ϕ
t−�(dt,dϕ), t ∈R. (5.9)

As shown in [13], Proposition 3.15, (5.9) has a unique solution given by

V̄t = β

η
+

∫ t

−∞

∫
�

e−η(t−s)ϕV
ϕ
s−�(ds,dϕ), t ∈ R, (5.10)

such that V̄ is an ambit process as in (5.1).
Here the integrability conditions of Section 4 come into play. Immediately from Theorem 4.1

and Remark 4.3, we obtain the following corollary.

Corollary 5.2. The supCOGARCH V̄ as in (5.10) exists if and only if∫
R+

∫
�

∫
R+

1 ∧ (
y2ϕe−ηsV ϕ

s

)
νL(dy)π(dϕ)ds < ∞ a.s. (5.11)

In particular, the supCOGARCH (5.10) provides an example where the stochastic volatility
process σ(s,ϕ) := ϕV

ϕ
s− is not independent of the underlying Lévy basis �. So the conditions of

[46], Theorem 2.7, are not applicable. For further properties of the supCOGARCH, in particular
regarding its jump behaviour, autocovariance structure etc., we refer to [13].

Finally, let us comment on superpositions of other stochastic volatility models.
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Remark 5.3. The usage of Ornstein–Uhlenbeck processes in stochastic volatility modelling has
become popular through the Barndorff-Nielsen–Shephard model [8]. A natural extension is given
by the CARMA stochastic volatility model [50], which generates a more flexible autocovari-
ance structure. Another generalization of the BNS model is obtained via a superposition of OU
processes with different memory parameters leading to the class of supOU processes [4]. This
method does not only yield a more general second-order structure but can also generate long-
memory processes; cf. [4,24]. A similar technique was used in [9,37] to construct supCARMA
processes, again leading to a possible long-range dependent process.

Note that in all these models the driving noise is assumed to have stationary independent in-
crements, which is certainly a model restriction. Therefore, [10] suggests a volatility modulation
of this noise to obtain a greater model flexibility. In this way, it is possible to generate a volatility
clustering effect, similar to the behaviour of the (sup)COGARCH. Without volatility modula-
tion, supOU or supCARMA processes are defined as stochastic integrals of deterministic kernel
functions w.r.t. a Lévy basis, so the approach of [46] is sufficient. Theorem 4.1 now enables
us to replace � by a volatility modulated Lévy basis σ.� with a possible dependence structure
between σ and �.
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