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We employ a parameter-free distribution estimation framework where estimators are random distributions
and utilize the Kullback-Leibler (KL) divergence as a loss function. Wu and Vos [J. Statist. Plann. Infer-
ence 142 (2012) 1525-1536] show that when an estimator obtained from an i.i.d. sample is viewed as a
random distribution, the KL risk of the estimator decomposes in a fashion parallel to the mean squared
error decomposition when the estimator is a real-valued random variable. In this paper, we explore how
conditional versions of distribution expectation (E %) can be defined so that a distribution version of the
Rao-Blackwell theorem holds. We define distributional expectation and variance (V) that also provide
a decomposition of KL risk in exponential and mixture families. For exponential families, we show that
the maximum likelihood estimator (viewed as a random distribution) is distribution unbiased and is the
unique uniformly minimum distribution variance unbiased (UMVTU) estimator. Furthermore, we show that
the MLE is robust against model specification in that if the true distribution does not belong to the ex-
ponential family, the MLE is UMVTU for the KL projection of the true distribution onto the exponential
families provided these two distribution have the same expectation for the canonical statistic. To allow for
estimators taking values outside of the exponential family, we include results for KL projection and define
an extended projection to accommodate the non-existence of the MLE for families having discrete sample
space. Illustrative examples are provided.

Keywords: distribution unbiasedness; extended KL projection; Kullback—Leibler loss; MVUE;
Pythagorean relationship; Rao—Blackwell

1. Introduction

Wu and Vos [13] introduce a parameter-free distribution estimation framework and utilize the
Kullback-Leibler (KL) divergence as a loss function. They show that the KL risk of a distribution
estimator obtained from an i.i.d. sample decomposes in a fashion parallel to the mean squared
error decomposition for a parameter estimator, and that an estimator is distribution unbiased,
or simply unbiased, if and only if its distribution mean is equal to the true distribution. Distri-
bution unbiasedness can be defined without using any parameterization. We call this approach
parameter-free even though there may be applications where it is desirable to use a particular
parameterization. When the distributions are, in fact, parametrically indexed, distribution unbi-
asedness handles multiple parameters simultaneously and is consistent under reparametrization.
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Wu and Vos [13] also show that the MLE for distributions in the exponential family is always
distribution unbiased.

The KL expectation and variance functions E and V are defined by minimizing over the space
of all distributions. These functions completely describe an estimator in terms of its KL diver-
gence around any distribution. In this paper, we introduce distribution expectation and variance
functions ET and VT that are defined by minimizing over a smaller space of distributions. For
exponential and mixture families, the expected KL risk is a function only of these quantities.

Even though the focus of this paper is on parametric exponential families, our approach is
parameter-free in that the definitions and results are provided without regard to the parameteri-
zation of the family. There are three advantages to this approach: one, the lack of invariance of
bias across parameter transformations is avoided; two, we can allow for estimators taking values
outside of the exponential family; three, the case where the true distribution does not belong to
the family is easily addressed.

Section 2 introduces the distribution expectation and variance functions and shows how these
are a generalization of the mean and expectation functions for mean square error. Exponential
families and their extension are discussed in Section 3. The fundamental properties of the distri-
bution mean and variance functions allow using the ideas of Rao—Blackwell [2] to show that the
MLE is the unique uniformly minimum distribution variance unbiased estimator (UMVTUE).
This result is proved in Section 4. Three examples are given in Section 5 and Section 6 contains
further remarks.

2. Kullback-Leibler risk, variance, and expectation

2.1. Motivation

The parametric version of the Rao—Blackwell theorem can be proved using a Pythagorean re-
lationship that holds for mean square error (MSE) and the expectation operator. To prove the
distribution version of the Rao—Blackwell theorem, we use a similar relationship that holds for
KL risk and the KL expectation along with a second Pythagorean relationship that holds in ex-
ponential families for KL divergence and the KL projection. Basic properties of the expectation
operator for real-valued random variables used in the proof can be extended to distribution-valued
random variables. We begin with the property that the expectation minimizes the MSE.

For (real-valued) random variable Y and a € R, we can define the average behavior of Y
relative to a using the risk function

E[d(Y,a)],

where d is a loss function, that is, a nonnegative convex function on R x R. When E[d(Y, a)] <
oo for some a, we define

def .
VY = inf E|d(Y, b
a¥ = inf [d(Y.b)]
and

E;Y def arg min E[d(Y, b)]
beR
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if the minimum exists, in which case,
VY = E[d(Y, EqY)].

When d(a, b) = L(a, b) = (a — b)?, that is, risk is MSE, we have

Ery & argmin E[L(Y, b)] :fydRo ey, 2.1
beR
def . def
VY = ;nﬂgE[L(Y, b)] = E[L(Y,EY)] = VY. (2.2)
€

Note that we use the loss function as subscript to indicate expectation and variance defined in
terms of an argmin and infimum of the loss function, while expectations and variances without a
subscript are defined in terms of an integral, or in terms of a sum if the sample space is discrete.
The middle equality signs in equations (2.1) and (2.2) are well-known results for EY and VY.
These two values completely characterize the risk because of the relationship

E[L(Y,a)|=L(ELY,a)+ VLY  VaeR. (2.3)

In particular, the MSE for a random variable Y is completely determined by knowing its expec-
tation E'Y and variance VY. Note that (2.3) holds for any distribution function such that EY and
VY exist. For general loss functions d, the argmin E;Y and min V;Y do not characterize the
risk; that is,

E[d(Y,a)] — d(EqY, a)

will be a function of a.
The expectation and variance also have the following conditional properties

EY = EE[Y|X], (24)
VY =VE[Y|X]+ E[V(Y|X)]. (2.5)

In the next section, we consider random variables that take values on a space of distributions R
and show that when the KL divergence is used to compare distributions, equations (2.1) through
(2.5) hold for KL risk.

2.2. Space of all distributions R

Let (X, X) be a sample space equipped with a o -finite measure 1. When X is finite or countable,
A is usually the counting measure. When X ¢ R? and X contains an open set of R? for some
d=1,2,...,then A is usually the Lebesgue measure on R?. Requiring X to contain an open set
implies that the dimension of X is d. Let R be the collection of all probability measures R on
(X, X) that are absolutely continuous with respect to A, that is, L(A) = 0 implies R(A) = 0 for
all A € X. This is denoted as R < 1. Note that we allow the support of R to be a proper subset
of X.
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Let R (in bold font) be a random quantity whose values are distributions in R. The density of
the distribution R with respect to A will be denoted by r (in lower case), and the corresponding
random variable by r (in bold font lower case). Following Definition 2.1 in [13], R is an R-valued
random variable if R(A) is a real-valued random variable for all A € X. We are considering the
problem of estimating a distribution so for this paper R = Rx is any estimator of an unknown
distribution Ry € R where X is an i.i.d. sample from Rp. A random distribution is a mapping
from X" to R. Let S be another random quantity that is jointly distributed with R.

Theorem 2.1. For every S = s, Ky = E[R|S = s] is a probability measure that is absolutely
continuous with respect to A, that is, K5 € R, is unique up to measure zero (1), and has a density

ks(y)=E[r()IS=s]  foryeX. (2.6)

In addition, when s is replaced with the random variable S, Ks = E[R|S] is an R-valued random
variable.

Proof. For all s it is easily seen that K is a probability measure because K is countably additive
and K;(X) =1 — K(@) = 1, where & is the empty set. The remaining claims of the theorem
can be established by noting that equation (2.6) can be written as

ks (y) = fx re ()P (x15) A" (), @7)

where r(j (x|s) is the conditional distribution of x given s. Since

E[R(A)IS]ZfX}?/Arx(y) dA(y)rg (x]s) dA" (x),

the set A € X is arbitrary, and the integrals can be interchanged, we see that ks (y) is the density
for Ky and K € R for each s so K is an R-valued random variable. O

For R-valued random variable R and R € R, we can define the average behavior of R relative
to R using the risk function

E[dR, R)],

where d is a loss function, that is, a nonnegative convex function on R x R. Note that the
expectation used to define the risk is with respect to some distribution Ry € R; Ry will be fixed
but arbitrary other than constraints to ensure that the quantities in the expressions below exist
and that the support of Ry is X. For any function d such that E[d(R, R)] < oo for some R, we
define

def .
VsR= inf E|d(R,R
d RIIIéR [dR, RD]

and

E,R € argmin E[d(R, R))]
R]ER
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if the minimum exists, in which case,

ViR=E[d[R, E;R)].

For KL risk, that is, when d(R;, R2) = D(Ry, Ry) def ERg, log(r1/r2), we have

EpR & argmin E[D(R, R))] = / re(3)rd (x) dA" (x) £ ER, 2.8)
R]ER

VDRd:efRin%E[D(R, R)]=ED®R, ER) £ VR, (2.9)
1€

The middle equalities in equations (2.8) and (2.9) are established in Wu and Vos [13]. Since
these are equal when D is the KL divergence and we consider no other divergence functions on
R x R, we will simply write ER € R and VR € R for the KL mean and variance.

Furthermore, ER and VR completely characterize the average behavior of the R-valued ran-
dom variable R relative to any distribution R € R because of the relationship

E[DR,R)]=D(ER,R)+VR  VReR. (2.10)

This means the KL risk for an R-valued random variable R, having any distribution function,
is completely determined by knowing its argmin, ER € R, and minimum, VR > 0. When R =
Ry, equation (2.10) gives the decomposition of the KL risk in terms of bias and variance. The
relationship in (2.10) will not hold for general nonnegative convex functions d. In this paper we
only consider KL divergence D(R1, Rz). Furthermore, a conditional expectation on R-valued
random variables can be defined so that the following conditional properties hold

ER = EE[R|S], (2.11)
VR =VE[R|S]+ E[V(R|S)], (2.12)

where S could be R-valued but could also be real or other valued since values of S will only be
used to generate sub sigma fields.

Theorem 2.2 (Characterization theorem for expected KL divergence on R). Let Ry € R
have support X and let R be an R-valued random variable such that the KL mean ER and the
KL variance VR exist and are finite. Then for any R € R the mean divergence between R and
R depends only on the KL mean ER and KL variance VR. Furthermore, the KL mean and KL
variance satisfy the classical conditional equalities (2.11) and (2.12).

Proof. Equation (2.10) follows from the definition of KL variance and Theorem 5.2 in [13]
who show that the expected KL loss E[D(R, R)] from an R-valued random variable R to a
distribution R € R decomposes as

E[DR, R)] = E[D(R, ER)] + D(ER, R). (2.13)
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Equation (2.11) follows from the fact that the KL means ER and E[R|S] have densities with
respect to A and the order of integration can be interchanged. The steps are the same as those that
establish EX = EE[X|Y] for R-valued random variables X and Y. We rewrite (2.10) as

E[DR,R)] — D(ER,R)=VR. (2.14)

Note that both expectations (with domain R-valued random variables and with domain R-valued
random variables) and the variance depend on the data generation distribution Ry, which can be
any point in R with support X. If this equation holds for random sample X1, ..., X,, then it also
applies to the conditional distribution of X1, ..., X, given S =

E[DR, R)|s] — D(E[R]s], R) = V(R]s).
Substituting S into the equation above and taking expectation gives
E[DR,R)] — E[D(E[R|S], R)] = E[V(RI|S)]. (2.15)
Substituting E[R|S] into R in (2.14) and using E E[R|S] = ER gives
E[D(E[R|S], R)] — D(ER, R) = V(E[R]S]). (2.16)
Adding (2.15) to (2.16) and substituting from (2.14) proves (2.12). [l

The random variable R is a distribution function defined on the sample space and it will be
useful to relate R to a statistic 7. We define 7 (R) = ExT € R? and when we consider only one
statistic we write (R) = ur (R). The R?-valued random variable 1 (R) describes the behavior
of the R-valued random variable R and the mean of «(R) can be obtained from the KL mean.

Theorem 2.3 (Expectation property on R). For any statistic T such that 1(R) < 0o a.e., the
mean of T under ER equals the mean of R?-valued random variable 1 (R)

1(ER) = E[u(R)]. (2.17)

Proof. The density for ER can be written as f rx(¥)rg (x) dA" (x) so that
W(ER) = / T(y) / rx(y)rg (%) dA" (x) dA(y)
= [0 [ T0mm @060 = Elua)]

because the order of integration can be switched. (]

2.3. General subspace P

We typically are interested in a subfamily of distributions P C ‘R and we describe a distribution
in terms of the KL risk E[D(R, P)] for P € P. We add the regularity condition that the support
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of each distribution in P is X. Equation (2.10) shows that ER and VR give the KL risk for any
P € P. However, generally ER ¢ P even if R takes values only in P. We consider whether an
expectation can be defined that takes values in P and so that (2.10) holds. We will define this
expectation as a minimum over P. We define

VIR= I}léf)E[D(R, P)|

and

E'R=argmin E[D(R, P)]
PeP

if the minimum exists, in which case
VIR=E[D(R,E'R)].
Equation (2.10) now becomes
E[DR,P)|=D(E'R,P)+ V' R+ A(ER,E'R,P)  VPeP, (2.18)

where
A(ER,E'R, P) = D(ER, P) - D(ER, E'R) — D(E'R, P). (2.19)

If A vanishes for all P € P then the argmin ETR and the min V'R completely characterize R in
terms of KL risk. When A is small these functions can be used to approximate the KL risk of R.
We will show the term A vanishes when P is an exponential family. The relationship between
the expectations ER and E'R can be expressed by using the KL projection onto P

IR =argmin D(R, P).
PeP

By equation (2.10),
E'R=TIER. (2.20)

For any P, we have that VR < V'R since P C R. These results are summarized in the following
theorem.

Theorem 2.4. Let Ry € R such that the support of Ry is X and let R be an R-valued random
variable such that the distribution mean E'R and the distribution variance VR exist and are
finite. Then for any P € P the mean divergence between R and P is given by (2.18). The term
A measures the extent to which the KL mean, distribution mean, and P depart from forming a
dual Pythagorean triangle. The KL variance is less than or equal to the distribution variance,
VR < VTR, and the distribution mean is the KL projection of the KL mean onto P, ETR=TIER.

Wu and Vos [13] show that A =0 for all P € P an exponential family. For mixture families
ER = ETR. Hence, A vanishes when 7P is either an exponential family or mixture family.
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While we don’t know how to write ET as an integral and the expectation property (2.17) does
not hold for ET in general, we show equations (2.11) and (2.12) hold with E replaced with E t
and V replaced with V' when P is either an exponential or mixture family. Furthermore, the
expectation property will hold for ET when P is an exponential family and T is the canonical
statistic.

3. Exponential family P

For a general subspace P C R the distribution mean E'R and distribution variance VR do not
characterize E[D(R, P)] for P € P. However, when P is an exponential family these quantities
do characterize E[D(R, P)] and the classical equalities relating conditional mean and variance
hold. A standard reference for exponential families is Brown [3], but the approach we take here
is slightly different since our emphasis is on the distributions without regard to any particular
parameterization. An exponential family P will be defined by selecting a point Py € R and
statistic 7'(x) taking values in R¢. The defining property of an exponential family is that for any
P € P the log of the density of P with respect to Py is a linear combination of 7 (x) and the
constant function. We start with some definitions and basic properties.

3.1. Definitions and the projection property

Definition 3.1. P is an exponential family on X if there exists Py € R such that the support of
Py is X and a function T : X + R? such that for any P € P

dP oce?T™ g p, for some 6 € RY.

The distribution Py is called a base point and T is called the canonical statistic of P. The canon-
ical parameter space is

0(P)={0 € R?: for some P € P,dP oxe” 7™ dpy).

Without loss of generality, we can choose a base point Py such that Py € P. We’ll refer to
exponential families using base points that belong to the family.

Definition 3.2. Let P be an exponential family with base point Py, canonical statistic T, and set
O={0eR: [eTW dP) < 0o}. The cumulant function has domain © and is defined as

¥ (0) = log / T qp,.
The density with respect to Py for any P € P is
dp ,
— =exp{9 T(x)—lﬂ(@)} for some 6 € 0(P).
dPy
The family P is regular if 6 (P) is open and P is full if 6(P) = ©.
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By the factorization theorem, 7 is sufficient. It will often be useful to restrict the choice of T
so that it is complete for the full exponential family P.

Definition 3.3. A statistic T is complete for P if

Eph(T)=0 YPeP = h(T)=0 ae.P.

The following theorem shows that the projection operator on P behaves like the expectation
operator on R (Theorem 2.3) and will be used to show that the classical conditional expectation
equation holds for ET.

Theorem 3.1 (Projection property on P). If I1 is the KL projection onto P, where P is an
exponential family having canonical statistic T and t{(R) = ERT, then for any R € R such that
w(R) € n(P),

u(ITR) = n(R), (3.1
where w(P) = {u € R?: for some P € P, = EpT) is the mean parameter space of P.
Proof. This result follows from the relationship between the natural and expectation parameters

for an exponential family P. Let 1 = u(Py) for some P; € P. Then the natural parameter 6 (P;)
of this distribution satisfies

0(Py) = argmax[6'u; — ¥ (0)] (3.2)
0e®
and since 6 parameterizes P,
Py =argmax[0(P) uy — ¥ (0(P))]. (3.3)
PeP

The result now follows for exponential family P by simple calculation
[TR; = argmin D(R; P)
PeP

=argmin(Eg, logr; — Eg, log p)
PeP

=argmin Eg, log p
PeP

= argmin(@(P)//L(Rl) - W(G(P)))
PeP

=P,

where 1 (P1) = (R1) by (3.3). O

Corollary 3.1 (Pythagorean property for exponential families). Let P be an exponential fam-
ily and let R € 'R such that TIR exists. For all P € P

D(R, P)=D(R,IIR) 4+ D(IIR, P). (3.4)
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This is a well-known result. See, foL example, [4] or [6].
We define an extended projection ITR to be any distribution in R such that expectation and
Pythagorean properties hold and it belongs to the “boundary” of P; that is,

w(R) = u(TIR), (3.5)
D(R, P) = D(R,TIR) + D(TIR, P) VP eP, (3.6)
inf D(TIR, P) = 0.
PeP

Note that TR satisfies these three equalities, and that the last two equalities imply

D(R,TIR) = inf D(R, P).
PeP

The extended projection allows us to define the extended MLE in the next section.
The Pythagorean property allows us to improve R-valued random variables by the projection
IT or, more generally, by II.

Corollary 3.2 (Projection property for R-valued random variables). If TIR exists a.e., then
E[DR, P)] = E[D(TIR, P)]
with equality holding if and only if TIR =R a.e.
Proof. Replacing R with R in equation (3.6) and taking expectations shows
E[DR, P)]=E[DR,TIR)| + E[D(TIR, P)] YPeP

and the result follows from the fact that E[D(R, TIR)] > 0 with equality holding if and only if
R=TIR ae. ]

3.2. Fundamental equations for distribution mean and variance

For exponential families, the distribution expectation and variance have the same properties as
the KL expectation and variance. One distinction is that the expectation property of E holds for
any statistic while for E the expectation property holds only for the canonical statistic 7.

Theorem 3.2 (Characterization of expected KL divergence on P). Let Ry € R have support
X and let R be an R-valued random variable such that the distribution mean E'R exists and the
distribution variance VR is finite. Then for any P € P, where P is an exponential family, the
mean KL divergence between R and P depends only on the distribution mean and distribution
variance

E[DR,P)|=D(E'R,P)+ V'R  VPeP. 3.7)
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Assuming the conditional expectations and variances exist, the distribution mean and distribution
variance satisfy the classical conditional equalities

E'R=ETET[R|S], (3.8)
VIR=VTE'[RIS]+ E[VIR]S)], (3.9)

where S is a real-valued random vector. Furthermore, the expectation property holds for the
canonical statistic T

w(E'R) = E[n(®)]. (3.10)

Proof. By Corollary 3.1 and equation (3.1) the correction term (2.19) vanishes showing that
equation (3.7) holds. Equation (3.10) follows from

1w(E'R) = u(ER) (3.11)

and the expectation property on R (2.17). Equation (3.11) follows from the (extended) projection
property for exponential families (3.1) and (3.5) and the relationship between E and E' (2.20).
Now equation (3.8) follows from

w(ETET[R|S]) = E[(ET[R|S])]
= E[u(EIRIS))]
= u(EEIR|S))
= u(ER)
= u(E'R),
where the first equality follows from (3.10), the second and fifth equalities follow from (3.11),
the third equality follows from the expectation property of the KL mean on R, and the fourth

equality follows from the conditional expectation property that holds on R (2.11). Equation (3.9)
follows again the same steps that justified (2.12). We rewrite (3.7) as

E[DR,R)]-D(E'R,R)=V'R. (3.12)
If this equation holds for random sample X1, ..., X, then it also applies to the conditional dis-
tribution of X1, ..., X, given S =+

E[D(R, R)|s] — D(E'[R]s], R) = V' (R]s).
Substituting S into the equation above and taking expectation gives
E[DR,R)] - E[D(ET[RIS],R)] = E[V (R|S)]. (3.13)
Substituting ET[R|S] into R in (3.12) and using ETET[R|S] = E'R gives
E[D(E'[R|S],R)] - D(E'R, R) = V' ET[R|S]. (3.14)
Adding (3.13) to (3.14) and substituting from (3.12) proves (3.9). O
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4. Rao-Blackwell and the MLE as the unique UMV'U
distribution estimator

An immediate corollary to the characterization theorem on P (equations (3.7), (3.8), and (3.9))
is that for any random distribution R and any statistic S, the random distribution E'[R|S] will
have the same distribution mean and have distribution variance less than or equal to that of R.
If § = T is sufficient then ET[R|T'] is an estimator and if T is also complete E[R|T] will have
smaller variance than R unless they are equal with probability one. This conditional expectation
is enough to establish a Rao—Blackwell result for distribution estimators if these were restricted
to P. However, since we are allowing R-valued estimators we also need to project the distribu-
tions onto P using TT.

For an exponential family { P (y; t)} having mean parameter t € u(P) = M and discrete sam-
ple space we typically have that Pr(T € M) < 1 while Pr(T € M) = 1 where M is the closure of
M. In this case, the MLE does not always exist. However, the characterization theorem applies
to R-valued estimators so we can define an estimator that equals the MLE P(y; t) when it exists
and as a distribution P(y; 1) such that u(P(y;t)) =t and infpcp D(P,P)=0ift ¢ M. The
extended MLE as distribution estimator is

By | Eit) ifreM,
P(y”)_{P(y;t) ifr ¢ M.

Unbiasedness of P* follows from the following theorem.

Theorem 4.1 (Distribution unbiased estimators in exponential families). Let P be an expo-
nential family with complete sufficient statistic T and let R be a R-valued random variable. The
estimator R is distribution unbiased for Py = I1Ry if and only if w(E([R|T]) =T a.e.

Proof. We must show I[TER = Py for all Py € P if and only if w(E[R|T]) =T a.e. for all
Py € P. Consider the following equivalencies each of which holds for all Py € P:
[TER = Py

— pUIER) = u(Py)

— W(ER) = u(Py)

= w(EEIRIT]) = u(Py)

& E[r(ERITI)] = pn(Py)

< E[u(ER|T])]=ET).
The first equivalence follows because the expectation of 7" parameterizes P, the second equiva-
lence follows from the projection property for exponential families, the third equivalence follows

from the conditional expectation defined for the KL mean, the fourth equivalence follows from
the expectation property for the KL mean, and the fifth equivalence follows from the definition
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of the function . Clearly, u(E[R|T]) = T a.e. implies the last equality. Since T is complete and
the last equality holds for all Py € P, this implies

w(ERIT]) =T a.e. O

Theorem 4.2 (Optimality of the MLE for exponential families). Let X1, ..., X, be i.i.d. from
a distribution Ry € R such that the support of Ro is X. Let P be an exponential family with
complete sufficient statistic T such that w(Ro) € w(P). If P is the MLE or an extended MLE that
exists a.e., then P is distribution unbiased for the T1R and it is the unique uniformly minimum
distribution variance estimator among all R-valued estimators that are distribution unbiased for
1Ry and for which the extended projection TIR exists a.e.

Proof. Uniqueness and uniform minimum distribution variance follow from the projection prop-
erty for R-valued random variables, the characterization theorem on P described above, and the
unbiasedness from Theorem 4.1. O

S. Examples

5.1. Binomial distribution

We consider the number of events or “successes” in # trials. The sample space is
X={0,1,2,...,n}.

Under the assumptions that these trials are independent and each trial has the same success
probability 0 < 8 < 1, the distribution of X belongs to the rn-binomial family
n
P={PeR:P(x)=Py(x)= (x)Qx(l —6)"* forsome 0 <6 < 1}.

The MLE for the parameter 0 is 6=x /n for x ¢ {0, n} but is undefined otherwise. The extended
MLE (it will correspond in a natural way to the extended MLE distribution estimator) is 6=x /n
for all x € X and it is unbiased for 6. However, it is not unbiased for other parameterizations
such as the odds v =6/(1 — @), or the log odds y = logv. When viewed as a distribution, that is,
P;(x), equivalently, P;(x) or P;(x) (where we allow the odds v and log odds y to take values
in the extended reals), the MLE is the unique uniformly minimum distribution variance unbiased
estimator. As is common practice, we have used the same notation 6 for both the MLE and the
extended MLE.

Estimators, whether real-valued or distribution-valued, are functions with domain X. For the

n-binomial family an estimator is given by a sequence of n + 1 values, real numbers for 6 and
probability distributions for P;. For 6, we have the sequence

—1
L= (5.1)
n n

’ ’

S| o

S| =
S
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Let Py, be a distribution in P. If probabilities of Py, are used to assign weights to the values
in (5.1), then the real number that is closest to the weighted values of (5.1) is 6y. That is,

X 2
6o = argminE(— - 0) .
6€(0,1) h

By the Rao—Blackwell theorem, for any other sequence of n + 1 real numbers

y(0),y(1),y(@2),....y(n = 1), y(n) (5.2)
that satisfy

6y = argminE(y(X) — 9)2,
0€(0,1)
the realized minimum will be greater than the minimum obtained using the values in (5.1) unless
the sequences are equal, y(x) =x/n forx € {0,1,2,...,n}.
A distribution estimator P; obtained from the real valued estimator given in (5.1) can be
defined as

To(x), Pijn(x), Payu(x), ..., Pa—1y/n(x), [1(x), (5-3)

where I, is the indicator function for its subscript; that is, the degenerate distribution putting
all mass on 0 or 1. Since infpep D (14, P) =0 it is easily checked that T1I, = I, which means
that the sequence in (5.3) is the extended MLE P*. Hence, P* = P;. Again, we let Py, be any
distribution in P. If Py, is used to assign weights to the distributions in (5.3), then the distribution
in P that is closest to the weighted average of the distributions in (5.3) is Pg,. That is,

Py, = argmin E[ D(P;, P)].
PeP

By the distribution version of the Rao—Blackwell theorem (Theorem 4.2) for any estimator 4,
expressed as a distribution estimator,

P~

6(0)° P

5y Pa 5.4

that satisfies
Py, = argmin E[D(Pé, P)],
PeP

the realized minimum will be greater than that of the MLE (5.3) unless the two sequences of
functions (5.3) and (5.4) are equal. Theorem 4.2 provides a stronger result than this since the
distributions need not belong to P. In the class of all distribution unbiased estimators of the form

R()(x), Rl(x)7 Rz(x)a U] Rnfl(x)a Rn(x)

for which the extended projections IT exists, the MLE (5.3) has smallest distribution variance. In
the Hardy—Weinberg model estimators that do not belong to the family P have been suggested.
We consider the details in Section 5.2.
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The choice of the n-binomial model P was based on the assumptions that the data represented
independent and identical trials. If either of these assumptions were grossly violated, the bino-
mial model would not be appropriate. However, this model can be used when these assumptions
hold approximately in the sense that there is a distribution Py = I[TRq in P that is close to the
data generation distribution Ry, that is, D(Ry, Py) is small. In this case, the MLE is the unique
UMV U estimator for Py.

5.2. Hardy—Weinberg model

For a single pair of alleles A and a, which occur with probabilities 8 and (1 — 0) for 6 € (0, 1),
the Hardy—Weinberg (HW) model defines the relative frequency of genotypes AA, Aa, and aa to
be 71 (0) = 62, 12(0) =20(1 —0), and 73(9) = (1 — 6)2. For this example, we can take R to be
the collection of trinomial models with probabilities (71, 72, 73) for w1 4+ 2 + w3 = 1 which can
be represented by the simplex in 2-dimensional space. See Figure 1 for the simplex. The open
circles in Figure 1 are the extended MLE (71, 712, #3) = (Y1, Y2, Y3)/n for the trinomial with
n = 6 trials, where Y7 and Y> are the counts for AA and Aa. The solid curve in the simplex is the
HW model

P={(r1.m.7m3) 11 =02, 1 =20(1-0), 73 = (1 — 0)*}

which is a one dimensional exponential family with canonical sufficient statistic T = 2Y] + ¥»
and canonical natural parameter log(6/(1 — 6)). Chow and Fong [5] find the UMVU for 7| and
73 using

Egl (1= 0°)’]+ Eo[ (23 — (1 = 0)°)’]

as squared-error loss. They show the UMVU is inadmissible by exhibiting a dominating estima-
tor. Both the UMVU and the dominating estimator take values outside the HW model. In terms
of distribution estimators, these are R-valued estimators.

The extended MLE for the HW model is § = (2Y1 + Y2)/2n while the extended distribution
MLE is P; where Py is the degenerate distribution putting all its mass on (0, 0, 6) (the lower
left vertex) and P; is the degenerate distribution putting all its mass on (6, 0, 0) (the lower right
vertex). The extended HW MLE is represented by the solid dots in Figure 1.

Among the difficulties with the UMVU estimator and the dominating estimator is that there
are other ways to define squared-error loss (using one bin or two other bins). These are avoided
by using KL divergence. Since P is an exponential family the extended MLE is the UMVTU
for all P-valued estimators but also for all R-valued estimators since the projection exists for all
points in the simplex other than the two lower vertices which satisfy the extended projection. As
a comparison, the KL mean, represented by the dashed curve in Figure 1, lives outside the model
so the extended MLE isn’t KL unbiased. This is due to the curvature in the exponential family.
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6 = 1/2 (all Aa)

O Trinomial MLE
—— HW Model

e HWMLE
- - KL Mean of HW MLE

- - o

8 =0 (all aa) 6 =1 (all AA)

Figure 1. A Hardy—Weinberg (HW) model with n = 6 trials. The simplex represents the trinomial model
space on (7, mp, m3) for m + mp 4+ 73 = 1, while the solid curve is the HW model space on 71 (8) = 62,
m(0) =20(1 —0), and 73(0) = (1 — 0)2 for 0 < 6 < 1. The open circles represent the (extended) MLE
under the trinomial model (71, 73, 73) = (Y1, Y2, ¥3)/n, and the solid dots are the (extended) MLE under
the HW model § = (2Y 1 + Y2)/2n. The dashed curve shows the KL mean of the HW MLE for each value
of 6.

5.3. Poisson distribution

The Poisson family of distributions is
AX
P = {P eR:P(x) :e*)‘—‘ for some A > O},
x!

where x e X={0, 1,2, ...}.

Let X1, ..., X, be a simple random sample from a Poisson distribution P;,. The sum §, =
X1+ ---+ X, is a complete sufficient statistic of the family. Although the Poisson family is
typically parametrized by a single parameter, we consider estimates for the probability Pr(X

i)=Abe™*0/il for somei =0, 1,.... A crude but unbiased estimator is
{ 1 if X| =i,
d0i = .
0 otherwise.

Given the sum S, X is distributed as a binomial(S,;, 1/x) random variable, the Rao—Blackwell
theorem shows that

S lil AN ifi <S
$1i=EloilSd=1\; )\, T = on

0 otherwise,
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is an unbiased estimator of Pr(X; =i). Since §1; depends on the complete sufficient statistic S,
only, it must be the unique MVUE of Pr(X| = i). Using the criterion of distribution unbiasedness,
these anomalous estimators do not arise. Since S, is the canonical statistic, the MLE X = S, /n
is the unique UMVU estimator for A and the extended distribution MLE Py is the UMVTU
estimator for P, where Py is Ip when X =0.

To show how the UMVU estimator can fail completely, Lehmann [11] considers the parameter
§ = (P(X =0))3 for n = 1. In this case, the unique UMVU estimator is (—2)*. Since the sample
consists of nonnegative integers this estimator is represented by the following sequence of real
numbers

1,-2,4,-8,16,....

Parametric unbiasedness means that if the Poisson distribution that assigns probability
813 to P(X = 0) is used to assign probability to the terms in the sequence then § =
argmin, g E ((=2)X — a)?. That is, the parameter is the real number that is closest to this se-
quence in terms of mean square error. In addition, the weighted average of the above sequence
is 6.

By focusing on distributions rather than the parameters that name the distributions these prob-
lems are avoided. The MLE, as a distribution estimator, is represented by the following sequence
of probability distributions

X X X
Iy(x), e_ll—, 6_22—, _33—, e
x! x! x!
Distribution unbiasedness means that if the Poisson distribution Py is used to assign probability
to the terms in the sequence then

P, =arg minE[D(P):, P)].
PeP

That is, the distribution that generates the data is the distribution in the exponential family that
is closest to this sequence in terms of KL risk. Any other sequence of distributions with this
property will have greater distribution variance.

6. Discussion

The distribution version of the Rao—Blackwell theorem 4.2 has been developed by analogy with
important properties of mean square error for the parametric version. In particular, we have used
a Pythagorean-type property for two asymmetric distribution-like functions: the KL divergence
D(-, -) and its expectation E[D(-, -)]. For exponential family P, we have

DR, P)=D(R,TIR) + D(TIR,P) VP eP

while for all R
E[DR,R)] = E[D(R, ER)] + E[D(ER, R)]
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so that the expectation operator E defined on R-valued random variables for the KL risk plays
the role of the projection operator IT for the KL divergence. Each operator is a map from a more
complicated space to a simpler space, E from R-valued random variables to a distribution in R
and IT from distributions in R to a distribution in P, that preserve the KL risk and KL divergence,
respectively.

The restriction to exponential families is essentially required by the criterion of having a suf-
ficient statistic of fixed dimension for all sample sizes n. Specifically, the Darmois—Koopman—
Pitman theorem which follows from independent works of Darmois [7], Koopman [10] and Pit-
man [12] shows that when only continuous distributions are considered, the family of distribu-
tions of the sample has a sufficient statistic of dimension less than # if and only if the population
distribution belong to the exponential family. Denny [8] shows that for a family of discrete dis-
tributions, if there is a sufficient statistic for the sample, then either the family is an exponential
family or the sufficient statistic is equivalent to the order statistics.

The MLE is parameter-invariant which means that the same distribution is named by the para-
metric ML estimate regardless of the parameter chosen to index the family. One approach to
studying parameter-invariant quantities is to use differential geometry (e.g., Amari [1] or Kass
and Vos [9]). The parameter-invariant approach does not work well for parameter-dependent
quantities such as bias and variance of parametric estimators. Our approach allows for the def-
inition of parameter-free versions of bias and variance. Furthermore, the distribution version of
the Rao—Blackwell provides two extensions: (1) minimum variance is taken over a larger class
of estimators that includes estimators that are not required to take values in the model space P,
(2) the true distribution need not belong to P.

The fact that the MLE is the unique uniformly minimum distribution variance unbiased esti-
mator for exponential families distinguishes the MLE from other estimators. This is in contrast
to asymptotic methods applied to MSE that can be used to show superior properties of the MLE
but, being asymptotic results, do not apply uniquely to the MLE.

Asymptotically, MSE and KL risk are the same and the MSE can be viewed as an approxima-
tion to KL risk for large n. The distribution version of the Rao—Blackwell Theorem 4.2 provides
support for Fisher’s claim of the superiority of the MLE even in small samples.
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