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Empirical likelihood approach is one of non-parametric statistical methods, which is applied to the hypoth-
esis testing or construction of confidence regions for pivotal unknown quantities. This method has been
applied to the case of independent identically distributed random variables and second order stationary
processes. In recent years, we observe heavy-tailed data in many fields. To model such data suitably, we
consider symmetric scalar and multivariate α-stable linear processes generated by infinite variance inno-
vation sequence. We use a Whittle likelihood type estimating function in the empirical likelihood ratio
function and derive the asymptotic distribution of the empirical likelihood ratio statistic for α-stable linear
processes. With the empirical likelihood statistic approach, the theory of estimation and testing for sec-
ond order stationary processes is nicely extended to heavy-tailed data analyses, not straightforward, and
applicable to a lot of financial statistical analyses.

Keywords: confidence region; empirical likelihood ratio; heavy tail; normalized power transfer function;
self-normalized periodogram; symmetric α-stable process; Whittle likelihood

1. Introduction

Non-parametric methods have been developed for the statistical analysis of univariate and multi-
variate observations in the area of time series analysis to carry out the problem of inference and
hypothesis testing. Rank-based methods and empirical likelihood methods have been introduced
in succession in these two decades.

Owen [23] introduced the empirical likelihood approach to independent and identically dis-
tributed (i.i.d.) data and he showed that the empirical likelihood ratio statistic is asymptotically
χ2-distributed. For dependent data, Monti [20], Ogata and Taniguchi [22] derived the limit distri-
bution of the empirical likelihood ratio statistic based on the derivative of the Whittle likelihood
with respect to parameters. From these papers, we can construct confidence sets for the coeffi-
cients in a predictor and autocorrelation coefficients in multivariate stationary processes, etc.

In the last few decades, heavy-tailed data have been observed in a variety of fields involving
electrical engineering, hydrology, finance and physical systems (Nolan [21] and Samorodnitsky
and Taqqu [28]). In particular, Fama [10] and Mandelbrot [17] gave economic and financial
examples that show such data are poorly grasped by Gaussian model. When we fit a GARCH-
model to some financial data and estimate the stable index of the residuals by Hill’s estimator α̂,
we often observe that the tail of the distribution is heavier than that of Gaussian model.
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Figure 1. Log return of Hewlett Packard company and the Hill-plot. (a) log return of Hewlett Packard’s
stock price (from 1, January, 2010 to 14, December, 2012). (b) Hill-plot for residuals (dashed line is for
i.i.d. normal random variables).

Figure 1 shows daily stock returns of Hewlett Packard company and the Hill-plot for the
residuals (we used AIC to select the order of GARCH). These graphs imply that it is more
suitable to suppose these data are generated from a process with stable innovations rather than
to assume these data have finite variances (for discussion of Hill-plot, see Drees, de Haan and
Resnick [9], Hall [11], Hsing [13], Resnick and Stǎrikǎ [26] and [25]).

To model such heavy-tailed data suitably, we introduce the following linear process generated
by stable innovations,

X(t) =
∞∑

j=0

ψjZ(t − j), t ∈ Z, (1.1)

where ψ0 = 1 and {Z(t); t ∈ Z} (Z is the set of all integers) is a sequence of i.i.d. symmetric
α-stable random variables (for short sαs). In the case of α = 2, this process is Gaussian. When α

is less than 2, the usual spectral density function of (1.1) cannot be defined.
Davis and Resnick [6,7] and [8] investigated the sample autocorrelation function (ACF) at lag

h, and derived the consistency of ACF. Resnick and Stărică [25] gave a consistent estimator of the
tail index α. In view of the frequency domain approach, Klüppelberg and Mikosch [14,15] and
[16] proposed a self-normalized periodogram because the expectation of the usual periodogram
does not exist, and introduced some methods for parameter estimation and hypothesis testing.
Then, they showed that for any frequencies, self-normalized periodogram converges to a random
variable with finite second moment, and proved the convergence of the functional of the self-
normalized periodogram.

In this paper, we apply non-parametric method to the discrete linear process (1.1). It is natural
to express the process non-parametrically partly because finite parametric models often can-
not describe real data sufficiently, and partly because there is no general solution of probabil-
ity density function for stable distribution. Recently economists and quantitative analysts have
introduced stable stochastic models to asset returns in econometrics and finance. In such situa-
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tions, what we are interested in is to test statistical hypothesis on an important pivotal quantity
“θ = θ0”, such as the correlation between the different realizations. To achieve this goal, Monti
[20] and Ogata and Taniguchi [22] employed the empirical likelihood to construct confidence
sets for linear processes when innovations have finite variance. A plausible way to define the
important index θ0 is Whittle’s approach, that is, θ0 minimizes the disparity

D(fθ , g̃) =
∫ π

−π

g̃(ω)

f (ω; θ)
dω, (1.2)

where g̃(ω) is called a normalized power transfer function of (1.1), and f (ω; θ) is an appropriate
score function.

This setting is useful for many situations. For example, let us consider the h-step linear pre-
diction of a scalar stationary process {X(t); t ∈ Z}. We predict X(t) by a linear combination of
{X(s); s ≤ t − h},

X̂(t) =
∞∑

j=h

φj (θ)X(t − j).

The spectral representations of X(t) and X̂(t) are

X(t) =
∫ π

−π

exp(−itω)dζX(ω), X̂(t) =
∫ π

−π

exp(−itω)

∞∑
j=h

φj (θ) exp(ijω)dζX(ω),

where {ζX(ω);−π ≤ ω ≤ π} is an orthogonal increment process satisfying

E dζX(ω)dζX(μ) =
{

g(ω)dω (ω = μ),
0 (ω �= μ).

Then, the prediction error is

E
∣∣X(t) − X̂(t)

∣∣2 =
∫ π

−π

∣∣∣∣∣1 −
∞∑

j=h

φj (θ) exp(ijω)

∣∣∣∣∣
2

g(ω)dω. (1.3)

Hence the best h-step predictor is given by
∑∞

j=h φj (θ0)X(t − j), where θ0 minimizes (1.3).
Comparing this with (1.2), if we set

f (ω; θ) =
∣∣∣∣∣1 −

∞∑
j=h

φj (θ) exp(ijω)

∣∣∣∣∣
−2

,

this problem is exactly the same as that of seeking θ0 in their definition. In addition to the
linear prediction, the empirical likelihood approach can also be applied to the case of sample
autocorrelation estimation, which will be given in Section 2.
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The empirical likelihood ratio function for the problem of testing H : θ = θ0 is defined as

R(θ) = max
w1,...,wn

{
n∏

t=1

nwt ;
n∑

t=1

wtm(λt ; θ) = 0,

n∑
t=1

wt = 1,0 ≤ w1,w2, . . . ,wn ≤ 1

}
,

and then the estimating function takes the form

m(λt ; θ) ≡ ∂

∂θ

Ĩn,X(λt )

f (λt ; θ)
, λt = 2πt

n
∈ (−π,π],

where Ĩn,X(ω) is called self-normalized periodogram. For our general stable linear process (1.1),
we derive the limit distribution of R(θ0) with its normalizing factor and construct the confidence
interval through a numerical method.

Here it should be noted that our extension to the stable case from the finite variance case
requires new asymptotic methods, and we report new aspects of the asymptotics for empirical
likelihood approach, which are different from the usual ones. Furthermore, we extend the results
to those of the mutivariate one with independent innovations. This is extremely important from
a viewpoint of practical use. In particular, we can analyze the relationship between two heavy-
tailed processes. The way to derive the asymptotics of the multivariate case has also new aspects.
We find that the asymptotics for multivariate process need more stronger conditions than what
we need in the univariate case. The self-normalizing factor is also difficult to find in that case and
we use the norm of the stable series defined in Section 4 instead of the square root matrix.

This paper is organized as follows: In Section 2, we shall introduce the fundamental setting
and a brief overview on the empirical likelihood approach based on the Whittle likelihood. With
a different normalizing order for the empirical likelihood ratio function, the main theoretical re-
sults, limit distribution of the empirical likelihood ratio statistic for univariate and multivariate
stable linear processes, are formulated in Sections 3 and 4, respectively. In Section 5, the numer-
ical results will be given under several settings. We shall demonstrate some effectiveness of the
empirical likelihood ratio method. The proofs of theorems in Sections 3 and 4 are relegated to
Section 6.

As for notations and symbols used in this paper, the set of all integers, non-negative integers
(= {0,1,2, . . .}) and real numbers are denoted by Z, N and R, respectively. For any sequence

of random vectors {A(t); t ∈ Z}, A(t)
P→ A and A(t)

L→ A, respectively, denote the convergence
to a random (or constant) vector A in probability and law. Especially, “p- limt→∞ A(t) = A”

implies “A(t)
P→ A as t → ∞”. The transpose and conjugate transpose of matrix M are denoted

by M′ and M∗, and define ‖M‖E := √
tr[M∗M].
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2. Fundamental setting

In this section, we state the fundamental setting for the main results. Throughout this paper, we
use the following notations. For any sequence {A(t); t ∈ Z} of random variables,

γ 2
n,A = n−2/α

n∑
t=1

A(t)2,

In,A(ω) = n−2/α

∣∣∣∣∣
n∑

t=1

A(t) exp(itω)

∣∣∣∣∣
2

, (2.1)

Ãt = A(t)√
A(1)2 + · · · + A(n)2

, t = 1, . . . , n,

and

Ĩn,A(ω) = In,A(ω)

γ 2
n,A

=
∣∣∣∣∣

n∑
t=1

Ãt exp(itω)

∣∣∣∣∣
2

.

We call Ĩn,A(ω) a self-normalized periodogram of A(1), . . . ,A(n). Mikosch et al. [18] studied
estimation of the following stable and causal ARMA process:

X(t) + φ1X(t − 1) + · · · + φpX(t − p) = Z(t) + θ1Z(t − 1) + · · · + θqZ(t − q),

Z(1) ∈ DNA(α) (see Mikosch et al. [18]),

where DNA(α) denotes the set of random variables in the domain of normal attraction of a
symmetric α-stable random variable. Letting β = (φ1, . . . , φp, θ1, . . . , θq), define

C = {
β ∈R

p+q :φp, θq �= 0, φ(z) and

θ(z) have no common zeros, φ(z)θ(z) �= 0 for |z| ≤ 1
}
,

where φ(z) = 1 + φ1z + · · · + φpzp , and θ(z) = 1 + θ1z + · · · + θqzq . Let g(ω;β) be

g(ω;β) =
∣∣∣∣ 1 + θ1 exp(iω) + · · · + θq exp(iqω)

1 + φ1 exp(iω) + · · · + φp exp(ipω)

∣∣∣∣2.
They defined the Whittle estimator of β by

β̂n ≡ arg min
β∈C

∫ π

−π

Ĩn,X(ω)

g(ω;β)
dω.

Then Mikosch et al. [18] showed that the estimator β̂n is consistent to the true parameter β0 ∈ C.
In many cases, however, we know neither the true stochastic structure of the process nor the

true pivotal unknown quantities. In such cases, we can apply the empirical likelihood approach



2098 F. Akashi, Y. Liu and M. Taniguchi

to the data, without assuming that the data come from a known family of stochastic models. The
empirical likelihood approach was introduced as a non-parametric method of inference based on
a data-driven likelihood ratio function in the i.i.d. case (e.g., Owen [23]). For dependent data,
Monti [20] applied the empirical likelihood approach to a stationary linear process with the finite
second moment. She used

m(λt ; θ) = ∂

∂θ

{
logg(λt ; θ) + In,X(λt )

g(λt ; θ)

}
, t = 1, . . . , n

as an estimating function. This can be understood as a discretized derivative of the Whittle like-
lihood ∫ π

−π

{
logg(ω; θ) + In,X(ω)

g(ω; θ)

}
dω.

Here g(ω; θ) and In,X(ω) are, respectively, the usual spectral density of a stationary process
and the periodogram. Using this estimating function, the empirical likelihood ratio function is
defined as

R(θ) = max
w1,...,wn

{
n∏

t=1

nwt ;
n∑

t=1

wtm(λt ; θ) = 0,

n∑
t=1

wt = 1,0 ≤ w1,w2, . . . ,wn ≤ 1

}
. (2.2)

Under the circular assumption, It is shown that the quantity −2 logR(θ) converges in distribution
to chi-square random variable with degree of freedom q under H : θ = θ0 (the pivotal true value
of θ ) ∈ � ⊂ R

q . Ogata and Taniguchi [22] developed the empirical likelihood approach to mul-
tivariate non-Gaussian stationary processes without the circular assumption. For a vector-valued
process {X(t); t ∈ Z},

X(t) =
∞∑

j=0

G(j)e(t − j), E
[
e(t)e(l)′

]= δ(t, l)�,

they introduced the disparity measure

D(fθ ;g) =
∫ π

−π

[
log det f(ω; θ) + tr

{
f(ω; θ)−1g(ω)

}]
dω

on

P =
{

f(ω; θ)|f(ω; θ) =
{ ∞∑

j=0

G(j ; θ) exp(ijω)

}
�

{ ∞∑
j=0

G(j ; θ) exp(ijω)

}∗
, θ ∈ � ⊂R

q

}
,

where g(ω) is the usual spectral density matrix of the s-dimensional stationary linear process.
If the innovation variance of the process is independent of unknown parameter θ , we call θ
“innovation free”. Then, the first integration of the disparity measure is independent of θ (e.g.,
Hannan [12], page 162). Therefore if θ is innovation-free, the derivative of this measure is

∂

∂θ
D(fθ ;g) = ∂

∂θ

∫ π

−π

tr
{
f(ω; θ)−1g(ω)

}
dω.
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They introduced the pivotal true value θ0 defined by

∂

∂θ

∫ π

−π

tr
{
f(ω; θ)−1g(ω)

}
dω

∣∣∣
θ=θ0

= 0. (2.3)

In this case, the estimating function is naturally set to be

m(λt ; θ) = ∂

∂θ
tr
{
f(λt ; θ)−1In,X(λt )

}
, t = 1, . . . , n,

where In,X(ω) is the usual periodogram matrix. Under mild conditions on the fourth order cumu-
lant of the process, they showed that −2 logR(θ) converges in law to a sum of gamma distributed
random variables under H : θ = θ0.

The approach has been discussed for stationary processes with the “finite second moments”.
In this paper, we consider a linear process {X(t); t ∈ Z} generated by (1.1) with {Z(t); t ∈ Z}, a
sequence of i.i.d. symmetric α-stable random variables with scale σ > 0, and the characteristic
function of Z(1) is given as

E exp
{
iZ(1)ξ

}= exp
{−σ |ξ |α}, ξ ∈ R.

Generally, we can define the stable process for α ∈ (0,2]. However, we assume that α ∈ [1,2) to
guarantee probability convergence of important terms which will appear in proofs of theorems in
this paper. This restriction is not quite strict, since the process (1.1) with α ∈ [1,2) still does not
have the finite second moment. To guarantee the a.s. absolute convergence of (1.1), we make the
following assumption.

Assumption 2.1. For some δ satisfying 0 < δ < 1,

∞∑
j=0

|j ||ψj |δ < ∞.

Under this assumption, the series (1.1) converges almost surely. This is an easy consequence
of the three-series theorem (c.f. Petrov [24]). Furthermore, the process (1.1) has the normalized
power transfer function

g̃(ω) = 1

ψ2

∣∣∣∣∣
∞∑

j=0

ψj exp(ijω)

∣∣∣∣∣
2

, ψ2 =
∞∑

j=0

ψ2
j .

From the property of stable random variables,

X(t) =d

{ ∞∑
j=0

|ψj |α
}1/α

Z(1),

which implies that this process does not have the finite second moment when α < 2, so we cannot
use the method of moments. The empirical likelihood approach is still useful when we deal with
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the stable process. Hereafter, we define a pivotal true value θ0 of the process (1.1) as the solution
of

∂

∂θ

∫ π

−π

g̃(ω)

f (ω; θ)
dω

∣∣∣
θ=θ0

= 0, (2.4)

where θ = (θ1, . . . , θp)′ ∈ � ⊂ R
p . Note that the score function does not necessarily coincide

with the true normalized power transfer function g̃(ω), and we can choose various important
quantities θ0 by choosing the form of f (ω; θ). For example, for fixed l ∈N, set

f (ω; θ) = ∣∣1 − θ exp(ilω)
∣∣−2

.

Solving (2.4), we have

θ0 =
∑∞

j=0 ψjψj+l∑∞
j=0 ψ2

j

≡ ρ(l) (say).

On the other hand, a sample autocorrelation function

ρ̂(l) ≡
∑n−l

t=1 X(t)X(t + l)∑n
t=1 X(t)2

, l ∈ N

for the stable process (1.1) is weakly consistent to the autocorrelation function of the process in
the stable case; namely, for fixed l, p- limn→∞ ρ̂(l) = ρ(l) (e.g., Davis and Resnick [8]).

By these motivation, we consider the empirical likelihood ratio function (2.2) with

m(λt ; θ) = ∂

∂θ

Ĩn,X(λt )

f (λt ; θ)
, λt = 2πt

n
, t = 1, . . . , n.

Hereafter, we make the following assumptions on f (ω; θ).

Assumption 2.2.

(i) � is a compact subset of Rq and f (ω; θ) has an parametrized representation as an
element of P , where P is defined by

P =
{

f (ω; θ)|f (ω; θ) =
∣∣∣∣∣

∞∑
j=0

ηj (θ) exp(ijω)

∣∣∣∣∣
2

, θ ∈ � ⊂R
q

}
.

(ii) For any θ ∈ Int�, f (ω; θ) is continuously twice differentiable with respect to θ .
(iii) There exists an unique θ0 ∈ � satisfying (2.4).

3. Main results

In this section, we introduce the limit distribution of the empirical likelihood statistic for the
scalar stable process (1.1). Our main purpose is to make an accurate confidence region of θ0
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based on the empirical likelihood approach. Because of the properties of stable random variables,
it is difficult to use the method of moments. To overcome this problem, we frequently make
use of the self-normalized periodogram defined in Section 2. Klüppelberg and Mikosch [15] or
Mikosch et al. [18] introduced the self-normalized periodogram, and Klüppelberg and Mikosch
[16] showed some limit theorems of integrated self-normalized periodogram. Under the settings
in Section 2, we derive the asymptotic distribution of the empirical likelihood ratio statistic, and
construct a confidence region for θ0.

We impose an assumption to describe the asymptotics of the empirical likelihood ratio statistic.

Assumption 3.1. For some μ ∈ (0, α) and all k = 1, . . . , q ,

∞∑
t=1

∣∣∣∣∫ π

−π

∂

∂θk

g̃(ω)

f (ω; θ)

∣∣∣
θ=θ0

cos(tω)dω

∣∣∣∣μ < ∞.

Assumption 3.1 is used for Proposition 3.5 of Klüppelberg and Mikosch [16]. It is easy to see
that stable AR(p) processes satisfying Assumption 2.2 satisfy this assumption.

In order to control the rate of convergence of the empirical likelihood ratio statistic, we intro-
duce the normalizing sequence

xn =
(

n

logn

)1/α

, n = 2,3, . . . .

The next theorem gives the asymptotics of R(θ0). The proof will be given in Section 6.

Theorem 3.1. Suppose that α ∈ [1,2), and Assumptions 2.1, 2.2 and 3.1 hold. Then,

−2x2
n

n
logR(θ0)

L→ V′W−1V under H : θ = θ0, (3.1)

where V and W are q × 1 random vector and q × q constant matrix, respectively, whose j th and
(k, l)-elements are expressed as

Vj = 1

π

∞∑
t=1

St

S0

{∫ π

−π

∂f (ω; θ)−1

∂θj

∣∣∣
θ=θ0

g̃(ω) cos(tω)dω

}
,

Wkl = 1

2π

∫ π

−π

∂f (ω; θ)−1

∂θk

∂f (ω; θ)−1

∂θl

∣∣∣
θ=θ0

2g̃(ω)2 dω

with independent random variables S0, S1, S2, . . .; S0 is a positive α/2-stable random variable
and {Sj ; j = 1,2, . . .} is a sequence of symmetric α-stable random variables.

Remark 3.1. The limit distribution (3.1) depends on the characteristic exponent α and unknown
normalized power transfer function g̃(ω). We can construct appropriate consistent estimators of
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them. It is shown that Hill’s estimator

α̂Hill =
{

1

k

k∑
t=1

log
|X|(t)

|X|(k+1)

}−1

is a consistent estimator of α, where |X|(1) > · · · > |X|(n) is the order statistic of |X(1)|, . . . ,
|X(n)| and k = k(n) is an integer satisfying some conditions (e.g., Resnick and Stǎricǎ [26]
and [25]). Next, it is known that the smoothed self-normalized periodogram by an appropriate
weighting function Wn(·) is weekly consistent to the normalized power transfer function. That
is,

J̃n,X(ω) =
∑

|k|≤m

Wn(k)Ĩn,X(λk)
P→ g̃(ω), λk = ω + k

n
, |k| ≤ m

for any ω ∈ [−π,π] (Klüppelberg and Mikosch [14], Theorem 4.1), where the integer m = m(n)

satisfies m → ∞ and m/n → 0 as n → ∞. One possible choice of the weighting function Wn(·)
and m = m(n) are Wn(k) = (2m + 1)−1 and m = [√n] ([x] denotes the integer part of x). We
use this weighting function in the section of numerical studies. Then, by Slutsky’s lemma and
continuous mapping theorem, we obtain consistent estimator Ŵ of W. So if we choose a proper
threshold value γp , which is p-percentile corresponding to V′WV, Cα,p below is an approximate
p/100 level confidence region of θ0.

Cα,p =
{
θ ∈ �;−2x2

n

n
logR(θ) < γp

}
. (3.2)

4. Vector α-stable processes

So far we focused on the scalar case for clarity. In this section, we extend the empirical likelihood
analysis to the case of vector α-stable processes. Consider a d-dimensional vector-valued linear
process {X(t); t ∈ Z} generated by

X(t) =
∞∑

j=0

�(j)Z(t − j), (4.1)

where �(0) is the identity matrix and {�(j); j ∈ N} is a sequence of d × d real matrices, and
{Z(t); t ∈ Z} is an independently and identically distributed sequence of symmetric α-stable
random vectors whose elements are also independent.

Now, we set down the following assumptions for the general result. Almost all assumptions
are similar to those of the 1-dimensional stable processes.

Assumption 4.1. For some δ satisfying 0 < δ < 1 and all k, l = 1, . . . , d ,

∞∑
j=0

j
∣∣�(j)kl

∣∣δ < ∞. (4.2)
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The sample autocovariance and the periodogram matrices are defined as

�̂n,X(h) = n−2/α

n−|h|∑
t=1

X(t)X(t + h)′,

In,X(ω) = dn,X(ω)dn,X(ω)∗, dn,X(ω) = n−1/α
n∑

t=1

X(t) exp(iωt),

respectively. We define the true power transfer function g(ω) by

g(ω) = �(ω)�(ω)∗,

where �(ω) =∑∞
j=0 �(j) exp(ijω). Similarly as in the previous section, we use the empirical

likelihood ratio with the estimating function

m(λt ; θ) = ∂

∂θ
tr
{
f(λt ; θ)−1In,X(λt )

}
,

where f(λt ; θ) satisfies the following assumptions.

Assumption 4.2.

(i) � is a compact subset of Rq and f(ω; θ) has an parametrized representation as an ele-
ment of P , where P is defined by

P =
{

f(ω; θ)|f(ω; θ) =
( ∞∑

j=0

�(j ; θ) exp(ijω)

)( ∞∑
j=0

�(j ; θ) exp(ijω)

)∗
, θ ∈ � ⊂R

q

}
.

(ii) For any θ ∈ Int�, f (ω; θ) is continuously twice differentiable with respect to θ .
(iii) There exists an unique θ0 ∈ � satisfying (2.4).

Assumption 4.3 below guarantees the convergence of the functional of periodogram by in-
equality of an application of Theorem 3.1 in Rosinski and Woyczynski [27].

Assumption 4.3. For some μ ∈ (0, α) and all k = 1, . . . , q ,

∞∑
t=1

∥∥∥∥∫ π

−π

∂

∂θk

�(ω)∗f(ω; θ)�(ω) exp(itω)dω

∥∥∥∥μ

E

< ∞.

Theorem 4.1. Suppose that α ∈ [1,2), and Assumptions 4.1–4.3 hold for the process (4.1). If

∂

∂θ

∫ π

−π

�(ω)∗f(ω; θ)−1�(ω)dω

∣∣∣
θ=θ0

= 0,
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then

−2
x2
n

n
logR(θ0)

L→ V′W−1V under H : θ = θ0,

where

V = 1

2π

d∑
i,j=1

∞∑
h=1

S(h)ij

Sα/2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

∫ π

−π

(
B1(ω) + B1(ω)

)
ij

dω∫ π

−π

(
B2(ω) + B2(ω)

)
ij

dω

...∫ π

−π

(
Bq(ω) + Bq(ω)

)
ij

dω,

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
with S(h)ij a matrix whose all elements are stable with index α, Sα/2 a random variable with
index α/2 and

Bk(ω) = �(ω)∗ ∂

∂θk

f (ω; θ)−1
∣∣∣
θ=θ0

�(ω) exp(ihω), k = 1, . . . , q,

and the (a, b)-component of W can be expressed as

Wab = 1

2πd2

∫ π

−π

(
tr

[
g(ω)

∂f(ω; θ)−1

∂θa

∣∣∣
θ=θ0

g(ω)
∂f(ω; θ)−1

∂θb

∣∣∣
θ=θ0

]

+ tr

[
g(ω)

∂f(ω; θ)−1

∂θa

∣∣∣
θ=θ0

]
tr

[
g(ω)

∂f(ω; θ)−1

∂θb

∣∣∣
θ=θ0

])
dω.

Proof. The proof of Theorem 4.1 is given in the supplemental article (Akashi et al. [1]), since it
is more technical. �

Remark 4.1. This extension is not straightforward, and contains some novel aspects. We take
up an appealing example for Theorem 4.1. Consider whether the wave structures of the spectra
between all components are “close” to each other or not. For simplicity, we formulate this idea
in 2-dimensional case and assume the true power transfer function g(ω) is

g(ω) = 1

2π

∞∑
k=−∞

R̃(k) exp(−ikω),

where R̃(k), a symmetric matrix, denotes the kth autocorrelation function. Then the null hypoth-
esis can be written as

H : R̃(k) = θ0R̃(j) or R̃(k) = θ0R̃(j)′ for some k and j .

To test this hypothesis, we set the estimating function m(λt ; θ) with an inverse correlation func-
tion f(λt ; θ)−1, which was first introduced in Cleveland [5], and deeply discussed by Bhansali [2].
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Let

f(ω; θ)−1 = (
exp(kω) + exp(−kω)

)( θ 0
0 θ

)
+ (

exp(jω) + exp(−jω)
)( 1

2θ2 0
0 1

2θ2

)
.

Then under the hypothesis, we have

∂

∂θ

∫ π

−π

�(ω)∗f(ω; θ)−1�(ω)dω

∣∣∣
θ=θ0

= 0,

which satisfies the assumption in Theorem 4.1.

5. Numerical studies

In this section, we carry out some simulation studies for Theorems 3.1 and 4.1. Suppose that
the observations X(1), . . . ,X(n) are generated from the following scalar-valued stable MA(100)
model:

X(t) =
100∑
j=0

ψjZ(t − j), (5.1)

where {Z(t); t ∈ Z} is a sequence of i.i.d. sαs random variables with scale σ = 1 and coefficients
{ψj ; j ∈N} are defined as

ψj =
{1 (j = 0),

bj/j (1 ≤ j ≤ 100),
0 (otherwise).

Since this process can not be expressed as AR or ARMA models with finite dimension, it is
suitable to apply the empirical likelihood approach to estimate pivotal unknown quantities. We
first discuss the estimation of the autocorrelation with lag 2

ρ(2) = p- lim
n→∞

∑n−2
t=1 X(t)X(t + 2)∑n

t=1 X(t)2
. (5.2)

It is seen that the normalized power transfer function of the process (5.1) is given by

g̃(ω) = |∑100
j=0 ψj exp(ijω)|2∑100

j=0 ψ2
j

.

If we set the score function as f (ω; θ) = |1 − θ exp(2iω)|−2, we obtain

θ0 =
∑100

j=0 ψjψj+2∑100
j=0 ψ2

j

.



2106 F. Akashi, Y. Liu and M. Taniguchi

Table 1. 90% confidence intervals (and length) for the autocorrelation with lag 2. Sample size is 300 and
α = 1.5

θ0 ≈ E.L. SAC

Case 1 0.1168 −0.0761 0.1930 (0.2691) −0.0676 0.2481 (0.3157)
Case 2 0.3603 0.1320 0.4765 (0.3445) 0.1388 0.5304 (0.3916)

On the other hand, from Davis and Resnick [8], the right-hand side limit of (5.2) exists, and is
equal to this θ0. So it is natural that we define the estimating function m(λt ; θ) by this f (ω; θ)

to estimate ρ(2). The autocorrelation can also be estimated by sample autocorrelation (SAC)
method. From Theorem 12.5.1 of Brockwell and Davis [4], for fixed l ∈N,

xn

{
ρ̂(l) − ρ(l)

} L→ S̃1

S̃0

{ ∞∑
j=1

∣∣ρ(l + j) + ρ(l − j) − 2ρ(j)ρ(l)
∣∣α}1/α

,

where ρ̂(l) = ∑n−l
t=1 X(t)X(t + l)/

∑n
t=1 X(t)2, S̃0 and S̃1 are α/2 and α-stable random vari-

ables, respectively. Under this setting, we construct confidence intervals of θ0 = ρ(2) by calcu-
lating R(θ) at numerous point over (−1,1), and compare confidence intervals constructed by the
empirical likelihood method with the SAC method.

The results of our simulations are as follows. First, we generate 300 samples from (5.1). Note
that in this case, the characteristic exponent α = 1.5 is known. Then using the weighting function
Wn which is mentioned in Section 3, we calculate the consistent estimator J̃n,X(ω) of g̃(ω) and
construct an approximate 90% confidence interval of θ0 defined as (3.2). We also use the Monte
Carlo simulation to calculate γ90 which is 90 percentile of V′WV for 105 times. Table 1 shows
the values of θ0 and confidence intervals by the empirical likelihood method and the sample
autocorrelation method for b = 0.5 (case 1) and 0.9 (case 2). By this simulation, it is shown that
the length of intervals obtained by the empirical likelihood method is seems to be shorter than
that by the sample autocorrelation method.

Next, we fix b = 0.5 and n = 300, and construct confidence intervals for cases of α = 1.0
(Cauchy), 1.5 and 1.9 (near Gaussian). The larger α becomes, the better performance both meth-
ods show (see Table 2). In particular, the empirical likelihood method provides better inferences
than those by the SAC method when α is nearly 1.

Table 2. 90% confidence intervals (and length) for the autocorrelation with lag 2. Sample size is 300,
b = 0.5 and θ0 ≈ 0.1168

α E.L. SAC

Case 3 1.0 −0.1583 0.3335 (0.4918) −0.1342 0.3891 (0.5233)
Case 4 1.5 −0.0761 0.1930 (0.2691) −0.0676 0.2481 (0.3157)
Case 5 1.9 −0.0465 0.1329 (0.1794) −0.0450 0.1365 (0.1815)
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Table 3. 90% confidence intervals (and length) for the autocorrelation with lag 2. b = 0.5, α = 1.5 and
θ0 ≈ 0.1168

n E.L. SAC

Case 6 50 −0.2397 0.4313 (0.6710) −0.2477 0.5629 (0.8106)
Case 7 100 −0.3125 0.2228 (0.5353) −0.3476 0.2218 (0.5694)

Moreover, we investigate the length of intervals when b = 0.5 and α = 1.5 for small samples.
Table 3 shows the result for n = 50 and 100. Even though sample size is small, the empirical
likelihood method also works well.

Also, we give an example for multivariate case. Suppose that the observations X(1), . . . ,X(n)

are generated from the 2-dimensional VMA(100) model with innovations {Z(t); t ∈ Z} whose
marginal distributions are i.i.d. sαs with scale 1, and the coefficient matrices A(j), j =
1, . . . ,100 are assumed to be

A(j) =
(

0.7j j−2bj

0 0.5j

)
.

To this model, we use the following score function f(ω; θ) defined by

f(ω; θ) = (
I − Bθ exp(iω)

)−1(
I − Bθ exp(iω)

)−1∗
, where Bθ =

(
0.5 θ

0.4 0.2

)
.

In this case, the asymptotic distribution of −2(x2
n/n) logR(θ0) can be simply represented by

(S1/S0)
2(V 2/W), where S0 and S1 are the same as in Theorem 3.1, W is the same as in Theo-

rem 4.1 and

V = 1

π

[∣∣∣∣∣
∫ π

−π

F12(ω) cos(ω)dω +
∞∑
t=1

(
F11(ω) + F22(ω) + 2F12(ω)

)
cos(tω)

∣∣∣∣∣
α]1/α

,

if we write

F(ω) = ∂

∂θ
�(ω)∗f (ω; θ)−1

∣∣∣
θ=θ0

�(ω).

The confidence intervals for θ are summarized in the following Table 4.
We also focus on the one-sided coverage error to evaluate the performances of the confidence

intervals. Let θU and θL be the endpoints of a confidence interval. The one-sided coverage error
is given by ∣∣Pr

[{
θ0 < θL

}∪ {
θU < θ0

}]− 0.1
∣∣.

In this time, we calculated the confidence intervals constructed by both methods for univariate
case, and by the empirical likelihood approach for multivariate case by 1000 times of Monte
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Table 4. 90% confidence intervals (and length) for true parameter. Sample size is 300 and α = 1.5

b θ0 ≈ E.L. (Length)

Case 8 0 0.0000 −0.1685 0.1690 (0.3375)
Case 9 0.3 0.1755 0.0467 0.3208 (0.2741)
Case 10 0.6 0.3669 0.2601 0.4920 (0.2320)
Case 11 0.9 0.5787 0.5046 0.6641 (0.1596)

Carlo simulations. Namely, we made 1000 confidence intervals (θL
l , θU

l ), l = 1, . . . ,1000, inde-
pendently, and calculate the quantity

∣∣∣∣∑1000
l=1 I{θ0 /∈ (θL

l , θU
l )}

1000
− 0.1

∣∣∣∣
for each case, where I denotes the indicator function. Empirical coverage errors are shown in
Table 5. From this table, the empirical likelihood confidence intervals are more accurate than
those by the existing method. Especially, it seems that both methods give the close coverage
probabilities to the nominal level when α is nearly 2.0. On the other hand, we can see that both
methods give the close coverage probabilities to the nominal level as n increases (case 1, case 6
and case 7).

Furthermore, our results also apply in the multivariate case. Although the coverage error be-
comes worse as the pseudo true value gets larger, it can be seen that the confidence intervals
correspondingly becomes smaller in Table 4.

Table 5. Coverage errors of confidence
intervals for the parameter θ0

Coverage errors
E.L. SAC

Case 1 0.082 0.087
Case 2 0.089 0.096
Case 3 0.094 0.098
Case 4 0.082 0.087
Case 5 0.053 0.056
Case 6 0.092 0.095
Case 7 0.086 0.090
Case 8 0.011 —
Case 9 0.027 —
Case 10 0.032 —
Case 11 0.049 —
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6. Proofs

This section provides the proofs of theorems. The following notation will be used throughout
this section.

Pn(θ0) ≡ 1

n

n∑
t=1

m(λt ; θ0) and Sn(θ0) ≡ 1

n

n∑
t=1

m(λt ; θ0)m(λt ; θ0)
′.

6.1. Proof for Theorem 3.1

We start with some auxiliary results. Recalling (2.1), let

ρn,A(h) =
n−h∑
t=1

Ãt Ãt+h, h = 1, . . . , n − 1 and Tn,A(ω) = 2
n−1∑
h=1

ρn,A(h) cos(hω).

Lemma 6.1.

ETn,Z(ω) = 0, ETn,Z(ω)2 →
{

1 (ω �≡ 0 modπ),
2 (ω ≡ 0 modπ),

as n → ∞ uniformly in α ∈ (0,2] and σ > 0.

Proof. By symmetry and boundedness of Z̃t ’s, EZ̃1 exists and is equal to 0. Furthermore, from
the definition of Z̃1, . . . , Z̃n, we can see that

∑n
t=1 Z̃2

t = 1 almost surely, so EZ̃2
1 = 1/n. Using

Chebyshev’s inequality, we can see

Pr
{|Z̃1| < ε−1/2n−1/2}> 1 − ε

for any ε > 0. This inequality means
√

nZ̃2
1 is Op(n−1/2), hence

√
nZ̃2

1 converges to 0 in dis-
tribution uniformly in α ∈ (0,2]. Therefore, by Taylor’s theorem there exists a constant c such
that

E exp
{
iξ

√
nZ̃2

1

} = 1 − ξ2

2
nEZ̃4

1 + ξ3 sin(ξc)

6
n3/2EZ̃6

1 + i Im
[
E exp

{
iξ

√
nZ̃2

1

}]
→ 1

uniformly in ξ ∈ R by Lévy’s continuity theorem, where Im(z) means the imaginary part of a
complex number z. So we can conclude nEZ̃4

1 converges to 0 as n tends to ∞. We also find
that n(n − 1)EZ̃2

1Z̃2
2 converges to 1 by taking expectations on both sides of following identical

equation:

1 =
n∑

t=1

Z̃4
t +

∑
t �=s

Z̃2
t Z̃

2
s . (6.1)
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Remembering the facts above, let us evaluate the expectations. First, from symmetry of Z̃1, it is
easy to see that ETn,Z(ω) is exactly equal to 0. Next, we expand Tn,Z(ω)2 and obtain that

ETn,Z(ω)2

(6.2)

= n(n − 1)EZ̃2
1Z̃2

2 + 2nEZ̃2
1Z̃2

2

n−1∑
h=1

cos(2hω) − 2EZ̃2
1Z̃2

2

n−1∑
h=1

h cos(2hω).

The first term of (6.2) converges to 1 as n → ∞. Suppose that ω ≡ 0 modπ, then

2nEZ̃2
1Z̃2

2

n−1∑
h=1

cos(2hω) − 2EZ̃2
1Z̃2

2

n−1∑
h=1

h cos(2hω) = n(n − 1)EZ̃2
1Z̃2

2 → 1.

Next, for ω �≡ 0 modπ, the following two identical equations hold;

n−1∑
h=1

cos(2hω) = cos(2(n − 1)ω) + cos(2ω) − cos(2nω)

2(1 − cos(2ω))
,

n−1∑
h=1

h cos(2hω) = n cos(2(n − 1)ω) − (n − 1) cos(2nω) − 1

2(1 − cos(2ω))
.

Using these equations, we obtain that

2nEZ̃2
1Z̃2

2

n−1∑
h=1

cos(2hω) − 2EZ̃2
1Z̃2

2

n−1∑
h=1

h cos(2hω) → 0.

Hence we get desired result. �

Lemma 6.2.
∑∑

k �=l Cov{Ĩn,Z(λk)
2, Ĩn,Z(λl)

2} = O(n).

Proof. From Brillinger [3],

Cov
{
Ĩn,Z(λk)

2, Ĩn,Z(λl)
2}=

8∑
ν:p=1

p∏
j=1

cum
{
dn,Z(λkj

); kj ∈ νj

}
,

where the summation is taken over all indecomposable partitions ν = ν1 ∪ · · · ∪ νp , p = 1, . . . ,8
of a table

k k − k − k

l l − l − l
(6.3)
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(see Brillinger [3]), and dn,Z(λk) =∑n
t=1 Z̃t exp(itλk). Note that cum{dn,Z(λk1), . . . , dn,Z(λkm)}

is 0 for odd m. Let us consider following five partitions;

p = 1, (k, k,−k,−k, l, l,−l,−l),

p = 2, (k,−k, l,−l) ∪ (k,−k, l,−l),

(k,−k) ∪ (k,−k, l, l,−l,−l),

(l,−l) ∪ (k, k,−k,−k, l,−l)

and p = 3, (k,−k) ∪ (l,−l) ∪ (k,−k, l,−l).

(6.4)

First, we show that with different k and l in ν,

∑
k �=l

8∑
ν′:p=1

p∏
j=1

cum
{
dn,Z(λkj

); kj ∈ νj

}= O(n). (6.5)

for indecomposable decompositions ν′ = ν \ (6.4). However, the proof for (6.5) contains lengthy
and complex algebra, so we confine to giving a representative example here.

Let us consider partitions for p = 4. We can evaluate the second order cumulant as

cum
{
dn,Z(λk), dn,Z(λl)

} = EZ̃2
1

n∑
t=1

exp
(
it (λk − λl)

)
= 1

n

n∑
t=1

exp

(
it

2π(k − l)

n

)

=
{

1 (k − l ≡ 0 modn),
0 (k − l �≡ 0 modn),

therefore

cum
{
dn,Z(λk1), dn,Z(λk2)

} · · · cum
{
dn,Z(λk7), dn,Z(λk8)

}
=
{

1 (k1 − k2, . . . , k7 − k8 ≡ 0 modn),
0 (otherwise).

So when p = 4, we obtain

∑
k �=l

p∏
j=1

cum
{
dn,Z(λkj

); kj ∈ νj

}= O(n) (6.6)

for any indecomposable partition (6.3). Similarly, we can check (6.6) for p = 2 and 3. Next,
we need to check the cumulants on partitions (6.4). For simplicity, we introduce generic residual
terms R

(1)
n (k, l), . . ., R(4)

n (k, l) such that
∑∑

k �=l R
(η)
n (k, l)γ = O(n) for γ = 1,2, η = 1,2,3 and

4. A simple example of R
(η)
n (k, l) is given as

R(η)
n (k, l) =

{∃(constant) (k − l ≡ 0 modn),
0 (k − l �≡ 0 modn),
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and these will appear when we expand the cumulants concerned. The fourth order joint cumulant
on (λk,−λk,λl,−λl) is represented as

cum
{
dn,Z(λk), dn,Z(−λk), dn,Z(λl), dn,Z(−λl)

}
(6.7)

= nEZ̃4
1 + n(n − 1)EZ̃2

1Z̃2
2 − 1 + R(1)

n (k, l).

From (6.1), (6.7) becomes

cum
{
dn,Z(λk), dn,Z(−λk), dn,Z(λl), dn,Z(−λl)

}= R(1)
n (k, l).

By the same argument as above, and using identical equations{
n∑

t=1

Z̃2
t

}{
(∗)∑
t,s

Z̃2
t Z̃

2
s

}
=

(∗)∑
t,s

Z̃2
t Z̃

2
s = 2

(∗)∑
t,s

Z̃4
t Z̃

2
s +

(∗)∑
t,s,u

Z̃2
t Z̃

2
s Z̃

2
u,

{
n∑

t=1

Z̃2
t

}{
n∑

t=1

Z̃4
t

}
=

n∑
t=1

Z̃4
t =

(∗)∑
t,s

Z̃4
t Z̃

2
s +

n∑
t=1

Z̃6
t

and

1 =
n∑

t=1

Z̃8
t + 4

(∗)∑
t,s

Z̃6
t Z̃

2
s + 3

(∗)∑
t,s

Z̃4
t Z̃

4
s

(6.8)

+ 6
(∗)∑

t,s,u

Z̃4
t Z̃

2
s Z̃

2
u +

(∗)∑
t,s,u,v

Z̃2
t Z̃

2
s Z̃

2
uZ̃

2
v,

we obtain that

cum
{
dn,Z(λk), dn,Z(−λk), dn,Z(λl), dn,Z(λl), dn,Z(−λl), dn,Z(−λl)

}
= R(2)

n (k, l),

cum
{
dn,Z(λk), . . . , dn,Z(−λl)

}
(the eighth order joint cumulant) (6.9)

= 2n2EZ̃4
1Z̃4

2 − 6n3EZ̃4
1Z̃2

2Z̃2
3

+ n4EZ̃2
1Z̃2

2Z̃2
3Z̃2

4 − {
n2EZ̃2

1Z̃2
2

}2 + R(3)
n (k, l),

where
∑(∗)

t1,...,tm
is a summation taken over all t1, . . . , tm are different from each other.

According to the same argument as that in Lemma 6.1, the first and second terms in (6.9)
converge to 0 as n → ∞, and the fourth term converges to 1.

Finally, from (6.8), the third term converges to 1. Hence the eighth order joint cumulant be-
comes

cum
{
dn,Z(λk), . . . , dn,Z(−λl)

}= R(4)
n (k, l),
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so we have ∑
k �=l

8∑
ν:p=1

p∏
j=1

cum
{
dn,Z(λkj

); kj ∈ νj

}= O(n).
�

Lemma 6.3. Under Assumption 2.2,

Sn(θ0)
P→ W

as n → ∞. Here W is defined in Theorem 3.1.

Proof. We first make use of the decomposition of the periodogram in Klüppelberg and Mikosch
[15] as follows, that is,

Ĩn,X(ω)2 = g̃(ω)2Ĩn,Z(ω)2 + op(1)

= g̃(ω)2

{
1 + 2

n−1∑
h=1

ρn,Z(h) cos(hω)

}2

+ op(1) (6.10)

= g̃(ω)2{1 + 2Tn,Z(ω) + Tn,Z(ω)2}+ op(1).

Then from Lemma 6.1, we obtain that

E
[
Sn(θ0)

] = 1

n

n∑
t=1

∂f (λt ; θ)−1

∂θ

∂f (λt ; θ)−1

∂θ ′
∣∣∣
θ=θ0

EĨn,X(λt )
2

→ 1

2π

∫ π

−π

∂f (ω; θ)−1

∂θ

∂f (ω; θ)−1

∂θ ′
∣∣∣
θ=θ0

2g̃(ω)2 dω = W.

From Lemma 6.2, Assumption 2.2 and (6.10), if we define

hθ0(ω)ab = ∂f (ω; θ)−1

∂θa

∂f (ω; θ)−1

∂θb

∣∣∣
θ=θ0

g̃(ω)2,

then

Cov
{
Sn(θ0)ab,Sn(θ0)cd

} = 1

n2

n∑
t=1

n∑
s=1

hθ0(λt )abhθ0(λs)cd Cov
{
Ĩn,Z(λt )

2, Ĩn,Z(λs)
2}

= 1

n2

n∑
t=1

hθ0(λt )abhθ0(λt )cd Var Ĩn,Z(λt )
2

+ 1

n2

∑
t �=s

hθ0(λt )abhθ0(λs)cd Cov
{
Ĩn,Z(λt )

2, Ĩn,Z(λs)
2}+ o(1)

→ 0

for a, b, c, d = 1, . . . , q . These facts imply the convergence of Sn(θ0) in probability. �
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Proof of Theorem 3.1. By Lagrange’s multiplier method, w1, . . . ,wn which maximize the ob-
jective function in R(θ) are given by

wt = 1

n

1

1 + φ′m(λt ; θ0)
, t = 1, . . . , n,

where φ ∈R
q is the Lagrange multiplier which is defined as the solution of q-restrictions

Jn,θ0(φ) = 1

n

n∑
t=1

m(λt ; θ0)

1 + φ′m(λt ; θ0)
= 0. (6.11)

First of all, let us derive the order of φ. Set Yt ≡ φ′m(λt ; θ0) and from (6.11),

0 = 1

n

n∑
t=1

m(λt ; θ0)

1 + Yt

= 1

n

n∑
t=1

{
1 − Yt + Y 2

t

1 + Yt

}
m(λt ; θ0)

= Pn(θ0) − Sn(θ0)φ + 1

n

n∑
t=1

m(λt ; θ0)Y
2
t

1 + Yt

.

Hence,

φ = Sn(θ0)
−1

{
Pn(θ0) + 1

n

n∑
t=1

m(λt ; θ0)Y
2
t

1 + Yt

}
≡ Sn(θ0)

−1Pn(θ0) + ε (say). (6.12)

Next, we introduce Mn ≡ max1≤k≤n ‖m(λk; θ0)‖E . The order of Mn is given by

Mn = max
1≤t≤n

∥∥∥∥∂f (λt ; θ)−1

∂θ

∣∣∣
θ=θ0

Ĩn,X(λt )

∥∥∥∥
E

≤ max
1≤t≤n

∥∥∥∥∂f (λt ; θ)−1

∂θ

∣∣∣
θ=θ0

∥∥∥∥
E

max
1≤t≤n

∣∣In,X(λt )
∣∣ 1

γ 2
n,X

≤ max
ω∈[−π,π]

∥∥∥∥∂f (ω; θ)−1

∂θ

∣∣∣
θ=θ0

∥∥∥∥
E

max
ω∈[−π,π]

∣∣In,X(ω)
∣∣ 1

γ 2
n,X

= max
ω∈[−π,π]

∥∥∥∥∂f (ω; θ)−1

∂θ

∣∣∣
θ=θ0

∥∥∥∥
E

max
ω∈[−π,π]

∣∣g(ω)
∣∣maxω∈[−π,π] |In,X(ω)|

maxω∈[−π,π] |g(ω)|
1

γ 2
n,X

≤ max
ω∈[−π,π]

∥∥∥∥∂f (ω; θ)−1

∂θ

∣∣∣
θ=θ0

∥∥∥∥
E

max
ω∈[−π,π]

∣∣g(ω)
∣∣ max
ω∈[−π,π]

∣∣∣∣In,X(ω)

g(ω)

∣∣∣∣ 1

γ 2
n,X

= ∃c0 max
ω∈[−π,π]

∣∣∣∣In,X(ω)

g(ω)

∣∣∣∣ (∵ Assumption 2.2).
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On the other hand, it is not difficult to check that Assumption 2.1 is sufficient condition for
Corollary 3.3 of Mikosch, Resnick and Samorodnitsky [19], so we have Mn = Op(β2

n), where

βn =
{

(logn)1−1/α (1 < α < 2),
log logn (α = 1).

Henceforth, let 1 < α < 2. In the case of α = 1, the same argument as follows will go on. By
Ogata and Taniguchi [22], there exists a unit vector u in R

q such that the following inequality
holds:

‖φ‖E

{
u′Sn(θ0)u − u′MnPn(θ0)

}≤ u′Pn(θ0).

Lemma P5.1 of Brillinger [3] allows us to write xnPn(θ0) as

xnPn(θ0) = 1

2π
xn

∫ π

−π

∂f (ω; θ)

∂θ

∣∣∣
θ=θ0

Ĩn,X(ω)dω + Op

(
xn

n

)
= 1

2π

1

γ 2
n,X

xn

∫ π

−π

∂f (ω; θ)

∂θ

∣∣∣
θ=θ0

{
In,X(ω) − Tnψ

2g̃(ω)
}

dω + Op

(
xn

n

)
,

where

Tn = 1

2π

∫ π

−π

In,X(ω)

ψ2g̃(ω)
dω.

Then, by Proposition 3.5 of Klüppelberg and Mikosch [16] and Cramér–Wold device, we have⎛⎜⎜⎜⎜⎜⎜⎝

γ 2
n,X

xn

∫ π

−π

∂f (ω; θ)

∂θ1

∣∣∣
θ=θ0

{
In,X(ω) − Tnψ

2g̃(ω)
}

dω

...

xn

∫ π

−π

∂f (ω; θ)

∂θq

∣∣∣
θ=θ0

{
In,X(ω) − Tnψ

2g̃(ω)
}

dω

⎞⎟⎟⎟⎟⎟⎟⎠

L→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ2S0

2
∞∑
t=1

St

{∫ π

−π

∂f (ω; θ)

∂θ1

∣∣∣
θ=θ0

ψ2g̃(ω) cos(tω)dω

}
...

2
∞∑
t=1

St

{∫ π

−π

∂f (ω; θ)

∂θq

∣∣∣
θ=θ0

ψ2g̃(ω) cos(tω)dω

}

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Therefore

xnPn(θ0)
L→ V (6.13)

for α ∈ [1,2) as n → ∞, where V is defined in Theorem 3.1. So we obtain

Op

(‖φ‖E

)[
Op(1) − Op

{
(logn)2−2/α

} · Op

(
x−1
n

)]≤ Op

(
x−1
n

)
. (6.14)
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Because as n → ∞,

(logn)2−2/αx−1
n = (logn)2−2/α

(
logn

n

)1/α

= 1

(logn)1/α

(logn)2

n1/α

→ 0,

the underlined part in (6.14) is Op(1). Therefore, we obtain

Op

(‖φ‖E

)≤ Op

(
x−1
n

)
. (6.15)

On the other hand,

1

n

n∑
t=1

∥∥m(λt ; θ0)
∥∥3

E
= 1

n

n∑
t=1

∥∥m(λt ; θ0)
∥∥

E

∥∥m(λt ; θ0)
∥∥2

E

≤ 1

n

n∑
t=1

Mnm(λt ; θ0)
′m(λt ; θ0)

(6.16)
= Mn tr

{
Sn(θ0)

}
= Op

{
(logn)2−2/α

}
.

From (6.15) and (6.16), ε in (6.12) satisfies

‖ε‖E ≤ 1

n

n∑
t=1

∥∥m(λt ; θ)
∥∥3

E
‖φ‖2

E |1 + Yt |−1. (6.17)

Thus, we have

Op

(‖xnε‖E

)= Op

{
(logn)2−1/α

n1/α

}
P→ 0.

Now let us show the convergence of the empirical likelihood ratio statistic. Under H : θ = θ0,
−2(x2

n/n) logR(θ0) can be expanded as

−2
x2
n

n
logR(θ0) = −2

x2
n

n

n∑
t=1

lognwt

= 2
x2
n

n

n∑
t=1

log(1 + Yt )

= 2
x2
n

n

n∑
t=1

Yt − x2
n

n

n∑
t=1

Y 2
t + 2

x2
n

n

n∑
t=1

Op

(
Y 3

t

)
,
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where

2
x2
n

n

n∑
t=1

Yt = 2
x2
n

n

n∑
t=1

φ′m(λt ; θ0)

= 2
x2
n

n

{
Sn(θ0)

−1Pn(θ0) + ε
}′ n∑

t=1

m(λt ; θ0)

= 2x2
n

{
Pn(θ0)

′Sn(θ0)
−1 + ε′}Pn(θ0)

= 2
{
xnPn(θ0)

}′
Sn(θ0)

−1{xnPn(θ0)
}+ 2(xnε)′

{
xnPn(θ0)

}
,

x2
n

n

n∑
t=1

Y 2
t = x2

n

n

n∑
t=1

{
φ′m(λt ; θ0)

}2

= x2
nφ′Sn(θ0)φ

= x2
n

{
Pn(θ0)

′Sn(θ0)
−1 + ε′}Sn(θ0)

{
Sn(θ0)

−1Pn(θ0) + ε
}

= {
xnPn(θ0)

}′Sn(θ0)
−1{xnPn(θ0)

}
+ (xnε)′Sn(θ0)(xnε) + 2(xnε)′

{
xnPn(θ0)

}
and

x2
n

n

∣∣∣∣∣
n∑

t=1

Op

(
Y 3

t

)∣∣∣∣∣ ≤ x2
n

n
∃c

n∑
t=1

|Yt |3

= x2
n

n
c‖φ‖3

E

n∑
t=1

∥∥m(λt ; θ0)
∥∥3

E

= x2
n

n
Op

(
x−3
n

) · Op

{
n(logn)2−2/α

}
= Op

{
(logn)2−1/α

n1/α

}
P→ 0 (n → ∞).

Hence, using (6.13) and Lemma 6.3,

−2x2
n

n
logR(θ0) = {

xnPn(θ0)
}′Sn(θ0)

−1{xnPn(θ0)
}+ op(1)

L→ V′W−1V

for α ∈ [1,2). �
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[26] Resnick, S.I. and Stărică, C. (1996). Asymptotic behavior of Hill’s estimator for autoregressive data.

Stoch. Models 13 703–723.
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