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We propose a new platform of goodness-of-fit tests for copulas, based on empirical copula processes and
nonparametric bootstrap counterparts. The standard Kolmogorov–Smirnov type test for copulas that takes
the supremum of the empirical copula process indexed by orthants is extended by test statistics based on
the empirical copula process indexed by families of Ln disjoint boxes, with Ln slowly tending to infinity.
Although the underlying empirical process does not converge, the critical values of our new test statistics
can be consistently estimated by nonparametric bootstrap techniques, under simple or composite null as-
sumptions. We implemented a particular example of these tests and our simulations confirm that the power
of the new procedure is oftentimes higher than the power of the standard Kolmogorov–Smirnov or the
Cramér–von Mises tests for copulas.
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1. Introduction

This paper introduces new powerful goodness-of-fit (GOF) tests for copulas in [0,1]d , d ≥ 2,
based on the empirical copula process

Zn(u) = √
n(Cn − C)(u), u = (u1, . . . , ud) ∈ [0,1]d, (1.1)

given a sample of n independent random vectors Xi = (Xi1, . . . ,Xid) ∈ R
d , i = 1, . . . , n, from

a common distribution function H . Let C be the associated copula function, as given by Sklar’s
theorem [30]. Here, Cn is the usual empirical copula, as introduced by Deheuvels [7]: denoting
by Hn the joint c.d.f. of the sample (X1, . . . ,Xn), Fn,j the j th empirical c.d.f. associated to
(X1j , . . . ,Xnj ), j = 1, . . . , d , and F

−
n,j its empirical quantile function, we have

Cn(u) =Hn

(
F

−
n,1(u1), . . . ,F

−
n,d(ud)

)
by definition, for every u = (u1, . . . , ud) ∈ [0,1]d . The Kolmogorov–Smirnov (KS) test statistic
for testing of the null hypothesis H0 :C = C0 is

KSn = sup
u∈[0,1]d

∣∣√n(Cn − C0)(u)
∣∣. (1.2)
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The Cramér–von Mises statistic (CvM) is

CMn =
∫ {√

n(Cn − C0)(u)
}2 dCn(u). (1.3)

It is well known (see, for instance, [11]) that Zn and its bootstrap counterpart Z∗
n, defined

in (2.4) below, both converge weakly to the same tight Gaussian process in �∞([0,1]d) un-
der the null hypothesis. Therefore, we can compute the α-upper points of KSn and CMn via
the bootstrap. To the best of our knowledge, all the proposed GOF tests rely on simulation-
based procedures to calculate their corresponding p-values, with the notable exception of the
distribution-free test statistics of Fermanian [9]. The latter idea has been further developed by
Scaillet [26] and Fermanian and Wegkamp [12]. A parametric bootstrap has been proposed [14]
to tackle composite null hypotheses, while Rémillard and Scaillet [25] advocate the use of the
multiplier central limit theorem to build an alternative bootstrap empirical copula process. Bücher
and Dette [5] give a survey and a comparison of various bootstrap methods.

The goal of this paper is to develop more powerful tests than the KS test (1.2) and CvM
test (1.3) for simple and composite null hypotheses. The next section offers a class of such tests.
For instance, in the case of a null simple hypothesis H0 :C = C0, we propose the test that rejects
H0 for large values of the test statistic

Tn := sup
B1,...,BLn

Ln∑
k=1

∣∣Zn(Bk)
∣∣. (1.4)

The supremum is taken over all disjoint boxes B1, . . . ,BLn ⊂ [0,1]d of the form
∏d

j=1(aj , bj ],
using the convention

Zn

(
(a1, b1] × · · · × (ad, bd ])= �1

a1,b1
�2

a2,b2
· · ·�d

ad,bd
Zn(u) (1.5)

for any arbitrary point u ∈ [0,1]d and for all 0 ≤ aj < bj ≤ 1, j = 1, . . . , d . Here, we have used
the usual operators �j defined for every function f by(

�
j
a,bf

)
(u) = f (u1, . . . , uj−1, b,uj+1, . . . , ud) − f (u1, . . . , uj−1, a,uj+1, . . . , ud)

for all u ∈ [0,1]d , and all real numbers a and b.
We will also consider the related statistics

T̃n = max
B1,...,BLn

Ln∑
i=1

∣∣Zn(Bi)
∣∣, (1.6)

with the maximum taken over all disjoint rectangles B1, . . . ,BLn of the form B =∏d
j=1(aj , bj ]

with aj , bj belonging to a grid {n−1/d ,2n−1/d , . . . , 	n1/d
n−1/d}. Asymptotically, T̃n and
Tn are the same (see Proposition 13 in Section 5), but T̃n is computationally much more
tractable.
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Now, if Ln = L for all n, the collection of boxes is sufficiently small that we can still appeal
to the weak convergence of Zn and Z

∗
n in conjunction with the continuous mapping theorem,

to obtain α-upper points of the test statistic Tn via the bootstrap. Taking Ln = +∞ for all n,
or equivalently, if we consider all families of disjoint boxes in [0,1]d (possibly partitions), the
statistic Tn is equal to the total variation distance TV(Zn) of Zn. The resulting test is not statisti-
cally meaningful as TV(Zn) is maximal, to wit, TV(Zn) = n1/2 → +∞. The problem is to find
a rich collection that quickly detects departure from the null, but still yields a consistent test. The
main novelty of our approach is the fact that we let Ln, the number of boxes, slowly tend to ∞ in
that Ln ∼ (logn)γ , 0 < γ < 1. While in this case the process Zn no longer converges, Theorem 1
in Section 2 states that we can still consistently estimate the distribution of the process Zn by the
bootstrap. We refer to our procedure as the Asymptotic Total Variation (ATV) test. The consid-
ered families of boxes are finer and finer, presumably improving the power of the test, while for
each n large enough, we still have a consistent test in that we control the type 1 error. A key obser-
vation is that under the null hypothesis H0 :C = C0, we have Tn ≤ Ln supB |Zn(B)| = Op(Ln),
while under the alternative HA :C = C1 for some fixed C1 = C0, Tn is much larger since the bias
is at least of order O(n1/2).

Theorem 1 extends the surprising result obtained by Radulović [23] for empirical processes
indexed by sums of indicator functions of VC-graph classes (see Theorem 14 in the Appendix).
We require very mild conditions on the copula function C. This is one of the few notable excep-
tions known to us in the literature where the bootstrap “works”, that is, the conditional bootstrap
distribution consistently estimates the distribution of the test statistic, while the distribution of
the statistic itself does not converge. For other instances of this phenomenon, we refer to [4] and,
more recently, [22–24].

Section 3 considers the more general hypothesis that the underlying copula C belongs to some
parametric copula family {Cθ, θ ∈ � ⊂ R

p}. Given a sufficiently regular estimator θ̂ and its
bootstrap counterpart θ̂∗, we adjust our statistic (1.4) and its nonparametric bootstrap counterpart
to obtain a consistent level α test (Theorem 4). Again, the result is established under very mild
regularity conditions on the copula Cθ and the estimators θ̂ and θ̂∗. Incidentally, we introduce a
new bootstrap procedure under composite null hypotheses, an alternative to the usual parametric
bootstrap or the multiplier CLT.

Section 4 then reports a small numerical study where we show that, in complex but realistic
situations, our test (1.4) is superior to the Kolmogorov–Smirnov and the Cramér–von Mises
tests. We also comment on a possible inadequacy in the way the copula GOF tests are commonly
evaluated. Finally, the proofs are collected in Section 5. The Appendix contains some technical
results from [27] and [23] and a description of the implementation of the proposed tests.

2. The asymptotic total variation test

Notation. Let H be the distribution function of the random vector X with marginals F1, . . . ,Fd .
We will assume throughout the paper that H is continuous. Let (X1, . . . ,Xn) be independent
copies of X. We denote the generalized inverse of a distribution function F by F−. For instance,
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F−
j (u) = inf{x | Fj (x) ≥ u}. The empirical counterparts of H and any Fj are, respectively,

Hn(x) = 1

n

n∑
i=1

1{Xi ≤ x}, x ∈R
d ,

Fn,j (x) = 1

n

n∑
i=1

1{Xi,j ≤ x}, x ∈R, j = 1, . . . , d.

The copula function of X is C(u) = H(F−
1 (u1), . . . ,F

−
d (ud)), u = (u1, . . . , ud) ∈ [0,1]d , and

its empirical estimate is Cn(u) = Hn(F
−
n,1(u1), . . . ,F

−
n,d (ud)). The empirical copula process

Zn(u) = √
n(Cn − C)(u) is already defined in (1.1). We define Fn as the class of functions

f (x) =
Ln∑
k=1

ck1{x ∈ Bk}, (2.1)

with ck ∈ {−1,+1} and disjoint boxes Bk of the form
∏d

j=1(aj , bj ] in the unit cube [0,1]d , for
all 1 ≤ k ≤ Ln. We let

Zn(f ) =
Ln∑
k=1

ckZn(Bk)

and observe that

Tn = sup
f ∈Fn

∣∣Zn(f )
∣∣= sup

B1,...,BLn

Ln∑
k=1

∣∣Zn(Bk)
∣∣,

where the supremum is taken over all disjoint boxes B1, . . . ,BLn of the unit square [0,1]d .
If Ln = L for all n, then Fn = F and Zn converges in �∞(F) to a Gaussian process under

regularity conditions on C; see, for instance, [11] and [27]. As a consequence of the continuous
mapping theorem, Tn trivially converges weakly as well. However, if Ln → ∞, as n → ∞, this
is no longer true as the process Zn does not converge weakly.

The main point of this paper is to show that, provided Ln = (logn)γ for some 0 < γ < 1, the
distribution of Tn can be estimated by the bootstrap. The bootstrap counterparts of the above
processes are defined as follows. Let the bootstrap sample (X∗

1, . . . ,X∗
n) be obtained by sampling

with replacement from X1, . . . ,Xn. We write

H
∗
n(x) = 1

n

n∑
i=1

1
{
X∗

i ≤ x
}
, x ∈ R

d (2.2)

for the empirical c.d.f. based on the bootstrap, with marginals

F
∗
n,j (x) = 1

n

n∑
i=1

1
{
X∗

i,j ≤ x
}
, x ∈R, j = 1, . . . , d. (2.3)



ATV tests for copulas 1915

We denote its associated empirical copula function by C
∗
n. The bootstrap empirical copula pro-

cess is

Z
∗
n = √

n
(
C

∗
n −Cn

)= √
n
{
H

∗
n

(
F

∗−
n,1, . . . ,F

∗−
n,d

)−Hn

(
F

−
n,1, . . . ,F

−
n,d

)}
. (2.4)

Assumptions. We will assume the following set of assumptions:

(C1) For any j = 1, . . . , d , for all u ∈ [0,1]d with 0 < uj < 1, the first-order partial derivative
Cj (u) = ∂C(u)/∂uj exists and is of bounded variation ([16], e.g.). Moreover, it satisfies,
for some r > 0, β ≥ 0 and K < ∞,

∣∣Cj(u) − Cj (v)
∣∣≤ K

(
u

−β
j (1 − uj )

−β + v
−β
j (1 − vj )

−β
) d∑

l=1

|ul − vl |r

for all u,v ∈ [0,1]d , 0 < uj , vj < 1. As in [27], we extend the domain of each Cj to the
whole [0,1]d by setting

Cj (u) :=

⎧⎪⎪⎨⎪⎪⎩
lim sup

h↓0

C(u + hej )

h
if u ∈ [0,1]d , uj = 0;

lim sup
h↓0

C(u) − C(u − hej )

h
if u ∈ [0,1]d , uj = 1.

Here, ej is the j th coordinate vector in R
d .

(C2) The number Ln is of order (logn)γ for some 0 < γ < 1.

Remark. We know that continuity of the partial derivatives of C on (0,1)d is required for weak
convergence; see [11] and [27]. The requirement that the partial derivatives are of bounded vari-
ation is natural since we compute the supremum of Zn over increasingly finer families of boxes
in [0,1]d . The process Zn(u) is asymptotically equivalent to αn(u) −∑d

j=1 Cj (u)αn,j (uj ) with
αn(u) = √

n(Hn − H)(u) and αn,j (uj ) = √
n(Fn,j − F)(uj ) (see Proposition 10).

Remark. The additional requirement (C1) is weaker than imposing a Hölder condition on the
derivatives. Segers [27] imposes a slightly stronger condition on the second-order partial deriva-
tives of C (corresponding to r = 1 and β = 1) to obtain an almost sure representation of the
empirical copula process.

As a counterexample, consider the bivariate Archimedean copula C whose generator is given
by ψ : (0,1] → R

+, ψ(t) := exp(t−θ ) − e for some θ > 0. This copula (see display (4.2.20)
in [21]) is

C(u1, u2) = [
ln
(
exp

(
u−θ

1

)+ exp
(
u−θ

2

)− e
)]−1/θ

for any u ∈ [0,1]2. It can be checked easily that, when u → 0, the copula density C12(u,u)

behaves like u−θ−1. Therefore, C cannot fulfill Condition 4.1 in [27]. Nonetheless, by the mean
value theorem and simple calculations, we can prove that∣∣C1(u) − C1(v)

∣∣≤ K
(
min(u1, v1)

)−2θ−2|u1 − v1| + K
(
min(u1, v1)

)−θ−1|u2 − v2|.
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Moreover, C1 is of bounded variation: introduce the cross-derivative function ∂2
12C1 : (u1, u2) �→

∂3C(u1, u2)/∂
2u1∂u2. This function exists on (0,1)2 and is integrable. Indeed, after lengthy

calculations, it can be proved that, for every u ∈ (0,1)2,

∣∣∂2
12C1(u1, u2)

∣∣≤ Ku−2θ−2
1 u−θ−1

2 min(u1, u2)
3θ+1 exp(2u−θ

1 + u−θ
2 )

(exp(u−θ
1 ) + exp(u−θ

2 ) − e)3

for some positive constant K . Integration of the latter upper bound with respect to u2 yields the
integrable function u1 �→ uθ−1

1 and Tonelli’s theorem implies that the total variation
∫ |dC1| =∫ |∂2

12C1(u1, u2)|du1 du2 of C1 is finite. The same reasoning applies to C2, and we conclude that
condition (C1) is fulfilled with this copula family.

The second assumption (C2) allows for sub-logarithmic rate in the sample size for the number
of boxes considered. In practice, even this fairly slow rate yields much better tests, see our sim-
ulations in Section 4. And we have not observed any significant differences empirically between
choosing γ = 1 and γ close to one.

Our first result states that the processes Zn and Z
∗
n are close in the bounded Lipschitz distance

that characterizes weak convergence. Formally, we show that

E

[
sup
h

∣∣E[h(Zn)
]−E

∗[h(Z∗
n

)]∣∣] (2.5)

is asymptotically negligible. Here, E∗ is the conditional expectation with respect to the bootstrap
sample and the supremum in (2.5) is taken over BL1 = BL1(�

∞(Fn)), the class of all uniformly
bounded, Lipschitz functionals h :�∞(Fn) → R with Lipschitz constant 1, that is,

sup
x∈�∞(Fn)

∣∣h(x)
∣∣≤ 1 (2.6)

and, for all x, y ∈ �∞(Fn), ∣∣h(x) − h(y)
∣∣≤ sup

f ∈Fn

∣∣x(f ) − y(f )
∣∣. (2.7)

Theorem 1. Let Zn = {Zn(f ), f ∈ Fn} and Z
∗
n = {Z∗

n(f ), f ∈ Fn} with Fn as defined in (2.1)
above. Under conditions (C1) and (C2), we have

lim
n→∞E

[
sup

h∈BL1

∣∣E[h(Zn)
]−E

∗[h(Z∗
n

)]∣∣]= 0. (2.8)

Corollary 2. Consider any sequence of Lipschitz functionals φn :�∞(Fn) → R with Lipschitz
constants 1. Under conditions (C1) and (C2), we have

lim
n→∞E

[
sup
g

∣∣E[g(φn(Zn)
)]−E

∗[g(φn

(
Z

∗
n

))]∣∣]= 0.
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The supremum is taken over all uniformly bounded Lipschitz functions g :R → R with
supx |g(x)| ≤ 1 and |g(x) − g(y)| ≤ |x − y|.

Corollary 2 follows directly from Theorem 1 since, for a fixed Lipschitz function φ, the set
of compositions g ◦ φ above is a class of uniformly bounded Lipschitz functions (with the same
Lipschitz constant). In particular, since the mapping φn(X) = supf ∈Fn

|X(f )| is Lipschitz (with
the Lipschitz constant 1), Corollary 2 implies that we can approximate the distribution of the
statistic Tn by the conditional (bootstrap) distribution of

T
∗
n = sup

f ∈Fn

∣∣Z∗
n(f )

∣∣= sup
B1,...,BLn

Ln∑
k=1

∣∣Z∗
n(Bk)

∣∣. (2.9)

Corollary 3. Under conditions (C1) and (C2), we have

lim
n→∞E

[
sup
g

∣∣E[g(Tn)
]−E

∗[g(T∗
n

)]∣∣]= 0. (2.10)

The supremum is taken over all uniformly bounded Lipschitz functions g :R → R with
supx |g(x)| ≤ 1 and |g(x) − g(y)| ≤ |x − y| for all x, y ∈R.

We may replace with impunity in Theorem 1 and its corollaries, the Lipschitz constant 1 by
an arbitrary but fixed (independent on n) Lipschitz constant K .

Actually, Tn and T̃n are just two examples of many potentially useful asymptotic variation
type statistics. We mention two other possible statistics:

• Generalized χ2 statistics. Form an equidistant grid i/p, i = 0, . . . , p = 	L1/d
n 
 + 1 on each

axis of [0,1]d , and use the (p + 1)d points of the resulting equidistant grid on [0,1]d as the
corners of pd disjoint boxes Bi . We define the statistic

∑
i |Zn(Bi)|2, which, for fixed Ln,

reduces to a nonnormalized χ2 statistics, in the same spirit as in [8]. Here, since the statistic
as a function of Zn is Lipschitz on �∞(Fn), Ln → ∞ is allowed. However, we suspect that
the full power of Theorem 1 is not needed, since Radulović [24] proved a result similar
to Theorem 1 via a more direct approach, in the noncopula, i.i.d. setting under a weaker
restriction on the partition size.

• Generalized Kuiper statistics. We start with the usual Kuiper statistics

K1 = Zn(B1) = sup
B

∣∣Zn(B)
∣∣,

where supremum is taken over all boxes B ⊆ [0,1]d , and achieved at B1. Then we define
recursively, given boxes B1, . . . ,Bm with m < Ln,

Km+1 = Zn(Bm+1) = sup
B∩Bj =∅,j=1,...,m

∣∣Zn(B)
∣∣.

The supremum is taken over all boxes B that are disjoint with B1, . . . ,Bm, and we denote
by Bm+1 for the box at which supremum is achieved. The resulting sum

∑Ln

j=1 Kj of statis-
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tics Kj , based on disjoint boxes Bj , is a Lipschitz functional of Zn and Corollary 2 applies
to this statistic as well.

The performance and the actual implementation of these additional statistics will not be dis-
cussed here, but we will report on them elsewhere. This paper offers a numerical study only as a
proof of principle and for this purpose we used the straightforward statistic T̃n and optimization
scheme (pure random search) to demonstrate the applicability of Theorem 1. Nevertheless, even
this conservative approach resulted in a superior performance.

Remark. We may approximate the α-upper point of the statistic Tn by that of the bootstrap
counterpart T∗

n. Unlike the classical bootstrap situation that assumes a continuous limiting dis-
tribution function, the bootstrap quantile approximation can be used as follows. Let ε > 0 be
arbitrary (independent of n) and define the Lipschitz function

gt,ε(x) = 1{x ≤ t} + t + ε − x

ε
1{t < x ≤ t + ε}.

We have, for δn := suph |E[h(Tn)] − E
∗[h(T∗

n)]| with the supremum taken over all h ∈ BL1,
uniformly in t ∈R,

P{Tn ≤ t} = E
∗[gt,ε

(
T

∗
n

)]+E
[
gt,ε(Tn)

]−E
∗[gt,ε

(
T

∗
n

)]
≤ P

∗{
T

∗
n ≤ t + ε

}+ δn/ε,

since gt,ε has Lipschitz constant 1/ε. Note that this value is different of one, but is not a problem
to apply our theoretical results, as explained above. A similar computation shows that P∗{T∗

n ≤
t − ε} − δn/ε ≤ P{Tn ≤ t}, so that, uniformly in t , and each ε > 0

P
∗{
T

∗
n ≤ t − ε

}− δn/ε ≤ P{Tn ≤ t} ≤ P
∗{
T

∗
n ≤ t + ε

}+ δn/ε (2.11)

and in the same way we may prove

P{Tn ≤ t − ε} − δn/ε ≤ P
∗{
T

∗
n ≤ t

}≤ P{Tn ≤ t + ε} + δn/ε, (2.12)

uniformly in t , and each ε > 0. For instance, if t∗ is the bootstrap 95% critical value of T∗
n, it is

prudent to reject the null for values of Tn larger than t∗ + ε.

Remark. The test for H0 :C = C0 based on the critical regions {Tn > c} is consistent. In-
deed, under the null, since Tn ≤ Ln supB |Zn(B)|, we have L−1

n Tn is bounded in probabil-
ity, while under the alternative hypothesis, HA :C = C1 for a fixed C1 = C0, we have that
Tn ≥ √

n|C0(B) − C1(B)| − |Zn(B)|, so that n−1/2
Tn ≥ 1

2 |C0(B) − C1(B)|, with probability
tending to one, for any box B where C0 and C1 differ. Such a box exists under the alternative
and the increasing sequence Fn likely contains at least one such box for relatively small n. The
improved power of our test statistic is confirmed in our simulation study.



ATV tests for copulas 1919

3. Parametric hypothesis

In this section, we consider the problem of testing if the underlying copula C belongs to a para-
metric family C := {Cθ, θ ∈ �}. That is, the null hypothesis states that C = Cθ0 for some θ0 ∈ �.
Here � ⊂ R

p , equipped with the Euclidean norm ‖ · ‖2. Suppose that we have a consistent esti-
mator θ̂ = θ̂ (Hn) of θ0.

Replacing C0 by Cθ̂ in the definition of the test statistic Tn, we consider the process

Yn = √
n(Cn − Cθ̂ ) = Zn − √

n(Cθ̂ − C), (3.1)

and its bootstrap version

Y
∗
n = Z

∗
n − √

n(Cθ̂∗ − Cθ̂ ), (3.2)

based on the nonparametric bootstrap estimate θ̂∗ = θ̂ (H∗
n), obtained after resampling with re-

placement from the original sample. Note that

Y
∗
n = √

n
(
C

∗
n − Cθ̂∗

)− √
n(Cn − Cθ̂ ) = √

n
(
C

∗
n − Cθ̂∗

)
. (3.3)

The process
√

n(C∗
n − Cθ̂∗), while perhaps a natural candidate, does not yield a consistent esti-

mate of the distribution of Yn. Indeed, the “distance” between Yn and the latter process will be
of the order of Z∗

n, thus asymptotically tight. On the other hand, the distance between Yn and Y
∗
n

will be of the same order of magnitude as the distance between Zn and Z
∗
n, that tends to zero (see

the proof of Theorem 1).
We stress that our approach does not involve the parametric bootstrap, as studied by Genest

and Rémillard [14], to estimate the limiting law of copula-based statistics. In other words, we
calculate θ̂∗ after resampling from the empirical distribution Hn, and not from the law given by
the parametric copula Cθ̂ .

We impose some regularity on our parameter estimate θ̂ .

(C3) There exists a ψ :Rd �→R
p with

∫ ‖ψ‖4
2 dH < ∞ such that

θ̂ − θ0 =
∫

ψ d(Hn − H) + εn and θ̂∗ − θ̂ =
∫

ψ d
(
H

∗
n −Hn

)+ ε∗
n,

under the null hypothesis, with ‖εn‖2 = op(n−1/2/Ln) and ‖ε∗
n‖2 = op∗(n−1/2/Ln) in

probability.

Note that the estimators satisfying (C3) are closely related to the estimators in the class R of
regular estimators, as defined by Genest and Rémillard [14].

Example (Estimators based on the inversion of Kendall’s tau). As an example, we verify con-
dition (C3) for estimators based on the inversion of Kendall’s tau in the bivariate case (d = 2).
Let θ = g(τ) for some twice differentiable function g and Kendall’s τ := 4E[Cθ(U,V )] − 1,
with the expectation taken over (U,V ) ∼ Cθ . Kendall’s τ is estimated empirically by

τ̂n := 4

n(n − 1)

n∑
i=1

n∑
j=i+1

1
{
(Yj − Yi)(Xj − Xi) > 0

}− 1.
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Then Un := τ̂n + 1 is a U-statistic of order 2 for the kernel

h
(
(x1, y1); (x2, y2)

)= 2 · 1
{
(y2 − y1)(x2 − x1) > 0

}
.

The projection of Un − E[Un] onto the space of all statistics of the form
∑n

i=1 gi(Xi, Yi), for
arbitrary measurable functions gi with E[g2

i (X,Y )] < ∞, is

Ûn =
n∑

i=1

E
[
Un −E[Un]|Xi,Yi

]= 2

n

n∑
i=1

{
ψ(Xi,Yi) −E

[
ψ(Xi,Yi)

]}
with

ψ(x, y) = P(X < x,Y < y) + P(X > x,Y > y).

By Hájek’s projection principle,

Var(Un − Ûn) = Var(Un) − Var(Ûn).

From the proof of Theorem 12.3 in [31], due to [17],

Var(Un) − Var(Ûn) = 4(n − 2)

n(n − 1)
ζ1 + 2

n(n − 1)
ζ2 − 4

n
ζ1 = 2ζ2 − 4ζ1

n(n − 1)

with ζ1 = Cov(h(X,Y1), h(X,Y2)) for X independent of Y1 and Y2, and with the same distri-
bution as X1, and ζ2 = Var(h(X1, Y1)). Thus, the difference is Var(Un) − Var(Ûn) is of order
O(1/n2). Consequently, Un −E[Un] = Ûn + Rn with Rn = Op(1/n) so that

τ̂n − τ = Un −E[Un] = Ûn + Rn = 2

n

n∑
i=1

{
ψ(Xi,Yi) −E

[
ψ(Xi,Yi)

]}+ Op(1/n).

Hence, if g is twice continuously differentiable in the neighborhood of τ , a limited expansion
ensures that θ̂ := g(̂τn) satisfies the first part of (C3). The second (bootstrap) part of (C3) follows
from the same reasoning: We set τ̂ ∗

n := U∗
n − 1 with

U∗
n = 4

n(n − 1)

n∑
i=1

n∑
j=i+1

1
{(

Y ∗
j − Y ∗

i

)(
X∗

j − X∗
i

)
> 0

}
and for

Û∗
n =

n∑
i=1

E
∗[U∗

n −E
∗[U∗

n

]|X∗
i , Y

∗
i

]
we can show that

Var∗
(
U∗

n − Û∗
n

)= Var∗
(
U∗

n

)− Var∗
(
Û∗

n

)
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is of order O(1/n) almost surely, using the same arguments as above, keeping in mind that the
empirical counterparts of ζ1 and ζ2 are bounded everywhere. Moreover, for

ψn(x, y) = 1

n

n∑
i=1

1{Xi < x,Yi < y} + 1

n

n∑
i=1

1{Xi > x,Yi > y},

we find

Û∗
n =

n∑
i=1

E
∗[U∗

n −E
∗[U∗

n

]|X∗
i , Y

∗
i

]
= 2

n

n∑
i=1

ψn

(
X∗

i , Y
∗
i

)−E
∗[ψn

(
X∗

i , Y
∗
i

)]
= 2

n

n∑
i=1

{
ψ
(
X∗

i , Y
∗
i

)−E
∗[ψ(X∗

i , Y
∗
i

)]}
+ 2

n

n∑
i=1

{
(ψn − ψ)

(
X∗

i , Y
∗
i

)−E
∗[(ψn − ψ)

(
X∗

i , Y
∗
i

)]}
.

The second term on the right is of order Op∗(1/n) as its variance equals

4

n
Var∗

(
(ψn − ψ)

(
X∗

1, Y ∗
1

))≤ 4

n

n∑
i=1

(ψn − ψ)2(Xi, Yi) = Op∗
(
1/n2),

by the reasoning in [3], page 1202. This implies

τ̂ ∗
n − τ̂n = U∗

n −E
∗[U∗

n

]= 2

n

n∑
i=1

{
ψ
(
X∗

i , Y
∗
i

)−E
∗[ψ(X∗

i , Y
∗
i

)]}+ Op∗(1/n).

Again, for a g that is twice continuously differentiable in the neighborhood of τ , a limited ex-
pansion ensures that θ̂∗ satisfies the second part of (C3).

Moreover, we need more regularity concerning θ �→ Cθ itself.

(C4) For every (s, t) ∈ [0,1]d , the function θ �→ Cθ(u) has continuous partial derivatives
Ċθ (u) = (∂/∂θ)Cθ (u) that satisfy a Hölder condition with Hölder exponent ν > 0 lo-
cally: there exists a constant K < ∞ such that

sup
u

∥∥Ċθ (u) − Ċθ0(u)
∥∥

2 ≤ K‖θ − θ0‖ν
2

for every θ in a neighborhood of θ0. Moreover, Ċθ0 is of bounded variation.
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The regularity condition (C4) is satisfied for most of standard copula families. Simple cal-
culations show that it is the case for the Gaussian-, Clayton- and the Frank-copula families in
particular. Although copula partial derivatives with respect to their arguments often exhibit dis-
continuities or nonexistence near their boundaries, justifying conditions such as (C1) (see [27]),
the derivatives ∂Cθ (x, y)/∂θ with respect to the copula parameter θ behave a lot more regularly.

Theorem 4. Let Yn = {Yn(f ), f ∈ Fn} and Y
∗
n = {Y∗

n(f ), f ∈ Fn} with Fn in (2.1) as defined
above. Assume that conditions (C1), (C2), (C3) and (C4) hold. Then, under the null hypothesis
H0 :C = Cθ, θ ∈ �, we have

lim
n→∞E

[
sup

h∈BL1

∣∣E[h(Yn)
]−E

∗[h(Y∗
n

)]∣∣]= 0. (3.4)

This result implies that the distribution of the test statistic

T̂n = sup
f ∈Fn

∣∣Yn(f )
∣∣= sup

B1,...,BLn

Ln∑
k=1

∣∣Yn(Bk)
∣∣ (3.5)

can be “bootstrapped” by the distribution of

T̂
∗
n = sup

f ∈Fn

∣∣Y∗
n(f )

∣∣= sup
B1,...,BLn

Ln∑
k=1

∣∣Y∗
n(Bk)

∣∣. (3.6)

Corollary 5. Assume that conditions (C1), (C2), (C3) and (C4) hold. Then, under the null hy-
pothesis H0 :C = Cθ , θ ∈ �,

lim
n→∞E

[
sup
g

∣∣E[g(T̂n)
]−E

∗[g(T̂∗
n

)]∣∣]= 0, (3.7)

with the supremum taken over all Lipschitz functions g :R→ [−1,1] with Lipschitz constant 1.

Often, (C3) can be replaced by

(C3′) There exists a ψ :Rd �→R
p with

∫ ‖ψ‖4
2 dC < ∞ such that

θ̂ − θ0 = 1

n

n∑
i=1

{
ψ
(
Fn,1(Xi,1), . . . ,Fn,d (Xi,d)

)−E
[
ψ
(
F1(Xi,1), . . . ,Fd(Xi,d)

)]}+ εn,

θ̂∗ − θ̂ = 1

n

n∑
i=1

{
ψ
(
F

∗
n,1

(
X∗

i,1

)
, . . . ,F∗

n,d

(
X∗

i,d

))− ψ
(
Fn,1(Xi,1), . . . ,Fn,d(Xi,d)

)}+ ε∗
n,

under the null hypothesis, with ‖εn‖2 = op(n−1/2/Ln) and ‖ε∗
n‖2 = op∗(n−1/2/Ln) in

probability.

This is a consequence of the following result.
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Proposition 6. Assume (C1) holds. Any estimator θ̂ satisfying (C3′), satisfies (C3).

Copula parameters are typically estimated through pseudo-observations or ranks, without any
assumption on the marginal distributions. For this reason, the copula estimators that satisfy (C3′)
are relevant. They are very closely related to the estimators in the class R1 of Genest and Rémil-
lard [14]. In particular, the maximum pseudo-likelihood estimator that maximizes the pseudo
log-likelihood function

∫
log cθ dCn over θ ∈ � (see, for instance, [13] or [28]) satisfies (C3′)

under suitable regularity conditions on the copula density cθ .
Since the bootstrapped copula process Y

∗
n is new, it is noteworthy to stress that it provides

a valuable alternative to the usual parametric bootstrap. Now, assume Ln = L is a constant, to
retrieve the standard framework.

Corollary 7. Assume that conditions (C1), (C3) and (C4) hold. Then the process {Yn(u),u ∈
[0,1]d} tends weakly toward a Gaussian process in �∞([0,1]d). Moreover, the bootstrapped
process {Y∗

n(u),u ∈ [0,1]d} converges weakly to the same Gaussian process in probability in
�∞([0,1]d).

4. Applications and numerical studies

We present a limited numerical study, serving as a proof of principle rather than the final word
on this subject. The evaluation of GOF tests in copula settings is a complex problem and only
partial answers can be found in literature; see the surveys of Berg [2], Genest et al. [15] and, more
recently, Fermanian [10]. Here, we restrict ourselves to the bivariate case. A full-scale numerical
analysis is beyond the scope of this paper.

We have implemented T̃n, a computationally simpler version of Tn; see Appendix C for the
algorithm. In the case of a composite null hypothesis, we have implemented a simplified version
of T̂n in the same way, by restricting the boxes B to be of the form B = ∏d

i=1(ai, bi] with
ai, bi ∈ {n−1/d ,2n−1/d , . . .} ⊂ [0,1]. Since the distance between Tn and T̃n tends to zero in
probability (as a result of Lemma 9 and Proposition 10 in Section 5), the weak convergence
results are valid with T̃n instead of Tn or T̂n. Moreover, the reasoning to approximate p-values
by bootstrap still applies.

4.1. Heuristics

For two copula densities c0 and c1, we define the difference sets A+ and A− as

A+ = {
(s, t) : c0(s, t) > c1(s, t)

}
and A− = {

(s, t) : c0(s, t) < c1(s, t)
}
.

The proposed test statistics are designed to sample Ln boxes in order to maximize the difference
between the “true” and postulated copulas. In situations where the geometry of the difference sets
A+ and A− is complex, statistics such as T̃n can “pick out” disjoint subregions of A+ and A−,
and one could expect superior performance consequently. However, sometimes just a single well
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Figure 1. Common comparisons. Copula density differences, through contour plots and 3D plots of syn-
thetic data: Clayton − Frank (left), Gumbel − Frank (center), Clayton − Gumbel (right). Their Kendall’s
tau is 0.4.

placed box can pick essentially all the mass of sets A+ or A−, while the remaining Ln − 1 boxes
are just collecting noise and consequently diminish the power of the statistic Tn.

Most common scenarios encountered in the literature compare Frank, Clayton, Gumbel,
and Gauss copulas with each other, after controlling for some dependence indicator (typically
Kendall’s tau): see, for instance, [2,14] and [15]. However, all these pairings produce trivial dif-
ference sets A+ and A−, as revealed in the contour plots and 3D plots of c0 − c1 of Figure 1. We
see that nearly all the mass difference between copula densities c0 and c1 is concentrated in a
single spot, located in either the lower left or upper right corner. Here Kendall’s τ = 0.4, but we
observed similar plots for different values of τ . Therefore, these common simulation scenarios
are tailored toward many standard GOF tests such as KS and CvM tests. We are not aware of
any argument that justifies such specific types of pairing, except for analytical tractability. Fig-
ures 2 and 3, however, paint a very different scenario with more elaborate difference sets A+
and A− that appear in real life situations. How often and to what extent this complex situation is
encountered in reality is largely an open empirical issue.

In this study, the copula densities c1 were estimated by kernel density estimators based on the
following data:

• The bivariate ARCH-like process (X1, Y1), . . . , (Xn,Yn), with n = 106, was generated as
follows: First, we created independent Zi ∼ N(0,1) and Wi = Zi(1 + 0.6W 2

i−1)
1/2, with

W0 = 0. Second, we set (Xi, Yi) := (W100i ,W100i+1), creating nearly independent couples
(of strongly dependent observations). Such models are commonly used in empirical finance,
for instance.



ATV tests for copulas 1925

Figure 2. Complex relation (synthetic data). Copula density differences, through contour plots and 3D
plots: ARCH (left) and mixture copula (right), compared to the independence copula.

• The Mixture Copula data (X1, Y1), . . . , (Xn,Yn), with n = 106, are generated from the mix-
ture c1(s, t) = 1

2cF (s, t) + 1
2cF (1 − s, t) for the Frank copula cF with Kendall’s τ = 0.4.

Therefore, this copula has asymmetrical features, contrary to most copulas that are tested
in the literature. Obviously, other asymmetrical copulas could be built, following [19] for
instance.

• The Euro–Dollar data (X1, Y1), . . . , (Xn,Yn), with n = 1800, are quoted currency exchange
values. X is the daily percentage change of the Euro against the US dollar, while Y corre-
sponds to the daily change of the Canadian dollar against the US dollar.

• The Silver–Gold data (X1, Y1), . . . , (Xn,Yn), with n = 5000, presents the log ratio of the
average daily price of silver and gold futures, respectively. For instance, Xi = log(Si+1/Si)

based on the average price Si of silver in US dollars on day i.

We compared Mixture copula and ARCH with the independence copula, for which c0(s, t) = 1
(see Figure 2). In the case of real data (Euro–Dollar and Silver–Gold), we chose the Frank
copula density with parameters τ = 2.6 and τ = 3.4, respectively, for c0 (see Figure 3). The
latter parameters were chosen after minimizing the (estimated) L1-distance between c0 and c1.
The difference sets are easily depicted by dark and bright sections of the contour plots, and
the 3D plots clearly indicate that the mass difference between copula densities c0 and c1 is not
concentrated in a single spot.
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Figure 3. Complex relation (actual data). Copula density differences, through contour plots and 3D plots:
Euro − Dollar (left) and Silver − Gold (right), compared to Frank copulas (with Kendall’s tau equal to 2.6
and 3.4, resp.).

4.2. GOF tests in practice

We generated the data sets ARCH and Mixture Copula as described above. For each data set, we
run two sets of simulations:

• (ARCH-S and Mixture-S) Test the simple null hypothesis C0(s, t) = st using the method-
ology of Section 2.

• (ARCH-C and Mixture-C) Test the composite null hypothesis that C0 is a Frank copula
using the procedure described in Section 3.

In both cases, the null hypothesis is wrong and should be rejected.
In our simulations, the number of boxes is Ln = 	ln0.95(n)
−2. We approximated the p-values

of all the statistics we consider via the bootstrap procedures introduced in Sections 2 and 3.
For each approximation, we used 1000 bootstrap samples. For the second set of simulations
(ARCH-C and Mixture-C), we computed the parameters θ̂ and θ̂∗ by the usual pseudo-maximum
likelihood procedure. Each procedure is repeated 100 times. We report the percentage of times
that the computed p-value is below α = 0.05.

Our limited numerical study confirms the above assessment. Table 1 shows that the ATV test
outperforms largely the KS and CvM tests in the case of complex pairing, while Table 2 confirms
that the ATV test is inferior in case of the commonly used pairings of Figure 1.
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Table 1. Complex pairing, related to Figure 2: relative frequencies of rejected null hypotheses under
α = 0.05

Type n ARCH-S ARCH-C Mixture-S Mixture-C

ATV 400 75% 80% 41% 25%
KS 400 6% 4% 8% 12%
CvM 400 25% 50% 6% 15%
ATV 800 100% 99% 94% 98%
KS 800 32% 50% 20% 25%
CvM 800 50% 92% 31% 84%

In Table 2, for each pair of copulas, say Clayton–Frank, we generated n observations from the
first copula (Clayton), and we tested the null hypothesis that the second copula (Frank) is the true
underlying copula. In this simple scenario, the sophistication of Tn is a disadvantage compared
to simpler usual test statistics. The former test looks for discrepancies everywhere in the unit
hypercube (at the price of noise), while the simpler KS and CvM tests pick up easily the right
boxes (by chance, in our opinion).

Table 3 shows that the significance level of the ATV test is below 0.05. The data were simulated
from the null hypothesis. In all tables, Kendall’s τ = 0.4.

5. Proofs

Throughout the proofs, we assume without loss of generality that Fj = I for every j = 1, . . . , d

(uniform marginal distributions). This implies that H = C. This is justified by the following
lemma.

Lemma 8. Let Fj , j = 1, . . . , d be continuous distribution functions. Denote by H̃ the c.d.f. of
(F1(X1), . . . ,Fd(Xd)) and by C̃ its associated copula. The empirical copula associated to the
sample (F1(Xi1), . . . ,Fd(Xid)), i = 1, . . . , n, is denoted by C̃n. We have

C(u) = C̃(u) = H̃ (u) for all u ∈ [0,1]d .

Table 2. Trivial pairing, related to Figure 1: relative frequencies of rejected null hypotheses under α = 0.05

Type n Clayton − Frank Gumbel − Frank Clayton − Gumbel

ATV 400 42% 26% 88%
KS 400 58% 25% 90%
CvM 400 84% 47% 95%
ATV 800 92% 58% 94%
KS 800 98% 53% 98%
CvM 800 100% 73% 100%
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Table 3. Errors of the first kind: relative frequencies of rejected null hypotheses under α = 0.05

Type n Clayton − Clayton Gumbel − Gumbel Frank − Frank

ATV 400 3% 2% 2%
KS 400 4% 5% 4%
CvM 400 4% 5% 4%
ATV 800 2% 4% 3%
KS 800 3% 3% 5%
CvM 800 5% 3% 6%

Moreover,

Cn

(
i1

n
, . . . ,

id

n

)
= C̃n

(
i1

n
, . . . ,

id

n

)
for i1, . . . , id ∈ {0,1, . . . , n}.

Proof. This is a straightforward extension of Lemma 1 in [11]. �

Since the letter C is reserved for the copula function, we use the letters K,K0,K1, etc. in the
sequel to denote generic constants, and we write ‖s‖∞ = max1≤j≤d |sj | of s = (s1, . . . , sd) ∈
[0,1]d .

5.1. Proof of preliminary results

In general, note that, for each f ∈ Fn defined in (2.1), we can write

Zn(f ) =
Ln∑
k=1

ckZn(Bk) =
2dLn∑
l=1

σlZn(sl )

and

Z
∗
n(f ) =

2dLn∑
l=1

σlZ
∗
n(sl )

for some σl ∈ {−1,+1} and sl ∈ [0,1]d , using formula (1.5). Let αn(u) := √
n(Hn − H)(u) =√

n(Hn(u) − u) be the ordinary uniform empirical process in [0,1]d , and let its oscillation mod-
ulus be defined as

Mn(δ) := sup
{∣∣αn(s) − αn

(
s′)∣∣ :∥∥s − s′∥∥∞ ≤ δ; s, s′ ∈ [0,1]d} (5.1)

for any δ > 0.
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Lemma 9. Let (δn)n≥0 be a sequence of positive real numbers such that nδn/ logn → ∞. Then
we have

Mn(δn) = O
(
δ

1/2
n (logn)1/2) almost surely.

Proof. We apply Proposition 15 with λn = K0δ
1/2
n (logn)1/2 for some constant K0 > 0. Since

n−1/2λn/δn = K0(logn/(nδn))
1/2 tends to zero, this inequality can be rewritten

P
{
Mn(δn) > λn

}≤ K1

δn

exp

(
−K2ψ(1)λ2

n

δn

)
= K1n exp

(−K2K
2
0ψ(1) logn

)
for some constants K1, K2 and n sufficiently large. When K0 is sufficiently large, we check that

P
{
Mn(δn) > λn

}≤ K3

n2

for some constant K3. Invoke the Borel–Cantelli lemma to conclude the proof. �

In addition, let αn,j (u) = √
n(Fn,j − Fj )(u) = √

n(Fn,j (u) − u) be the ordinary uniform
(marginal) empirical process in [0,1], and we define

Z̃n(s) = αn(s) −
d∑

j=1

Cj (s)αn,j (sj ). (5.2)

Proposition 10. Under conditions (C1) and (C2), we have

lim
n→∞ sup

h∈BL1

∣∣E[h(Zn)
]−E

[
h(Z̃n)

]∣∣= 0.

Proof. First, we observe that

sup
h∈BL1

∣∣E[h(Zn) − h(Z̃n)
]∣∣ ≤ δ + 2P

{
sup

f ∈Fn

∣∣Zn(f ) − Z̃n(f )
∣∣> δ

}
.

The latter inequality holds for any δ > 0, and uses the fact that |h| is bounded by 1 and has
Lipschitz constant 1. It remains to show that

sup
f ∈Fn

∣∣Zn(f ) − Z̃n(f )
∣∣→ 0, (5.3)

in probability, as n → ∞. The remainder of the proof generalizes Proposition 4.2 of [27]. Now,
we note that

sup
f ∈Fn

∣∣Zn(f ) − Z̃n(f )
∣∣≤ 2dLn sup

s∈[0,1]d
∣∣Zn(s) − Z̃n(s)

∣∣≤ 2dLn(I + II)
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with

I = sup
s∈[0,1]d

∣∣αn

(
F

−
n,1s1, . . . ,F

−
n,dsd

)− αn(s)
∣∣,

II = sup
s∈[0,1]d

∣∣∣∣∣√n
[
C
(
F

−
n,1s1, . . . ,F

−
n,dsd

)− C(s)
]+

d∑
j=1

Cj (s)αn,j (sj )

∣∣∣∣∣.
The first term, I , can be bounded as follows. Set βn,j (s) = √

n(F−
n,j s − s), j = 1, . . . , d . By the

Chung–Smirnov LIL, we have

max
1≤j≤d

sup
0≤s≤1

∣∣βn,j (s)
∣∣= O

(
(log logn)1/2) almost surely.

Using Lemma 9 with δ = n−1/2(log logn)1/2, we get

sup
‖s−s′‖∞<δ

∣∣αn(s) − αn

(
s′)∣∣= O

(
n−1/4(logn)1/2(log logn)1/4),

almost surely. This implies that I = O(n−1/4(logn)1/2(log logn)1/4), almost surely.
For the second term, we get by the mean value theorem that

II = sup
s∈[0,1]d

∣∣∣∣∣√n
[
C
(
F

−
n,1s1, . . . ,F

−
n,dsd

)− C(s)
]+

d∑
j=1

Cj (s)αn,j (sj )

∣∣∣∣∣
≤ sup

s∈[0,1]d

∣∣∣∣∣
d∑

j=1

Cj(sn)βnj (sj ) +
d∑

j=1

Cj(s)αn,j (sj )

∣∣∣∣∣,
where sn is a vector in [0,1]d s.t. ‖sn − s‖∞ ≤ n−1/2 max1≤j≤d |βn,j (sj )|. Since |Cj | ≤ 1 for
every j = 1, . . . , d (because copulas are Lipschitz with Lipschitz constant 1), we deduce

II ≤ sup
s∈[0,1]d

d∑
j=1

∣∣βnj (sj ) + αn,j (sj )
∣∣+ sup

s∈[0,1]d

d∑
j=1

∣∣[Cj (sn) − Cj (s)
]
αn,j (sj )

∣∣
≤ IIa + IIb.

The Bahadur–Kiefer theorem ([29], page 585) states that

max
1≤j≤d

sup
0≤s≤1

∣∣βn,j (s) + αn,j (sj )
∣∣= O

(
n−1/4(logn)1/2(log logn)1/4) almost surely.

Then IIa = O(n−1/4(logn)1/2(log logn)1/4) almost surely.
Concerning IIb, we consider a positive sequence (εn), εn → 0, that will be specified later

independently of any s = (s1, . . . , sd) ∈ [0,1]d . For any index j = 1, . . . , d and any s ∈ [0,1]d ,
we will distinguish the two cases: sj ∈ [εn,1 − εn] and the opposite.
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If sj ∈ [εn,1 − εn] then

snj = sj

(
1 + snj − sj

sj

)
≥ sj

(
1 − |snj − sj |

εn

)
≥ sj

2

and

1 − snj ≥ (1 − sj )

(
1 − |snj − sj |

εn

)
≥ 1 − sj

2
,

almost surely and for n sufficiently large, for all εn → 0 and nε2
n/ logn → ∞. Corollary 2 in [20]

implies that

max
1≤j≤d

sup
0≤sj ≤1

∣∣s−1/2
j (1 − sj )

−1/2αn,j (sj )
∣∣≤ K(logn)1/2 log logn,

almost surely, for some constant K > 0.
In this case, using condition (C1), we deduce∣∣Cj (sn) − Cj(s)

∣∣∣∣αn,j (sj )
∣∣ ≤ K0‖sn − s‖r

{
s
−β
j (1 − sj )

−β + s
−β
nj (1 − snj )

−β
}∣∣αn,j (sj )

∣∣
≤ K1‖sn − s‖r s

1/2−β
j (1 − sj )

1/2−β(logn)1/2 log logn

≤ K2n
−r/2(log logn)r/2 max

(
ε

1/2−β
n ,1

)
(logn)1/2 log logn,

almost surely, for some constants K0,K1,K2 > 0 and every j .
If sj /∈ [εn,1 − εn], then∣∣Cj (sn) − Cj (s)

∣∣∣∣αn,j (sj )
∣∣ ≤ 2

∣∣αn,j (sj )
∣∣

≤ 2ε
1/2
n s

−1/2
j (1 − sj )

−1/2
∣∣αn,j (sj )

∣∣
≤ Kε

1/2
n (logn)1/2 log logn almost surely,

see Corollary 2 in [20].
Combining all these bounds entails then

IIb ≤ K3
[
n−r/2(log logn)r/2 max

(
ε

1/2−β
n ,1

)+ ε
1/2
n

]
(logn)1/2 log logn,

with K3 > 0. We now specify the choice of εn = n−p , with p depending on β and r only.
If 2β > 2r + 1, we take 0 < p < r/(2β − 1). If β < 1/2, set p = 1/4. Otherwise, take p =
min(1/4, r/(4β − 2)), for instance. In each case, these choices ensure that IIb = O(n−q) almost
surely, for some q > 0.

Since Ln = O((logn)γ ) by assumption (C2), we obtain Ln(I + II) → 0 almost surely, as
n → ∞, and the proof is complete. �
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Next, we turn our attention to the bootstrap counterparts. We define α∗
n(s) = √

n(H∗
n −Hn)(s)

as the ordinary bootstrap empirical process in [0,1]d . We prove the following exponential in-
equality for the oscillation modulus

M
∗
n(δ) = sup

‖s−s′‖∞<δ

∣∣α∗
n(s) − α∗

n

(
s′)∣∣.

Lemma 11. For all bounded sequences δn such that nδn/ log(n) → ∞ as n → ∞,

M
∗
n(δn) = O

(
δ

1/2
n (logn)1/2) almost surely. (5.4)

Note that the sequence (δn) may be constant.

Proof of Lemma 11. Since α∗
n is a step function, we find that

sup
‖s−s′‖∞<δn

∣∣α∗
n(s) − α∗

n

(
s′)∣∣= max

∣∣α∗
n(Xi1,1, . . . ,Xid ,d ) − α∗

n(Xi′1,1, . . . ,Xi′d ,d )
∣∣,

with the maximum taken over all |Xij ,j −Xi′j ,j | < δn, j = 1, . . . , d , i1, i′1, . . . , id , i′d ∈ {1, . . . , n}.
For any i := (i1, . . . , id ) and i′ = (i′1, . . . , i′d) in {1, . . . , n}d , we rewrite

∣∣α∗
n(Xi1,1, . . . ,Xid ,d ) − α∗

n(Xi′1,1, . . . ,Xi′d ,d )
∣∣= n−1/2

n∑
k=1

{
Vk,i,i′ −E

∗[Vk,i,i′ ]
}
,

as a sum of bounded independent random variables with

Vk,i,i′ := 1
{
X∗

k,j ≤ Xij ,j , j = 1, . . . , d
}− 1

{
X∗

k,j ≤ Xi′j ,j , j = 1, . . . , d
}
,

conditionally on the sample (X1, . . . ,Xn). Moreover, a simple calculation and Lemma 9 yield

Var∗(Vk,i,i′) ≤
d∑

j=1

P
∗{min(Xij ,j ,Xi′j ,j ) ≤ X∗

k,j ≤ max(Xij ,j ,Xi′j ,j )
}

≤
d∑

j=1

sup
sj

[
Fn,j (sj + δn) − Fn,j (sj )

]
≤ dδn + dn−1/2

Mn(δn)

≤ d max
(
δn,Mn(δn)/

√
n
)

≤ K max(δn,
√

δn logn/
√

n) = Kδn

for n large enough, for almost all realizations and for some constant K > 0. Hence, by the union
bound and Bernstein’s exponential inequality for bounded random variables, we have, for some
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constant K0,

P
∗{ max

i,i′∈{1,...,n}d
|Xij ,j −Xi′

j
,j |<δn,∀j

∣∣α∗
n(Xi1,1, . . . ,Xid ,d ) − α∗

n(Xi′1,1, . . . ,Xi′d ,d )
∣∣> x

}

≤ 2n2d exp
(−K0

(√
nx ∧ x2δ−1

n

))
for all samples (X1, . . . ,Xn). By integrating the previous inequality over P, we get the same
inequality, but replacing P

∗ by P. Set x = K1δ
1/2
n (logn)1/2 and take a constant K1 sufficiently

large to obtain

+∞∑
n=1

P
{
M

∗
n(δn) > K1δ

1/2
n (logn)1/2}< +∞.

Apply the Borel–Cantelli lemma to conclude the proof. �

Analogous to the approximation of the process Zn by Z̃n before, we introduce a simpler pro-
cess Z̃∗

n to approximate Z
∗
n. Set

Z̃
∗
n(s) = √

n
(
H

∗
n −Hn

)
(s) −

d∑
j=1

Cj (s)
√

n
(
F

∗
n,j − Fn,j

)
(sj ). (5.5)

Proposition 12. Under conditions (C1) and (C2), we have

lim
n→∞E

[
sup

h∈BL1

∣∣E∗[h(Z∗
n

)− h
(
Z̃

∗
n

)]∣∣]= 0.

Proof. First, we notice that, for any η > 0,

E

[
sup

h∈BL1

∣∣E∗[h(Z∗
n

)− h
(
Z̃

∗
n

)]∣∣] ≤ η + 2E
[
P

∗{ sup
f ∈Fn

∣∣Z∗
n(f ) − Z̃

∗
n(f )

∣∣≥ η
}]

≤ η + 2E
[
P

∗{sup
s

2dLn

∣∣Z∗
n(s) − Z̃

∗
n(s)

∣∣≥ η
}]

.

Some straightforward adding and subtracting yields Z∗
n(s) = �Z∗

n(s) + R∗
n(s) with

�Z∗
n(s) = √

n
{
H

∗
n(s) −Hn(s)

}− √
n
{
C
(
F

∗
n,1s1, . . . ,F

∗
n,dsd

)− C(Fn,1s1, . . . ,Fn,dsd)
}

and R∗
n(s) = R∗

n,1(s) + R∗
n,2(s) + R∗

n,3(s) + R∗
n,4(s) with

R∗
n,1(s) = α∗

n

(
F

∗−
n,1s1, . . . ,F

∗−
n,dsd

)− α∗
n

(
F

−
n,1s1, . . . ,F

−
n,dsd

)
,

R∗
n,2(s) = α∗

n

(
F

−
n,1s1, . . . ,F

−
n,dsd

)− α∗
n(s),

R∗
n,3(s) = αn

(
F

∗−
n,1s1, . . . ,F

∗−
n,dsd

)− αn

(
F

−
n,1s1, . . . ,F

−
n,dsd

)
,
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R∗
n,4(s) = √

n
{
C
(
F

∗−
n,1s1, . . . ,F

∗−
n,dsd

)− C
(
F

−
n,1s1, . . . ,F

−
n,dsd

)}
+ √

n
{
C
(
F

∗
n,1s1, . . . ,F

∗
n,dsd

)− C(Fn,1s1, . . . ,Fn,dsd)
}
.

Let α∗
n,j (s) = √

n(F∗
n,j −Fn,j )(s) and β∗

n,j (s) = √
n(F−∗

n,j −F
−
n,j )(s) be the bootstrap versions of

the empirical processes αn,j (s) and βn,j (s), respectively. Both converge to the same weak limit
as

sup
0≤sj ≤1

∣∣β∗
n,j (sj ) + α∗

n,j (sj )
∣∣= O

(
n−1/4(logn)1/2(log logn)1/4) almost surely,

see displays (2.10′) and (2.12′) in Theorem 2.1 of [6]. It remains to show that

P
∗{Ln sup

s

∣∣R∗
n(s)

∣∣> η
}

→ 0 for all η > 0,

conditionally given all sequences (X1, . . . ,Xn) ∈ �n for some sequence of events �n ⊂ R
d×n

with limn→∞ P(�n) = 1.
Let δn = n−1/4. (Other choices are possible as well.) We have

lim sup
n→∞

P
∗{Ln

∥∥R∗
n,1

∥∥∞ ≥ η
} ≤ lim sup

n→∞
P

∗{LnM
∗
n(δn) ≥ η

}
+ lim sup

n→∞
P

∗{max
j

∥∥β∗
n,j

∥∥∞ ≥ √
nδn

}
= 0,

by Lemma 11. Next, on the event maxj ‖βn,j‖∞ ≤ √
nδn (that holds almost surely by the law of

iterated logarithm),

lim sup
n→∞

P
∗{Ln

∥∥R∗
n,2

∥∥∞ ≥ η
}≤ lim sup

n→∞
P

∗{LnM
∗
n(δn) ≥ η

}= 0,

by Lemma 11. On the event LnMn(δn) < η (that holds almost surely by Lemma 9), we have

lim sup
n→∞

P
∗{Ln

∥∥R∗
n,3

∥∥∞ ≥ η
}≤ lim sup

n→∞
P

∗{max
j

∥∥β∗
n,j

∥∥∞ >
√

nδn

}
= 0,

by the weak convergence of β∗
n,j . Finally, for some s∗

j between F
−∗
n,j (sj ) and F

−
n,j (sj ), and s∗∗

j

between F
∗
n,j (sj ) and Fn,j (sj ), we have

∣∣R∗
n,4(s)

∣∣ = ∣∣∣∣∣
d∑

j=1

Cj

(
s∗
j

)
β∗

n,j (sj ) + Cj

(
s∗∗
j

)
α∗

n,j (sj )

∣∣∣∣∣
≤

d∑
j=1

∣∣β∗
n,j (sj ) + α∗

n,j (sj )
∣∣+ d∑

j=1

∣∣α∗
n,j (sj )

∣∣∣∣Cj

(
s∗
j

)− Cj

(
s∗∗
j

)∣∣.
The first term is of order O(n−1/4(logn)1/2(log logn)1/4), uniformly in sj . For the second term,
we argue as in the proof of Proposition 10. First, we observe that |s∗∗

j −s∗
j | ≤ |s∗

j −sj |+|s∗∗
j −sj |
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is of order Op∗(n−1/2). Second, since the class 1{x ≤ t}t−b(1 − t)−b is a P -Donsker class for
the uniform probability measure P on [0,1], for all 0 ≤ b < 1/2, see [32], Example 2.11.15
(page 214), the weak convergence of the bootstrap empirical process ([32], Theorem 3.6.1,
page 347) implies that

sup
0<s<1

∣∣α∗
n,j (s)

∣∣/(sb(1 − s)b
)= Op∗(1).

Consequently, as in the proof of Proposition 10, we find that, for some constant K < ∞,

sup
εn≤sj ≤1−εn

∣∣α∗
n,j (sj )

∣∣∣∣Cj

(
s∗
j

)− Cj

(
s∗∗
j

)∣∣
≤ K

∣∣s∗∗
j − s∗

j

∣∣r sb−β
j (1 − sj )

b−β sup
sj

∣∣α∗
n,j (sj )

∣∣/(sb(1 − s)b
)

which is of order Op∗(1) · max(n−r/2 max(1, ε
b−β
n ). On the other side,

sup
sj /∈[ε,1−εn]

∣∣α∗
n,j (sj )

∣∣∣∣Cj

(
s∗
j

)− Cj

(
s∗∗
j

)∣∣ ≤ 2 sup
sj /∈[ε,1−εn]

∣∣α∗
n,j (sj )

∣∣
≤ 2εb

n sup
sj

∣∣α∗
n,j (sj )

∣∣/(sb(1 − s)b
)
,

which is of order Op∗(εb
n). Combining both bounds yields sups |Rn,4(s)| = Op∗(εb

n + n−r/2 ×
max(1, ε

b−β
n )). Taking εn = n−p with p depending on b,β and r , we get that limn→∞ P

∗{Ln ×
sups |R∗

n,4(s)| ≥ η} = 0 for all η > 0, conditionally on all sequences (X1, . . . ,Xn) ∈ �n for some
sequence of events �n with limn P(�n) = 1. This completes our proof. �

Proposition 13. Under conditions (C1) and (C2), we have |T̃n −Tn| = op(1).

Proof. From (5.3), it follows that

|T̃n −Tn| ≤
∣∣∣∣∣sup

Bj

Ln∑
j=1

∣∣Z̃n(Bj )
∣∣− sup

B ′
j

Ln∑
j=1

∣∣Z̃n

(
B ′

j

)∣∣∣∣∣∣∣+ op(1). (5.6)

The first supremum is taken over all disjoint boxes B1, . . . ,BLn of the form Bj = ∏d
k=1(aj,k,

bj,k] ⊂ [0,1]d , while the second supremum is taken over all disjoint boxes B ′
1, . . . ,B

′
Ln

of the

form B ′
j = ∏d

k=1(a
′
j,k, b

′
j,k], with a′

j,k, b
′
j,k are chosen on the grid In = {n−1/d ,2n−1/d , . . . ,

	n1/d
n−1/d}. Obviously,

sup
Bj

Ln∑
j=1

∣∣Z̃n(Bj )
∣∣≥ sup

B ′
j

Ln∑
j=1

∣∣Z̃n

(
B ′

j

)∣∣.
Conversely, for each set of disjoint boxes Bj =∏d

k=1(aj,k, bj,k], j = 1, . . . ,Ln, we can construct
an “approximate” set of disjoint boxes B ′

j =∏d
k=1(a

′
j,k, b

′
j,k] with a′

j,k, b
′
j,k ∈ In, j = 1, . . . ,Ln,
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by taking B ′
j as the largest box of the latter form but inside Bj . If such a B ′

j does not exist, that

is, for some index k, we have |bj,k − aj,k| < n−1/d – we set B ′
j =∅. Recall Z̃n in (5.2), the fact

that ‖Cj‖∞ ≤ 1 for all 1 ≤ j ≤ d , and Lemma 9, to prove that∣∣Z̃n(Bj ) − Z̃n

(
B ′

j

)∣∣ ≤ Kn−1/(2d)(logn)1/2,

almost surely, for some finite constant K . Consequently, we have a.e.

sup
Bj

Ln∑
j=1

∣∣Z̃n(Bj )
∣∣ ≤ sup

B ′
j

Ln∑
j=1

∣∣Z̃n

(
B ′

j

)∣∣+ KLnn
−1/(2d)(logn)−1/2

= sup
B ′

j

Ln∑
j=1

∣∣Z̃n

(
B ′

j

)∣∣+ op(1).

Here, supBj
and supB ′

j
are taken as in (5.6) above. This proves the result. �

5.2. Proof of Theorem 1

By triangle inequality, we have

E

[
sup

h∈BL1

∣∣E[h(Zn)
]−E

∗[h(Z∗
n

)]∣∣] ≤ sup
h∈BL1

∣∣E[h(Zn) − h(Z̃n)
]∣∣

+E

[
sup

h∈BL1

∣∣E[h(Z̃n)
]−E

∗[h(Z̃∗
n

)]∣∣]
+E

[
sup

h∈BL1

∣∣E∗[h(Z̃∗
n

)− h
(
Z

∗
n

)]∣∣].
In view of Proposition 10 and Proposition 12, it remains to show that the second term on the right
is asymptotically negligible. We recall that

Z̃n(f ) =
2dLn∑
k=1

σkZ̃n(sk) =
2dLn∑
k=1

σk

∫
fk(x)dαn(x)

for

fk(x) = 1{x ≤ sk} −
d∑

j=1

Cj(sk)1{xj ≤ sk,j }.

Now, let hf (x) =∑2dLn

k=1 σkfk(x) so that

Z̃n(f ) =
∫

hf dαn, (5.7)



ATV tests for copulas 1937

and we can derive in the same way

Z̃
∗
n(f ) =

∫
hf dα∗

n. (5.8)

We now apply Theorem 3 in [23], stated as Theorem 14 in the Appendix for convenience. We
need to verify that

• the d + 1 classes

Ga
k = {

1{x ≤ sk}, sk ∈ [0,1]d},
G(j)

k = {
Cj (sk)1{x ≤ sk,j }, sk ∈ [0,1]d}, j = 1, . . . , d,

have VC-indices V a
k and V

(j)
k , respectively, with

∑2dLn

k=1 (V a
k +∑d

j=1 V
(j)
k ) ≤ K(logn)γ for

some finite constant K and some 0 < γ < 1;
• the class Hn = {hf :f ∈ Fn} has an envelope H(x) with E[H 4(X)] < ∞.

First, we verify the VC property. The class Ga
k is VC with VC-dimension V a

k = d + 1 ([32],

page 135), while the class G(j)
k is a subclass of the class of functions c1{a ≤ x ≤ b} with a, b ∈ R

and c > 0. This class has a VC index 3: see [32], Problem 20, page 153. Consequently,

2dLn∑
k=1

(
V a

k +
d∑

j=1

V
(j)
k

)
≤ (4d + 1)2dLn ≤ K(logn)γ

for some K < ∞.
It remains to verify the envelope condition. We will show that hf (x) has envelope 1 + d +∑d
j=1 TV(Cj ). Writing

gx(s) = 1{x ≤ s} −
d∑

j=1

Cj (s)1{xj ≤ sj },

we see that

hf (x) =
Ln∑
k=1

ckgx(Bk)

for ck = ±1 and the operation φ(Bk) defined in (1.5) for any function φ :Rd →R. Furthermore,
writing

γx(s) = 1{x ≤ s}, ζ
(j)
x (s) = Cj(s)1{x ≤ sj }, j = 1, . . . , d,

we have

∣∣hf (x)
∣∣ ≤ Ln∑

k=1

∣∣γx(Bk)
∣∣+ d∑

j=1

Ln∑
k=1

∣∣ζ (j)
xj

(Bk)
∣∣≤ 1 +

d∑
j=1

Ln∑
k=1

∣∣ζ (j)
xj

(Bk)
∣∣
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since the boxes B1, . . . ,BLn are disjoint. Since each Bk is of the form
∏d

j=1(s
1
k,j , s

2
k,j ], there is

a (fine enough) lattice partition � of [0,1]d with the property that each Bk can be written as a
union of (disjoint) elements Akj

, with Akj
∈ �. A little reflexion shows that, for each 1 ≤ j ≤ d ,

Ln∑
k=1

∣∣ζ (j)
xj

(Bk)
∣∣ ≤ ∑

A∈�

∣∣ζ (j)
xj

(A)
∣∣

and, moreover, for Am =∏d
j=1(s

1
m,j , s

2
m,j ] ∈ �, Am,−j =∏

l =j (s
1
m,l, s

2
m,l] and

Cj (s−j |t) := Cj (s1, . . . , sj−1, t, sj+1, . . . , sd)

for every s−j ∈ [0,1]d−1 and every t ∈ [0,1], a little algebra gives the identity

ζ
(j)
xj

(Am) = 1
{
xj ≤ s2

m,j

}
Cj (Am) + 1

{
s1
m,j < xj ≤ s2

m,j

}
Cj

(
Am,−j |s1

m,j

)
.

Since

Cj (s−j |sj ) = P{X−j ≤ s−j |Xj = sj },
we obtain

Ln∑
k=1

∣∣ζ (j)
x (Bk)

∣∣ ≤ ∑
Am∈�

∣∣ζ (j)
x (Am)

∣∣
≤

∑
Am∈�

∣∣Cj (Am)
∣∣+ ∑

Am∈�

1
{
s1
m,j < xj ≤ s2

m,j

}
P
{
X−j ∈ Am,−j |Xj = s1

m,j

}
≤ TV(Cj ) +

∑
Am∈�

1
{
s1
m,j < xj ≤ s2

m,j

}
P
{
X−j ∈ Am,−j |Xj = s1

m,j

}
.

Let Am(x) ∈ � with x ∈ Am(x) and s1
j < x ≤ s2

j with (s1
j , s2

j ] be the projection of Am(x) on the
j th axis of the lattice. Then the last term on the right of the previous display can be bounded as
follows: ∑

Am∈�

1
{
s1
m,j < xj ≤ s2

m,j

}
P
{
X−j ∈ Am,−j |Xj = s1

m,j

}
≤

∑
Am∈�,s1

m,j =s1
j ,s2

m,j =s2
j

P
{
X−j ∈ Am,−j |Xj = s1

j

}
≤ 1

since the boxes Am ∈ � and, therefore, Am,−j are disjoint. We have shown that the class Hn has
envelope 1 + d +∑d

j=1 TV(Cj ).
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We can now apply Theorem 14 to conclude that

lim
n→∞E

[
sup

h∈BL1

∣∣E[h(Z̃n)
]−E

∗[h(Z̃∗
n

)]∣∣]= 0,

and the proof is complete.

5.3. Proof of Theorem 4

We proceed as in the proof of Theorem 1. We write Ĉ = Cθ̂ and Ĉ∗ = Cθ̂∗ . Recall that

Yn = Zn − √
n(Ĉ − C).

We may replace Zn by Z̃n with impunity since

sup
h∈BL1

∣∣E[h(Yn) − h
(
Z̃n − √

n(Ĉ − C)
)]∣∣

≤ δ + 2P
{

sup
f ∈Fn

∣∣Yn(f ) − Z̃n(f ) + √
n(Ĉ − C)(f )

∣∣≥ δ
}

= δ + 2P
{

sup
f ∈Fn

∣∣Zn(f ) − Z̃n(f )
∣∣≥ δ

}
→ δ as n → ∞

for every δ > 0, as in the proof of Proposition 10. Next, by the mean value theorem and assump-
tions (C3) and (C4), we have

√
n(Ĉ − C)(s) = √

n(θ̂ − θ0)
′Ċθ0(s) + √

n(θ̂ − θ0)
′{Ċθ̃ (s) − Ċθ0(s)

}
for some θ̃ between θ̂ and θ0

=
(∫

ψ dαn + n1/2εn

)′
Ċθ0(s) + √

n(θ̂ − θ0)
′{Ċθ̃ (s) − Ċθ0(s)

}
=
(∫

ψ dαn

)′
Ċθ0(s) + Rn(s)

for some remainder term Rn that satisfies∣∣Rn(s)
∣∣ ≤ n1/2‖εn‖2

∥∥Ċθ0(s)
∥∥

2 + Kn1/2‖θ̂ − θ0‖1+ν
2

= Op

(
n1/2‖εn‖2 + n−ν/2)

= op(1/Ln).
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This bound holds uniformly in s. Consequently, for

Ỹn(f ) =
2dL∑
k=1

σkỸn(sk)

based on

Ỹn(s) = Z̃n(s) −
(∫

ψ dαn

)′
Ċθ0(s),

we have

sup
h∈BL1

∣∣E[h(Z̃n − √
n(Ĉ − C)

)]−E
[
h(Ỹn)

]∣∣ = sup
h∈BL1

∣∣E[h(Ỹn − Rn)
]−E

[
h(Ỹn)

]∣∣.
Since

sup
f

∣∣Rn(f )
∣∣≤ 2dLn sup

s

∣∣Rn(s)
∣∣→ 0

in probability, we get suph |E[h(Z̃n − √
n(Ĉ − C))] −E[h(Ỹn)]| → 0, as n → ∞. We conclude

that

lim sup
n→∞

sup
h∈BL1

∣∣E[h(Yn)
]−E

[
h(Ỹn)

]∣∣= 0.

For the bootstrap counterpart, we can argue in the same way. Using the expansion

√
n
(
Ĉ∗ − Ĉ

)
(s) =

(∫
ψ dα∗

n

)′
Ċθ0(s) + R∗

n(s)

for some remainder term R∗
n that satisfies

sup
s

∣∣R∗
n(s)

∣∣ ≤ K0n
1/2
∥∥ε∗

n

∥∥
2 + K1n

1/2‖θ̂ − θ0‖1+ν
2 + K2n

1/2
∥∥θ̂∗ − θ̂

∥∥1+ν

2

for some finite constants K0,K1 and K2. We check that the processes Y∗
n and Ỹ

∗
n are close with

Ỹ
∗
n based on

Ỹ
∗
n(s) = Z̃

∗
n(s) −

(∫
ψ dα∗

n

)′
Ċθ0(s).

Note that Ỹn(f ) =∑
k σkỸn(sk) = ∫

(
∑

k σkgk)dαn with

gk(x) = 1{x ≤ sk} −
d∑

j=1

Cj (sk)1{x ≤ sk,j } − (
ψ(x)

)′
Ċθ0(sk).
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As in the proof of Theorem 1, it remains to verify the two conditions of Theorem 14. Since
the only difference with the proof of Theorem 1 is the addition of the term (ψ(x))′Ċθ0(sk),
we concentrate on the class of functions (ψ(x))′Ċθ0(sk). Since it is a subclass of c′ψ(x) with
c ∈R

p , its VC dimension trivially is equal to p. Moreover, it is not hard to see from the proof of
Theorem 1 that ∣∣∣∣∣

2dLn∑
k=1

σkgk(x)

∣∣∣∣∣ ≤ 1 + d +
d∑

j=1

TV(Cj ) + ∥∥ψ(x)
∥∥TV(Ċθ0).

Since E[‖ψ(X)‖4
2] < ∞, the conditions of Theorem 14 are met, and we conclude that

E

[
sup

h∈BL1

∣∣E[h(Ỹn)
]−E

∗[h(Ỹ∗
n

)]∣∣]→ 0

as n → ∞.

5.4. Proof of Proposition 6

From the proofs of Proposition 10 and Proposition 12, we see that

sup
u∈[0,1]d

∣∣Zn(u) − Z̃n(u)
∣∣ = Op

(
n−μ

)
and

sup
u∈[0,1]d

∣∣Z∗
n(u) − Z̃

∗
n(u)

∣∣ = Op∗
(
n−μ

)
almost surely, for some μ > 0. The result follows after integration by parts.

5.5. Proof of Corollary 7

By the delta-method, {Ỹn(s), s ∈ [0,1]d} converges toward a Gaussian process in �∞([0,1]d).
The proof of Theorem 4 shows that lim supn→∞ suph∈BL1

|E[h(Yn) − h(Ỹn)]| = 0. Hence, the
process Yn converges weakly to the same weak limit as Ỹn. This proves the first claim. The
second part of the corollary is a straightforward consequence of Theorem 4 and the triangle
inequality.

Appendix A

Let X1, . . . ,Xn be independent random variables with probability measure P . Let Pn be the
empirical probability measure, putting mass 1/n at each observation, and let P∗

n be the nonpara-
metric bootstrap measure based on n independent observations from Pn. We index the empirical
process

√
n(Pn − P) and its bootstrap counterpart

√
n(P∗

n − Pn) by functions f that belong to a
sequence of classes Fn.
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Theorem 14. Let dn be an integer sequence and, for each 1 ≤ i ≤ dn, let Gi,n be a VC class of
functions with VC index Vi,n and

dn∑
i=1

Vi,n ≤ K(logn)γ

for some K < ∞ and 0 < γ < 1. Set

Fn =
{

f =
dn∑
i=1

gi :gi ∈ Gi,n

}
,

and suppose that there exists an envelope function F ≥ supf ∈Fn
|f |, independent of n, with

E[F 4(X)] < ∞. Then

lim sup
n→∞

E

[
sup

h∈BL1

∣∣E[h(√n(Pn − P)
)]−E

∗[h(√n
(
P

∗
n − Pn

))]∣∣]= 0.

Proof. See Theorem 3 in [23]. �

Appendix B

Set Mn(δ) as in (5.1) for δ ≥ 0, and define

ψ(x) = 2x−2{(1 + x) log(1 + x) − x
}
, x ∈ (−1,0) ∪ (0,∞)

and ψ(−1) = 2 and ψ(0) = 1. This function is continuous and decreasing.

Proposition 15. There exist constants K1 and K2 such that

P
{
Mn(a) ≥ λ

}≤ K1

a
exp

{
−K2λ

2

a
ψ

(
λ√
na

)}
(B.1)

for all a ∈ (0,1/2] and all λ ∈ [0,∞).

Proof. See Proposition A.1 of [27]. �

Appendix C

We present a stochastic optimization algorithm that approximates T̃n. The algorithm is based on
Pure Random Search and easily implementable.
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Step 1. Compute and store, for all ij ∈ {0, . . . , 	n1/d
},

F(i1, . . . , id ) := Zn

(
i1

n1/d
, . . . ,

id

n1/d

)
.

Step 2. (a) Compute and store, for all Bi =∏d
j=1(ai,j n

−1/d , bi,j n
−1/d ], with ai,j , bi,j ∈ {0, . . . ,

	n1/d
} and ai,j < bi,j ,

G(Bi) := �1
ai,1,bi,1

�2
ai,2,bi,2

· · ·�d
ai,d ,bi,d

F.

(b) Rank the Bi according to G(B1) ≥ · · · ≥ G(Bm). We suggest m = n as the default value.

Step 3. (a) Sample without replacement (A1, . . . ,ALn) ∈ B = {B1, . . . ,Bm}.
(b) Compute, for A = (A1, . . . ,ALn) of part 3(a),

T (A) = G(A1) + G(A2)1{A1∩A2=∅} + · · · + G(ALn)1{A1∩···∩ALn=∅}.

(c) Repeat parts 3(a) and 3(b) K times. We suggest K = 104 as the default value.

Step 4. Find T (Ao) = maxA T (A) with the maximum taken over the obtained list A1, . . . ,AK

in Step 3, and use this to approximate T̃n.

Remark (Computational cost). Step 1 requires n computations. We would like to caution that
Step 1, although negligible if coded in C++ or Fortran, tends to be very slow if performed us-
ing more elaborate programming languages like R or Mathematica. Step 2 requires less than
n2 summations. Step 3, the verification whether Ln rectangles overlap, requires at most L2

n/2
verifications, each in turn requiring 2d operations. Thus, we need at most dKL2

n operations in
Step 3.

For a typical (larger) case n = 800, d = 2, and Ln = 4, the number of computations needed for
Step 2 and Step 3 is bounded by 106. Since an ATV test typically requires 103 bootstrap samples,
the total number of summations needed is of the order 109. A typical desktop computer (using
C++ or Fortran code) needed less than 5 seconds.

Remark (Improvements). We took m = n and K = 104. Smaller values for m and K would
speed up the computation, while larger values would offer more guarantees that we find the true
optimum. We experimented with m = 10n, m = 100n, K = 105 and K = 106, but we did not
observe any significant improvements.

It is possible to enhance the proposed algorithm by including an additional step, which would
concentrate on local search. Implementation of more sophisticated algorithms such as the Accel-
erated Random Search algorithm [1] would allow us to quickly search the neighborhod of Ao.
We experimented with this approach, and although it produced slightly larger values for statis-
tic T̃n, the overall performance did not significantly change. We suspect that such an additional
step would be more valuable in dimensions d > 2. For a good review of optimization schemes
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relevant to this scenario, we refer to the paper by Hvattum and Glover [18], where the authors
describe eight optimization schemes and contrasts their performance on numerous test functions
in higher dimensions (up to dimension 64).
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