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Let A = 1√
np

(XT X −pIn) where X is a p ×n matrix, consisting of independent and identically distributed

(i.i.d.) real random variables Xij with mean zero and variance one. When p/n → ∞, under fourth moment
conditions a central limit theorem (CLT) for linear spectral statistics (LSS) of A defined by the eigenvalues
is established. We also explore its applications in testing whether a population covariance matrix is an
identity matrix.
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1. Introduction

The last few decades have seen explosive growth in data analysis, due to the rapid development of
modern information technology. We are now in a setting where many very important data analysis
problems are high-dimensional. In many scientific areas, the data dimension can even be much
larger than the sample size. For example, in micro-array expression, the number of genes can be
tens of thousands or hundreds of thousands while there are only hundreds of samples. Such kind
of data also arises in genetic, proteomic, functional magnetic resonance imaging studies and so
on (see Chen et al. [11], Donoho [13], Fan and Fan [14]).

The main purpose of this paper is to establish a central limit theorem (CLT) of linear function-
als of eigenvalues of the sample covariance matrix when the dimension p is much larger than
the sample size n. Consider the sample covariance matrix S = 1

n
XXT , where X = (Xij )p×n and

Xij , i = 1, . . . , p, j = 1, . . . , n are i.i.d. real random variables with mean zero and variance one.
As we know, linear functionals of eigenvalues of S are closely related to its empirical spectral
distribution (ESD) function F S(x). Here for any n×n Hermitian matrix M with real eigenvalues
λ1, . . . , λn, the empirical spectral distribution of M is defined by

F M = 1

n

n∑
j=1

I (λj ≤ x),
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where I (·) is the indicator function. However, it is inappropriate to investigate F S(x) when
p/n → ∞ since S has (p − n) zero eigenvalues and hence F S(x) converges to a degenerate
distribution with probability one. Note that the eigenvalues of S are the same as those of 1

n
XT X

except (p − n) zero eigenvalues. Thus, instead, we turn to the eigenvalues of 1
p

XT X and re-
normalize it as

A =
√

p

n

(
1

p
XT X − In

)
, (1.1)

where In is the identity matrix of order n.
The first breakthrough regarding the ESD of A was made in Bai et al. [7]. They proved that

with probability one

F A(x) → F(x),

which is the so-called semicircle law with the density

F ′(x) =
{ 1

2π

√
4 − x2, if |x| ≤ 2,

0, if |x| > 2.
(1.2)

In random matrix theory, F(x) is referred to as the limiting spectral distribution (LSD) of A.
For such matrices, Chen and Pan [10] proved that the largest eigenvalue converges to the right
endpoint of the support of F(x) with probability one. When X11 ∼ N(0,1), Karoui [20] reported
that the largest eigenvalue of XXT after properly centering and scaling converges in distribution
to the Tracy–Widom law, and Birke and Dette [9] established central limit theorems for the
quadratic function of the eigenvalues of A. Recently, Pan and Gao [24] further derived the LSD
of a general form of (1.1), which is determined by its Stieltjes transform. Here, the Stieltjes
transform for any distribution function G is given by

mG(z) =
∫

1

x − z
dG(x), �(z) > 0,

where �(z) represents the imaginary part of z.
Gaussian fluctuations in random matrices are investigated by different authors, starting with

Costin and Lebowitz [12]. Johansson [18] considered an extended random ensembles whose
entries follow a specific class of densities and established a CLT of the linear spectral statistics
(LSS). Recently, a CLT for LSS of sample covariance matrices is studied by Bai and Silverstein
[5] and of Wigner matrices is studied by Bai and Yao [6].

We introduce some notation before stating our results. Denote the Stieltjes transform of the
semicircle law F by m(z). �(z) is used to denote the imaginary part of a complex number z.
For any given square matrix B, let tr B and B denote the trace and the complex conjugate matrix

of B, respectively. The norm ‖B‖ represents the spectral norm of B, that is, ‖B‖ =
√

λ1(BB)

where λ1(BB) means the maximum eigenvalue of BB. The notation
d−→ means “convergence in

distribution to”. Let S denote any open region on the real plane including [−2,2], which is the
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support of F(x), and M be the set of functions which are analytic on S. For any f ∈ M, define

Gn(f )� n

∫ +∞

−∞
f (x)d

(
F A(x)−F(x)

)− n

2πi

∮
|m|=ρ

f
(−m−m−1)Xn(m)

1 − m2

m2
dm, (1.3)

where

Xn(m) � −B + √
B2 − 4AC

2A , A= m −
√

n

p

(
1 + m2),

(1.4)

B = m2 − 1 −
√

n

p
m

(
1 + 2m2), C = m3

n

(
m2

1 − m2
+ ν4 − 2

)
−

√
n

p
m4,

ν4 = EX4
11 and

√
B2 − 4AC is a complex number whose imaginary part has the same sign as

that of B. The integral’s contour is taken as |m| = ρ with ρ < 1.
Let {Tk} be the family of Chebyshev polynomials, which is defined as T0(x) = 1, T1(x) = x

and Tk+1(x) = 2xTk(x) − Tk−1(x). To give an alternative way of calculating the asymptotic
covariance of X(f ) in Theorem 1.1 below, for any f ∈ M and any integer k > 0, we define

�k(f ) � 1

2π

∫ π

−π

f (2 cos θ)eikθ dθ

= 1

2π

∫ π

−π

f (2 cos θ) coskθ dθ = 1

π

∫ 1

−1
f (2x)Tk(x)

1√
1 − x2

dx.

The main result is formulated in the following.

Theorem 1.1. Suppose that

(a) X = (Xij )p×n where {Xij : i = 1,2, . . . , p; j = 1,2, . . . , n} are i.i.d. real random vari-
ables with EX11 = 0,EX2

11 = 1 and ν4 = EX4
11 < ∞.

(b1) n/p → 0 as n → ∞.

Then, for any f1, . . . , fk ∈ M, the finite-dimensional random vector (Gn(f1), . . . ,Gn(fk)) con-
verges weakly to a Gaussian vector (Y (f1), . . . , Y (fk)) with mean function EY(f ) = 0 and
covariance function

cov
(
Y(f1), Y (f2)

) = (ν4 − 3)�1(f1)�1(f2) + 2
∞∑

k=1

k�k(f1)�k(f2) (1.5)

= 1

4π2

∫ 2

−2

∫ 2

−2
f ′

1(x)f ′
2(y)H(x, y)dx dy, (1.6)

where

H(x,y) = (ν4 − 3)
√

4 − x2
√

4 − y2 + 2 log

(
4 − xy + √

(4 − x2)(4 − y2)

4 − xy − √
(4 − x2)(4 − y2)

)
.
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Remark 1.1. Note that Xn(m) in (1.3) and X n(m) � −B−
√

B2−4AC
2A are the two roots of the

equation Ax2 + Bx + C = 0. Since n/p → 0, an easy calculation shows Xn(m) = o(1) and

X n(m) = 1−m2

m
+ o(1). Hence in practice, one may implement the mean correction in (1.3) by

taking

Xn(m) = min

{∣∣∣∣−B + √
B2 − 4AC

2A

∣∣∣∣, ∣∣∣∣−B − √
B2 − 4AC

2A

∣∣∣∣},

and m = ρeiθ with θ ∈ [−2π,2π] and 0 < ρ < 1.

The mean correction term, the last term in (1.3), can be simplified when n3/p = O(1). Indeed,
if n3/p = O(1), we have 4AC = o(1), B = m2 − 1. By (1.4),

nXn(m) = n · −B + √
B2 − 4AC

2A = −2nC

B + √
B2 − 4AC

= m3

1 − m2

(
m2

1 − m2
− ν4 − 2

)
+

√
n3

p

m4

1 − m2
+ o(1).

Hence, by using the same calculation as that in Section 5.1 of Bai and Yao [6], we have

− n

2πi

∮
|m|=ρ

f
(−m − m−1)Xn(m)

1 − m2

m2
dm

= − 1

2πi

∮
|m|=ρ

f
(−m − m−1)m[

m2

1 − m2
− ν4 − 2 +

√
n3

p
m

]
dm + o(1)

= −1

4

(
f (2) + f (−2)

) − 1

π

∫ 1

−1
f (2x)

[
2(ν4 − 3)x2 −

(
ν4 − 5

2

)]
1√

1 − x2
dx (1.7)

− 1

π

√
n3

p

∫ 1

−1
f (2x)

4x3 − 3x√
1 − x2

dx

= −
[

1

4

(
f (2) + f (−2)

) − 1

2
�0(f ) + (ν4 − 3)�2(f )

]
−

√
n3

p
�3(f ) + o(1).

Define

Qn(f )� n

∫ +∞

−∞
f (x)d

(
F A(x) − F(x)

) −
√

n3

p
�3(f ). (1.8)

Under the condition n3/p = O(1), we then give a simple and explicit expression of the mean
correction term of (1.3) in the following corollary.

Corollary 1.1. Suppose that
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(a) X = (Xij )p×n where {Xij : i = 1,2, . . . , p; j = 1,2, . . . , n} are i.i.d. real random vari-
ables with EX11 = 0,EX2

11 = 1 and ν4 = EX4
11 < ∞.

(b2) n3/p = O(1) as n → ∞.

Then, for any f1, . . . , fk ∈ M, the finite-dimensional random vector (Qn(f1), . . . ,Qn(fk)) con-
verges weakly to a Gaussian vector (X(f1), . . . ,X(fk)) with mean function

EX(f ) = 1
4

(
f (2) + f (−2)

) − 1
2�0(f ) + (ν4 − 3)�2(f ) (1.9)

and covariance function cov(X(f ),X(g)) being the same as that given in (1.5) and (1.6).

Remark 1.2. The result of Bai et al. [2] suggests that, for large p and n with p/n → ∞, the
matrix

√
nA is close to a n × n Wigner matrix although its entries are not independent but

weakly dependent. It is then reasonable to conjecture that the CLT for the LSS of A resembles
that of a Wigner matrix described in Bai and Yao [6]. More precisely, by writing A = 1√

n
(wij ),

where wii = (sT
i si − p)/

√
p, wij = sT

i sj /
√

p for i �= j and sj is the j th column of X, we have

Var(w11) = ν4 − 1, Var(w12) = 1, E
(
w2

12 − 1
)2 = 1

p

(
ν2

4 − 3
)
.

Then, (1.9), (1.5) and (1.6) are consistent with (1.4), (1.5) and (1.6) of Bai and Yao [6], respec-
tively, by taking their parameters as σ 2 = ν4 − 1, κ = 2 (the real variable case) and β = 0.

However, we remark that the mean correction term of Qn(f ), the last term of (1.8), cannot be
speculated from the result of Bai and Yao [6]. Note that this correction term will vanish in the
case of the function f to be even or n3/p → 0. By the definition of �k(f ), one may verify that

�3(f ) = 1

π

√
n3

p

∫ 1

−1
f (2x)

4x3 − 3x√
1 − x2

dx,

−1

2
�0(f ) + (ν4 − 3)�2(f ) = 1

π

∫ 1

−1
f (2x)

[
2(ν4 − 3)x2 −

(
ν4 − 5

2

)]
1√

1 − x2
dx.

Remark 1.3. If we interchange the roles of p and n, Birke and Dette [9] established the CLT
for Qn(f ) in their Theorem 3.4 when f = x2 and Xij ∼ N(0,1). We below show that our
Corollary 1.1 can recover their result. First, since f = x2 is an even function, it implies that the
last term of (1.8) is exactly zero. Therefore, the mean in Theorem 3.4 of Birke and Dette [9] is
the same as (1.9), which equals one. Second, the variance in Theorem 3.4 of Birke and Dette [9]
is also consistent with (1.5). In fact, the variance of Birke and Dette [9] equals 4 when taking
their parameter y = 0. On the other hand, since Xij ∼ N(0,1), we have ν4 = 3 and the first term
of (1.5) is zero. Furthermore, by a direct evaluation, we obtain that

�1(f ) = 1

2π

∫ π

−π

4 cos3 θ dθ = 1

2π

∫ π

−π

(cos 3θ + 3 cos θ)dθ = 0,

�2(f ) = 1

2π

∫ π

−π

4 cos2 θ cos 2θ dθ = 1

2π

∫ π

−π

(cos 4θ + 1 + 2 cos 2θ)dθ = 1,
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�k(f ) = 1

2π

∫ π

−π

4 cos2 θ coskθ dθ = 1

2π

∫ π

−π

2(cos 2θ + 1) coskθ dθ

= 1

2π

∫ π

−π

(
cos(k − 2)θ + cos(k + 2)θ + 2 coskθ

)
dθ = 0, for k ≥ 3.

It implies that cov(X(x2),X(x2)) = 4, which equals the variance of Birke and Dette [9].

The main contribution of this paper is summarized as follows. We have established the central
limit theorems of linear spectral statistics of the eigenvalues of the normalized sample covari-
ance matrices when both the dimension and the sample size go to infinity with the dimension
dominating the sample size (for the case p/n → ∞). Theorem 1.1 and Corollary 1.1 are both
applicable to the data with the dimension dominating the sample size while Corollary 1.1 pro-
vides a simplified correction term (hence, CLT) in the ultrahigh dimension cases (n3/p = O(1)).
Such an asymptotic theory complements the results of Bai and Silverstein [5] and Pan [23] for
the case p/n → c ∈ (0,∞) and Bai and Yao [6] for Wigner matrix.

This paper is organized as follows. Section 2 provides a calibration of the mean correction
term in (1.3), runs simulations to check the accuracy of the calibrated CLTs in Theorem 1.1,
and considers a statistical application of Theorem 1.1 and a real data analysis. Section 3 gives
the strategy of proving Theorem 1.1 and two intermediate results, Propositions 3.1 and 3.2, and
truncation steps of the underlying random variables are given as well. Some preliminary results
are given in Section 4. Sections 5 and 6 are devoted to the proof of Proposition 3.1. We present
the proof of Proposition 3.2 in Section 7. Section 8 derives mean and covariance in Theorem 1.1.

2. Calibration, application and empirical studies

Section 2.1 considers a calibration to the mean correction term of (1.3). A statistical application
is performed in Section 2.2 and the empirical studies are carried out in Section 2.3.

2.1. Calibration of the mean correction term in (1.3)

Theorem 1.1 provides a CLT for Gn(f ) under the general framework p/n → ∞, which only
requires zero mean, unit variance and the bounded fourth moment. However, the simulation
results show that the asymptotic distributions of Gn(f ), especially the asymptotic means, are
sensitive to the skewness and the kurtosis of the random variables for some particular functions f ,
for example, f (x) = 1

2x(x2 − 3). This phenomenon is caused by the slow convergence rate
of EGn(f ) to zero, which is illustrated as follows. Suppose that EX8

11 < ∞. We then have
|EGn(f )| = O(

√
n/p) + O(1/

√
n) by the arguments in Section 6. Also, the remaining terms

(see (2.1) below) have a coefficient (ν4 − 1)
√

n/p which converges to zero theoretically since
p/n → ∞. However, if n = 100,p = n2 and the variables Xij are from central exp(1) then
(ν4 − 1)

√
n/p could be as big as 0.8.

In view of this, we will regain such terms and give a calibration for the mean correction term
in (1.3). From Section 6, we observe that the convergence rate of |EGn(f )| relies on the rate of
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|nEωn − m3(z)(m′(z) + ν4 − 2)| in Lemma 6.1. By the arguments in Section 6, only S22 below
(6.13) has the coefficient (ν4 − 1)

√
n/p. A simply calculation implies that

S22 = −2(ν4 − 1)
√

n/pm(z) + o(1). (2.1)

Hence, the limit of nEωn is calibrated as

nEωn = m3(z)
[
ν4 − 2 + m′(z) − 2(ν4 − 1)

√
n/pm(z)

] + o(1). (2.2)

We then calibrate Gn(f ) as

GCalib
n (f ) � n

∫ +∞

−∞
f (x)d

(
F A(x) − F(x)

)
(2.3)

− n

2πi

∮
|m|=ρ

f
(−m − m−1)XCalib

n (m)
1 − m2

m2
dm,

where, via (2.2),

XCalib
n (m) � −B + √

B2 − 4ACCalib

2A ,

(2.4)

CCalib = m3

n

[
ν4 − 2 + m2

1 − m2
− 2(ν4 − 1)m

√
n/p

]
−

√
n

p
m4,

A,B are defined in (1.4) and
√
B2 − 4ACCalib is a complex number whose imaginary part has

the same sign as that of B. Theorem 1.1 still holds if we replace Gn(f ) with GCalib
n (f ).

We next perform a simulation study to check the accuracy of the CLT in Theorem 1.1 with
Gn(f ) replaced by the calibrated expression GCalib

n (f ) in (2.3). Two combinations of (p,n),
p = n2, n2.5, and the test function f (x) = 1

2x(x2 − 3) are considered in the simulations, as sug-
gested by one of the referees. To inspect the impact of the skewness and the kurtosis of the
variables, we use three types of random variables, N(0,1), central exp(1) and central t (6).
The skewnesses of these variables are 0, 2 and 0 while the fourth moments of these vari-
ables are 3, 9 and 6, respectively. The empirical means and empirical standard deviations of
GCalib

n (f )/(Var(Y (f )))1/2 from 1000 independent replications are shown in Table 1.
It is observed from Table 1 that both the empirical means and standard deviations for N(0,1)

random variables are very accurate. The empirical means for central exp(1) and central t (6) also
show their good accuracy. We note that the standard deviations for central exp(1) and central
t (6) random variables are not good when n is small (e.g., n = 50). But it gradually tends to 1 as
the sample size n increases.

Q–Q plots are employed to illustrate the accuracy of the normal approximation in Figures 1
and 2 corresponding to the scenarios p = n2 and p = n2.5, respectively. In each figure, Q–Q plots
from left to right correspond to n = 50,100,150,200, respectively with random variables gener-
ated from N(0,1) (�), central exp(1) () and central t (6) (+). We observe the same phenomenon
that the normal approximation is very accurate for normal variables while the approximation is
gradually better when n increases for central exp(1) and t (6) variables.



1096 B. Chen and G. Pan

Table 1. Empirical means of GCalib
n (f )/(Var(Y (f )))1/2 (cf. (2.3)) for the function f (x) = 1

2x(x2 − 3)

with the corresponding standard deviations in the parentheses

n 50 100 150 200

p = n2

N(0,1) −0.314 (1.227) −0.221 (1.038) −0.188 (1.051) −0.093 (0.940)

exp(1) −0.088 (2.476) −0.079 (1.447) −0.140 (1.400) −0.161 (1.154)

t (6) −0.084 (2.813) −0.077 (1.541) −0.095 (1.246) −0.0897 (1.104)

p = n2.5

N(0,1) −0.068 (1.049) −0.053 (1.077) −0.0476 (0.944) −0.016 (1.045)

exp(1) −0.049 (1.879) −0.029 (1.390) −0.046 (1.162) −0.045 (1.156)

t (6) −0.075 (1.693) 0.050 (1.252) −0.044 (1.145) −0.027 (1.044)

Figure 1. The Q–Q plots of the standard Gaussian distribution versus GCalib
n (f )/(Var(Y (f )))1/2 based on

the sample generating from N(0,1) (�), standardized exp(1) () and standardized t (6) (+) with the sample
sizes n = 50,100,200 from left to right and the dimension p = n2.

Figure 2. The Q–Q plots of the standard Gaussian distribution versus GCalib
n (f )/(Var(Y (f )))1/2 based on

the sample generating from N(0,1) (�), standardized exp(1) () and standardized t (6) (+) with the sample
sizes n = 50,100,200 from left to right and the dimension p = n2.5.
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2.2. Application of CLTs to hypothesis test

This subsection is to consider an application of Theorem 1.1 which is about hypothesis testing
for the covariance matrix. Suppose that y = �s is a p-dimensional vector where � is a p × p

matrix with positive eigenvalues and the entries of s are i.i.d. random variables with mean zero
and variance one. Hence, the covariance matrix of y is � = ��T . Suppose that one wishes to
test the hypothesis

H0 :� = Ip, H1 :� �= Ip. (2.5)

Based on the i.i.d. samples y1, . . . ,yn (from y), many authors have considered (2.5) in terms
of the relationship of p and n. For example, John [19] and Nagao [22] considered the fixed-
dimensional case; Ledoit and Wolf [21], Fisher et al. [16] and Bai et al. [2] studied the case of
p
n

→ c ∈ (0,∞); Srivastava [26], Srivastava, Kollo and von Rosen [27], Fisher [15] and Chen et
al. [11] proposed the testing statistics which can accommodate large p and small n.

We are interesting in testing (2.5) in the setting of p
n

→ ∞. As in Ledoit and Wolf [21] and
Birke and Dette [9], we set f = x2. We then propose the following test statistic for the hypothesis
of (2.5):

Ln = 1

2

[
n

(∫
x2 dF B(x) −

∫
x2 dF(x)

)
(2.6)

−
(

n

2πi

∮
|m|=ρ

(
m + m−1)2XCalib

n (m)
1 − m2

m2
dm

)]
,

where XCalib
n (m) is given in (2.4) and B =

√
p
n
( 1
p

YT Y− In) is the normalized sample covariance

matrix with Y = (y1, . . . ,yn). The asymptotic mean and variance of Ln are 0 and 1, respectively,
see Theorem 1.1 or Remark 1.3 for details. Since there is no close form for the mean correction
term in (2.6), we use Matlab to calculate this correction term. It shows that as n/p → 0,

n

2πi

∮
|m|=ρ

(
m + m−1)2XCalib

n (m)
1 − m2

m2
dm = ν4 − 2.

We also note the fact that

E

[
n

∫
x2 d

(
F B(x) − F(x)

)] = E
[
tr BBT − n

] = ν4 − 2.

Thus, we use the following test statistic in the simulations:

Ln = 1

2

[
n

(∫
x2 dF B(x) −

∫
x2 dF(x)

)
− (ν4 − 2)

]
= 1

2

(
tr BBT − n − (ν4 − 2)

)
. (2.7)

Since �T � = Ip is equivalent to ��T = Ip , under the null hypothesis H0 in (2.5), we have

Ln
d−→ N(0,1). (2.8)
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By the law of large numbers, a consistent estimator of ν4 is ν̂4 = 1
np

∑
i,j Y 4

ij under the null
hypothesis H0. By Slutsky’s theorem, (2.8) also holds if we replace ν4 of (2.7) with ν̂4.

The numerical performance of the proposed statistic Ln is carried out by Monte Carlo simu-
lations. Let Zα/2 and Z1−α/2, respectively, be the 100α/2% and 100(1 − α/2)% quantiles of the
asymptotic null distribution of the test statistic Ln. With T replications of the data set simulated
under the null hypothesis, we calculate the empirical size as

α̂ = {#Lnull
n ≤ Zα/2} + {#Lnull

n > Z1−α/2}
T

,

where # denotes the number and Lnull
n represents the values of the test statistic Ln based on the

data set simulated under the null hypothesis. The empirical power is calculated by

β̂ = {#Lalter
n ≤ Zα/2} + {#Lalter

n > Z1−α/2}
T

,

where Lalter
n represents the values of the test statistic Ln based on the data set simulated under

the alternative hypothesis. In our simulations, we fix T = 1000 as the number of replications and
set the nominal significance level α = 5%. By asymptotic normality, we have Zα/2 = −1.96 and
Z1−α/2 = 1.96.

Our proposed test is intended for the situation “large p, small n”. To inspect the impact caused
by the sample size and/or the dimension, we set

n = 20,40,60,80,

p = 600,1500,3000,5500,8000,10 000.

The entries of s are generated from three types of distributions, Gaussian distribution, standard-
ized Gamma(4, 0.5) and Bernoulli distribution with P(Xij = ±1) = 0.5.

The following two types of covariance matrices are considered in the simulations to investigate
the empirical power of the test.

1. (Diagonal covariance.) � = diag(
√

21[νp],11−[νp]), where ν = 0.08 or ν = 0.25, [a] de-
notes the largest integer that is not greater than a.

2. (Banded covariance.) � = diag(A1,diag(1p−[v2p])), where A1 is a [v2p] × [v2p] tridiago-
nal symmetric matrix with the diagonal elements being equal to 1 and elements below and
above the diagonal all being equal to v1.

Since the test in Chen et al. [11] accommodates a wider class of variates and has less restric-
tions on the ratio p/n, we below compare performance of our test with that of Chen et al. [11].
To simplify the notation, denote their test by the CZZ test. Table 2 reports empirical sizes of the
proposed test and of the CZZ test for the preceding three distributions. We observe from Table 2
that the sizes of both tests are roughly the same, when the underlying variables are normally
or Bernoulli distributed. It seems that the CZZ test looks better for skewed data, for example,
gamma distribution. We believe additional corrections such as the Edgeworth expansion will be
helpful, which is beyond the scope of this paper. However, our test still performs well for skewed
data if p � n.
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Table 2. Empirical sizes of CZZ test and Ln at the significant level α = 5% for normal, gamma, Bernoulli
random vectors

CZZ test Ln

n n

p 20 40 60 80 20 40 60 80

Normal random vectors
600 0.069 0.071 0.052 0.052 0.063 0.077 0.066 0.082

1500 0.057 0.059 0.061 0.059 0.055 0.058 0.058 0.062
3000 0.067 0.068 0.057 0.053 0.048 0.067 0.056 0.052
5500 0.064 0.06 0.067 0.058 0.054 0.055 0.071 0.068
8000 0.071 0.062 0.062 0.054 0.055 0.049 0.06 0.059

10 000 0.055 0.059 0.063 0.06 0.037 0.058 0.057 0.054

Gamma random vectors
600 0.055 0.073 0.056 0.062 0.103 0.119 0.125 0.123

1500 0.064 0.047 0.059 0.059 0.094 0.072 0.072 0.088
3000 0.069 0.071 0.059 0.052 0.066 0.074 0.071 0.061
5500 0.065 0.069 0.048 0.041 0.077 0.073 0.047 0.045
8000 0.069 0.065 0.07 0.053 0.078 0.075 0.063 0.059

10 000 0.072 0.06 0.06 0.057 0.078 0.082 0.065 0.06

Bernoulli random vectors
600 0.078 0.079 0.056 0.037 0.048 0.064 0.046 0.037

1500 0.065 0.050 0.051 0.053 0.039 0.040 0.049 0.050
3000 0.048 0.053 0.058 0.060 0.040 0.052 0.052 0.056
5500 0.059 0.061 0.059 0.042 0.040 0.052 0.060 0.040
8000 0.065 0.074 0.065 0.059 0.046 0.052 0.05 0.051

10 000 0.07 0.057 0.047 0.048 0.044 0.037 0.038 0.047

Table 3 to Table 5 summarize the empirical powers of the proposed tests as well as those of the
CZZ test for both the diagonal and the banded covariance matrix. Table 3 assumes the underlying
variables are normally distributed while Tables 4 and 5 assume the central gamma and the central
bernoulli random variables, respectively. For the diagonal covariance matrix, we observe that the
proposed test consistently outperforms the CZZ test for all types of distributions, especially for
“small” n. For example, when n = 20, even n = 40,60,80 for ν = 0.08, the CZZ test results in
power ranging from 0.2–0.8, while our test still gains very satisfying power exceeding 0.932.

For the banded covariance matrix, we observe an interesting phenomenon. Our test seems
to be more sensitive to the dimension p. When p = 600,1500,3000, the power of our test is
not that good for small v2 (= 0.4). Fortunately, when p = 5500,8000,10 000, the performance
is much better, where the power is one or close to one. Similar results are also observed for
v2 = 0.8. We also note that large v2 outperforms smaller v2 because when v2 becomes larger, the
corresponding covariance matrix becomes more “different” from the identity matrix. As for the
CZZ test, its power is mainly affected by n. But generally speaking, our test gains better power
than the CZZ test for extremely larger p and small n.



1100 B. Chen and G. Pan

Table 3. Empirical powers of CZZ test and Ln at the significant level α = 5% for normal random vectors.
Two types of population covariance matrices are considered. In the first case, �1 = diag(2×1[νp],1p−[νp])
for ν = 0.08 and ν = 0.25, respectively. In the second case, �2 = diag(A1,diag(1p−[v2p])), where A1 is a
[v2p]×[v2p] tridiagonal symmetric matrix with diagonal elements equal to 1 and elements beside diagonal
all equal to v1 for v1 = 0.5, v2 = 0.8 and v1 = 0.5, v2 = 0.4, respectively

CZZ test Ln

n n

p 20 40 60 80 20 40 60 80

Normal random vectors (ν = 0.08)
600 0.186 0.392 0.648 0.826 0.932 1 1 1

1500 0.179 0.397 0.642 0.822 0.999 1 1 1
3000 0.197 0.374 0.615 0.867 1.000 1 1 1
5500 0.225 0.382 0.615 0.85 1 1 1 1
8000 0.203 0.391 0.638 0.843 1 1 1 1

10 000 0.204 0.381 0.639 0.835 1 1 1 1

Normal random vectors (ν = 0.25)
600 0.571 0.952 0.997 1 1 1 1 1

1500 0.585 0.959 1.000 1 1 1 1 1
3000 0.594 0.961 1.000 1 1 1 1 1
5500 0.617 0.954 1 1 1 1 1 1
8000 0.607 0.957 0.999 1 1 1 1 1

10 000 0.595 0.949 1 1 1 1 1 1

Normal random vectors (v1 = 0.5, v2 = 0.8)
600 0.333 0.874 0.997 1 0.443 0.493 0.492 0.488

1500 0.310 0.901 0.999 1 0.987 0.997 0.997 0.998
3000 0.348 0.889 0.998 1 1.000 1.000 1.000 1.000
5500 0.382 0.871 0.998 1 1 1 1 1
8000 0.33 0.867 0.998 1 1 1 1 1

10 000 0.359 0.868 0.998 1 1 1 1 1

Normal random vectors (v1 = 0.5, v2 = 0.4)
600 0.142 0.364 0.668 0.896 0.078 0.089 0.069 0.102

1500 0.131 0.354 0.653 0.890 0.220 0.235 0.230 0.226
3000 0.139 0.361 0.662 0.899 0.635 0.660 0.647 0.684
5500 0.148 0.352 0.645 0.898 0.97 0.979 0.989 0.989
8000 0.152 0.36 0.688 0.905 0.981 0.978 0.986 0.989

10 000 0.137 0.328 0.674 0.886 1 1 1 1

2.3. Empirical studies

As empirical applications, we consider two classic datasets: the colon data of Alon et al. [1]
and the leukemia data of Golub et al. [17]. Both datasets are publicly available on the web
site of Tatsuya Kubokawa: http://www.tatsuya.e.u-tokyo.ac.jp/. Such data were used in Fisher
[15] as well. The sample sizes and dimensions (n,p) of the colon data and the leukemia data

http://www.tatsuya.e.u-tokyo.ac.jp/
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Table 4. Empirical powers of CZZ test and Ln at the significant level α = 5% for standardized
gamma random vectors. Two types of population covariance matrices are considered. In the first case,
�1 = diag(2 × 1[νp],1p−[νp]) for ν = 0.08 and ν = 0.25, respectively. In the second case, �2 =
diag(A1,diag(1p−[v2p])), where A1 is a [v2p] × [v2p] tridiagonal symmetric matrix with diagonal ele-
ments equal to 1 and elements beside diagonal all equal to v1 for v1 = 0.5, v2 = 0.8 and v1 = 0.5, v2 = 0.4,
respectively

CZZ test Ln

n n

p 20 40 60 80 20 40 60 80

Gamma random vectors (ν = 0.08)
600 0.331 0.638 0.891 0.982 0.999 1 1 1

1500 0.356 0.636 0.901 0.979 1 1 1 1
3000 0.197 0.383 0.638 0.823 1 1 1 1
5500 0.178 0.361 0.658 0.845 1 1 1 1
8000 0.199 0.399 0.642 0.85 1 1 1 1

10 000 0.216 0.353 0.636 0.843 1 1 1 1

Gamma random vectors (ν = 0.25)
600 0.621 0.943 1.000 1 1 1 1 1

1500 0.610 0.946 0.999 1 1 1 1 1
3000 0.579 0.946 0.997 1 1 1 1 1
5500 0.596 0.957 0.999 1 1 1 1 1
8000 0.616 0.962 0.999 1 1 1 1 1

10 000 0.614 0.955 0.999 1 1 1 1 1

Gamma random vectors (v1 = 0.5, v2 = 0.8)
600 0.192 0.871 0.998 0.972 0.122 0.413 0.423 0.133

1500 0.198 0.883 0.995 0.980 0.440 0.992 0.993 0.433
3000 0.343 0.885 0.995 1 1 1 1 1
5500 0.342 0.88 0.996 1 1 1 1 1
8000 0.349 0.877 0.998 1 1 1 1 1

10 000 0.337 0.879 0.998 1 1 1 1 1

Gamma random vectors (v1 = 0.5, v2 = 0.4)
600 0.117 0.353 0.650 0.780 0.087 0.111 0.114 0.120

1500 0.138 0.365 0.661 0.799 0.183 0.215 0.226 0.157
3000 0.129 0.349 0.646 0.89 0.593 0.621 0.627 0.61
5500 0.124 0.335 0.678 0.889 0.945 0.972 0.981 0.986
8000 0.142 0.369 0.668 0.901 0.999 1 1 1

10 000 0.142 0.336 0.668 1 1 1 1 1

are (62,2000) and (72,3571), respectively. Simulations show that these two datasets have zero
mean (10−8 to 10−11) and unit variance. Therefore, we consider the hypothesis test in (2.5) by
using the test statistic Ln in (2.7). The computed values are Ln = 33 933.7 for the colon data
and Ln = 60 956 for the leukemia data. It is also interesting to note that the statistic values of
Fisher [15] are 6062.642 for the colon data and 6955.651 for the leukemia data when testing
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Table 5. Empirical powers of CZZ test and Ln at the significant level α = 5% for standardized
Bernoulli random vectors. Two types of population covariance matrices are considered. In the first case,
�1 = diag(2 × 1[νp],1p−[νp]) for ν = 0.08 and ν = 0.25, respectively. In the second case, �2 =
diag(A1,diag(1p−[v2p])), where A1 is a [v2p] × [v2p] tridiagonal symmetric matrix with diagonal ele-
ments equal to 1 and elements beside diagonal all equal to v1 for v1 = 0.5, v2 = 0.8 and v1 = 0.5, v2 = 0.4,
respectively

CZZ test Ln

n n

p 20 40 60 80 20 40 60 80

Bernoulli random vectors (ν = 0.08)
600 0.216 0.381 0.622 0.849 0.972 1 1 1

1500 0.198 0.401 0.632 0.837 1 1 1 1
3000 0.203 0.362 0.622 0.823 1 1 1 1
5500 0.196 0.354 0.627 0.829 1 1 1 1
8000 0.203 0.373 0.638 0.834 1 1 1 1

10 000 0.213 0.397 0.637 0.822 1 1 1 1

Bernoulli random vectors (ν = 0.25)
600 0.594 0.952 0.998 1 1 1 1 1

1500 0.619 0.960 1.000 1 1 1 1 1
3000 0.594 0.964 0.999 1 1 1 1 1
5500 0.609 0.948 1.000 1 1 1 1 1
8000 0.589 0.952 1 1 1 1 1 1

10 000 0.603 0.957 0.999 1 1 1 1 1

Bernoulli random vectors (v1 = 0.5, v2 = 0.8)
600 0.356 0.870 0.996 1 0.507 0.512 0.526 0.558

1500 0.359 0.892 0.995 1 0.999 1 1 0.999
3000 0.343 0.877 0.998 1 1.000 1 1 1.000
5500 0.355 0.868 0.997 1 1.000 1.000 1.000 1.000
8000 0.332 0.873 0.997 1 1 1 1 1

10 000 0.353 0.872 1 1 1 1 1 1

Bernoulli random vectors (v1 = 0.5, v2 = 0.4)
600 0.153 0.348 0.643 0.901 0.092 0.086 0.079 0.085

1500 0.154 0.372 0.643 0.878 0.239 0.255 0.235 0.241
3000 0.141 0.339 0.649 0.882 0.682 0.680 0.680 0.674
5500 0.156 0.343 0.656 0.893 0.997 0.994 0.994 0.994
8000 0.144 0.353 0.664 0.904 1 1 1 1

10 000 0.139 0.356 0.685 0.889 1 1 1 1

the identity hypothesis. Also, the statistics of Fisher [15] and Ln in (2.7) are both asymptotic
normality (standard normal). As in Fisher [15], we conclude that p-values of the test statistics
are zero which shows evidence to reject the null hypothesis. This is consistent with Fisher’s [15]
conclusion for these two datasets.
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3. Truncation and strategy for the proof of Theorem 1.1

In the rest of the paper, we use K to denote a constant which may take different values at differ-
ent places. The notation oLp(1) stands for a term converging to zero in Lp norm;

a.s.−→ means

“convergence almost surely to”;
i.p.−→ means “convergence in probability to”.

3.1. Truncation

In this section, we truncate the underlying random variables as in Pan and Gao [24]. Choose δn

satisfying

lim
n→∞ δ−4

n E|X11|4I
(|X11| > δn

4
√

np
) = 0, δn ↓ 0, δn

4
√

np ↑ ∞. (3.1)

In what follows, we will use δ to represent δn for convenience. We first truncate the variables
X̂ij = Xij I (|Xij | < δ 4

√
np) and then normalize it as X̃ij = (X̂ij −EX̂ij )/σ , where σ is the stan-

dard deviation of X̂ij . Let X̂ = (X̂ij ) and X̃ = (X̃ij ). Define Â, Ã and Ĝn(f ), G̃n(f ) similarly
by means of (1.1) and (1.3), respectively. We then have

P(A �= Â) ≤ npP
(|X11| ≥ δ 4

√
np

) ≤ Kδ−4E|X11|4I
(|X11| > δ 4

√
np

) = o(1).

It follows from (3.1) that∣∣1 − σ 2
∣∣ ≤ 2

∣∣EX2
11I

(|X11 > δ 4
√

np|)∣∣
≤ 2(np)−1/2δ−2E|X11|4I

(|X11| > δ 4
√

np
) = o

(
(np)−1/2)

and

|EX̂11| ≤ δ−3(np)−3/4E|X11|4I
(|X11| > δ 4

√
np

) = o
(
(np)−3/4).

Therefore

E tr(X̃ − X̂)T (X̃ − X̂) ≤
∑
i,j

E|X̂ij − X̃ij |2

≤ Kpn

(
(1 − σ)2

σ 2
E|X̂11|2 + 1

σ 2
|EX̂ij |2

)
= o(1)

and

E tr X̂T X̂ ≤
∑
i,j

E|X̂ij |2 ≤ Knp, E tr X̃X̃T ≤
∑
i,j

E|X̃ij |2 ≤ Knp.

Recalling that the notation λj (·) represents the j th largest eigenvalue, we then have
λj (XT X) = √

npλj (A) + p. Similar equalities also hold if X,A are replaced by X̂, Â or X̃, Ã.
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Consequently, applying the argument used in Theorem 11.36 in Bai and Silverstein [3] and
Cauchy–Schwarz’s inequality, we have

E
∣∣G̃n(f ) − Ĝn(f )

∣∣ ≤
n∑

j=1

E
∣∣f (

λj (Â)
) − f

(
λj (Ã)

)∣∣
≤ Kf

n∑
j=1

E
∣∣λj (Â) − λj (Ã)

∣∣ ≤ Kf√
np

n∑
j=1

E
∣∣λj

(
X̂T X̂

) − λj

(
X̃T X̃

)∣∣
≤ Kf√

np
E

[
tr(X̃ − X̂)T (X̃ − X̂) · 2

(
tr X̂T X̂ + tr X̃T X̃

)]1/2

≤ 2Kf√
np

[
E tr(X̃ − X̂)T (X̃ − X̂) · (E tr X̂T X̂ + E tr X̃T X̃

)]1/2

= o(1),

where Kf is a bound on |f ′(x)|. Thus, the weak convergence of Gn(f ) is not affected if we re-
place the original variables Xij by the truncated and normalized variables X̃ij . For convenience,
we still use Xij to denote X̃ij , which satisfies the following additional assumption (c):

(c) The underlying variables satisfy

|Xij | ≤ δ 4
√

np, EXij = 0, EX2
ij = 1, EX4

ij = ν4 + o(1),

where δ = δn satisfies limn→∞ δ−4
n E|X11|4I (|X11| > δn

4
√

np) = 0, δn ↓ 0, and
δn

4
√

np ↑ ∞.

For any ε > 0, define the event Fn(ε) = {maxj≤n |λj (A)| ≥ 2 + ε} where A is defined by the
truncated and normalized variables satisfying assumption (c). By Theorem 2 in Chen and Pan
[10], for any � > 0

P
(
Fn(ε)

) = o
(
n−�

)
. (3.2)

Here we would point out that the result regarding the minimum eigenvalue of A can be obtained
similarly by investigating the maximum eigenvalue of −A.

3.2. Strategy of the proof

We shall follow the strategy of Bai and Yao [6]. Specifically speaking, assume that u0, v are
fixed and sufficiently small so that ς ⊂ S (see the definition in the introduction), where ς is the
contour formed by the boundary of the rectangle with (±u0,±iv) where u0 > 2,0 < v ≤ 1. By
Cauchy’s integral formula, with probability one,

Gn(f ) = − 1

2πi

∮
ς

f (z)n
[
mn(z) − m(z) −Xn

(
m(z)

)]
dz,
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where mn(z),m(z) denote the Stieltjes transform of F A(x) and F(x), respectively.
Let

Mn(z) = n
[
mn(z) − m(z) −Xn

(
m(z)

)]
, z ∈ ς.

For z ∈ ς , write Mn(z) = M
(1)
n (z) + M

(2)
n (z) where

M(1)
n (z) = n

[
mn(z) − Emn(z)

]
, M(2)

n (z) = n
[
Emn(z) − m(z) −Xn

(
m(z)

)]
.

Split the contour ς as the union of ςu,ςl, ςr , ς0 where ςl = {z = −u0 + iv, ξnn
−1 < |v| <

v1}, ςr = {z = u0 + iv, ξnn
−1 < |v| < v1}, ς0 = {z = ±u0 + iv, |v| ≤ ξnn

−1} and ςu = {z =
u ± iv1, |u| ≤ u0} and where ξn is a slowly varying sequence of positive constants and v1 is a
positive constant which is independent of n. Throughout this paper, let C1 = {z : z = u + iv,u ∈
[−u0, u0], |v| ≥ v1}.

Proposition 3.1. Under assumptions (b1), (c), the empirical process {Mn(z), z ∈C1} converges
weakly to a Gaussian process {M(z), z ∈ C1} with the mean function

�(z) = 0 (3.3)

and the covariance function

�(z1, z2) = m′(z1)m
′(z2)

[
ν4 − 3 + 2

(
1 − m(z1)m(z2)

)−2]
. (3.4)

As in Bai and Yao [6], the process of {M(z), z ∈ C1} can be extended to {M(z),�(z) /∈
[−2,2]} due to the facts that (i) M(z) is symmetric, for example, M(z̄) = M(z); (ii) the mean
and the covariance function of M(z) are independent of v1 and they are continuous except for
�(z) /∈ [−2,2]. By Proposition 3.1 and the continuous mapping theorem,

− 1

2πi

∫
ςu

f (z)Mn(z)dz
d−→ − 1

2πi

∫
ςu

f (z)M(z)dz.

Thus, to prove Theorem 1.1, it is also necessary to prove the following proposition.

Proposition 3.2. Let z ∈ C1. Under assumptions (b1), (c), there exists some event Un with
P(Un) → 0, as n → ∞, such that

lim
v1↓0

lim sup
n→∞

E

∣∣∣∣∫⋃
i=l,r,0 ςi

M(1)
n (z)I

(
Uc

n

)
dz

∣∣∣∣2

= 0, (3.5)

lim
v1↓0

lim sup
n→∞

∣∣∣∣∫⋃
i=l,r,0 ςi

EMn(z)I
(
Uc

n

)
dz

∣∣∣∣ = 0 (3.6)

and

lim
v1↓0

E

∣∣∣∣∫
ςi

M(1)(z)dz

∣∣∣∣2

= 0, lim
v1↓0

E

∣∣∣∣∫
ςi

M(z)dz

∣∣∣∣2

= 0. (3.7)
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Since E|M(1)(z)|2 = �(z, z̄) and E|M(z)|2 = �(z, z̄) + |EM(z)|2, (3.7) can be easily ob-
tained from Proposition 3.1. For i = 0, if we choose Un = Fn(ε) with the ε = (u0 − 2)/2, then
when Uc

n happens, ∀z ∈ ς0, we have |mn(z)| ≤ 2/(u0 − 2) and |m(z)| ≤ 1/(u0 − 2). Thus∣∣∣∣∫
ς0

M(1)
n (z)I

(
Uc

n

)
dz

∣∣∣∣ ≤ n

(
4

u0 − 2

)2

‖ς0‖ ≤ 4ξn

(u0 − 2)2
,

where ‖ς0‖ represents the length of ς0. Furthermore,∣∣∣∣∫
ς0

Mn(z)I
(
Uc

n

)
dz

∣∣∣∣ ≤ n

(
2

u0 − 2
+ 1

u0 − 2
+ K

n

p

)2

‖ς0‖.

These imply that (3.6) and (3.5) are true for z ∈ ς0 by noting that ξn → 0 as p → ∞.
Sections 5 and 6 are devoted to the proof of Proposition 3.1. The main steps are summarized

in the following:

• According to Theorem 8.1 in Billingsley [8], to establish the convergence of the process
{Mn(z), z ∈ C1}, it suffices to prove the finite-dimensional convergence of the random part
M

(1)
n (z) and its tightness, and the convergence of the non-random part M

(2)
n (z).

• For the random part M
(1)
n (z), we rewrite it in terms of a martingale expression so that we

may apply the central limit theorem of martingales to find its asymptotic mean and covari-
ance.

• For the non-random part M
(2)
n (z), by the formula of the inverse of a matrix and the equation

satisfied by m(z) we develop an equation for (Emn(z) − m(z)). Based on it, we then find
its limit under assumptions n/p → 0 and n3/p = O(1) for Theorem 1.1 and Corollary 1.1,
respectively.

Section 7 uses Lemma 4.4 below to finish the proofs of (3.5) for i = l, r so that the proof of
Proposition 3.2 is completed. Section 8 uses Bai and Yao’s [6] asymptotic mean and covariance
function to conclude the proof of Theorem 1.1.

4. Preliminary results

This section is to provide simplification of M
(1)
n (z) and some useful lemmas needed to prove

Proposition 3.1.

4.1. Simplification of M
(1)
n (z)

The aim of this subsection is to simplify M
(1)
n (z) so that M

(1)
n (z) can be written in the form of

martingales. Some moment bounds are also proved.
Define D = A−zIn. Let sk be the kth column of X and Xk be a p× (n−1) matrix constructed

from X by deleting the kth column. We then similarly define Ak = 1√
np

(XT
k Xk − pIn−1) and

Dk = Ak − zIn−1. The kth diagonal element of D is a
diag
kk = 1√

np
(sT

k sk − p) − z and the kth row
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of D with the kth element deleted is qT
k = 1√

np
sT
k Xk . The Stieltjes transform of F A has the form

mn(z) = 1
n

tr D−1. The limiting Stieltjes transform m(z) satisfies

m(z) = − 1

z + m(z)
,

∣∣m(z)
∣∣ ≤ 1 (4.1)

(one may see Bai and Yao [6]).
Define the σ -field Fk = σ(s1, s2, . . . , sk) and the conditional expectation Ek(·) = E(·|Fk). By

the matrix inversion formula, we have (see (3.9) of Bai [4])

tr
(
D−1 − D−1

k

) = − (1 + qT
k D−2

k qk)

−a
diag
kk + qT

k D−1
k qk

. (4.2)

We then obtain

M(1)
n (z) = tr D−1 − E tr D−1 =

n∑
k=1

(Ek − Ek−1) tr
(
D−1 − D−1

k

) =
n∑

k=1

�k (4.3)

= (Ek − Ek−1)ιk − Ekκk, (4.4)

where

�k = −(Ek − Ek−1)βk

(
1 + qT

k D−2
k qk

)
,

ιk = −β tr
k βkηk

(
1 + qT

k D−2
k qk

)
,

ηk = 1√
np

(
sT
k sk − p

) − γk1, βk = 1

−a
diag
kk + qT

k D−1
k qk

,

β tr
k = 1

z + (1/(np)) tr M(1)
k

, M(s)
k = XkD−s

k XT
k , s = 1,2,

γks = qT
k D−s

k qk − (np)−1 tr M(s)
k , κk = β tr

k γk2.

In the above equality, �k is obtained by (4.2) and the last equality uses the facts that

βk = β tr
k + βkβ

tr
k ηk (4.5)

and

(Ek − Ek−1)

[
β tr

k

(
1 + 1

np
tr M(2)

k

)]
= 0, Ek−1κk = 0.

We remind the readers that the variable z has been dropped from the expressions such as
D−1,D−1

k , βk , γks and so on. When necessary, we will also indicate them as D−1(z),D−1
k (z),

βk(z), γks(z), etc.
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We next provide some useful bounds. It follows from the definitions of D and Dk that

D−1XT X = pD−1 + √
np

(
In + zD−1),

(4.6)
D−1

k XT
k Xk = pD−1

k + √
np

(
In−1 + zD−1

k

)
.

Since the eigenvalues of D−1 have the form 1/(λj (A)−z), ‖D−1‖ ≤ 1/v1 and similarly ‖D−1
k ‖ ≤

1/v1. From Theorem 11.4 in Bai and Silverstein [3], we note that −βk(z) is the kth diagonal
element of D−1 so that |βk| ≤ 1/v1. Moreover, considering the imaginary parts of 1/β tr

k and
1/βk and by (4.6) we have

∣∣β tr
k

∣∣ ≤ 1/v1,

∣∣∣∣1 + 1

np
tr M(s)

k

∣∣∣∣ ≤ (
1 + 1/v2s

1

)
, s = 1,2 (4.7)

and ∣∣(1 + qT
k D−2

k qk

)
βk

∣∣ ≤ 1 + qT
k D−1

k D
−1
k qk

v1(1 + qT
k D−1

k D
−1
k qk)

= 1/v1. (4.8)

Applying (4.5), we split ιk as

ιk = −
(

1 + 1

np
tr M(2)

k

)(
β tr

k

)2
ηk − γk1

(
β tr

k

)2
ηk −

(
1 + 1

np
qT

k D−2
k qk

)(
β tr

k

)2
βkη

2
k

= ιk1 + ιk2 + ιk3.

As will be seen, ιk1, ιk2 could be negligible by Lemma 4.1 below.
By Lemma 4.1, (4.7) and (4.8), we have

E

∣∣∣∣∣
n∑

k=1

(Ek − Ek−1)ιk3

∣∣∣∣∣
2

≤
n∑

k=1

E

∣∣∣∣(1 + 1

np
sT
k M(2)

k sk

)(
β tr

k

)2
βkη

2
k

∣∣∣∣2

≤ Kδ4,

and that

E

∣∣∣∣∣
n∑

k=1

(Ek − Ek−1)ιk2

∣∣∣∣∣
2

≤
n∑

k=1

E
∣∣γk1

(
β tr

k

)2
ηk

∣∣2 ≤ K

n∑
k=1

(
E|γk1|4E|ηk|4

)1/2 ≤ Kn

p
+ Kδ2.

Therefore, M
(1)
n (z) is simplified as

M(1)
n (z) =

n∑
k=1

Ek

[
−

(
1 + 1

np
tr M(2)

k

)(
β tr

k

)2
ηk − κk

]
+ oL2(1)

(4.9)

=
n∑

k=1

Ek

(
αk(z)

) + oL2(1),
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where αk(z) represents the term in the square bracket. Thus, to prove finite-dimensional conver-
gence of M

(1)
n (z), z ∈C1 we need only consider the sum

l∑
j=1

aj

n∑
k=1

Ek

(
αk(zj )

) =
n∑

k=1

l∑
j=1

ajEk

(
αk(zj )

)
, (4.10)

where a1, . . . , al are complex numbers and l is any positive integer.

4.2. Useful lemmas

The aim of this subsection is to provide some useful lemmas.

Lemma 4.1. Let z ∈ C1. Under assumptions (b1), (c), we have

E|γks |2 ≤ Kn−1, E|γks |4 ≤ K

(
1

n2
+ n

p2
+ 1

np

)
, (4.11)

E|ηk|2 ≤ Kn−1, E|ηk|4 ≤ K
δ4

n
+ K

(
1

n2
+ p

n2
+ 1

np

)
. (4.12)

Proof. From Lemma 5 in Pan and Zhou [25], we obtain

E
∣∣sT

k Hsk − tr H
∣∣4 ≤ K

(
EX4

11

)2
E(tr HH)2 ≤ KE

(
tr M(s)

k M
(s)

k

)2 ≤ Kn2p4, (4.13)

where H = M(s)
k − diag(a

(s)
11 , . . . , a

(s)
nn ) and a

(s)
jj is the j th diagonal element of the matrix M(s)

k .

To get the third inequality in (4.13), by (4.6) and the uniform bound for ‖D−1
k ‖, we obtain∣∣tr M(s)

k M
(s)

k

∣∣ = ∣∣tr D−s
k XT

k XkD
−s

k XT
k Xk

∣∣ ≤ n

v
2(s−1)
1

∥∥D−1
k XT

k Xk

∥∥2

(4.14)

≤ n

v
2(s−1)
1

∥∥pD−1
k + √

np
(
In−1 + zD−1

k

)∥∥2 ≤ Kn2p4

v2s
1

.

Let Ej (·) = E(·|X1k,X2k, . . . ,Xjk), j = 1, . . . , p. Since {Xjk}kj=1 are independent of a
(s)
jj ,

(X2
jk − 1)a

(s)
jj = (Ej −Ej−1)(X

2
jk − 1)a

(s)
jj . By Burkholder’s inequality and assumption (c)

E

∣∣∣∣∣
p∑

j=1

(
X2

jk − 1
)
a

(s)
jj

∣∣∣∣∣
4

= E

∣∣∣∣∣
p∑

j=1

(Ej −Ej−1)
(
X2

jk − 1
)
a

(s)
jj

∣∣∣∣∣
4

≤ KE

(
n∑

j=1

E|X11|4
∣∣a(s)

jj

∣∣2

)2

+ K

p∑
j=1

E|X11|8E|ajj |4 (4.15)

≤ Kn5p2 + n3p3,
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where we use the fact that, with wT
j being the j th row of Xk ,

E
∣∣a(s)

jj

∣∣4 = E
∣∣ëT

j XkD−s
k XT

k ëj

∣∣4

(4.16)
= E

∣∣wT
j D−s

k wj

∣∣4 ≤ v−4s
1 E

∥∥wT
j

∥∥8 ≤ Kn4 + Kn2p.

Here for j = 1, . . . , p, ëj denotes the p-dimensional unit vector with the j th element being 1
and all the remaining being zero. It follows from (4.13) and (4.15) that

E|γks |4 ≤ K

n4p4
E

∣∣∣∣∣
p∑

j=1

(
X2

jk − 1
)
a

(s)
jj

∣∣∣∣∣
4

+ K

n4p4
E

∣∣sT
k Hsk − tr H

∣∣4

≤ K

(
1

n2
+ n

p2
+ 1

np

)
.

Moreover, applying Lemma 8.10 in Bai and Silverstein [3], we have

E|ηk|4 ≤ K

n2p2
E

∣∣sT
k sk − n

∣∣4 + KE
∣∣γk1(z)

∣∣4 ≤ K
δ4

p
+ K

(
1

n2
+ p

n2
+ 1

np

)
.

The bounds of the absolute second moments for γks, ηk follow from a direct application of
Lemma 8.10 in Bai and Silverstein [3], (4.6) and the uniform bound for ‖D−1

k ‖. �

When z ∈ ςl ∪ ςr , the spectral norm of D−1(z) as well as the quantities in (4.7) or Lemma 4.1
are unbounded. In order to prove Lemma 6.1, we will establish the bounds similar to those in
(4.7) and in Lemma 4.1 for z ∈ ςl ∪ ςr below.

Let the event Un = {maxj≤n |λj (A)| ≥ u0/2 + 1} and Unk = {maxj≤n |λj (Ak)| ≥ 1 + u0/2}.
The Cauchy interlacing theorem ensures that

λ1(A) ≥ λ1(Ak) ≥ λ2(A) ≥ λ2(Ak) ≥ · · · ≥ λn−1(Ak) ≥ λn(A). (4.17)

Thus, Unk ⊂ Un. By (3.2) for any � > 0

P(Unk) ≤ P(Un) = o
(
n−�

)
. (4.18)

We claim that

max
{∥∥D−1(z)

∥∥,
∥∥D−1(z)

∥∥, |βk|
} ≤ ξ−1

n n; (4.19)

I (Uc
n)

|λj (A) − z| ≤ K, j = 1,2, . . . , n,

(4.20)
I (Uc

nk)

|λj (Ak) − z| ≤ K, i = 1,2, . . . , (n − 1);∥∥D−1(z)
∥∥I

(
Uc

n

) ≤ 2/(u0 − 2),
∥∥D−1

k (z)
∥∥I

(
Uc

nk

) ≤ 2/(u0 − 2). (4.21)
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Indeed, the quantities in (4.19) are bounded due to |1/�(z)| ≤ ξ−1
n n while (4.20) holds because

I (Uc
n)/|λj (A) − z| (or I (Uc

n)/|λj (Ak) − z|) is bounded by v−1
1 when z ∈ ςu and bounded by

2/(u0 −2) when z ∈ ςl ∪ςr . The estimates in (4.21) hold because of the eigenvalues of D−1I (Uc
n)

(or D−1I (Uc
n)) having the form I (Uc

n)/(λj (A) − z) (or I (Uc
n)/(λj (Ak) − z)).

Lemma 4.2. Let z ∈ ςn. The following bound

|βk|I
(
Uc

n

) ≤ K, (4.22)

holds.

Proof. In view of (4.2), to prove (4.22), we need to find an upper bound for | tr D−1 −
tr D−1

k |I (Uc
n) and a lower bound for |1 + qT

k D−2
k qk|I (Uc

n). It follows from (4.20) and (4.17)
that

∣∣tr D−1 − tr D−1
k

∣∣I(
Uc

n

) ≤
∣∣∣∣∣

n∑
j=1

1

λj (A) − z
−

n−1∑
j=1

1

λj (Ak) − z

∣∣∣∣∣I(
Uc

n

)

≤
(

n−1∑
j=1

λj (A) − λj (Ak)

|λj (A) − z||λj (Ak) − z| + 1

|λn(A) − z|

)
I
(
Uc

n

)
(4.23)

≤ K

(
n−1∑
j=1

(
λj (A) − λj (Ak)

) + 1

)
I
(
Uc

n

)
≤ K

(
λ1(A) − λn(A) + 1

)
I
(
Uc

n

) ≤ K(u0 + 3).

Let uj (Ak), j = 1, . . . , n − 1 be the eigenvectors corresponding to the eigenvalues λj (Ak), j =
1, . . . , n − 1. Then

∑n−1
j=1

uj (Ak)uT
j (Ak)

(λj (Ak)−z)2 is the spectral decomposition of D−2
k . We distinguish two

cases:

(i) When z ∈ V1 = ςu ∪ {z : |�(z)| > (u0 − 2)/4}, via (4.7), we then obtain

|βk|I
(
Uc

n

) ≤ 1/
∣∣�(z)

∣∣ ≤ max
{
v−1

1 ,4/(u0 − 2)
} ≤ K.

Thus, (4.22) is true for z ∈ V1.
(ii) When z ∈ V2 = (ςl ∪ ςr) ∩ {z : |�(z)| < (u0 − 2)/4}, if Uc

n happens, we have |λj (Ak) −
�(z)| ≥ u0−2

2 since �(z) = ±u0 for z ∈ V2. A direct calculation shows

�((
1+qT

k D−2
k qk

)
I
(
Uc

n

)) = 1+
n−1∑
j=1

(λj (Ak) − �(z))2 − |�(z)|2
|λj (Ak) − z|4

(
qT

k uj (Ak)
)2

I
(
Uc

n

)
> 1.

Therefore, |1 + qT D−2
k q|I (Uc

n) has a lower bound which, together with (4.23), implies
(4.22) is true for z ∈ V2.
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Since ςn = V1 ∪ V2, we finish the proof of Lemma 4.2. �

Lemma 4.3. Let z ∈ ςn and μ̄k = 1√
np

(sT
k sk − p) − qT

k D−1
k (z)qk + E 1

np
tr XD−1(z)XT . The

following bounds hold

E|μ̄k|4 ≤ K
δ4

n
+ K

(
1

n2
+ n

p2
+ 1

np

)
(4.24)

and ∣∣Eμ̄3
k

∣∣ = o
(
n−1). (4.25)

Proof. Write

μ̄k = 1√
np

(
sT
k sk − p

) − γk1 +
(

1 + z

√
p

n

)(
1

n
tr D−1(z) − 1

n
tr D−1

k (z)

)

−
(

1 + z

√
p

n

)(
1

n
tr D−1(z) − E

1

n
tr D−1(z)

)
+ 1√

np

= L1 − γk1 + L3 + L4 + L5.

When the event Uc
n happens, reviewing the proof of the second result of (4.11) and via (4.21),

we also have

E|γks |4I
(
Uc

n

) ≤ K

(
1

n2
+ n

p2
+ 1

np

)
, m = 1,2.

Moreover, by (4.18) and (4.19)

E|γks |4I (Un) = o
(
n−�

)
.

It follows that

E|γks |4 ≤ K

(
1

n2
+ n

p2
+ 1

np

)
, m = 1,2. (4.26)

Using Lemma 8.10 in Bai and Silverstein [3], (4.18), (4.19) and (4.23) we then have

E|L1|4 ≤ Kδ4n−1, E|L3|4 ≤ Kn−4, E|L5|4 ≤ Kn−2p−2. (4.27)

As for L4, by Burkholder’s inequality, (4.3) and (4.23), we have

E|L4|4 ≤ Kn−4E

∣∣∣∣∣
n∑

k=1

(Ek − Ek−1)
(
tr D−1 − tr D−1

k

)∣∣∣∣∣
4

≤ Kn−4
n∑

k=1

E
∣∣tr D−1(z) − tr D−1

k (z)
∣∣4 + Kn−1E

(
n∑

k=1

Ek

∣∣tr D−1(z) − tr D−1
k (z)

∣∣2

)2
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≤ Kn−4
n∑

k=1

E
∣∣tr D−1(z) − tr D−1

k (z)
∣∣4

I
(
Uc

n

)
(4.28)

+ Kn−4E

(
n∑

k=1

Ek

∣∣tr D−1(z) − tr D−1
k (z)

∣∣2

)2

I
(
Uc

n

) + o
(
n−�

)
≤ Kn−2.

Therefore, the proof of (4.24) is completed. Also, the analysis above yields

E|L1 − γk1|4 ≤ K

(
δ2

n
+ 1

n2
+ n

p2
+ 1

np

)
≤ Kδ2n−1, E|L3 + L4 + L5|4 ≤ Kn−2. (4.29)

It is also easy to verify that, for z ∈ ςn,

E

∣∣∣∣ 1√
np

(
sT
k sk − p

)∣∣∣∣2

≤ Kn−1, E|γkm|2 ≤ Kn−1. (4.30)

We proceed to prove (4.25). First of all

∣∣EL3
1

∣∣ = 1

(np)3/2

∣∣∣∣∣E
(

p∑
j=1

(
X2

jk − 1
))3∣∣∣∣∣ = 1

(np)3/2

p∑
j=1

E
(
X2

jk − 1
)3 ≤ Kδ2/n. (4.31)

For s = 1,2, denoting M(s)
k = (a

(s)
ij )p×p , we then have

Eγ 3
ks = 1

n3p3
E

(∑
i �=j

XikXjka
(s)
ij +

n∑
i=1

(
X2

ik − 1
)
a

(s)
ii

)3

= J1 + J2 + J3 + J4,

where

J1 = 1

n3p3
E

( ∑
i �=j,j �=t,t �=i

X2
ikX

2
jkX

2
tka

(s)
ij a

(s)
j t a

(s)
ti

)
+ 4

n3p3
E

(∑
i �=j

X3
ikX

3
jk

(
a

(s)
ij

)3
)
� J11 + J12,

J2 = 1

n3p3
E

(
p∑

i=1

(
X2

ik − 1
)3(

a
(s)
ii

)3

)
,

J3 = 3
1

n3p3
E

(∑
i �=j

Xik

(
X2

ik − 1
)
Xjk

(
X2

jk − 1
)
a

(s)
ij a

(s)
ii a

(s)
jj

)
,

J4 = 3
2

n3p3
E

(∑
i �=j

X2
ik

(
X2

ik − 1
)
X2

jka
(s)
ij a

(s)
ii a

(s)
j i

)
.
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The inequality (4.16) can be extended to the range z ∈ ςn by a similar method as that in (4.26).
Therefore,

|J2| ≤ K
1

n3p3
pδ2√np

(
n4 + n2p

)3/4 ≤ Kδ2n−1,

|J3| ≤ K
1

n3p3
p2E‖wi‖3E‖wj‖3 + o

(
n−�

) ≤ Kp−1 + o
(
n−�

)
, J4 ≤ Kp−1 + o

(
n−�

)
,

where wT
j is the j th row of Xk .

Consider J1 now. We first note that J12 = O(p−1). Split J12 as

J12 = 1

n3p3
E tr

(
XkD−s

k XT
k

)3 − 1

n3p3
E

∑
i �=t

a
(s)
ii a

(s)
it a

(s)
ti

+ 1

n3p3
E

∑
i �=j

a
(s)
ij a

(s)
jj a

(s)
j i + 1

n3p3
E

∑
i �=j

a
(s)
ij a

(s)
j i a

(s)
ii + 1

n3p3
E

p∑
i=1

(
a

(s)
ii

)3

≤ Kn−2 + Kp−1.

Thus, we obtain ∣∣Eγ 3
ks

∣∣ ≤ K
(
δ2n−1 + p−1). (4.32)

It follows from (4.29), (4.30) and (4.32) that∣∣Eμ̄3
k

∣∣ ≤ ∣∣E(L1 − γk1)
3
∣∣ + ∣∣E(L3 + L4 + L5)

3
∣∣ + 3

∣∣E(L1 − γk1)(L3 + L4 + L5)
2
∣∣

+ 3
∣∣E(L1 − γk1)

2(L3 + L4 + L5)
∣∣

≤ ∣∣EL3
1

∣∣ + ∣∣Eγ 3
k3

∣∣ + 3E1/2EL4
1 · E1/2γ 2

ks + 3E1/2L2
1 · E1/2γ 4

ks + Kn−3/2 + Kδn−1

= o
(
n−1).

The proof of Lemma 4.3 is completed. �

The following lemma will be used to prove the first result of (3.5) and (6.15) below.

Lemma 4.4. For z ∈ ςn we have

E
∣∣M(1)

n (z)
∣∣ ≤ K,

where M
(1)
n (z) = n(mn(z) − Emn(z)).

Proof. Note that the expression M
(1)
n (z) in (4.3) may not be suitable for z ∈ ςn, since β tr

k or even
β tr

k I (Uc
n) may be not bounded. For this reason, we introduce the following notations with the
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purpose to obtain a similar expression to (4.3). Let

έk = 1

z + (1/(np))E tr M(1)
k

, μ́k = 1√
np

(
sT
k sk − p

) − γk1 −
(

1

np
tr M(1)

k − 1

np
E tr M(1)

k

)
.

Hence

βk = έk + βkέkμ́k. (4.33)

As in (4.3) and a few lines below it, by (4.33), we write

M(1)(z) =
n∑

k=1

(Ek − Ek−1)(ίk1 + ίk2 + ίk3 + κ́k),

where

ίk1(z) = −
(

1 + 1

np
tr M(2)

k

)
(έk)

2μ́k, ίk2(z) = −γk1(έk)
2μ́k,

ίk3(z) = −
(

1 + 1

np
qT

k D−2
k (z)qk

)
βk(έk)

2μ́2
k, κ́k = έkγk2(z).

We next derive the bounds for έk and the forth moment of μ́k . Since Fn
a.s.−→ F as n → ∞, we

conclude from (4.18), (4.19), (4.21) and the dominated convergence theorem that, for any fixed
positive integer t

E
∣∣mn(z) − m(z)

∣∣t → 0. (4.34)

By (4.6), (4.23) and (4.34), we then have

E
1

np
tr M(1)

k = E

[(
1 + z

√
n

p

)
mn(z) −

(
1 + z

√
n

p

)
1

n

(
tr D−1 − tr D−1

k

) + n − 1√
np

]
→ m(z).

Hence,

|έk| =
∣∣∣∣ 1

z + m(z) + o(1)

∣∣∣∣ ≤
∣∣∣∣ 2

z + m(z)

∣∣∣∣ ≤ 2. (4.35)

On the other hand, via (4.6), (4.23) and (4.28)

E

∣∣∣∣ 1

np
tr M(1)

k − E
1

np
tr M(1)

k

∣∣∣∣4

≤
(

1 + z

√
n

p

)4

n−4E
∣∣tr D−1 − E tr D−1

∣∣4 ≤ Kn−2,

and this, together with (4.26), implies

E|μ́k|4 ≤ K
δ4

n
+ K

(
1

n2
+ n

p2
+ 1

np

)
. (4.36)
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Combining (4.35), (4.36), Lemma 4.2, (4.18), (4.19), (4.21) with Burkholder’s inequality, we
obtain

E
∣∣M(1)

n (z)
∣∣2 ≤ K.

The proof of the lemma is completed. �

5. Convergence of M
(1)
n (z)

To prove Proposition 3.1, we need to establish (i) the finite-dimensional convergence and the
tightness of M

(1)
n (z); (ii) the convergence of the mean function EM(z). This section is devoted

to the first target. Throughout this section, we assume that z ∈ C1 and K denotes a constant
which may change from line to line and may depend on v1 but is independent of n.

5.1. Application of central limit theorem for martingales

In order to establish the central limit theorem for the martingale (4.10), we have to check the
following two conditions:

Condition 5.1 (Lyapunov condition). For some a > 2,

n∑
k=1

Ek−1

[∣∣∣∣∣Ek

(
l∑

j=1

ajEk

(
αk(zj )

))∣∣∣∣∣
a]

i.p.−→ 0.

Condition 5.2. The covariance

�n(z1, z2)�
n∑

k=1

Ek−1
[
Ekαk(z1) · Ekαk(z2)

]
(5.1)

converges in probability to �(z1, z2) whose explicit form will be given in (5.29).

Condition 5.1 is satisfied by choosing a = 4, using Lemma 4.1, and the fact that via (4.7)

∣∣αk(z)
∣∣ =

∣∣∣∣(1 + 1

np
tr M(2)

k

)(
β tr

k

)2
ηk + β tr

k γk

∣∣∣∣ ≤ 1 + v−2
1

v2
1

|ηk| + 1

v1
|γk|.

Consider Condition 5.2 now. Note that

αk(z) = −
(

1 + 1

np
tr M(2)

k

)(
β tr

k

)2
ηk − γkβ

tr
k = ∂

∂z

(
β tr

k ηk

)
.

By the dominated convergence theorem, we have

�n(z1, z2) = ∂2

∂z2 ∂z1

n∑
k=1

Ek−1
[
Ek

(
β tr

k (z1)ηk(z1)
) · Ek

(
β tr

k (z2)ηk(z2)
)]

. (5.2)
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By (4.6), (4.2), (4.8), (4.1) and the fact mn(z)
a.s.−→ m(z), and the dominated convergence theo-

rem again, for any fixed t ,

E

∣∣∣∣ 1

np
tr M(1)

k − m(z)

∣∣∣∣t → 0, E
∣∣β tr

k (z) + m(z)
∣∣t → 0, as n → ∞. (5.3)

Substituting (5.3) into (5.2) yields

�n(z1, z2) = ∂2

∂z2 ∂z1

[
m(z1)m(z2)

n∑
k=1

Ek−1
(
Ekηk(z1) · Ekηk(z2)

) + oi.p.(1)

]
(5.4)

= ∂2

∂z2 ∂z1

[
m(z1)m(z2)�̃n(z1, z2) + oi.p.(1)

]
.

By Vitali’s theorem (see Titchmarsh [28], page 168), it is enough to find the limit of �̃n(z1, z2).
To this end, with notation Ek(M

(1)
k (z)) = (aij (z))n×n, write

Ekηk(z) = 1√
np

p∑
j=1

(
X2

jk − 1
) − 1

np

(∑
i �=j

XikXjkaij (z) +
p∑

i=1

(
X2

ik − 1
)
aii(z)

)
.

By the above formula and independence between {Xik}pi=1 and Ek(M
(1)
k ), a straightforward cal-

culation yields

Ek−1
[
Ekηk(z1) · Ekηk(z2)

] = 1

n
E

(
X2

11 − 1
)2 + A1 + A2 + A3 + A4, (5.5)

where

A1 = − 1

np
√

np
E

(
X2

11 − 1
)2

p∑
i=1

aii(z1), A2 = − 1

np
√

np
E

(
X2

11 − 1
)2

p∑
i=1

aii(z2),

A3 = 2

n2p2

p∑
i �=j

aij (z1)aij (z2), A4 = 1

n2p2
E

(
X2

11 − 1
)2

p∑
i=1

aii(z1)aii(z2).

Note that aii(z) is precisely Eka
(1)
ii in (4.16). From (4.16), we then obtain for j = 1,2,4

E

∣∣∣∣∣
n∑

k=1

Aj

∣∣∣∣∣ → 0.

Also, we conclude from (4.16) that

n∑
k=1

A3 = 2

n

n∑
k=1

Zk − 2

n2p2

n∑
k=1

p∑
i=1

aii(z1)aii(z2) = 2

n

n∑
k=1

Zk + oL1(1),
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where

Zk = 1

np2
trEkM(1)

k (z1) · EkM(1)
k (z2).

Summarizing the above we see that

�̃n(z1, z2) = 2

n

n∑
k=1

Zk + ν4 − 1 + oL1(1). (5.6)

5.2. The asymptotic expression of Zk

The goal is to derive an asymptotic expression of Zk with the purpose of obtaining the limit of
�̃n(z1, z2).

5.2.1. Decomposition of Zk

To evaluate Zk , we need two different decompositions of EkM(1)
k (z). With slight abuse of nota-

tion, let {ei , i = 1, . . . , k − 1, k + 1, . . . , n} be the (n − 1)-dimensional unit vectors with the ith
(or (i −1)th) element equal to 1 and the remaining equal to 0 according as i < k (or i > k). Write
Xk = Xki + sieT

i . Define

Dki,r = Dk − eihT
i = 1√

np

(
XT

kiXk − pI(i)

) − zIn−1,

Dki = Dk − eihT
i − rieT

i = 1√
np

(
XT

kiXki − pI(i)

) − zIn−1,

(5.7)

hT
i = 1√

np
sT
i Xki + 1√

np

(
sT
i si − p

)
eT
i , ri = 1√

np
XT

kisi ,

ζi = 1

1 + ϑi

, ϑi = hT
i D−1

ki,r (z)ei , Mki = XkiD
−1
ki (z)XT

ki .

Here I(i) is obtained from In−1 with the ith (or (i − 1)th) diagonal element replaced by zero if
i < k (or i > k). With respect to the above notations we would point out that, for i < k (or i > k),
the matrix Xki is obtained from Xk with the entries on the ith (or (i − 1)th) column replaced by
zero; hT

i is the ith (or (i − 1)th) row of Ak and ri is the ith (or (i − 1)th) column of Ak with the
ith (or (i − 1)th) element replaced by zero. (XT

kiXk − pI(i)) is obtained from (XT
k Xk − pIn−1)

with the entries on the ith (or (i − 1)th) row and ith (or (i − 1)th) column replaced by zero.
The notation defined above may depend on k. When we obtain bounds or limits for them such

as 1
n

tr D−1
ki the results hold uniformly in k.

Observing the structure of the matrices Xki and D−1
ki , we have some crucial identities,

Xkiei = 0, eT
i D−1

ki,r = eT
i D−1

ki = −z−1ei , (5.8)
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where 0 is a p-dimensional vector with all the elements equal to 0. By (5.8) and the frequently
used formulas

Y−1 − W−1 = −W−1(Y − W)Y−1,(
Y + abT

)−1a = Y−1a
1 + bT Y−1a

, (5.9)

bT
(
Y + abT

)−1 = bT Y−1

1 + bT Y−1a
,

we have

D−1
k − D−1

ki,r = −ζiD
−1
ki,reihT

i D−1
ki,r ,

(5.10)

D−1
ki,r − D−1

ki = 1

z
√

np
D−1

ki XT
kisieT

i .

We first claim the following decomposition of EkM(1)
k (z), for i < k,

EkM(1)
k (z) = EkMki − Ek

(
ζi

znp
MkisisT

i Mki

)
+ Ek

(
ζi

z
√

np
Mki

)
sisT

i

+ sisT
i Ek

(
ζi

z
√

np
Mki

)
− Ek

(
ζi

z

)
sisT

i (5.11)

= B1(z) + B2(z) + B3(z) + B4(z) + B5(z).

Indeed, by the decomposition of Xk , write

M(1)
k = XkiD

−1
k XT

ki + XkiD
−1
k eisT

i + sieT
i D−1

k XT
ki + sieT

i D−1
k eisT

i .

Applying (5.7), (5.8) and (5.10), we obtain

XkiD
−1
k XT

ki = XkiD
−1
ki,rXT

ki − ζiXT
kiD

−1
ki,reihT

i D−1
ki,rXT

ki

= Mki − ζi

z
√

np
Mkisi · 1√

np
sT
i XkiD

−1
ki,rXT

ki

= Mki − ζi

znp
MkisisT

i Mki .

Similarly,

XkiD
−1
k eisT

i = ζi

z
√

np
MkisisT

i , sieT
i D−1

k XT
ki = ζi

z
√

np
sisT

i Mki ,

sieT
i D−1

k eisT
i = ζisieT

i D−1
ki,reisT

i = −ζi

z
sisT

i .
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Summarizing the above and noting Ek(si ) = si for i < k yield (5.11), as claimed.
On the other hand, write

Dk =
n∑

i=1(�=k)

eihT
i − zIn−1.

Multiplying by D−1
k on both sides, we have

zD−1
k = −In−1 +

n∑
i=1(�=k)

eihT
i D−1

k . (5.12)

Therefore, by (5.8), (5.10) and the fact that XkXT
k = ∑

i �=k sisT
i , we have

zEk

(
M(1)

k (z)
) = −Ek

(
XkXT

k

) +
n∑

i=1(�=k)

Ek−1
(
XkeihT

i D−1
k XT

k

)

= −Ek

(
n∑

i=1(�=k)

sisT
i

)
+

n∑
i=1(�=k)

Ek

(
ζisihT

i D−1
ki,r

(
XT

ki + eisT
i

))
(5.13)

= −(n − k)In−1 −
∑
i<k

sisT
i +

n∑
i=1(�=k)

Ek

(
ζi√
np

sisT
i Mki

)

+
n∑

i=1(�=k)

Ek

(
ζiϑisisT

i

)
.

Consequently, by splitting Ek(M
(1)
k (z2)) as in (5.11) for i < k and z1Ek(M

(1)
k (z1)) as in (5.13),

we obtain

z1Zk = z1

np2
trEkM(1)

k (z1) · EkM(1)
k (z2)

(5.14)
= C1(z1, z2) + C2(z1, z2) + C3(z1, z2) + C4(z1, z2),

where

C1(z1, z2) = − 1

np2
(n − k) trEkM(1)

k (z2),

C2(z1, z2) = − 1

np2

∑
i<k

sT
i

(
5∑

j=1

Bj (z2)

)
si =

5∑
j=1

C2j ,
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C3(z1, z2) = 1

np2

∑
i<k

Ek

[
ζi(z1)√

np
sT
i Mki(z1)

(
5∑

j=1

Bj (z2)

)
si

]

+ 1

np2

∑
i>k

Ek

[
ζi(z1)√

np
sT
i Mki(z1)EkM(1)

k (z2)si

]
=

6∑
j=1

C3j ,

C4(z1, z2) = 1

np2

∑
i<k

Ek

[
ζi(z1)ϑi(z1)sT

i

(
5∑

j=1

Bj (z2)

)
si

]

+ 1

np2

∑
i>k

Ek

[
ζi(z1)ϑi(z1)sT

i EkM(1)
k (z2)si

] =
6∑

j=1

C4j ,

where C2j corresponds to Bj , j = 1, . . . ,5, for example, C21 = − 1
np2

∑
i<k sT

i (B1(z2))si , and
C3j and C4j are similarly defined. Here both C3(z1, z2) and C4(z1, z2) are broken up into two
parts in terms of i > k or i < k. As will be seen, the terms in (5.14) tend to 0 in L1, except
C25,C34,C45. Next let us demonstrate the details.

5.2.2. Conclusion of the asymptotic expansion of Zk

The purpose is to analyze each term in Cj(z1, z2), j = 1,2,3,4. We first claim the limits of ζi, ϑi

which appear in Cj(z1, z2) for j = 2,3,4:

ϑi
L4−→ m(z)/z, ζi(z)

L4−→ −zm(z), as n → ∞. (5.15)

Indeed, by (5.8) and (5.10), we have

ϑi = 1

znp
sT
i Mkisi − 1

z
√

np

(
sT
i si − p

)
. (5.16)

Replacing M(m)
k in γkm(z) by Mki , by a proof similar to that of (4.11), we have

E

∣∣∣∣ 1

np
sT
i Mkisi − 1

np
tr Mki

∣∣∣∣4

≤ K

(
1

n2
+ 1

np

)
. (5.17)

By (4.6), we then have ϑi − 1
zn

tr D−1
ki

L4−→ 0. To investigate the distance between tr D−1
ki and

tr D−1
k , let Ȧki be the matrix constructed from Ak by deleting its ith (or (i − 1)th) row and ith (or

(i −1)th) column and write Ḋki � Ḋki(z) = Ȧki − zIn−2 if i < k (or i > k). We observe that Ḋ−1
ki

can be obtained from D−1
ki by deleting the ith (or (i − 1)th) row and ith (or (i − 1)th) column

if i < k (or i > k). Then tr D−1
ki − tr Ḋ−1

ki = − 1
z
. By an identity similar to (4.2) and an inequality

similar to the bound (4.8), we also have | tr D−1
k − tr Ḋki | ≤ 1/v1. Hence | tr D−1

k − tr D−1
ki | ≤

(1/v1 + 1/|z|). From (4.2), we have | tr D−1
k − tr Ḋ| ≤ 1/v1 as well. As 1

n
tr D−1 Lt−→ m(z) for
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any fixed t by the Helly–Bray theorem and the dominated convergence theorem, we obtain the
first conclusion of (5.15).

Since the imaginary part of (zζi)
−1 is (�(z) + 1

np
�(sT

i Mkisi )) whose absolute value is greater
than v1, we have |ζi | ≤ |z|/v1. Consequently, via (4.1), we complete the proof of the second
consequence of (5.15), as claimed.

Consider C1(z1, z2) first. By (4.6),

E
∣∣C1(z1, z2)

∣∣ = E

∣∣∣∣− 1

n2p
(n − k) trEkM(1)

k (z2)

∣∣∣∣
(5.18)

≤ K

np2
n2p = K

n

p
→ 0.

Before proceeding, we introduce the inequalities for further simplification in the following.
By Lemma 8.10 in Bai and Silverstein [3] and (4.6), for any matrix B independent of si ,

E
∣∣sT

i MkiBsi

∣∣2 ≤ K
(
E

∣∣sT
i MkiBsi − tr MkiB

∣∣2 + KE| tr MkiB|2) ≤ Kp2n2E‖B‖2, (5.19)

where we also use the fact that, via (4.6),

| tr MkiBBMki | = ∣∣tr D−1/2
ki XT

kiBBXkiD
−1
ki XT

kiXkiD
−1/2
ki

∣∣
≤ n

∥∥D−1/2
ki XT

ki

∥∥2 · ‖B‖2 · ∥∥XkiD
−1
ki XT

ki

∥∥
= n · ‖B‖2 · ∥∥D−1

ki XT
kiXki

∥∥2

= n · ‖B‖2 · ∥∥pD−1
ki + √

np
(
In−1 + zD−1

ki

)∥∥2

≤ Knp2‖B‖2.

For i > k, since EkMk is independent of si , we similarly have

E
∣∣sT

i EkMkBsi

∣∣2 ≤ Kn2p2. (5.20)

Applying Cauchy–Schwarz’s inequality, (5.19) with B = In−1 and the fact that |ζi | is bounded
by |z|/v1 we have

E|C2j | ≤ K

√
n

p
, j = 1,2,3,4. (5.21)

Using (5.19) with B = EkMki(z2) or B = EkMk in (5.19), we also have

E|C3j | ≤ K

√
n

p
, j = 1,2,3,4. (5.22)

By (5.20), (5.15) and (5.19) with B = In−1, we obtain

E|C4j | ≤ K
n

p
, j = 1,2,3,4,6. (5.23)
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Consider C32 now. Define ζ̆i and M̆ki , the analogues of ζi(z) and Mki(z) respectively, by
(s1, . . . , sk, s̆k+1, . . . , s̆n)

T , where s̆k+1, . . . , s̆n are i.i.d. copies of sk+1, . . . , sn and independent

of s1, . . . , sn. Then ζ̆i ,M̆ki have the same properties as ζi(z),Mki (z), respectively. Therefore,

|ζ̆i | ≤ |z|/v1 and ‖M̆ki‖ ≤ Kp. Applying (5.19) with B = M̆ki(z1), we have

E|C32| = E

∣∣∣∣ 1

np2

∑
i<k

EkEk

(
ζi(z1)√

np
sT
i Mki(z1)

ζ̆i (z2)

z2np
M̆ki(z2)sisT

i M̆ki(z2)si

)∣∣∣∣
≤ K

n2p3√np

∑
i<k

E1/2
∣∣sT

i Mki(z1)M̆ki(z2)si

∣∣2 · E1/2
∣∣sT

i M̆ki(z2)si

∣∣2 (5.24)

≤ K

√
n

p
.

Third, consider C25. In view of (5.15), it is straightforward to check that

C25 = − k

n
m(z2) + oL1(1). (5.25)

Further, consider C34. By (5.15) and (5.19), we have

C34 = 1

np2

∑
i<k

Ek

[
ζi(z1)√

np
sT
i Mki(z1)B4(z2)si

]

= 1

np2

∑
i<k

Ek

[
ζi(z1)√

np
sT
i Mki(z1)Ek

(
ζi(z2)

z2
√

np
Mki(z2)

)
sisT

i si

]

= z1m(z1)m(z2)
1

n2p2

∑
i<k

sT
i EkMki(z1) · EkMki(z2)si + oL1(1) (5.26)

= z1m(z1)m(z2)
1

n2p2

∑
i<k

tr
(
EkMki(z1) · EkMki(z2)

) + oL1(1)

= z1m(z1)m(z2)
k

n
Zk + oL1(1),

where the last step uses the fact that via (5.11), (5.19), (5.8) and a tedious but elementary calcu-
lation

1

np2

∣∣tr(EkMki(z1) · EkMki(z2)
) − trEk

(
XkD−1

k (z1)XT
k

) · Ek

(
XkD−1

k (z2)XT
k

)∣∣ ≤ K

n
.

Consider C45 finally. By (5.15), we have

C45 = −m2(z1)m(z2)
k

n
+ oL1(1). (5.27)
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We conclude from (5.14), (5.18), (5.21)–(5.27) and the fact m2(z) + zm(z) + 1 = 0 that

z1Zk = − k

n
m(z2) − k

n
m2(z1)m(z2) + k

n
z1m(z1)m(z2)Zk + oL1(1)

= k

n
z1m(z1)m(z2) + k

n
z1m(z1)m(z2)Zk + oL1(1),

which is equivalent to

Zk = (k/n)m(z1)m(z2)

1 − (k/n)m(z1)m(z2)
+ oL1(1). (5.28)

5.3. Proof of Condition 5.1

The equality (5.28) ensures that

1

n2p2

n∑
k=1

trEkM(1)
k (z1) · EkM(1)

k (z2) = 1

n

n∑
k=1

Zk

→
∫ 1

0

tm(z1)m(z2)

1 − tm(z1)m(z2)
dt = −1 − (

m(z1)m(z2)
)−1 log

(
1 − m(z1)m(z2)

)
.

Thus, via (5.6), we obtain

�̃n(z1, z2)
i.p.−→ ν4 − 3 − 2

(
m(z1)m(z2)

)−1 log
(
1 − m(z1)m(z2)

)
.

Consequently, by (5.4)

�(z1, z2) = ∂2

∂z1 ∂z2

[
(ν4 − 3)m(z1)m(z2) − 2 log

(
1 − m(z1)m(z2)

)]
(5.29)

= m′(z1)m
′(z2)

[
ν4 − 3 + 2

(
1 − m(z1)m(z2)

)−2]
.

5.4. Tightness of M
(1)
n (z)

This section is to prove the tightness of M
(1)
n (z) for z ∈C1. By (4.7) and Lemma 4.1,

E

∣∣∣∣∣
n∑

k=1

l∑
j=1

ajEk−1
(
αk(zj )

)∣∣∣∣∣
2

≤ K

n∑
k=1

l∑
j=1

|aj |2E
∣∣αk(zj )

∣∣2 ≤ K,

which ensures condition (i) of Theorem 12.3 of Billingsley [8]. Condition (ii) of Theorem 12.3
of Billingsley [8] will be verified by proving

E|M(1)
n (z1) − M

(1)
n (z2)|2

|z1 − z2|2 ≤ K, z1, z2 ∈ C1. (5.30)
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We employ the same notations as those in Section 4.1. Let

ϒk1 = 1

np
sT
k XkD−1

k (z1)
(
D−1

k (z1) + D−1
k (z2)

)
D−1

k (z2)XT
k sk

− 1

np
tr XkD−1

k (z1)
(
D−1

k (z1) + D−1
k (z2)

)
D−1

k (z2)XT
k ,

ϒk2 = 1

np

(
sT
k XkD−1

k (z2)D
−1
k (z1)XT

k sk − tr XkD−1
k (z2)D

−1
k (z1)XT

k

)
,

dk1(z) = βk(z)

(
1 + 1

np
sT
k M(2)

k (z)sk

)
,

dk2(z) = 1 + 1

np
tr M(2)

k (z),

dk3 = 1 + 1

np
tr XkD−1

k (z2)D
−1
k (z1)XT

k ,

dk4 = 1

np
tr XkD−1

k (z1)
(
D−1

k (z1) + D−1
k (z2)

)
D−1

k (z2)XT
k .

As in (4.3), we write

M(1)
n (z1) − M(1)

n (z2)

= −
n∑

k=1

(Ek − Ek−1)
(
dk1(z1) − dk1(z2)

)
= −(z1 − z2)

n∑
k=1

(Ek − Ek−1)
[
βk(z1)(ϒk1 + dk4) − βk(z1)dk1(z2)(ϒk2 + dk3)

]
= −(z1 − z2)

n∑
k=1

(Ek − Ek−1)

× [
(l1 + l2) + l3 − βk(z1)βk(z2)dk2dk3 − βk(z1)βk(z2)dk3γk(z2)

]
= −(z1 − z2)

n∑
k=1

(Ek − Ek−1)(l1 + l2 + l3 + l4 + l5 + l6),

where

l1 = βk(z1)ϒk1, l2 = βk(z1)β
tr
k (z1)ηk(z1)dk4,

l3 = −βk(z1)ϒk2dk1(z1), l4 = −βk(z1)β
tr
k (z1)ηk(z1)βk(z2)dk2(z2)dk3,

l5 = −β tr
k (z1)βk(z2)β

tr
k (z2)ηk(z2)dk2(z2)dk3, l6 = −βk(z1)βk(z2)dk3γk(z2).
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Here the last step uses (4.5) for βk(z1) and the facts that

D−2
k (z1) − D−2

k (z2) = (z1 − z2)D
−1
k (z1)

(
D−1

k (z1) + D−1
k (z2)

)
D−1

k (z2),

βk(z1) − βk(z2) = (z2 − z1)βk(z1)βk(z2)ϒk2 + (z2 − z1)βk(z1)βk(z2)dk3,

(Ek − Ek−1)β
tr
k (z1)dk4 = 0, (Ek − Ek−1)β

tr
k (z1)β

tr
k (z2)dk2(z2)dk3 = 0.

By (4.6) and Lemma 8.10 in Bai and Silverstein [3], without any tedious calculations, one may
verify that∣∣dkj (z)

∣∣ ≤ K, j = 1,2,3,4, and E|ϒkj |2 ≤ Kp−1, j = 1,2.

The above inequalities, together with Burkholder’s inequality, imply (5.30).

6. Uniform convergence of EMn(z)

To finish the proof of Proposition 3.1, it remains to derive an asymptotic expansion of
n(Emn(z)−m(z)) for z ∈ C1 (defined in Section 3.2). In order to unify the proof of Theorem 1.1
and Corollary 1.1, we derive the asymptotic expansion of n(Emn(z)−m(z)) under both assump-
tions n/p → 0 and n3/p = O(1) in Proposition 6.1. For the purpose of proving (3.6), we will
prove a stronger result in Proposition 6.1, namely uniform convergence of n(Emn(z)−m(z)) for
z ∈ ςn = ⋃

i=l,r,u ςi . For z located in the wider range ςn, the bounds or limits in Section 3 (e.g.,
Lemma 4.1, (5.3), (5.15)), cannot be applied directly. Hence in Section 4, we re-establish these
and other useful results. Throughout this section, we assume z ∈ ςn and use the same notations
as those in Section 3.

Proposition 6.1. Suppose that assumption (c) is satisfied.

(i) Under assumption (b1): n/p → 0, we have the following asymptotic expansion

n
[
Emn(z) − m(z) −Xn

(
m(z)

)] = o(1), (6.1)

uniformly for z ∈ ςn = ⋃
i=l,r,u ςi , where Xn(m) is defined in (1.4).

(ii) Under assumption (b2): n3/p = O(1), we have the following asymptotic expansion

n

[
Emn(z) − m(z) +

√
n

p
m4(z)

(
1 + m′(z)

)]
(6.2)

= m3(z)
(
m′(z) + ν4 − 2

)(
1 + m′(z)

) + o(1),

uniformly for z ∈ ςn = ⋃
i=l,r,u ςi .

This, together with (5.29) and the tightness of M
(1)
n (z) in Section 5.4, implies Proposition 3.1.

It remains to prove Proposition 6.1. To facilitate statements, let

ωn = 1

n

n∑
k=1

m(z)βkμ̄k, ε̄n = 1

z + E(1/(np)) tr XD−1(z)XT
.
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Here, ωn, ε̄n all depend on z and n, and ε̄n are non-random.

Lemma 6.1. Let z ∈ ςn. We have

nEωn = m3(z)
(
m′(z) + ν4 − 2

) + o(1).

Assuming that Lemma 6.1 is true for the moment, whose proof is given in Section 6.1 below,
let us demonstrate how to get Proposition 6.1. By (3.8) in Bai [4], we obtain

mn(z) = 1

n
tr D−1(z) = −1

n

n∑
k=1

βk. (6.3)

Applying (4.1), (6.3), (4.6) and taking the difference between βk and 1
z+m(z)

, we have

Emn(z) − m(z) = −1

n

n∑
k=1

Eβk + 1

z + m(z)

= E
1

n

n∑
k=1

βkm(z)

[
μ̄k − (

Emn(z) − m(z)
) −

√
n

p

(
1 + zEmn(z)

)]
(6.4)

= Eωn + m(z)Emn(z)
(
Emn(z) − m(z)

) +
√

n

p
m(z)Emn(z)

(
1 + zEmn(z)

)
.

Under assumption n/p → 0: Let Emn,m respectively, denote Emn(z),m(z) to simplify the
notations below. By (4.1) and (6.4), we have

Emn − m = Eωn + m2(Emn − m) + m(Emn − m)2 +
√

n

p
m(Emn − m)(1 + zm)

+
√

n

p
m2(1 + zm) +

√
n

p
zm(Emn − m)2 +

√
n

p
zm2(Emn − m)

= A(Emn − m)2 + (B + 1)(Emn − m) + Cn,

where A,B are defined in (1.4) and

Cn = Eωn −
√

n

p
m4.

Rearranging the above equation, we observe that (Emn − m) satisfies the equation Ax2 +Bx +
Cn = 0. Solving the equation, we obtain

x(1) = −B + √
B2 − 4ACn

2A , x(2) = −B − √
B2 − 4ACn

2A ,
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where
√
B2 − 4ACn is a complex number whose imaginary part has the same sign as that of B.

By the assumption n/p → 0 and Lemma 6.1, we have 4ACn → 0. Then x(1) = o(1) and x(2) =
1−m2

m
+o(1). Since Emn −m = o(1) by (6.5), we choose Emn −m = x(1). Applying Lemma 6.1

and the definition of Xn(m) in (1.4), we have

n
[
Emn(z) − m(z) −Xn

(
m(z)

)] = −4A[nEωn − m3(z)(m′(z) + ν4 − 2)]
2A(

√
B2 − 4ACn + √

B2 − 4AC)

→ 0.

Hence Proposition 6.1(i) is proved.
Under assumption n3/p = O(1): subtracting m(z)Emn(z)(Emn(z) − m(z)) on the both sides

of (6.4) and then dividing 1
n
(1 − m(z)Emn(z)), we have

n
(
Emn(z) − m(z)

) = nEωn

1 − m(z)Emn(z)
+

√
n3

p

m(z)Emn(z)(1 + zEmn(z))

1 − m(z)Emn(z)

= m3(z)

1 − m2(z)

(
m′(z) + ν4 − 2

) −
√

n3

p

m4(z)

1 − m2(z)
+ o

(√
n3

p

)
,

where we use (4.34), Lemma 6.1, (4.1) and the fact that m′(z) = m2(z)

1−m2(z)
. Proposition 6.1(ii) is

proved. Hence, the proof of Proposition 6.1 is completed. Now it remains to prove Lemma 6.1.

6.1. Proof of Lemma 6.1

From the definitions of βk, ε̄n and μ̄k (see Lemma 4.3), we obtain

βk = ε̄n + βkε̄nμ̄k. (6.5)

By (6.5), we further write βk as βk = ε̄n + ε̄2
nμ̄k + ε̄3

nμ̄
2
k + βkε̄

3
nμ̄

3
k , which ensures that

nEωn = m(z)ε̄n

n∑
k=1

E(μ̄k) + m(z)ε̄2
n

n∑
k=1

E
(
μ̄2

k

)
+ m(z)ε̄3

n

n∑
k=1

E
(
μ̄3

k

) + m(z)ε̄3
n

n∑
k=1

E
(
βkμ̄

4
k

)
(6.6)

� H1 + H2 + H3 + H4,

where Hj , j = 1,2,3,4 are defined in the obvious way. As will be seen, H3 and H4 are both
negligible and the contribution to the limit of nEωn comes from H1 and H2. Now, we analyze
Hj , j = 1, . . . ,4 one by one.
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Consider H4 first. It follows from (4.1) and (4.34) that

ε̄n = 1

z + m(z) + o(1)
= −m(z) + o(1). (6.7)

By Lemma 4.2 and Lemma 4.3,

E
∣∣βkμ̄

4
k

∣∣ ≤ KE
∣∣μ̄4

k

∣∣I(
Uc

n

) + E
∣∣βkμ̄

4
k

∣∣I (Un) ≤ K

(
δ4

n
+ n

p2

)
+ o

(
n−�

) ≤ Kδ4n−1,

which, together with (6.7), further implies

H4 = o(1). (6.8)

It follows from Lemma 4.3 and (6.7) that

H3 = o(1). (6.9)

Consider H1 next. We have, via (4.6) and (4.2),

H1 = m(z)ε̄n

n∑
k=1

(
E

1

np
tr XD−1XT − E

1

np
tr M(1)

k

)

=
(

1 + z

√
n

p

)
m(z)ε̄n

1

n

n∑
k=1

E
(
tr D−1 − tr D−1

k

) +
√

n

p
m(z)ε̄n (6.10)

= −
(

1 + z

√
n

p

)
m(z)ε̄n

1

n

n∑
k=1

E

[
βk

(
1 + 1

np
sT
k M(2)

k sk

)]
+

√
n

p
m(z)ε̄n.

Applying (4.23), (4.26) and (4.34), it is easy to see

1 + 1

np
sT
k M(2)

k sk = 1 +
(

1

np
tr M(1)

k

)′
+ oL4(1) = 1 + m′(z) + oL4(1).

This, together with (6.7), Lemma 4.2 and (6.3), ensures that

H1 = −m2(z)
(
1 + m′(z)

)
Emn(z) + o(1) → −m3(z)

(
1 + m′(z)

)
. (6.11)

Consider H2 now. By the previous estimation of Eμ̄k included in H1 we obtain

Eμ̄2
k = E(μ̄k − Eμ̄k)

2 + O
(
n−2). (6.12)

Furthermore a direct calculation yields

E(μ̄k − Eμ̄k)
2 = S1 + S2, (6.13)
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where

S1 = 1

n
E

(
X2

11 − 1
)2 + Eγ 2

k1, S2 = S21 + S22,

S21 = 1

n2p2
E

(
tr M(1)

k − E tr M(1)
k

)2
,

S22 = − 2

np
√

np
E

[(
sT
k sk − p

)(
sT
k M(1)

k sk − E tr M(1)
k

)]
.

We claim that

nS1 → ν4 − 1 + 2m′(z), nS21 → 0, nS22 → 0, as n → ∞. (6.14)

Indeed, with notation M(1)
k = (a

(1)
ij )p×p, i, j = 1, . . . , p, as illustrated in (4.16), we have

1
n2p2

∑n
k=1

∑p

i=1 E|a(1)
ii |2 → 0. Via this, (4.34) and (4.6), a simple calculation yields

nEγ 2
k1 = 1

np2
E

(∑
i �=j

XikXjka
(1)
ij +

p∑
i=1

(
X2

ik − 1
)
a

(1)
ii

)2

= 1

np2
E

(∑
i �=j

∑
s �=t

XikXjkXskXtka
(1)
ij a

(1)
st

)
+ 1

np2

p∑
i=1

E
[(

X2
ik − 1

)2(
a

(1)
ii

)2]
= 2

np2
E

(∑
i,j

a
(1)
ij a

(1)
j i

)
+ o(1) = 2

np2
E tr

(
M(1)

k

)2 + o(1)

= 2

n
E tr D−2

k + o(1) → 2m′(z).

Since E|X2
11 −1|2 = ν4 −1, we have proved the first result of (6.14). By Burkholder’s inequality,

Lemma 4.4, (4.6), (4.18) and (4.23)

n|S21| = K

(
1 + z

√
n

p

)2 1

n
E

∣∣M(1)(z)
∣∣2 + Kn−1 ≤ Kn−1. (6.15)

Furthermore,

n|S22| = 2

p
√

np

∣∣∣∣∣E
(

p∑
t=1

(
X2

tk − 1
)) ·

(∑
i,j

XikXjka
(1)
ij

)∣∣∣∣∣
= 2

p
√

np

∣∣E(
X2

11 − 1
)
X2

11 · E tr M(1)
k

∣∣ ≤ K

√
n

p
+ o

(
n−�

) → 0.
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Therefore, the proof of the second result of (6.14) is completed. We then conclude from (6.14),
(6.12), (6.13) and (6.7) that

H2 → m3(z)
(
2m′(z) + ν4 − 1

)
. (6.16)

Finally, by (6.6), (6.8), (6.9), (6.11) and (6.16), we obtain

nEωn = m3(z)
(
m′(z) + ν4 − 2

) + o(1).

Lemma 6.1 is thus proved. This finishes the proof of Proposition 3.1.

7. Proof of Proposition 3.2

Recall the definition of Un below Proposition 3.2 or in Section 4. For i = l, r , by Lemma 4.4

E

∣∣∣∣∫
ςi

M(1)
n (z)I

(
Uc

n

)
dz

∣∣∣∣2

≤
∫

ςi

E
∣∣M(1)

n (z)
∣∣2 dz ≤ K‖ςi‖ → 0, as n → ∞, v1 → 0.

Moreover, ∣∣∣∣∫
ςi

EMn(z)I
(
Uc

n

)
dz

∣∣∣∣ ≤
∫

ςi

∣∣EMn(z)
∣∣dz → 0, as n → ∞, v1 → 0,

where the convergence follows from Proposition 6.1.

8. Calculation of the mean and covariance

To complete the proof of Theorem 1.1 and Corollary 1.1, it remains to calculate the mean function
and covariance function of Y(f ) and X(f ). The computation exactly follows Bai and Yao [6]
and so we omit it.
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