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Let X = {X(t), t ∈ RN } be a centered real-valued operator-scaling Gaussian random field with stationary
increments, introduced by Biermé, Meerschaert and Scheffler (Stochastic Process. Appl. 117 (2007) 312–
332). We prove that X satisfies a form of strong local nondeterminism and establish its exact uniform and
local moduli of continuity. The main results are expressed in terms of the quasi-metric τE associated with
the scaling exponent of X. Examples are provided to illustrate the subtle changes of the regularity properties.
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1. Introduction

For random fields, “anisotropy” is a distinct property from those of one-parameter processes and
is not only important in probability (e.g., stochastic partial differential equations) and statistics
(e.g., spatio-temporal modeling), but also for many applied areas such as economic, ecological,
geophysical and medical sciences. See, for example, Benson et al. [6], Bonami and Estrade [10],
Chilés and Delfiner [11], Davies and Hall [12], Stein [24,25], Wackernagel [27], Zhang [36], and
their combined references for further information.

Many anisotropic random fields Y = {Y(t), t ∈ RN } in the literature have the following scaling
property: There exists a linear operator E (which may not be unique) on RN such that for all
constants c > 0, {

Y
(
cEt

)
, t ∈ RN

} f.d.= {
cY (t), t ∈ RN

}
. (1.1)

Here and in the sequel, “
f.d.= ” means equality in all finite-dimensional distributions and, for c > 0,

cE is the linear operator on RN defined by cE =∑∞
n=0

(ln c)nEn

n! . A random field Y = {Y(t), t ∈
RN } which satisfies (1.1), is called operator-scaling in the time variable (or simply operating-
scaling) with exponent E. Two important examples of real-valued operator-scaling Gaussian
random fields are fractional Brownian sheets introduced by Kamont [14] and those with station-
ary increments introduced by Biermé, Meerschaert and Scheffler [8]. Multivariate random fields
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with operator-scaling properties in both time and space variables have been constructed by Li
and Xiao [16].

Several authors have studied probabilistic and geometric properties of anisotropic Gaussian
random fields. For example, Dunker [13], Mason and Shi [20], Belinski and Linde [5], Kühn
and Linde [15] studied the small ball probabilities of a fractional Brownian sheet BH , where
H = (H1, . . . ,HN) ∈ (0,1)N . Mason and Shi [20] also computed the Hausdorff dimension of
some exceptional sets related to the oscillation of the sample paths of BH . Ayache and Xiao [3],
Ayache et al. [2], Wang [28], Wu and Xiao [29], Xiao and Zhang [35] studied uniform mod-
ulus of continuity, law of iterated logarithm, fractal properties and joint continuity of the local
times of fractional Brownian sheets. Wu and Xiao [30] proved sharp uniform and local moduli
of continuity for the local times of Gaussian fields which satisfy sectorial local nondetermin-
ism. Luan and Xiao [18] determined the exact Hausdorff measure functions for the ranges of
Gaussian fields which satisfy strong local nondeterminism. Meerschaert et al. [22] established
exact modulus of continuity for Gaussian fields which satisfy the condition of sectorial local
nondeterminism. Their results and methods are applicable to fractional Brownian sheets and cer-
tain operator-scaling Gaussian random fields with stationary increments whose scaling exponent
is a diagonal matrix. We remark that there are subtle differences between certain sample path
properties of fractional Brownian sheets and those of anisotropic Gaussian random fields with
stationary increments. This is due to their different properties of local nondeterminism; see Xiao
[33] and Li and Xiao [17] for more information.

For an operator-scaling Gaussian random field X = {X(t), t ∈ RN } with stationary increments,
Biermé et al. [8] showed that the critical global or directional Hölder exponents are given by
the real parts of the eigenvalues of the exponent matrix E. The main objective of this paper
is to improve their results and to establish exact uniform and local moduli of continuity for
these Gaussian fields. Our approach is an extension of the method in Meerschaert et al. [22].
In particular, we prove in Theorem 3.2 that X has the property of strong local nondeterminism,
which is expressed in terms of the natural quasi-metric τE(t − s) associated with the scaling
exponent E (see Section 2 for its definition and properties). As an application of Theorem 3.2
and the method in [22], we establish exact uniform and local moduli of continuity for X (see
Theorems 4.2 and 5.1 below).

It should be mentioned that Biermé et al. [8] constructed a large class of operator-scaling
α-stable random fields for any α ∈ (0,2]. By using a LePage-type series representation for stable
random fields, Biermé and Lacaux [7] studied uniform modulus of continuity of these operator-
scaling stable random fields. See also Xiao [34] for related results using a different approach
based on the chaining argument. In this paper we will focus on the Gaussian case (i.e., α = 2)
and our Theorem 4.2 establishes the exact uniform modulus of continuity, which is more precise
than the results in [7] and [34].

The rest of this paper is divided into five sections. In Section 2, we prove some basic properties
on the quasi-metric τE associated with the scaling exponent E and recall from [8] the definition of
an operator-scaling Gaussian field X = {X(t), t ∈ RN } with stationary increments. In Section 3,
we prove the strong local nondeterminism of X, and in Sections 4 and 5 we prove the exact
uniform and local moduli of continuity of X, respectively. In Section 6 we provide two examples
to illustrate our main theorems.

We end the Introduction with some notation. The parameter space is RN , endowed with the Eu-
clidean norm ‖ · ‖. For any given two points s = (s1, . . . , sN ), t = (t1, . . . , tN ), the inner product
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of s, t ∈ RN is denoted by 〈s, t〉. For x ∈ R+, let logx := ln(x ∨ e) and log logx := ln((lnx)∨ e).
Throughout this paper, we will use C to denote an unspecified positive and finite constant which
may be different in each occurrence. More specific constants are numbered as C1,C2, . . . .

2. Preliminaries

In this section, we show some basic properties of a real N × N matrix E and prove several
lemmas on the quasi-metric τE on RN . Then we recall from Biermé et al. [8] the definition of
operator-scaling Gaussian random fields with a harmonizable representation.

For a real N × N matrix E, it is well known that E is similar to a real Jordan canonical form,
i.e. there exists a real invertible N × N matrix P such that

E = PDP −1,

where D is a real N × N matrix of the form

D =

⎛⎜⎜⎝
J1 0 · · · 0
0 J2 · · · 0
...

...
. . .

...

0 0 · · · Jp

⎞⎟⎟⎠ (2.1)

and Ji , 1 ≤ i ≤ p, is either Jordan cell matrix of the form⎛⎜⎜⎜⎜⎝
λ 0 0 · · · 0
1 λ 0 · · · 0
0 1 λ · · · 0
...

...
...

. . .
...

0 0 0 · · · λ

⎞⎟⎟⎟⎟⎠ (2.2)

with λ a real eigenvalue of E or blocks of the form⎛⎜⎜⎜⎜⎜⎝
� 0 0 · · · 0
I2 � 0 · · · 0
0 I2 � · · · 0
...

...
...

. . .
...

0 0 0 · · · �

⎞⎟⎟⎟⎟⎟⎠ with I2 =
(

1 0
0 1

)
and � =

(
a −b

b a

)
, (2.3)

where the complex numbers a ± ib (b 	= 0) are complex conjugated eigenvalues of E.
Denote the size of Jk by l̃k and let ak be the real part of the corresponding eigenvalue(s) of Jk .

Throughout this paper, we always suppose that

1 < a1 ≤ a2 ≤ · · · ≤ ap.

Note that p ≤ N , l̃1 + l̃2 + · · · + l̃p = N and Q := trace(E) =∑p

j=1 aj l̃j .
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As done in Biermé and Lacaux [7], we can construct the E-invariant subspace Wk associated
with Jk by

Wk = span

{
fj :

k−1∑
i=1

l̃i + 1 ≤ j ≤
k∑

i=1

l̃i

}
,

where fj is the j th column vector of the matrix P . Then RN has a direct sum decomposition of

RN = W1 ⊕ · · · ⊕ Wp.

It follows from Meerschaert and Scheffler [21], Chapter 6 (see also [8], Section 2) that there
exists a norm ‖ · ‖E on RN such that for the unit sphere SE = {x ∈ RN : ‖x‖E = 1} the mapping
� : (0,∞) × SE → RN \ {0} defined by �(r, θ) = rEθ is a homeomorphism. Hence, every x ∈
RN \ {0} can be written uniquely as x = (τE(x))ElE(x) for some radial part τE(x) > 0 and some
direction lE(x) ∈ SE such that the functions x �→ τE(x) and x �→ lE(x) are continuous. For
x ∈ RN \ {0}, (τE(x), lE(x)) is referred to as its polar coordinates associated with E.

It is shown in [21] that τE(x) = τE(−x) and τE(rEx) = rτE(x) for all r > 0 and x ∈ RN \ {0}.
Moreover, τE(x) → ∞ as x → ∞ and τE(x) → 0 as x → 0. Hence, we can extend τE(x)

continuously to RN by setting τE(0) = 0.
The function τE(x) will play essential roles in this paper. We first recall some known facts

about it.

(i) Lemma 2.2 in [8] shows that there exists a constant C ≥ 1 such that

τE(x + y) ≤ C
(
τE(x) + τE(y)

)
, ∀x, y ∈ RN. (2.4)

Hence, we can regard τE(x − y) as a quasi-metric on RN .
(ii) Since the norms ‖ · ‖E and ‖ · ‖ are equivalent, Lemma 2.1 in [8] implies that for any

0 < δ < a1 there exist finite constants C1,C2 > 0, which may depend on δ, such that for
all ‖x‖ ≤ 1 or all τE(x) ≤ 1,

C1‖x‖1/(a1−δ) ≤ τE(x) ≤ C2‖x‖1/(ap+δ), (2.5)

and, for all ‖x‖ > 1 or all τE(x) > 1,

C1‖x‖1/(ap+δ) ≤ τE(x) ≤ C2‖x‖1/(a1−δ). (2.6)

(iii) Biermé and Lacaux [7], Corollary 3.4, proved the following improvement of (2.5): For
any η ∈ (0,1), there exists a finite constant C3 ≥ 1 such that for all x ∈ Wj \ {0}, 1 ≤ j ≤
p, with ‖x‖ ≤ η

C−1
3 ‖x‖1/aj

∣∣ln‖x‖∣∣−(lj −1)/aj ≤ τE(x) ≤ C3‖x‖1/aj
∣∣ln‖x‖∣∣(lj −1)/aj , (2.7)

where lk = l̃k if Jk is a Jordan cell matrix as in (2.2) or lk = l̃k/2 if Jk is of the form (2.3).
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We remark that, as shown by Example 6.2 below, both the upper and lower bounds in (2.7) can
be achieved and this fact makes the regularity properties of an operator-scaling Gaussian field
with a general exponent E more intriguing.

For any x ∈ RN , let x = x̄1 ⊕ x̄2 ⊕ · · · ⊕ x̄p be the direct sum decomposition of x in the
E-invariant subspaces Wj , j = 1,2, . . . , p. This notation is used in Lemmas 2.1 and 2.2.

Lemma 2.1. There exists a finite constant C > 0 such that for all x ∈ RN and j = 1,2, . . . , p,
we have

τE(x̄j ) ≤ CτE(x). (2.8)

Proof. Since (2.8) holds trivially for x = 0. We only consider x ∈ RN \ {0}, which can be written
as x = (τE(x))ElE(x) for some lE(x) ∈ SE . Denote the direct sum decomposition of lE(x) in
the E-invariant subspaces Wj , j = 1,2, . . . , p, by lE(x) = x′

1 ⊕· · ·⊕ x′
p . Then from the fact that

(τE(x))Ex′
j ∈ Wj for all j = 1,2, . . . , p, it follows that

x̄j = (
τE(x)

)E
x′
j .

Since SE is bounded, that is, there exists M > 0 such that SE ⊂ {y ∈ RN : ‖y‖ ≤ M}, we can
easily see that x′

j ∈ {y ∈ RN : ‖y‖ ≤ M} for all j = 1,2, . . . , p. Let C = max‖x‖≤M τE(x) ∈
(0,∞). Then for all j = 1,2, . . . , p

τE(x̄j ) = τE(x)τE

(
x′
j

)≤ CτE(x),

which is the desired conclusion. �

As a consequence of (2.4) and Lemma 2.1, we have the following lemma.

Lemma 2.2. There is a finite constant C ≥ 1 such that

C−1
p∑

i=1

τE(x̄i) ≤ τE(x) ≤ C

p∑
i=1

τE(x̄i), ∀x ∈ RN. (2.9)

The following lemma implies that the function τE(x) is O-regular varying at both the origin
and the infinity (cf. Bingham et al. [9], pages 65–67).

Lemma 2.3. Give any constants 0 < a < b < ∞, there exists a finite constant C4 ≥ 1 such that
for all x ∈ RN and β ∈ [a, b],

C−1
4 τE(x) ≤ τE(βx) ≤ C4τE(x). (2.10)

Proof. To prove the left inequality in (2.10), note that � = {βx: x ∈ SE,β ∈ [a, b]} is a compact
set which does not contain 0. This and the continuity of τE(·) on RN , imply minx∈� τE(x) > 0.
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Hence, by taking C−1
4 = 1 ∧ minx∈� τE(x), we have

τE(βx) = τE

(
βτE

E (x)lE(x)
)= τE(x)τE

(
βlE(x)

)≥ C−1
4 τE(x).

The right inequality in (2.10) can be proved in the same way. This finishes the proof. �

Lemma 2.4. There is a subsequence {nk}k∈N ⊆ N such that nk ≥ k for all k ≥ 1 and

min
1≤i≤2nk

τE

(〈
i2−nk

〉)≥ C−1
4 τE

(〈
2−nk

〉)
, (2.11)

where 〈c〉 = (c, c, . . . , c) ∈ RN for any c ∈ R.

Proof. Suppose min1≤i≤2n τE(〈i2−n〉) is attained at i = Kn. There is an integer mn ∈ [0, n] such
that 2n−mn−1 < Kn ≤ 2n−mn . Therefore, we can rewrite Kn2−n as β2−mn for some β ∈ (1/2,1].
Since {i2−mn, i = 1, . . . ,2mn} ⊂ {i2−n, i = 1, . . . ,2n}, we have

min
1≤i≤2mn

τE

(〈
i2−mn

〉)≥ min
1≤i≤2n

τE

(〈
i2−n

〉)= τE

(〈
β2−mn

〉)≥ C−1
4 τE

(〈
2−mn

〉)
,

where the last inequality follows from Lemma 2.3 with [a, b] = [1/2,1]. Furthermore, by the
fact

min
1≤i≤2n

τE

(〈
i2−n

〉)≤ τE

(〈
2−n

〉)→ 0,

as n → ∞, we know that τE(〈2−mn〉) → 0 which implies that mn → ∞ as n → ∞. Hence, a
desired subsequence {nk}k∈N can be selected from {mn}. �

Let E′ be the transpose of E. An E′-homogeneous function ψ : RN → [0,∞) is a function
which satisfies that ψ(x) > 0 and ψ(rE′

x) = rψ(x) for all r > 0 and x ∈ RN \ {0}. For any
continuous E′-homogeneous function ψ : RN → [0,∞), Biermé et al. [8], Theorem 4.1, showed
that the real-valued Gaussian random field Xψ = {Xψ(t), t ∈ RN }, where

Xψ(t) = Re
∫

RN

(
ei〈t,ξ〉 − 1

) M̃(dξ)

ψ(ξ)1+Q/2
, t ∈ RN, (2.12)

is well defined and stochastic continuous if and only if min1≤j≤p aj > 1. In the latter case,
they further proved that Xψ satisfies (1.1) and has stationary increments. Here, M̃ is a centered
complex-valued Gaussian random measure in RN with the Lebesgue measure mN as its control
measure. Namely, M̃ is a centered complex-valued Gaussian process defined on the family A =
{A ⊂ RN : mN(A) < ∞} which satisfies

E
(
M̃(A)M̃(B)

)= mN(A ∩ B) and M̃(−A) = M̃(A) (2.13)

for all A,B ∈ A.
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Remark 2.1. The following are some remarks on the Gaussian random field Xψ .

• If, in addition, ψ is symmetric in the sense that ψ(ξ) = ψ(−ξ) for all ξ ∈ RN , then because
of (2.13) the Wiener-type integral in the right-hand side of (2.12) is real-valued. Thus, in
this latter case, “Re” in (2.12) is not needed. For simplicity, we assume that ψ is symmetric
in the rest of the paper. A large class of continuous, symmetric E′-homogeneous functions
has been constructed in [8], Theorem 2.1.

• By replacing M̃ in (2.12) by a complex-valued isotropic α-stable random measure M̃α with
Lebesgue control measure (see [23], page 281), Biermé et al. [8], Theorem 3.1, obtained a
class of harmonizable operator-scaling α-stable random fields. They also defined a class of
operator-scaling α-stable fields by using moving-average representations. When α ∈ (0,2),
stable random fields with harmonizable and moving-average representations are generally
different. However, for the Gaussian case of α = 2, the Planchrel theorem implies that every
Gaussian random field with a moving-average representation in [8] also has a harmonizable
representation of the form (2.12).

3. Strong local nondeterminism of operator-scaling
Gaussian fields

Let E be an N × N matrix such that the real parts of its eigenvalues satisfy min1≤j≤p aj > 1
and let ψ be a continuous, symmetric, E′-homogeneous function with ψ(x) > 0 for x 	= 0 as
in Section 2. Let Xψ = {Xψ(t), t ∈ RN } be the operator-scaling Gaussian field with scaling
exponent E, defined by (2.12). For simplicity, we write Xψ as X. Note that the assumptions on
ψ imply

0 < mψ = min
x∈SE′

ψ(x) ≤ Mψ = max
x∈SE′

ψ(x) < ∞. (3.1)

The dependence structure of the operator-scaling Gaussian field X is complicated for a general
matrix E. In order to study sample path properties and characterize the anisotropic nature of X,
we prove that X has the property of “strong local nondeterminism” with respect to the quasi-
metric τE(s − t). The main result of this section is Theorem 3.2, which extends Theorem 3.2 in
Xiao [33] and will play an important role in Section 4 below.

Since many sample path properties of X are determined by the canonical metric

dX(s, t) = [
E
(
X(s) − X(t)

)2]1/2
, ∀s, t ∈ RN, (3.2)

our first step is to establish the relations between dX(s, t) and τE(s − t).

Lemma 3.1. There exists a finite constant C ≥ 1 such that

C−1τ 2
E(s − t) ≤ d2

X(s, t) ≤ Cτ 2
E(s − t), ∀s, t ∈ RN. (3.3)
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Proof. For all s, t ∈ RN , by (2.12), we have

d2
X(s, t) =

∫
RN

∣∣ei〈s,x〉 − ei〈t,x〉∣∣2 dx

ψ(x)2+Q

= 2
∫

RN

(
1 − cos〈s − t, x〉) dx

ψ(x)2+Q
.

Let y = τE′
E (s − t)x. Then dx = (1/τE(s − t))Q dy. Hence,

d2
X(s, t) = 2τE(s − t)2

∫
RN

(
1 − cos

〈(
1

τE(s − t)

)E

(s − t), y

〉)
dy

ψ(y)2+Q
. (3.4)

Since for all s 	= t , τE(( 1
τE(s−t)

)E(s − t)) = 1. Hence, the set{(
1

τE(s − t)

)E

(s − t): s 	= t ∈ RN

}
is compact and does not contain 0. On the other hand, a slight modification of the proof of
Theorem 4.1 in [8] shows that the function ξ �→ ∫

RN (1 − cos〈ξ, y〉) dy

ψ(y)2+Q is continuous on RN

and positive on RN \ {0}. Therefore, the last integral in (3.4) is bounded from below and above
by positive and finite constants. This proves (3.3). �

Theorem 3.2. There exists a constant C5 > 0 such that for all n ≥ 2 and all t1, . . . , tn ∈ RN , we
have

Var
(
X
(
tn
)|X(t1), . . . ,X(tn−1))≥ C5 min

0≤k≤n−1
τ 2
E

(
tn − tk

)
, (3.5)

where t0 = 0.

Proof. The proof is a modification of that of Theorem 3.2 in Xiao [33]. We denote r =
min0≤k≤n−1 τE(tn − tk). Since

Var
(
X
(
tn
)|X(t1), . . . ,X

(
tn−1))= inf

u1,...,un−1∈R
E

[(
X
(
tn
)−

n−1∑
k=1

ukX
(
tk
))2]

,

it suffices to prove the existence of a constant C > 0 such that

E

[(
X
(
tn
)−

n−1∑
k=1

ukX
(
tk
))2]

≥ Cr2 (3.6)

for all uk ∈ R, k = 1,2, . . . , n − 1. It follows from (2.12) that

E

[(
X
(
tn
)−

n−1∑
k=1

ukX
(
tk
))2]

=
∫

RN

∣∣∣∣∣ei〈tn,x〉 −
n−1∑
k=0

ukei〈tk,x〉
∣∣∣∣∣
2

dx

ψ(x)2+Q
,
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where t0 = 0 and u0 = 1 −∑n
k=1 uk . Let δ(·) : RN �→ [0,1] be a function in C∞(RN) such that

δ(0) = 1 and it vanishes outside the open set B = {x: τE(x) < 1}. Denote by δ̂ the Fourier
transform of δ. Then δ̂ ∈ C∞(RN) as well and decays rapidly as x → ∞, that it, for all  ≥ 1,
we have ‖x‖ |̂δ(x)| → 0 as x → ∞. This and (2.6) further imply that for all  ≥ 1,

τE(x)
∣∣̂δ(x)

∣∣→ 0 as x → ∞. (3.7)

Let δr (t) = r−Qδ(r−Et). Then

δr (t) = (2π)−N

∫
RN

e−i〈t,x 〉̂δ
(
rE′

x
)

dx.

Since min{τE(tn − tk),0 ≤ k ≤ n − 1} = r , we have δr (t
n − tk) = 0 for all k = 0,1, . . . , n − 1.

Therefore,

J :=
∫

RN

(
ei〈tn,x〉 −

n−1∑
k=0

ei〈tk,x〉
)

e−i〈tn,x 〉̂δ
(
rE′

x
)

dx

(3.8)

= (2π)N

(
δr (0) −

n−1∑
k=0

ukδr

(
tn − tk

))= (2π)Nr−Q.

By Hölder’s inequality, a change of variables, the E′-homogeneity of ψ and (3.1), we derive

J 2 ≤
∫

RN

∣∣∣∣∣ei〈tn,x〉 −
n−1∑
k=0

ei〈tk,x〉
∣∣∣∣∣
2

dx

ψ(x)2+Q

∫
RN

ψ(x)2+Q
∣∣̂δ(rE′

x
)∣∣2 dx

= r−2Q−2E

(∣∣∣∣∣X(tn)−
n−1∑
k=1

ukX
(
tk
)∣∣∣∣∣

2)∫
RN

ψ(y)2+Q
∣∣̂δ(y)

∣∣2 dy

(3.9)

≤ r−2Q−2E

(∣∣∣∣∣X(tn)−
n−1∑
k=1

ukX
(
tk
)∣∣∣∣∣

2)∫
RN

τE(y)2+QM
2+Q
ψ

∣∣̂δ(y)
∣∣2 dy

≤ Cr−2Q−2E

(∣∣∣∣∣X(tn)−
n−1∑
k=1

ukX
(
tk
)∣∣∣∣∣

2)

for some finite constant C > 0, since
∫

RN τE(y)2+Q |̂δ(y)|2 dy < ∞ which follows from (3.7).
Combining (3.8) and (3.9) yields (3.6) for an appropriate constant C5 > 0. �

The relation (3.5) is a property of strong local nondeterminism, which is more general than
that in Xiao [33] and can be applied to establish many sample path properties of X.

For any s, t ∈ RN with s 	= t , we decompose s− t as a direct sum of elements in the E-invariant
subspaces Wj , j = 1,2, . . . , p,

s − t = (s1 − t1) ⊕ · · · ⊕ (sp − tp).
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Then (2.7) and Lemmas 3.1 and 2.2 imply

C−1
p∑

j=1

‖sj − tj‖1/aj
∣∣ln‖sj − tj‖

∣∣−(lj −1)/aj ≤ d2
X(s, t)

(3.10)

≤ C

p∑
j=1

‖sj − tj‖1/aj
∣∣ln‖sj − tj‖

∣∣(lj −1)/aj .

Moreover, Theorem 3.2 implies that for all n ≥ 2 and all t1, . . . , tn ∈ RN , we have

Var
(
X
(
tn
)|X(t1), . . . ,X(tn−1))

(3.11)

≥ C min
0≤k≤n−1

p∑
j=1

∥∥tnj − tkj

∥∥1/aj
∣∣ln∥∥tnj − tkj

∥∥∣∣−(lj −1)/aj ,

where t0 = 0.
Inequalities (3.10) and (3.11) are similar to Condition (C1) and (C3′) in Xiao [33]. Hence,

many results on the Hausdorff dimensions of various random sets and joint continuity of the local
times can be readily derived from those in [33], and these results can be explicitly expressed in
terms of the real parts {aj ,1 ≤ j ≤ p} of the eigenvalues of the scaling exponent E.

To give some examples, we define a vector (H1, . . . ,HN) ∈ (0,1)N as follows.
For 1 ≤ i ≤ l̃p , define Hi = a−1

p . In general, if 1 +∑p
j=k l̃j ≤ i ≤∑p

j=k−1 l̃j for some 2 ≤
k ≤ p, then we define Hi = a−1

k−1. Since 1 < a1 ≤ a2 ≤ · · · ≤ ap , we have

0 < H1 ≤ H2 ≤ · · · ≤ HN < 1.

Consider a Gaussian random field �X = { �X(t), t ∈ RN } with values in Rd defined by

�X(t) = (
X1(t), . . . ,Xd(t)

)
,

where X1, . . . ,Xd are independent copies of the centered Gaussian field X in the above. Let
�X([0,1]N) and Gr �X([0,1]N) = {(t, �X(t)), t ∈ [0,1]N } denote respectively the range and graph
of �X, then Theorem 6.1 in [33] implies that with probability 1,

dimH �X([0,1]N )= dimP �X([0,1]N )= min

{
d;

N∑
j=1

1

Hj

}
, (3.12)

where dimH and dimP denote Hausdorff and packing dimension respectively, and

dimH Gr �X([0,1]N ) = dimP Gr �X([0,1]N )
= min

{
k∑

j=1

Hk

Hk

+ N − k + (1 − Hk)d,1 ≤ k ≤ N;
N∑

j=1

1

Hj

}
(3.13)
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=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

N∑
j=1

1

Hj

, if
N∑

j=1

1

Hj

≤ d ,

k∑
j=1

Hk

Hj

+ N − k + (1 − Hk)d, if
k−1∑
j=1

1

Hj

≤ d <

k∑
j=1

1

Hj

,

where
∑0

j=1
1

Hj
:= 0.

Similarly, it follows from Theorem 7.1 in Xiao [33] that the following hold:

(i) If
∑N

j=1
1

Hj
< d , then for every x ∈ Rd , �X−1({x}) =∅ a.s.

(ii) If
∑N

j=1
1

Hj
> d , then for every x ∈ Rd ,

dimH �X−1({x}) = dimP �X−1({x})
= min

{
k∑

j=1

Hk

Hj

+ N − k − Hkd,1 ≤ k ≤ N

}
(3.14)

=
k∑

j=1

Hk

Hj

+ N − k − Hkd, if
k−1∑
j=1

1

Hj

≤ d <

k∑
j=1

1

Hj

holds with positive probability.

In light of the dimension results (3.12)–(3.14), it would be interesting to determine the exact
Hausdorff (and packing) measure functions for the above random sets. In the special case of frac-
tional Brownian motion, the corresponding problems have been investigated by Talagrand [26],
Xiao [31,32], Baraka and Mountford [4]. For anisotropic Gaussian random fields, the problems
are more difficult. Only an exact Hausdorff measure function for the range has been determined
by Luan and Xiao [18] for a special case of anisotropic Gaussian random fields.

4. Uniform modulus of continuity

In this section, we establish the exact modulus of continuity for X. We first rewrite Lemma 7.1.1
in Marcus and Rosen [19] as follows.

Lemma 4.1. Let {G(u),u ∈ RN } be a centered Gaussian random field. Let ω : R+ → R+ be
a function with ω(0+) = 0 and � ⊂ RN be a compact set. Assume that there is a continuous
map τ : RN �→ R+ with τ(0) = 0 such that dG is continuous on τ , i.e., τ(un − vn) → 0 implies
dG(un, vn) → 0. Then

lim
δ→0

sup
τ(u−v)≤δ

u,v∈�

|G(u) − G(v)|
ω(τ(u − v))

≤ C, a.s. for some constant C < ∞
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implies that

lim
δ→0

sup
τ(u−v)≤δ

u,v∈�

|G(u) − G(v)|
ω(τ(u − v))

= C′, a.s. for some constant C′ < ∞.

This result is also valid for the local modulus of continuity of G, that is, it holds with v replaced
by u0 and with the supremum taken over u ∈ �.

Remark 4.1. Lemma 4.1 is slightly different from Lemma 7.1.1 in Marcus and Rosen [19],
where τ is assumed to be a pseudo-norm. However, by carefully checking its proof in [19], this
requirement can be replaced by the conditions stated in Lemma 4.1.

Using the above lemma, we prove the following uniform modulus of continuity theorem. For
convenience, let BE(r) := {x ∈ RN : τE(x) ≤ r} and B(r) = {x ∈ RN : ‖x‖ ≤ r} for all r ≥ 0,
and I := [0,1]N .

Theorem 4.2. Let X = {X(t), t ∈ RN } be a centered, real-valued Gaussian random field defined
as in (2.12). Then

lim
r→0

sup
s,t∈I

τE(s−t)≤r

|X(s) − X(t)|
τE(s − t)

√
log(1 + τE(s − t)−1)

= C6 a.s., (4.1)

where C6 is a positive and finite constant.

Proof. Note that due to monotonicity the limit in the left-hand side of (4.1) exists almost surely,
and the key point is that this limit is a positive and finite constant.

For t, t ′ ∈ I , let β(t, t ′) = τE(t − t ′)
√

log(1 + τE(t − t ′)−1) and let

J (r) = sup
t,t ′∈I

τE(t−t ′)≤r

|X(t) − X(t ′)|
β(t, t ′)

.

First, we prove that limr→0 J (r) ≤ C < ∞ almost surely. We introduce an auxiliary Gaussian
field:

Y = {
Y(t, s), t ∈ I, s ∈ BE(r)

}
defined by Y(t, s) = X(t + s) − X(t), where r is sufficiently small such that BE(r) ⊆ [−1,1]N .
Since X has stationary increments and X(0) = 0, dX(s, t) = dX(0, t − s) for any s, t ∈ RN , the
canonical metric dY on T := I × BE(r) associated with Y satisfies the following inequality:

dY

(
(t, s),

(
t ′, s′))≤ C min

{
dX(0, s) + dX

(
0, s′), dX

(
s, s′)+ dX

(
t, t ′

)}
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for some constant C. Denote the diameter of T in the metric dY by D. By Theorem 3.2(i), we
have that

D ≤ C sup
s∈BE(r)

s′∈BE(r)

(
dX(0, s) + dX

(
0, s′))≤ Cr

for some constant C. Note that by Theorem 3.2(i) and (2.5), for a given small δ > 0, there is
C > 0 such that

dX(s, t) ≤ C‖t − s‖1/(ap+δ).

Therefore, there exists C > 0 such that for small ε > 0, if ‖t − t ′‖ < Cεap+δ and ‖s − s′‖ <

Cεap+δ , then (
t ′, s′) ∈ OdY

(
(t, s), ε

)= {
(u, v): dY

(
(u, v), (t, s)

)
< ε

}
.

Hence, Nd(T , ε), the smallest number of open dY -balls of radius ε needed to cover T , satisfies

Nd(T , ε) ≤ Cε−2N(ap+δ),

for some constant C > 0. Then one can verify that for some constant C > 0∫ D

0

√
lnNd(T , ε)dε ≤ Cr

√
log
(
1 + r−1

)
.

It follows from Lemma 2.1 in Talagrand [26] that for all u ≥ 2Cr
√

log(1 + r−1),

P
(

sup
(t,s)∈T

∣∣X(t + s) − X(t)
∣∣≥ u

)
≤ exp

(
− u2

4D2

)
.

By a standard Borel–Cantelli argument, we have that for some positive constant C < ∞,

lim sup
r→0

sup
t∈I

τE(s−t)≤r

|X(s) − X(t)|
r
√

log(1 + r−1)
≤ C a.s.

The monotonicity of the functions r �→ r
√

log(1 + r−1) implies that limr→0 J (r) ≤ C almost
surely. Hence, by Lemma 4.1, we see that (4.1) holds for a constant C6 ∈ [0,∞).

In order to show C6 > 0 it is sufficient to prove that

lim
r→0+J (r) ≥ C7, a.s., (4.2)

where C7 = C−1
4

√
2C5a1. Recall that a1 is the real part of eigenvalue λ1. For any k ≥ 1, we let

x
(k)
i = 〈

i2−nk
〉
, i = 0,1,2, . . . ,2nk
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and rk = τE(〈2−nk 〉), where the sequence {nk} is taken as in Lemma 2.4. Since 0 < τE(〈2−nk 〉) →
0 as k → ∞, the monotonicity of J (r) implies that

lim
r→0+J (r) = lim

k→∞ sup
s,t∈I,τE(s−t)≤rk

|X(s) − X(t)|
β(s, t)

≥ lim inf
k→∞ max

0≤i≤(1/2)(2nk −1)

|X(x
(k)
2i+1) − X(x

(k)
2i )|

rk

√
log(1 + r−1

k )

(4.3)

=: lim inf
k→∞ Jk.

For any small δ > 0, denote C8 = C−1
4

√
2C5(a1 − δ). For any μ ∈ (0,1), we write

P
(
Jk ≤ (1 − μ)C8

)
= P

({ |X(〈1 − 2−nk 〉) − X(〈1 − 2−nk+1〉)|
rk

√
log(1 + r−1

k )

≤ (1 − μ)C8

}
(4.4)

∩
{

max
0≤i≤(1/2)(2nk −1)−1

|X(〈(2i + 1)2−nk 〉) − X(〈(2i)2−nk 〉)|
rk

√
log(1 + r−1

k )

≤ (1 − μ)C8

})
.

Let

P1(k) = P

(
max

0≤i≤(1/2)(2nk −1)−1

|X(〈(2i + 1)2−nk 〉) − X(〈(2i)2−nk 〉)|
rk

√
log(1 + r−1

k )

≤ (1 − μ)C8

)
(4.5)

and

P2(k) = P

( |X(〈1 − 2−nk 〉) − X(〈1 − 2−nk+1〉)|
rk

√
log(1 + r−1

k )

≤ (1 − μ)C8

∣∣∣X(〈1 − 2−nk+1〉);
(4.6)

X
(〈
(2i + 1)2−nk

〉)
,X
(〈
(2i)2−nk

〉)
,0 ≤ i ≤ 1

2

(
2nk − 1

)− 1

)
.

It follows from Theorem 3.2 and Lemma 2.4 that

Var

(
X
(〈

1 − 2−nk
〉)− X

(〈
1 − 2−nk+1〉)∣∣X(〈1 − 2−nk+1〉);

X
(〈
(2i + 1)2−nk

〉)
,X
(〈
(2i)2−nk

〉)
,0 ≤ i ≤ 1

2

(
2nk − 1

)− 1

)
≥ C5 min

1≤i≤2nk
τ 2
E

(〈
i2−nk

〉)≥ C5C
−2
4 τ 2

E

(〈
2−nk

〉)= C5C
−2
4 r2

k .
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Thus by the fact that the conditional distributions of the Gaussian process is almost surely Gaus-
sian, and by Anderson’s inequality (see Anderson [1]) and the definition of C8, we obtain

P2(k) ≤ P
(
N(0,1) ≤ (1 − μ)

√
2(a1 − δ) log

(
1 + r−1

k

))
,

where N(0,1) denotes a standard normal random variable. By using the following well-known
inequality

(2π)−1/2(1 − x−2)x−1e−x2/2 ≤ P
(
N(0,1) > x

)≤ (2π)−1/2x−1e−x2/2, ∀x > 0,

we derive that for all k large enough

P2(k) ≤ 1 − P
(
N(0,1) > (1 − μ)

√
2(a1 − δ) log

(
1 + r−1

k

))
(4.7)

≤ 1 − r
(1−μ/2)2(a1−δ)
k ≤ exp

(−r
(1−μ/2)2(a1−δ)
k

)
.

Combining (4.4) with (4.5), (4.6) and (4.7), we have that

P
(
Jk ≤ (1 − μ)C8

)≤ exp
(−r

(1−μ/2)2(a1−δ)
k

)
P1(k).

By repeating the above argument, we obtain

P
(
Jk ≤ (1 − μ)C8

)≤ exp

(
−2nk − 1

2
r
(1−μ/2)2(a1−δ)
k

)
≤ exp

(−C2μnk/2), (4.8)

where the last inequality follows from the estimate:

r2
k = τ 2

E

(〈
2−nk

〉)≥ C2
1

∥∥〈2−nk
〉∥∥2/(a1−δ) ≥ C2

1 2−2nk/(a1−δ).

By (4.8) and the Borel–Cantelli lemma, we have lim infk→∞ Jk ≥ (1 − μ)C8 a.s. Letting μ → 0
and δ → 0 yields (4.2). The proof of Theorem 4.2 is completed. �

5. Laws of the iterated logarithm

For any fixed t0 ∈ RN and a family of neighborhoods {O(r): r > 0} of 0 ∈ RN whose diameters
go to 0 as r → 0, we consider in this section the corresponding local modulus of continuity of X

at t0

ω(t0, r) = sup
s∈O(r)

∣∣X(t0 + s) − X(t0)
∣∣.

Since X is anisotropic, the rate at which ω(t0, r) goes to 0 as r → 0 depends on the shape of
O(r). A natural choice of O(r) is BE(r).
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For specification and simplification, in this section, let E be a Jordan canonical form of
(2.1), which satisfies all assumptions in Section 2. Recall that l̃j is the size of Jj . For any
i = 1,2, . . . ,N , if l̃1 + · · · + l̃j−1 + 1 ≤ i ≤ l̃1 + · · · + l̃j , then

ei = {0, . . . ,0,1︸ ︷︷ ︸
i

,0, . . . ,0} ∈ Wj .

The following theorem characterizes the exact local modulus of continuity of X.

Theorem 5.1. There is a positive and finite constant C9 such that for every t0 ∈ RN we have

lim
r→0+ sup

s−t0∈BE(r)

|X(s) − X(t0)|
τE(s − t0)

√
log log(1 + τE(s − t0)−1)

= C9 a.s. (5.1)

In order to show this result, we will make use of the following lemmas.

Lemma 5.2. There exist positive and finite constants u0 and C10 such that for all t0 ∈ RN , u ≥ u0
and sufficiently small r > 0,

P
(

sup
s∈BE(r)

∣∣X(t0 + s) − X(t0)
∣∣≥ ur

√
log log

(
1 + r−1

))≤ e−C10u
2 log log(1+r−1).

Proof. We introduce an auxiliary Gaussian field Y = {Y(s), s ∈ BE(r)} defined by Y(s) =
X(t0 + s) − X(t0). Since X has stationary increments and X(0) = 0, we have dY (s, s′) =
dX(s, s′) for all s, s′ ∈ RN . Denote the diameter of BE(r) in the metric dY by D. It follows
from Lemma 3.1 that D ≤ Cr for some finite constant C. Note that the decomposition of
x = (x1, x2, . . . , xN) ∈ BE(r) in Wj is

x̄j = (0, . . . ,0, x
l̃1+···+l̃j−1+1, . . . , xl̃1+···+l̃j

,0, . . . ,0).

For any j = 1,2, . . . , p, let lj = l̃j if Jj is a Jordan cell matrix as in (2.2) or lj = l̃j /2 if Jj is of
the form (2.3). By Lemma 2.1 and (2.7), we have that for sufficiently small r ,

‖x̄j‖1/aj
∣∣ln‖x̄j‖

∣∣−(lj −1)/aj ≤ Cr.

This implies that there exists a constant C, which may depend on aj , such that for all i with
l̃1 + · · · + l̃j−1 + 1 ≤ i ≤ l̃1 + · · · + l̃j ,

|xi | ≤ Craj | ln r|lj −1.

Therefore BE(r) ⊂ [−h,h] for sufficiently small r > 0, where h = (h1, h2, . . . , hN) with hi =
Craj | ln r|lj −1 as l̃1 + · · · + l̃j−1 + 1 ≤ i ≤ l̃1 + · · · + l̃j . Furthermore, from (2.7), we have that
for any x = (x1, x2, . . . , xN) ∈ RN and sufficiently small ε > 0, if

|xi | <
(

ε

Nμ

)aj
∣∣∣∣ln( ε

Nμ

)∣∣∣∣−(lj −1)/aj

,
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for l̃1 + · · · + l̃j−1 + 1 ≤ i ≤ l̃1 + · · · + l̃j , where μ is a constant whose value will be determined
later, then

τE(�xi) ≤ C
ε

Nμ

∣∣∣∣ln( ε

Nμ

)∣∣∣∣−(lj −1)∣∣∣∣ln[( ε

Nμ

)aj
∣∣∣∣ln( ε

Nμ

)∣∣∣∣−(lj −1)/aj
]∣∣∣∣(lj −1)/aj

(5.2)
≤ C

ε

Nμ
,

where �xi = (0, . . . ,0, xi︸ ︷︷ ︸
i

,0, . . . ,0) ∈ RN . Then by (2.4) and (5.2), there exists a constant C > 0

such that

τE(x) = τE

(
N∑

i=1

�xi

)
≤ C

N∑
i=1

ε

Nμ
≤ C

ε

μ
.

By using Lemma 3.1 again, we have

dY (0, x) ≤ CτE(x) ≤ C11ε/μ.

Now we take μ > C11, then x ∈ OdY
(ε) implies [0, x) ⊂ OdY

(ε). Therefore the smallest number
of open dY -balls of radius ε needed to cover BE(r) := T , denoted by Nd(T , ε), satisfies

Nd(T , ε) ≤ C

p∏
j=1

(
raj

(ε/(μN))aj

∣∣∣∣ln( ε

μN

)∣∣∣∣(lj −1)/aj

| ln r|(lj −1)

)lj

for some constant C > 0. Then one can verify that∫ D

0

√
lnNd(T , ε)dε ≤ Cr

√
log log

(
1 + r−1

)
.

It follows from [26], Lemma 2.1, that for all sufficiently large u,

P
(

sup
s∈BE(r)

∣∣X(t0 + s) − X(t0)
∣∣≥ ur

√
log log

(
1 + r−1

))
≤ exp

(−C10u
2 log log

(
1 + r−1)).

This finishes the proof of Lemma 5.2. �

Lemma 5.3. There is a constant C12 ∈ [0,∞) such that for every fixed t0 ∈ RN ,

lim
ε→0

sup
s−t0∈BE(ε)

|X(s) − X(t0)|
τE(s − t0)

√
log log(1 + τE(s − t0)−1)

= C12 a.s. (5.3)
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Proof. By Lemma 4.1, it is sufficient to prove

lim
ε→0

sup
s−t0∈BE(ε)

|X(s) − X(t0)|
τE(s − t0)

√
log log(1 + τE(s − t0)−1)

≤ C < ∞, (5.4)

for some constant C > 0. Let εn = e−n, consider the event

En =
{

sup
s−t0∈BE(ε)

|X(s) − X(t0)|
εn

√
log log(1 + ε−1

n )

> u

}
,

where u > C
−1/2
10 is a constant. By Lemma 5.2, we have P(En) ≤ e−C10u

2 logn for all sufficiently
large n. Hence, the Borel–Cantelli lemma implies

lim sup
ε→0

sup
s∈I,s−t0∈BE(ε)

|X(s) − X(t0)|
ε
√

log log(1 + ε−1)
≤ u.

This and a monotonicity argument yield (5.4). �

We will also need the following truncation inequalities which extend a result in Luan and Xiao
[18].

Lemma 5.4. For a given N ×N matrix E, there exists a constant r0 > 0 such that for any u > 0
and any t ∈ RN with τE(t)u ≤ r0, we have∫

{τE′ (ξ)<u}
〈t, ξ 〉2 dξ

ψ(ξ)2+Q
≤ 3

∫
RN

(
1 − cos〈t, ξ 〉) dξ

ψ(ξ)2+Q
. (5.5)

Proof. Let M = max{‖x‖, x ∈ SE}, K(r) = max{‖x‖, τE′(x) ≤ r}. Since SE is compact set
without 0 and τE′(·) is continuous, M > 0 and K(r) continuous with K(0) = 0, K(r) → ∞
as r → ∞. Therefore, there exists r0 > 0 such that MK(r) ≤ 1 for all r < r0. By using the
inequality u2 ≤ 3(1 − cosu) for all real numbers |u| ≤ 1, we derive that if τE(t)u ≤ r0, then∫

{τE′ (ξ)<u}
〈t, ξ 〉2 dξ

ψ(ξ)2+Q

=
∫

{τE′ (ξ)<u}
〈
τE
E (t)lE(t), ξ

〉2 dξ

ψ(ξ)2+Q

=
∫

{τE′ (ξ)<u}
〈
lE(t), τE′

E (t)ξ
〉2 dξ

ψ(ξ)2+Q
= τ 2

E(t)

∫
{τE′ (ξ)<τE(t)u}

〈
lE(t), ξ

〉2 dξ

ψ(ξ)2+Q

≤ 3τ 2
E(t)

∫
{τE′ (ξ)<τE(t)u}

(
1 − cos

〈
lE(t), ξ

〉) dξ

ψ(ξ)2+Q

= 3
∫

{τE′ (ξ)<u}
(
1 − cos

〈
lE(t), τE′

E (t)ξ
〉) dξ

ψ(ξ)2+Q
,
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which equals

3
∫

{τE′ (ξ)<u}
(
1 − cos〈t, ξ 〉) dξ

ψ(ξ)2+Q
≤ 3

∫
RN

(
1 − cos〈t, ξ 〉) dξ

ψ(ξ)2+Q
. (5.6)

The proof of this lemma is complete. �

Now we are ready to prove Theorem 5.1.

Proof of Theorem 5.1. By Lemma 5.3 and the stationary increments property of X, it only
remains to show

lim
ε→0+ sup

s∈BE(ε)

|X(s)|
τE(s)

√
log log(1 + τE(s)−1)

≥ C (5.7)

for some constant C > 0.
For any 0 < μ < 1 and n ≥ 1, we define sn = (0, . . . ,0, e−apn1+μ

) ∈ RN . By (2.7)

C−1
3 e−n1+μ ∣∣apn1+μ

∣∣−(lp−1)/ap ≤ τE(sn) ≤ C3e−n1+μ ∣∣apn1+μ
∣∣(lp−1)/ap . (5.8)

For every integer n ≥ 1, let dn = exp(n1+μ + nμ). Denote U = exp(μ(n − 1)μ). Notice that
as n → ∞,

τE(Usn)dn−1 ≤ CU1/ap
∣∣apn1+μ − μ(n − 1)μ

∣∣(lp−1)/ap exp
(−n1+μ + (n − 1)1+μ + (n − 1)μ

)
≤ C

∣∣apn1+μ − μ(n − 1)μ
∣∣(lp−1)/ap exp

(
−μ

(
1 − 1

ap

)
(n − 1)μ

)
→ 0.

It follows from Lemma 5.4, Lemma 3.1 and (2.7) that∫
{τE′ (ξ)≤dn−1}

〈sn, ξ 〉2 dξ

ψ(ξ)2+Q
= U−2

∫
{τE′ (ξ)≤dn−1}

〈snU, ξ 〉2 dξ

ψ(ξ)2+Q

≤ CU−2d2
X(Usn,0) ≤ CU−2τ 2

E(Usn)
(5.9)

≤ CU−2U2/ap
∣∣ln‖sn‖

∣∣2(lp−1)/ap
∣∣ln‖Usn‖

∣∣2(lp−1)/apτ 2
E(sn)

≤ C exp

(
−
(

1 − 1

ap

)
μ(n − 1)μ

)
τ 2
E(sn)

for n large enough. On the other hand, noting that ψ is E′-homogeneous, by using [8], Proposi-
tion 2.3, we obtain that∫

{τE′ (ξ)>dn}
dξ

ψ(ξ)2+Q
=
∫ ∞

dn

dr

∫
SE′

1

r2+Qψ(θ)
rQ−1σ(dθ) ≤ Cd−2

n ,
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since σ(dθ) is a finite measure on SE′ . Furthermore,

d−2
n = e−2n1+μ−2nμ = e−2n1+μ ∣∣ln e−apn1+μ ∣∣−2(lp−1)/ap

∣∣apn1+μ
∣∣2(lp−1)/ap e−2nμ

≤ Cτ 2
E(sn)

∣∣n1+μ
∣∣2(lp−1)/ap e−2nμ

,

when n is large enough. Therefore, for sufficiently large n,∫
{τE′ (ξ)>dn}

dξ

ψ(ξ)2+Q
≤ Cτ 2

E(sn)e
−nμ

. (5.10)

Now we decompose X into two independent parts as follows.

X̃n(t) =
∫

{τE′ (ξ)/∈(dn−1,dn]}
(
ei〈t,ξ〉 − 1

) M̃(dξ)

ψ(ξ)1+Q/2
(5.11)

and

Xn(t) =
∫

{τE′ (ξ)∈(dn−1,dn]}
(
ei〈t,ξ〉 − 1

) M̃(dξ)

ψ(ξ)1+Q/2
. (5.12)

Notice that the random fields {Xn(t), t ∈ RN }, n = 1,2, . . . are independent.
Let

I1(n) = |Xn(sn)|
τE(sn)

√
log log(1 + τE(sn)−1)

and

I2(n) = |X̃n(sn)|
τE(sn)

√
log log(1 + τE(sn)−1)

.

Then

lim
ε→0+ sup

s∈BE(ε)

|X(s)|
τE(s)

√
log log(1 + τE(s)−1)

≥ lim sup
n→∞

|X(sn)|
τE(sn)

√
log log(1 + τE(sn)−1)

(5.13)
≥ lim sup

n→∞
I1(n) − lim sup

n→∞
I2(n).

By using (5.9), (5.10) and the same argument in the proof of Theorem 5.5 in [22], we can readily
get that

lim sup
n→∞

I2(n) = 0, a.s. (5.14)

In order to estimate lim supn→∞ I1(n), using Lemma 3.1 again, we have that

E
(
Xn(sn)

)2 ≤ d2
X(sn,0) ≤ C13τ

2
E(sn).
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Again, by the corresponding argument in the proof of Theorem 5.5 in [22], it is easy to get that

lim sup
n→∞

I1(n) ≥√
2C13 a.s. (5.15)

Hence, (5.7) follows from (5.13), (5.14) and (5.15). �

6. Examples

Finally, we provide two examples of operator scaling Gaussian random fields with stationary
increments to illustrate our results and compare them with those in Meerschaert, Wang and Xiao
[22]. In particular, Example 6.2 shows that the regularity properties of X depend subtly on its
scaling exponent E.

Example 6.1. If E has a Jordan canonical form (2.1) such that, for all k = 1,2, . . . , p, l̃k = 1 if Jk

is a Jordan cell matrix and l̃k = 2 if Jk is not a Jordan cell matrix. Then for any t = (t1, . . . , tN ) ∈
RN , by (2.7) and Lemma 2.2, we have

τE(t) �
N∑

i=1

|ti |1/ai ,

where ai is the real part of eigenvalue(s) corresponding to Jk such that
∑k−1

j=1 l̃j + 1 ≤ i ≤∑k
j=1 l̃j . Therefore, in this case, Theorems 4.2 and 5.1 are of the same form as the corresponding

results in Meerschaert, Wang and Xiao [22].

Example 6.2. We consider the Gaussian random field {X(t), t ∈ R2} defined by (2.12) with
scaling exponent E, a Jordan matrix, as follows

E =
(

a 0
1 a

)
,

where a > 1 is a constant. Then p = 1 and l̃1 = 2. For any t > 0, by straightforward computa-
tions, we have

tE = ta
(

1 0
ln t 1

)
.

According to Lemma 6.1.5 in [21], the norm ‖ · ‖E induced by E is defined as that for any x ∈ R2

‖x‖E =
∫ 1

0

‖tEx‖
t

dt.

Note that we can uniquely represent x ∈ R2 as (0, s) or (s, θs) for some s ∈ R, θ ∈ R. When
x = (0, s),

‖x‖E =
∫ 1

0
|s|ta−1 dt = |s|

a
, (6.1)
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and when x = (s, θs),

‖x‖E =
∫ 1

0
|s|ta−1

√
1 + (θ + ln t)2 dt =: |s|α(θ). (6.2)

It is easy to see that α(θ) is continuous on θ ∈ R with α(θ) > 1/a and that |θ |/α(θ) is bounded
since |θ |/α(θ) is continuous and

lim
θ→∞

|θ |
α(θ)

= a. (6.3)

We have α := minθ α(θ) > 1/a. From (6.1) and (6.2), we have

SE = {
x: ‖x‖E = 1

}=
{
±
(

0
0

)
a,± 1

α(θ)

(
0
1

)
θ : θ ∈ R

}
,

and R2 = {sEy: s ≥ 0, y ∈ SE}.
To unify the notation, we set

θ

α(θ)
= ±a and

1

α(θ)
= 0

when θ = ±∞. Then for any x ∈ R2 with τE(x) = s, there exists θ ∈ [−∞,+∞] such that

x = ±sE 1

α(θ)

(
0
1

)
θ = ± sa

α(θ)

(
0
1

)
θ + ln s, (6.4)

where sa ln s|s=0 := 0 and the sign + or − depends on x.
Now we reformulate Theorem 4.2 and Theorem 5.1 for the present case. For convenience, we

express the vector y ∈ R2 in terms of s = τE(y) and θ by

y = y(s, θ,w) = (−1)w
(

sa

α(θ)
,

sa

α(θ)
(θ + ln s)

)
,

where w ∈ {0,1}.

Conclusion A. Let I = [0,1]2. Then

lim
r→0+ sup

s≤r,θ∈[−∞,+∞]
w∈{0,1},x,x+y∈I

|X(x + y(s, θ,w)) − X(x)|
s
√

log(1 + s−1)
= C17 a.s., (6.5)

and that for any x0 ∈ I ,

lim
r→0+ sup

s≤r,θ∈[−∞,+∞],w∈{0,1}
|X(x0 + y(s, θ,w)) − X(x0)|

s
√

log log(1 + s−1)
= C18 a.s., (6.6)

where C17 and C18 are positive and finite constants.



952 Y. Li, W. Wang and Y. Xiao

Next we describe the asymptotic behavior of τE(y) as ‖y‖ → 0 along three types of curves in
R2:

(i) If θ = − ln s + c for a constant c ∈ R, then y = y(s, θ,w) = (−1)w(sa/α(θ), csa/α(θ))

satisfies

‖y‖ =
√

1 + c2sa

α(θ)
=

√
1 + c2sa

α(c − ln s)
.

This, together with (6.3), implies that as ‖y‖ → 0,

s = τE(y) ∼ ‖y‖1/a
∣∣ln‖y‖∣∣1/a

, (6.7)

where the notation “∼” means that as ‖y‖ → 0 the quotient of the two sides of ∼ goes to
a positive constant.

(ii) If θ = ±∞, then y(s, θ,w) = (−1)w(0, asa) and

s = τE(y) = 1

a1/a
‖y‖1/a. (6.8)

(iii) If θ is fixed in (−∞,+∞), then for y = y(s, θ,w),

‖y‖ = sa

α(θ)

√
1 + (θ + ln s)2,

which implies that as ‖y‖ → 0,

s = τE(y) ∼ ‖y‖1/a
∣∣ln‖y‖∣∣−1/a

. (6.9)

In the following, we derive the exact uniform moduli of continuity of X(x) by using the norm
‖ · ‖ in three different cases which are intuitively corresponding to the three types mentioned
above. These results illustrate the subtle changes of the regularity properties of X. For the exact
local moduli of continuity, similar results are true as well. In order not to make the paper too
lengthy, we leave it to interested readers.

Conclusion B. (1) If I1 = {(t, t): t ∈ [0,1]}, then

lim‖y‖→0
sup

x,x+y∈I1

|X(x + y) − X(x)|
(‖y‖| ln‖y‖|)1/a

√
log(1 + ‖y‖−1)

= C19 ∈ (0,∞) a.s. (6.10)

(2) If I2 = {(0, t): t ∈ [0,1]}, then

lim‖y‖→0
sup

x,x+y∈I2

|X(x + y) − X(x)|
‖y‖1/a

√
log(1 + ‖y‖−1)

= C20 ∈ (0,∞) a.s. (6.11)

(3) Let θ0 ∈ arg minθ α(θ) = {ϑ,α(ϑ) ≤ α(θ), θ ∈ [−∞,+∞]}. Then

lim‖y‖→0
sup

y=y(r,θ0,0)

x,x+y∈I

| ln‖y‖|1/a|X(x + y) − X(x)|
‖y‖1/a

√
log(1 + ‖y‖−1)

= C21 ∈ (0,∞) a.s. (6.12)
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Proof. (1) Observe that, in the proof of (4.2) in the case of N = 2, one can choose the sequences
of {x(k)

i } such that all the points x
(k)
i and the differences x

(k)
i+1 − x

(k)
i lie in I1 = {(t, t): t ∈ [0,1]}.

Therefore, the proof of (4.2) essentially shows that

lim
y→0

sup
x,x+y∈I1

|X(x + y) − X(x)|
τE(y)

√
log(1 + τE(y)−1)

≥ C > 0 a.s. (6.13)

Thanks to the formula (6.7), we see that (6.10) follows from the proof of Theorem 4.2.
(2) To prove (6.11), choose x

(n)
i = (0, i2−n) for i = 0,1, . . . ,2n. Then by some obvious mod-

ifications, one can easily check that (6.13) is also true with I2 instead of I1. Therefore, by (6.8),
(6.11) also follows from in the proof of Theorem 4.2.

(3) Note that α(θ) is continuous and as θ → ∞, α(θ)/|θ | → a. The set arg minθ α(θ) is not
empty. Let α0 = α(θ0) and

x
(n)
i = iy

(
2−n, θ0,0

)+ (0,1) =
(

i2−an

α0
,
i2−an

α0
(θ0 − n ln 2) + 1

)
for i = 0,1,2, . . . ,Kn, where

Kn = max
{
i, x

(n)
i ∈ [0,1]2}.

Manifestly, for sufficiently large n, Kn > 2n. Let rn := τE(y(2−n, θ0,0)). Then

lim
r→0

sup
y=y(r,θ0,0)

x,x+y∈I

|X(x + y) − X(x)|
r
√

log(1 + r−1)

≥ lim inf
n→∞ max

0≤i≤Kn−1

|X(x
(n)
i+1) − X(x

(n)
i )|

rn

√
log(1 + r−1

n )

=: lim inf
k→∞ Jn.

Note that for k ≥ 1,

ky
(
2−n, θ0,0

)=
(

k2−an

α0
,
k2−an

α0
(θ0 − n ln 2)

)
.

There exist some θ ∈ (−∞,∞), w ∈ {0,1} and s = τE(ky(2−n, θ0,0)) such that

ky
(
2−n, θ0,0

)= y(s, θ,w),

which implies that w = 0 and

sa

α(θ)
= k2−an

α0
.

Because α0 = minθ α(θ)

s = τE

(
ky
(
2−n, θ0,0

))≥ 2−n := rn.
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Therefore, from Theorem 3.2 and Lemma 2.4, we obtain that

Var
(
X
(
x

(n)
i+1

)− X
(
x

(n)
i

)|X(x(n)
k

)
,0 ≤ k ≤ i

)≥ C5 min
1≤k≤i+1

τ 2
E

(
ky
(
2−n, θ0,0

))≥ C5r
2
n.

By the same proof of (4.2) with some obvious modifications, we have that

lim
r→0

sup
y=y(r,θ0,0)

x,x+y∈I

|X(x + y) − X(x)|
r
√

log(1 + r−1)
≥ C > 0. (6.14)

Reviewing the proof of Lemma 7.1.1 in Marcus and Rosen [19], one can easily get that

lim
r→0

sup
y=y(r,θ0,0)

x,x+y∈I

|X(x + y) − X(x)|
r
√

log(1 + r−1)
≤ C, a.s. for some constant C < ∞

implies that

lim
r→0

sup
y=y(r,θ0,0)

x,x+y∈I

|X(x + y) − X(x)|
r
√

log(1 + r−1)
= C′, a.s. for some constant C′ < ∞.

Therefore, from Theorem 4.2 and (6.14) it follows that

lim
r→0

sup
y=y(r,θ0,0)

x,x+y∈I

|X(x + y) − X(x)|
r
√

log(1 + r−1)
= C ∈ (0,∞).

This and (6.9) imply (6.12). �
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