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In this paper, we propose a novel method to select significant variables and estimate the corresponding co-
efficients in multiple-index models with a group structure. All existing approaches for single-index models
cannot be extended directly to handle this issue with several indices. This method integrates a popularly
used shrinkage penalty such as LASSO with the group-wise minimum average variance estimation. It is ca-
pable of simultaneous dimension reduction and variable selection, while incorporating the group structure
in predictors. Interestingly, the proposed estimator with the LASSO penalty then behaves like an estimator
with an adaptive LASSO penalty. The estimator achieves consistency of variable selection without sacri-
ficing the root-n consistency of basis estimation. Simulation studies and a real-data example illustrate the
effectiveness and efficiency of the new method.
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1. Introduction

Suppose that Y ∈ R is a univariate response and X = (X1, . . . ,Xp)� ∈ Rp is a vector of pre-
dictors. A general goal of regression analysis is to characterize the conditional distribution of
Y given X, or the conditional mean E(Y |X). The theory of sufficient dimension reduction (Li
[17] and Cook and Weisberg [10]) provides a framework for reducing the dimension of X while
preserving information on regression. Let S denote a subspace of Rp , and let PS denote the
orthogonal projection onto S with respect to the usual inner product. If Y and X are independent
conditioned on PSX, then we say that S is a dimension reduction subspace. The intersection of
all such subspaces, if itself satisfies the conditional independence, is defined to be the central
subspace (Cook [6] and Yin, Li and Cook [38]). When only the mean response E(Y |X) is of
interest, sufficient dimension reduction can be defined in a similar fashion. Specifically, a sub-
space S is said to be a mean dimension reduction subspace if Y is independent of E(Y |X) given
PSX. If the intersection of all mean dimension reduction subspaces is also a mean dimension
reduction subspace, it is called the central mean subspace (Cook and Li [8]). In either case, suf-
ficient dimension reduction permits us to restrict attention to a number d ≤ p of new predictors,
expressed as linear combinations of the original ones: β�

1 X, . . . ,β�
d X, where {β1, . . . ,βd} is a

basis of S .
In the last two decades or so, a series of papers have considered issues related to dimension

reduction in regression. There have primarily been two categories of estimation methods in the
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literature: inverse regression methods (Li [17], Cook and Weisberg [10] and Cook and Ni [9])
and direct regression methods (Härdle and Stoker [14], Xia et al. [34] and Yin and Li [37]). In-
verse regression methods, despite being computationally simple and widely used, require strong
assumptions on predictors such as the linearity condition (Li [17]), and often fail to estimate the
central subspace exhaustively (Cook [6]). In contrast, the minimum average variance estimation
(MAVE) method of Xia et al. [34] has proven effective in dimension reduction and estimation
of complicated semi-parametric models. The root-n consistency is still achievable for the MAVE
estimate. Compared with other direct regression methods, the calculation for MAVE is much
easier, and many efficient algorithms are available. Although MAVE was originally proposed for
dimension reduction for the conditional mean, the idea was recently generalized to target the cen-
tral subspace (Wang and Xia [28] and Yin and Li [37]). In this article, we are concerned mainly
with predictors in the conditional mean.

Dimension reduction is a fundamental statistical problem in both theory and practice. The
aforementioned dimension reduction methods, however, suffer from the difficulty of interpreting
the results, because the new extracted predictors usually involve all of the original ones. To handle
this problem, model-free variable selection, in the framework of sufficient dimension reduction,
has attracted considerable attention in recent years. For example, Li, Cook and Nachtsheim [18]
introduced test-based procedures, Bondell and Li [1] incorporated inverse regression estimation
with LASSO (Tibshirani [25]) to obtain shrinkage inverse regression estimation, and Chen, Zou
and Cook [5] proposed a unified method called coordinate-independent sparse estimation. See
also Zhu et al. [41] and Wang, Xu and Zhu [31]. All these methods, which are largely “paramet-
ric” in nature, are based on inverse regression methods and thus suffer the drawbacks of strong
design assumptions and poor finite-sample performance (Wang, Xu and Zhu [30]).

Exploring the idea of combining MAVE and LASSO, Wang and Yin [29] proposed a sparse
MAVE method and Zeng, He and Zhu [39] designed for single-index models a lasso-type ap-
proach called sim-lasso. Because the sparse MAVE penalizes the index vectors directly, it is not
a principled method for variable selection and only provides a sparse estimate for a basis matrix
of the central mean subspace column by column. The use of the l1 penalty function in Zeng, He
and Zhu [39] is novel in that it penalizes the index vector and the norm of the derivative of link
function simultaneously. However, the theoretical properties of sim-lasso, such as its consistency
and convergence rate, have not yet been studied due to the interaction between the bandwidth
and the penalty parameter. Further, it is nontrivial, if not impossible, to extend sim-lasso to deal
with multiple-index models. Several papers have addressed the problem of semi-parametric vari-
able selection for single-index models, and developed large sample properties. See, for instance,
Liang et al. [20], Peng and Huang [21] and Wang, Xu and Zhu [30]. However, condition (vi) in
Liang et al. [20] may not hold true and their approach could not be extended to handle multiple-
index models. The penalized MAVE method in Wang, Xu and Zhu [30] was motivated by the
reasoning that predictor selection can be realized through selection of nonvanishing rows of a
basis matrix of the central mean subspace. A bridge penalty function was employed to penalize
the l1 norms of the rows of a basis matrix. Although the penalized MAVE performs well for
multiple-index models in the numerical studies, its theoretical properties are established only for
the special case of single-index models. This is because, condition (C5) in Wang, Xu and Zhu
[30], which is also assumed in Peng and Huang [21], is hard to check and possibly invalid except
for single-index models. To the best of our knowledge, semi-parametric variable selection for
multiple-index models has thus far not been well studied.
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In many engineering and scientific situations, however, predictors are naturally grouped. For
example, in biological applications assayed genes or proteins can be grouped by biological path-
ways. Although useful, existing dimension reduction methods are generic and treat all predictors
in X indiscriminately. To take advantage of such group knowledge, Li, Li and Zhu [19] proposed
a group-wise sufficient dimension reduction method, called group-wise MAVE, which preserves
full regression information in the conditional mean of Y given X while exploiting the group
structure among predictors. Generally, it is believed that incorporating group information into
dimension reduction can facilitate interpretation of results and improve estimation accuracy as
the number of unknown parameters has been greatly reduced.

As a simple illustration, we use an example to show the necessity of group-wise dimension
reduction and variable selection. Consider a response model Y = β�

1 X1 +sin(0.2πβ�
2 X2)+0.5ε,

where X1 ∈ R10, X2 ∈ R10, β1 = (1,−1,0, . . . ,0)�, β2 = (1,1,0, . . . ,0)�, and all predictors
and ε are independent standard normal variables. Write X = (X�

1 ,X�
2 )�. Then the central mean

subspace for E(Y |X) is spanned by (β�
1 ,0�

10)
� and (0�

10,β
�
2 )�, where 010 is a 10 × 1 vector

of zeros. We then should rule out zeros and identify β1 and β2 or their linear combinations.
A single but representative simulated data set with 150 observations was obtained, and the MAVE
direction estimates were

(−0.624,0.647,0.006,0.057,0.034,−0.010,−0.013,0.033,0.023,−0.022,

− 0.275,−0.316,−0.002,−0.062,−0.057,0.010,0.005,−0.034,−0.028,−0.017)�

and

(0.141,0.379,−0.394,0.005,0.030,−0.313,−0.313,0.146,0.201,−0.341,

0.106,−0.022,−0.286,0.111,0.096,−0.047,−0.303,−0.073,−0.203,−0.226)�.

MAVE treats all predictors in X indiscriminately. While the first direction estimate seems reason-
able, the second one is very poor, and thus the overall estimation accuracy must be poor. Given
the prior information that X1 and X2 are two predictor groups, we apply group-wise MAVE, and
the resulting estimates of β1 and β2 are respectively, given by

(0.698,−0.715,−0.035,−0.031,−0.010,−0.003,−0.001,0.010,−0.010,0.015)�

and

(0.717,0.666,−0.035,0.155,0.002,0.032,−0.008,0.111,−0.024,−0.058)�.

A substantial gain in accuracy has been achieved by incorporating the predictor group informa-
tion. Nevertheless, in each group all the predictors are included in the extracted linear combina-
tion, although some coefficients are small, obscuring the fact that only the first two predictors are
contributing factors. It is obvious that group-wise MAVE cannot be the base for both dimension
reduction and variable selection. Therefore, a selection operator also plays an important role, and
we will see that a shrinkage penalty will be useful for us to use group-wise MAVE to exclude
irrelevant predictors from the model.

Two main features of this paper are listed below.
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1. We consider the problem of semi-parametric variable selection for multiple-index regres-
sion models. Although multiple-index models are popular in the statistics and econometrics
literature, little work has been done on variable selection. We propose a shrinkage MAVE
estimator by introducing a shrinkage factor for each row of an estimated basis matrix of the
central mean subspace. For multiple-index models the proposed estimator is proved to be
consistent in variable selection while retaining the root-n consistency. However, although
the estimation problem can be reformulated as a LASSO problem in spirit, the LASSO
problem under study has an asymptotically singular design matrix (Knight and Fu [16]).
This is because the MAVE procedure is a combination of nonparametric function estima-
tion and direction estimation. This makes the theoretical investigation more complicated.
To deal with this issue for single-index models, condition (C5) is assumed in Wang, Xu
and Zhu [30], otherwise, the large sample properties are difficult to derive. For multiple-
index models, the standard approach of LASSO with nonsingular designs fails to show
the large sample properties. Therefore, in this paper, the results of mixed-rates asymptotics
(Radchenko [22]) are adopted to derive the asymptotic behavior even the design matrix is
asymptotically singular. This is a new skill about proving the asymptotics of the LASSO
estimation for semi-parametric models. The interaction between the bandwidth and the
penalty parameter now is explicitly shown in Theorem 2.1.

2. We propose a general knowledge-based method that accounts for prior group information.
As we have explained before, the group structure leads to a reduction in the total number of
parameters. Consequently, our method, which is motivated by and derives from dimension
reduction, doubly alleviates the “curse of dimensionality”. As a by product, such a structure
also makes the computation more efficient.

The paper is organized as follows. In Section 2.1, we review the group-wise minimum average
variance estimation. In Section 2.2, we combine group-wise MAVE with the LASSO penalty, as
an example, to propose a shrinkage group-wise MAVE estimator. This method does not require
any restrictive design assumptions, and is capable of simultaneous dimension reduction and vari-
able selection. The asymptotic properties of the new estimator are established in Section 2.3.
We also use a criterion, which has the same form as the Bayesian information criterion (BIC;
Schwarz [23]), to select the optimal tuning parameter. Moreover, we establish the consistency of
the resulting BIC-type selector. Numerical studies are presented in Section 3. As many shrinkage
penalties can also be applied, we then include the simulation results with two other penalties as
well. All technical proofs are relegated to the Appendix.

2. Methodology

We begin with some basic notations and terminology. For a positive integer m, Im stands for the
m×m identity matrix. For an m1 ×m2 matrix A, span(A) represents the column space of A and
PA represents the orthogonal projection onto span(A). For a subspace S of Rm, if A is a matrix of
full column rank and span(A) = S , then we call A a basis matrix of S . Moreover, PS represents
the projection onto S , that is, PS = PA, where A is any basis matrix of S . For an m-dimensional
vector w = (w1, . . . ,wm)�, diag(w) denotes a diagonal matrix whose diagonal entries starting
in the upper left corner are w1, . . . ,wm. We use A1 ⊕ · · · ⊕ Ag , or simply

⊕g

l=1 Al , to denote a
block diagonal matrix with matrices A1, . . . ,Ag on the diagonal.
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2.1. A short review

In this subsection, we review group-wise dimension reduction for the regression mean function
and the group-wise minimum average variance estimation. We refer the reader to Li, Li and Zhu
[19] for more details.

Let S1, . . . ,Sg be subspaces of Rp that form an orthogonal decomposition of Rp , that is,
Rp = S1 ⊕ · · · ⊕ Sg , where ⊕ denotes the direct sum operator. If there are subspaces Tl ⊆ Sl

for l = 1, . . . , g such that E(Y |X) = E(Y |PT1, . . . ,PTg
), then we say that T1 ⊕ · · · ⊕ Tg is a

group-wise mean dimension reduction subspace with respect to {S1, . . . ,Sg}. Under very mild
conditions (Yin, Li and Cook [38]), the intersection of all group-wise mean dimension reduction
subspaces, with respect to a given orthogonal decomposition {S1, . . . ,Sg}, exists uniquely. We
call this subspace the group-wise central mean subspace and denote it as SE(Y |X)(S1, . . . ,Sg).
By definition,

SE(Y |X)(S1, . . . ,Sg) = T ∗
1 ⊕ · · · ⊕ T ∗

g

for some subspaces T ∗
1 ⊆ S1, . . . ,T ∗

g ⊆ Sg . Let pl, dl and d denote the dimensions of Sl , T ∗
l

and SE(Y |X)(S1, . . . ,Sg), respectively. Then we have p = p1 + · · · + pg and d = d1 + · · · + dg .
Let �l ∈Rp×pl be a basis matrix of Sl , and let Vl = ��

l X ∈Rpl . We note that components of
Vl correspond to predictors in group l, and all the group information contained in �l’s is available
as prior knowledge. By construction, there are matrices B∗

l ∈ Rpl×dl for l = 1, . . . , g such that
span(�lB∗

l ) = T ∗
l . Write B∗ =⊕g

l=1 B∗
l . We are interested in estimating B∗ or its column space

span(B∗).
Li, Li and Zhu [19] proposed the group-wise MAVE estimator such that the matrix B∗ =⊕g

l=1 B∗
l is the minimizer of

E
{
Y − E

(
Y |B�

1 V1, . . . ,B�
g Vg

)}2

with respect to B1 ∈ Rp1×d1 , . . . ,Bg ∈ Rpg×dg , subject to B�
l Bl = Idl

for l = 1, . . . , g.
Let V = (V�

1 , . . . ,V�
g )� ∈ Rp and B =⊕g

l=1 Bl . Then we have

E
{
Y − E

(
Y |B�

1 V1, . . . ,B�
g Vg

)}2 = E
{
σ 2

B

(
B�V

)}
,

where σ 2
B(B�V) = E[{Y −E(Y |B�

1 V1, . . . ,B�
g Vg)}2|B�

1 V1, . . . ,B�
g Vg] is the conditional vari-

ance of Y given B�
1 V1, . . . ,B�

g Vg .
Suppose that {(yi,vi ), i = 1, . . . , n} is a random sample from (Y,V). Extending the MAVE

idea, we can use local linear smoothing to estimate σ 2
B(B�V). Specifically, for any given v0 ∈ Rp ,

we have the following approximation

σ 2
B

(
B�v0) ≈

n∑
j=1

{
yj − E

(
Y |B�V = B�vj

)}2
w0

j

≈
n∑

j=1

{
yj − a0 −

g∑
l=1

b0�
l B�

l

(
vj
l − v0

l

)}2

w0
j ,
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where w0
j ’s are kernel weights such that

∑n
j=1 w0

j = 1, and a0 +∑g

l=1 b0�
l B�

l (vj
l − v0

l ) is the

local linear expansion of E(Y |B�V = B�vj ) at v0.
Consequently, we can recover the group-wise central mean subspace by minimizing the ob-

jective function

n∑
i=1

n∑
j=1

{
yj − ai −

g∑
l=1

bi�
l B�

l

(
vj
l − vi

l

)}2

wi
j (2.1)

with respect to ai ∈ R, bi
1 ∈ Rd1, . . . ,bi

g ∈ Rdg , i = 1, . . . , n, and Bl ∈ Rpl×dl with B�
l Bl = Idl

for l = 1, . . . , g. To allow the estimation to be adaptive to the regression structure, we follow the
idea of refined MAVE (Xia et al. [34] and Li, Li and Zhu [19]) and adopt the weights

wi
j = Kh{B�(vj − vi )}∑n

j=1 Kh{B�(vj − vi )} ,

where Kh(·) is a d-dimensional kernel with bandwidth h, and B is taken to be the current or
latest estimate.

The minimization problem in (2.1) can be solved by fixing (ai,bi
1, . . . ,bi

g), i = 1, . . . , n, and
fixing {Bl}gl=1 alternatively. Thus, the calculation can be decomposed into two optimization prob-
lems both of which have simple analytic solutions. The details of the group-wise MAVE algo-
rithm can be found in Section 3.2 of Li, Li and Zhu [19]. Let B̃ =⊕g

l=1 B̃l denote the group-wise
minimum average variance estimator.

2.2. Shrinkage group-wise minimum average variance estimation

The group-wise MAVE method captures the full regression information in E(Y |X) while pre-
serving the group structure in X. Specifically, it can provide a consistent estimator of B∗D0 for
some d × d nonsingular matrix D0 = ⊕g

l=1 D0
l , where D0

l ∈ Rdl×dl for l = 1, . . . , g. However,
the elements of B̃l’s are usually nonzero. Consequently, the extracted predictor vector B̃�

l Vl cor-
responding to group l consists of linear combinations of all the predictors in that group. When
there are a large number of predictors, one would expect that only a subset of predictors are
relevant to the response variable. Write V = (V1, . . . , Vp)�. According to Proposition 1 of Cook
[7], Vs is irrelevant if and only if the sth row of B∗ is a zero vector. Further, it is easy to see that
for any d × d nonsingular matrix D, when a row of B∗ is zero, the corresponding row of B∗D is
also zero, and vice versa. These observations motivate us to employ the state-of-the-art methods
for simultaneous shrinkage estimation and variable selection, such as LASSO, to design a sparse
version of the group-wise MAVE procedure which shrinkages some rows of B̃ to be exactly zero
vectors.

Define

w̃i
j = Kh{B̃�(vj − vi )}∑n

j=1 Kh{B̃�(vj − vi )} , i, j = 1, . . . , n.
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For each i = 1, . . . , n, let (ãi , b̃i
1, . . . , b̃i

g) be the minimizer of

n∑
j=1

{
yj − ai −

g∑
l=1

bi�
l B̃�

l

(
vj
l − vi

l

)}2

w̃i
j . (2.2)

In the sequel, we shall use an updated version of the group-wise minimum average variance

estimator, ˜̃B =⊕g

l=1
˜̃Bl , which is the minimizer of

n∑
i=1

n∑
j=1

{
yj − ãi −

g∑
l=1

b̃i�
l B�

l

(
vj
l − vi

l

)}2

w̃i
j . (2.3)

Definition 2.1. A shrinkage group-wise minimum average variance estimator is defined as

B̂ =
g⊕

l=1

diag(α̂l)
˜̃Bl ,

where the shrinkage index vectors α̂l = (α̂l1, . . . , α̂lpl
)� ∈ Rpl for l = 1, . . . , g are determined

by minimizing

n∑
i=1

n∑
j=1

[
yj − ãi −

g∑
l=1

b̃i�
l

{
diag(αl )

˜̃Bl

}�(vj
l − vi

l

)]2

w̃i
j (2.4)

with respect to αl = (αl1, . . . , αlpl
)� ∈ Rpl , l = 1, . . . , g, subject to

∑g

l=1

∑pl

s=1 |αls | ≤ τn for
some τn ≥ 0.

To solve the above optimization problem, we note that (2.4) can be re-expressed as

n∑
i=1

n∑
j=1

{
yj − ãi −

g∑
l=1

b̃i�
l

˜̃Bl
�

diag
(
vj
l − vi

l

)
αl

}2

w̃i
j .

Equivalently, the shrinkage index vectors minimize

n∑
i=1

n∑
j=1

{
yj − ãi −

g∑
l=1

b̃i�
l

˜̃Bl
�

diag
(
vj
l − vi

l

)
αl

}2

w̃i
j + λn

g∑
l=1

pl∑
s=1

|αls | (2.5)

for some tuning parameter λn ≥ 0. As a result, commonly-used LASSO algorithms, such as
those of Efron et al. [11] and Friedman, Hastie and Tibshirani [13], can be applied to obtain the
shrinkage index vectors α̂l for l = 1, . . . , g.

When τn ≥ p, the indices α̂ls = 1 for all l = 1, . . . , g and s = 1, . . . , pl , and so B̂ reduces

to the usual group-wise MAVE estimator ˜̃B. As τn gradually decreases, some of the indices are
shrunk to zero, which means some rows of B̂ are zero; that is, the corresponding predictors are
irrelevant to the response variable given the other predictors.
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2.3. Asymptotic theory

We next study the large-sample properties of the proposed method. For an m1 × m2 matrix A,
we say that A is row-sparse if some of its rows are zero. Let I(A) ⊆ {1, . . . ,m} denote the
subset of indices corresponding to nonzero rows of A. Clearly, the notion of row-sparseness is
nonsingular-transformation independent, since for any m2 × m2 nonsingular matrix O, I(A) =
I(AO). Suppose that B∗ = ⊕g

l=1 B∗
l is row-sparse. Without loss of generality, we assume that

for l = 1, . . . , g the first ql rows of B∗
l are nonzero, that is, I(B∗

l ) = {1, . . . , ql}. The following
theorem concerns the asymptotic behavior of shrinkage group-wise MAVE.

Theorem 2.1. Suppose that the regularity conditions (A1)–(A6) given in the Appendix hold. If
λn → ∞ and λnn

−1/2h−2 → 0, then we have

(1) selection consistency: P {I(B̂l ) = I(B∗
l ), l = 1, . . . , g} → 1, and

(2) root-n consistency: B̂l = B∗
l D0

l + OP (n−1/2) for l = 1, . . . , g.

Theorem 2.1, part (1), demonstrates that the shrinkage group-wise MAVE method can effi-
ciently remove unimportant predictors, while part (2) implies that the estimator that corresponds
to relevant predictors is root-n consistent. As we can see, the result is very similar to that of
adaptive LASSO for linear models (Zou [42]). In fact, we shall show in the proof that shrink-
age group-wise MAVE is closely related to an adaptive LASSO problem. A similar phenomena
can be found in Bondell and Li [1] where they studied the shrinkage inverse regression estima-
tion. However, unlike linear models, we need to study the interplay between the bandwidth h

and the penalty parameter λ. This is explicitly shown in Theorem 2.1 in which we require that
λ → ∞ and λn−1/2h−2 → 0. We also note that, although it is possible to derive the asymptotic
distribution, the form of the asymptotic variance is rather complicated and thus is not pursued
here.

As a direct application we consider the special case when g = 1, that is, there is no group
information available. It follows that the shrinkage MAVE estimator possesses exactly the same
properties.

Corollary 2.1. Assume that g = 1, and that the regularity conditions (A1)–(A6) given in the
Appendix hold. If λn → ∞ and λnn

−1/2h−2 → 0, then we have

(1) selection consistency: P {I(B̂) = I(B∗)} → 1, and
(2) root-n consistency: B̂ = B∗D0 + OP (n−1/2).

The attractive properties of shrinkage group-wise MAVE depend critically on an appropriate
choice of the tuning parameter, for which prediction based criteria such as generalized cross-
validation have been commonly used in practice. However, it is well known that this practice
tends to produce over-fitted models. For model selection consistency, it has been verified that
tuning parameter selectors with the Bayesian information criterion are able to identify the true
model consistently; see for example Wang, Li and Tsai [27] and Wang and Leng [26]. In the
following, we propose a criterion which is similar in form to the classical Bayesian information
criterion.
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Let α̂(λ) = (α̂�
1 , . . . , α̂�

g )�. Write α̂(λ) = (α̂1, . . . , α̂p)� and V = (V1, . . . , Vp)�. We use the
notation M = {r1, r2, . . . , rp∗} ⊆ {1, . . . , p} to denote an arbitrary candidate model which in-
cludes predictors {Vs, s ∈ M}. Let k1 = 0 and kl = p1 + · · · + pl−1 for l = 2, . . . , g. Then,
MF = {1, . . . , p} and MT = ⋃g

l=1{kl + 1, . . . , kl + ql} represent the full model and the true
model, respectively. Finally, we use |M| to denote the size of the model M.

Let Mλ = {s : α̂s �= 0} be the model that is identified by α̂(λ) or B̂. Define

RSSλ =
n∑

i=1

n∑
j=1

{
yj − ãi −

g∑
l=1

b̃i�
l

˜̃Bl
�

diag
(
vj
l − vi

l

)
α̂l

}2

w̃i
j .

We select the optimal λ by minimizing

BICλ = log(RSSλ) + dfλ
log(n)

n
, (2.6)

where dfλ denotes the effective number of parameters in the shrinkage group-wise MAVE estima-
tor. The resulting optimal regularization parameter is denoted by λ̂BIC. Following the discussion
of Zou, Hastie and Tibshirani [43] about the degrees of freedom of the LASSO estimator, we
approximate dfλ by d1|M1

λ| + · · · + dg|Mg
λ|, where Ml

λ represents the index set of identified
predictors in group l.

We now establish the asymptotic property of the BIC-type tuning parameter selector.

Theorem 2.2. Suppose that the regularity conditions (A1)–(A6) given in the Appendix hold.
Then we have P(M

λ̂BIC
=MT ) → 1.

Remarks.

1. Mixed-rates behavior naturally arises in the estimation of semi-parametric models. As
shown in the proof of Theorem 2.1, the objective function (2.5) can be decomposed into
two components with different convergent rates. As a result, the standard approach does not
yield the complete limiting behavior of the estimator. Fortunately, we are able to derive the
asymptotic behavior by directly applying results from mixed-rates asymptotics (Radchenko
[22]).

2. In practice, one may use a concave penalty other than the LASSO penalty. We have tried
using the smoothly clipped absolute deviation penalty (Fan and Li [12]) and the minimax
concave penalty (Zhang [40]), and have found that the resulting estimators enjoy the same
properties. See Section 3 for a numerical comparison of these methods. Consider again the
illustrative example in Section 1, the proposed sparse group-wise MAVE method, when the
smoothly clipped absolute deviation penalty is used, yielded the direction estimates

(0.702,−0.712,0, . . . ,0)� and (0.722,0.692,0,0.027,0, . . . ,0)�.

As we can see, all except one of the coordinates corresponding to irrelevant predictors were
correctly shrunk to zero.
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3. The result here is applicable to a general class of semi-parametric models. In particular, it
provides an alternative method for estimation and selection for partially linear single-index
models in which two groups exist naturally (Xia and Härdle [33]). Further, the new method
can be adjusted to handle dimension reduction and variable selection with censored data
(Xia, Zhang and Xu [35]).

4. Although in this paper we focus on shrinkage estimation of the group-wise central mean
subspace, the same strategy can be used to target the group-wise central subspace. To see
this, we note that Wang and Xia [28] have modified MAVE to estimate the central subspace,
and so group-wise MAVE can be modified in a similar way to estimate the group-wise
central subspace; see Section 8 of Li, Li and Zhu [19] for more discussion. To conclude,
we believe that these efforts would enhance the usefulness of the shrinkage MAVE method
in data analysis.

3. Numerical studies

3.1. Simulation studies

In this subsection, we use simulations to evaluate the finite-sample performance of the shrink-
age group-wise MAVE method. For comparison we consider the LASSO penalty, the smoothly
clipped absolute deviation (SCAD) penalty and the minimax concave penalty (MCP) in the
simulation. The resulting estimators, including group-wise MAVE, are denoted by SgMAVE-
LASSO, SgMAVE-SCAD, SgMAVE-MCP and gMAVE, respectively. Throughout the follow-
ing numerical studies we adopt the Gaussian kernel and use the optimal bandwidth h =
{4/(d + 2)}1/(d+4)n−1/(d+4). The R code that we used for group-wise MAVE is available at
http://www4.stat.ncsu.edu/~li/software.html. SgMAVE-LASSO is computed using the least an-
gle regression algorithm (Efron et al. [11]), while SgMAVE-SCAD and SgMAVE-MCP are com-
puted using the coordinate descent algorithms described by Breheny and Huang [2]. The entire
R code can be requested from the authors.

To evaluate estimation accuracy, we compute the vector correlation coefficient (VCC), which
is defined as (

∏dl

t=1 φ2
t )1/2, and the trace correlation coefficient (TCC), which is defined as

(dl
−1∑dl

t=1 φ2
t )1/2, where the φ2

t ’s are the eigenvalues of the matrix B̂�
l B∗

l B∗�
l B̂l . These two

measures range between 0 and 1, with larger values indicating a more accurate estimator; see
Ye and Weiss [36] for more information. We also employ three summary statistics to assess how
well the methods select predictors: the average model size (MS), which is the average number of
nonzero rows of B̂l ; the true positive rate (TPR), which is the average fraction of nonzero rows
of B̂l associated with relevant predictors; and the false positive rate (FPR), which is the average
fraction of nonzero rows of B̂l associated with irrelevant predictors. Both TPR and FPR range
between 0 and 1, and ideally, we wish to have TPR to be close to 1 and FPR to be close to 0 at the
same time. We report the results using the BIC-type criterion (2.6) to select tuning parameters.

The predictor vector V = (V�
1 , . . . ,V�

g )� is generated from N(0p,�) in each example. We
examine two commonly-used correlation structures among the predictors. The first is autoregres-
sive, �st = 0.5|s−t | for all s, t = 1, . . . , p. Consequently, the predictors with large distances in

http://www4.stat.ncsu.edu/~li/software.html
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order are expected to be mutually independent approximately. The second is compound symme-
try, �ss = 1 and �st = 0.5 for any s �= t , so all the predictors are equally correlated with each
other.

Example 3.1. In this experiment, we set

(g,p1,p2, d1, d2, q1, q2) = (2,20,20,1,1,3,2).

Thus, there are two groups, V1 and V2, and each group consists of twenty predictors. Further,
each predictor group is connected with the response variable through a single linear combination.
Specifically, the response variable is generated from each of the following three models:

Y = β�
1 V1

(
1 + β�

2 V2
)+ 0.5ε, (3.1)

Y = β�
1 V1/

{
0.5 + (

1.5 + β�
2 V2

)2}+ 0.5ε, (3.2)

Y = exp
(
0.5β�

1 V1
)+ sin

(
0.2πβ�

2 V2
)+ 0.5ε, (3.3)

where β1 = (1,1,1,0, . . . ,0)�, β2 = (1,1,0, . . . ,0)�, ε ∼ N(0,1), and ε is independent of all
predictors. We let n = 200.

Table 1 presents the simulation results based on 200 data replications for these three models.
As we can see, all methods considered show very good performance, but the shrinkage ones
often achieve higher estimation accuracy than the one without shrinkage. Further, although none
of the three shrinkage methods can universally dominate the other two competitors, SgMAVE-
SCAD and SgMAVE-MCP tend to produce sparser solutions than SgMAVE-LASSO. Finally,
the performance of the group-wise MAVE estimator and its shrinkage versions is only slightly
affected by the correlation structure among the predictors.

Example 3.2. In this experiment, we set

(g,p1,p2, d1, d2, q1, q2) = (2,20,20,2,1, q1,2).

Thus, there are two groups, V1 and V2, and each group consists of twenty predictors. Further,
the first predictor group is connected with the response variable through two linear combinations
and the second predictor group is connected with the response variable through a single linear
combination. The regression model is

Y = 2.5β�
11V1/

{
0.5 + (

1.5 + β�
12V1

)2}+ β�
2 V2 + 0.5ε, (3.4)

where β11 = (1,1,0, . . . ,0)�, β2 = (1,1,0, . . . ,0)�, ε ∼ N(0,1), and ε is independent of all
predictors. We consider two cases. In Case 1: we set q1 = 2 and β12 = (1,−1,0, . . . ,0)�. In
Case 2: we set q1 = 4 and β12 = (0,0,1,1,0, . . . ,0)�. We let n = 200.

Table 2 summarizes the simulation results out of 200 data replications for Case 1 and Case 2.
As in the previous example, we have the same observations. Unreported results also show that the
BIC-type criterion has a pretty large rate of correctly identifying the true model in this example.
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Table 1. Summary of Example 3.1. The average vector correlation coefficient (VCC) with standard error in parentheses, the average number of
predictors selected (MS), true positive rate (TPR) and false positive rate (FPR), based on 200 data replications, are reported

β1 β2

VCC MS TPR FPR VCC MS TPR FPR

Model (3.1): autoregressive correlation
gMAVE 0.9963 (0.0239) 0.9905 (0.0780)
SgMAVE-LASSO 0.9895 (0.0996) 4.1550 0.9900 0.1692 0.9896 (0.0997) 3.1850 0.9900 0.1506
SgMAVE-SCAD 0.9976 (0.0207) 3.0450 1.0000 0.0064 0.9898 (0.0997) 2.0150 0.9900 0.0043
SgMAVE-MCP 0.9977 (0.0193) 3.1200 1.0000 0.0171 0.9897 (0.0997) 2.0550 0.9900 0.0093

Model (3.1): compound symmetry
gMAVE 0.9923 (0.0704) 0.9818 (0.1108)
SgMAVE-LASSO 0.9933 (0.0709) 4.8450 0.9950 0.2657 0.9808 (0.1254) 4.0300 0.9900 0.2562
SgMAVE-SCAD 0.9935 (0.0710) 3.1400 0.9950 0.0221 0.9811 (0.1252) 2.1300 0.9875 0.0193
SgMAVE-MCP 0.9934 (0.0710) 3.1950 0.9950 0.0300 0.9805 (0.1294) 2.1050 0.9825 0.0175

Model (3.2): autoregressive correlation
gMAVE 0.9771 (0.0137) 0.9735 (0.0538)
SgMAVE-LASSO 0.9885 (0.0104) 5.5350 1.0000 0.3621 0.9846 (0.0477) 4.1400 0.9975 0.2681
SgMAVE-SCAD 0.9915 (0.0103) 3.7300 1.0000 0.1042 0.9849 (0.0557) 2.5700 0.9950 0.0725
SgMAVE-MCP 0.9886 (0.0116) 4.0100 1.0000 0.1442 0.9837 (0.0550) 2.5750 0.9950 0.0731

Model (3.2): compound symmetry
gMAVE 0.9739 (0.0177) 0.9432 (0.1535)
SgMAVE-LASSO 0.9856 (0.0120) 5.7650 1.0000 0.3950 0.9450 (0.1940) 3.7450 0.9625 0.2275
SgMAVE-SCAD 0.9896 (0.0130) 3.8300 1.0000 0.1185 0.9486 (0.1923) 2.3500 0.9600 0.0537
SgMAVE-MCP 0.9858 (0.0132) 4.0500 1.0000 0.1500 0.9438 (0.2031) 2.3000 0.9550 0.0487
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Table 1. (Continued)

β1 β2

VCC MS TPR FPR VCC MS TPR FPR

Model (3.3): autoregressive correlation
gMAVE 0.9955 (0.0026) 0.9648 (0.0214)
SgMAVE-LASSO 0.9981 (0.0019) 5.2600 1.0000 0.3228 0.9879 (0.0158) 3.6250 1.0000 0.2031
SgMAVE-SCAD 0.9984 (0.0019) 3.8250 1.0000 0.1178 0.9832 (0.0726) 2.6850 0.9950 0.0868
SgMAVE-MCP 0.9981 (0.0020) 3.6450 1.0000 0.0921 0.9874 (0.0191) 2.5650 1.0000 0.0706

Model (3.3): compound symmetry
gMAVE 0.9954 (0.0023) 0.9546 (0.0401)
SgMAVE-LASSO 0.9974 (0.0019) 5.8050 1.0000 0.4007 0.9766 (0.0384) 3.9250 1.0000 0.2406
SgMAVE-SCAD 0.9981 (0.0019) 4.0600 1.0000 0.1514 0.9792 (0.0517) 2.8800 0.9975 0.1106
SgMAVE-MCP 0.9977 (0.0021) 3.7850 1.0000 0.1121 0.9786 (0.0499) 2.5950 0.9975 0.0750
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Table 2. Summary of Example 3.2. The average of the vector correlation coefficient (VCC) and the trace correlation coefficient (TCC) with
standard errors in parentheses, the average number of predictors selected (MS), true positive rate (TPR) and false positive rate (FPR), based on 200
data replications, are reported

β1 = (β11,β12) β2

VCC TCC MS TPR FPR VCC MS TPR FPR

Model (3.4): Case 1, autoregressive correlation
gMAVE 0.9506 (0.0972) 0.9762 (0.0397) 0.9667 (0.0249)
SgMAVE-LASSO 0.9936 (0.0707) 0.9978 (0.0207) 3.4150 1.0000 0.1271 0.9867 (0.0997) 2.2450 0.9900 0.0147
SgMAVE-SCAD 0.9916 (0.0772) 0.9968 (0.0256) 2.4350 1.0000 0.0755 0.9917 (0.0734) 2.0900 0.9925 0.0058
SgMAVE-MCP 0.9897 (0.0774) 0.9973 (0.0158) 2.6900 1.0000 0.0889 0.9912 (0.0734) 2.1700 0.9925 0.0102

Model (3.4): Case 1, compound symmetry
gMAVE 0.9515 (0.0709) 0.9760 (0.0312) 0.9616 (0.0191)
SgMAVE-LASSO 0.9950 (0.0170) 0.9975 (0.0085) 4.4250 1.0000 0.1802 0.9933 (0.0224) 2.9200 0.9975 0.0513
SgMAVE-SCAD 0.9953 (0.0195) 0.9976 (0.0097) 2.9250 1.0000 0.1013 0.9958 (0.0213) 2.1700 0.9975 0.0097
SgMAVE-MCP 0.9879 (0.0302) 0.9940 (0.0149) 3.4700 1.0000 0.1300 0.9933 (0.0136) 2.5150 1.0000 0.0286

Model (3.4): Case 2, autoregressive correlation
gMAVE 0.9548 (0.0764) 0.9775 (0.0348) 0.9686 (0.0176)
SgMAVE-LASSO 0.9498 (0.1843) 0.9786 (0.0877) 8.2150 0.9787 0.2687 0.9887 (0.0739) 4.6850 0.9925 0.1500
SgMAVE-SCAD 0.9723 (0.1289) 0.9891 (0.0428) 6.2700 0.9925 0.1437 0.9952 (0.0183) 2.7600 1.0000 0.0422
SgMAVE-MCP 0.9797 (0.0837) 0.9907 (0.0319) 5.6850 0.9975 0.1059 0.9939 (0.0165) 2.6150 1.0000 0.0341

Model (3.4): Case 2, compound symmetry
gMAVE 0.9584 (0.0559) 0.9795 (0.0219) 0.9648 (0.0167)
SgMAVE-LASSO 0.9827 (0.0724) 0.9923 (0.0228) 8.8900 0.9975 0.3062 0.9918 (0.0162) 5.1550 1.0000 0.1752
SgMAVE-SCAD 0.9871 (0.0722) 0.9945 (0.0224) 5.3550 0.9975 0.0853 0.9962 (0.0108) 2.5300 1.0000 0.0294
SgMAVE-MCP 0.9831 (0.0727) 0.9925 (0.0230) 5.4800 0.9975 0.0931 0.9934 (0.0146) 2.5200 1.0000 0.0288
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Example 3.3. In this experiment, we set

(g,p1,p2,p3, d1, d2, d3, q1, q2, q3) = (3,p0,p0,p0,1,1,1,2,2,2).

Thus, there are three groups, V1, V2 and V3, and each group consists of p0 predictors. Further,
each predictor group is connected with the response variable through a single linear combination.
We consider the following two models:

Y = β�
1 V1 + 2β�

2 V2/
{
0.5 + (

1.5 + β�
3 V3

)2}+ 0.5ε, (3.5)

Y = β�
1 V1 + 0.2

(
2 + β�

2 V2
)2 + 2 sin

(
0.2πβ�

3 V3
)+ 0.5ε, (3.6)

where β1 = (1,−1,0, . . . ,0)�, β2 = (1,1,0, . . . ,0)�, β3 = (1,−1,0, . . . ,0)�, ε ∼ N(0,1),
and ε is independent of all predictors. We let (n,p0) be (100,10), (200,20) and (200,30).

The simulation results for models (3.5) and (3.6), based on the 200 data replications, are shown
in Tables 3 and 4, respectively. In general, the results show that reasonably, increasing the sample
size improves the performance, while increasing the dimension of predictors makes the perfor-
mance worse. Moreover, the empirical performance of the shrinkage estimators relies on the
initial estimator as expected. Thus, the development of a shrinkage estimation and variable se-
lection method that depends less on the initial estimator can be practically useful, and we will
work along this line in our future study.

As we mentioned before, the MAVE procedure is a combination of nonparametric function
estimation and direction estimation; it is an iterative procedure with each cycle consisting of two
least squares problems. As we know, inverse regression based methods, which are largely “para-
metric” in nature, are simple and easy to use. Thus, the proposed approach is computationally
more demanding than inverse regression based methods, especially when the sample size and
the predictor dimension are very high. Table 5 shows the average CPU times, based on 200 data
replications, for the shrinkage group-wise MAVE method (along with penalty parameter selec-
tion) for model (3.6) in Example 3.3. All algorithms are implemented as R language functions,
and all timings were carried out on a Dell Poweredge R410 dual processors server equipped with
Six Core Xeon X5670 2.93 GHz CPU, 64 GB RAM running CentOS 5 Linux. We see that the
times depend on both n and p. We also find similar results (unreported) for the other models
considered in the simulation studies. Nevertheless, we emphasize that, as opposed to inverse re-
gression based methods which require strong conditions on the distribution of predictors, direct
regression based methods such as MAVE need relatively weak conditions such as the smoothness
of the link function, and they often have much better performance for finite samples.

3.2. Pyrimidine data

A common step in drug design is the formation of a quantitative structure-activity relationship
(QSAR; So [24]). The QSAR analysis is to relate a numerical description of molecular structure
to known biological activity. The pyrimidine data set, which is available in the UCI machine-
learning repository at http://archive.ics.uci.edu/ml/machine-learning-databases/qsar/, was stud-
ied by Hirst, King and Sternberg [15] to model the QSAR of the inhibition of dihydrofolate

http://archive.ics.uci.edu/ml/machine-learning-databases/qsar/
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Table 3. Summary of Example 3.3. The average vector correlation coefficient (VCC) with standard error in parentheses, the average number of
predictors selected (MS), true positive rate (TPR) and false positive rate (FPR), based on 200 data replications, for model (3.5), are reported

β1 β2 β3

VCC MS TPR FPR VCC MS TPR FPR VCC MS TPR FPR

Model (3.5): (n,p0) = (100,10), autoregressive correlation
gMAVE 0.966 (0.021) 0.965 (0.023) 0.956 (0.100)
SgMAVE-LASSO 0.967 (0.106) 5.850 0.980 0.486 0.980 (0.025) 7.060 0.997 0.633 0.965 (0.127) 6.075 0.980 0.514
SgMAVE-SCAD 0.952 (0.170) 4.230 0.967 0.286 0.980 (0.021) 4.745 1.000 0.343 0.960 (0.147) 4.225 0.977 0.283
SgMAVE-MCP 0.972 (0.102) 3.585 0.987 0.201 0.979 (0.021) 4.180 1.000 0.272 0.960 (0.146) 3.675 0.980 0.214

Model (3.5): (n,p0) = (100,10), compound symmetry
gMAVE 0.949 (0.046) 0.950 (0.049) 0.888 (0.225)
SgMAVE-LASSO 0.935 (0.169) 5.135 0.950 0.404 0.953 (0.128) 6.270 0.975 0.540 0.881 (0.282) 5.245 0.915 0.426
SgMAVE-SCAD 0.952 (0.130) 3.950 0.977 0.249 0.967 (0.052) 4.560 1.000 0.320 0.892 (0.258) 3.875 0.932 0.251
SgMAVE-MCP 0.966 (0.052) 3.460 0.995 0.183 0.961 (0.081) 4.100 0.995 0.263 0.888 (0.264) 3.420 0.922 0.196

Model (3.5): (n,p0) = (200,20), autoregressive correlation
gMAVE 0.971 (0.018) 0.972 (0.014) 0.967 (0.087)
SgMAVE-LASSO 0.950 (0.198) 4.425 0.952 0.140 0.994 (0.004) 8.840 1.000 0.380 0.960 (0.184) 5.645 0.962 0.206
SgMAVE-SCAD 0.972 (0.142) 4.545 0.975 0.144 0.992 (0.009) 6.060 1.000 0.225 0.979 (0.121) 4.900 0.985 0.162
SgMAVE-MCP 0.987 (0.071) 3.525 0.995 0.085 0.989 (0.010) 5.125 1.000 0.173 0.978 (0.121) 3.905 0.985 0.107

Model (3.5): (n,p0) = (200,20), compound symmetry
gMAVE 0.961 (0.031) 0.962 (0.028) 0.926 (0.175)
SgMAVE-LASSO 0.926 (0.235) 3.505 0.925 0.091 0.978 (0.104) 7.505 0.985 0.307 0.912 (0.269) 4.550 0.915 0.151
SgMAVE-SCAD 0.942 (0.213) 3.625 0.950 0.095 0.982 (0.073) 5.080 0.995 0.171 0.925 (0.241) 3.990 0.935 0.117
SgMAVE-MCP 0.983 (0.029) 3.535 1.000 0.085 0.980 (0.026) 4.855 1.000 0.158 0.926 (0.232) 3.690 0.935 0.101
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Table 3. (Continued)

β1 β2 β3

VCC MS TPR FPR VCC MS TPR FPR VCC MS TPR FPR

Model (3.5): (n,p0) = (200,30), autoregressive correlation
gMAVE 0.943 (0.026) 0.938 (0.030) 0.943 (0.038)
SgMAVE-LASSO 0.793 (0.375) 2.895 0.787 0.047 0.993 (0.005) 8.500 1.000 0.232 0.874 (0.308) 4.200 0.867 0.088
SgMAVE-SCAD 0.913 (0.257) 4.485 0.912 0.095 0.985 (0.021) 7.535 1.000 0.197 0.977 (0.121) 5.285 0.985 0.118
SgMAVE-MCP 0.976 (0.121) 3.710 0.985 0.062 0.979 (0.022) 6.790 1.000 0.171 0.990 (0.014) 4.395 1.000 0.085

Model (3.5): (n,p0) = (200,30), compound symmetry
gMAVE 0.907 (0.058) 0.901 (0.063) 0.836 (0.223)
SgMAVE-LASSO 0.828 (0.333) 2.350 0.817 0.025 0.952 (0.173) 6.535 0.960 0.164 0.827 (0.353) 3.295 0.822 0.058
SgMAVE-SCAD 0.848 (0.328) 2.930 0.845 0.044 0.963 (0.125) 5.250 0.982 0.117 0.837 (0.347) 3.750 0.845 0.073
SgMAVE-MCP 0.943 (0.172) 3.460 0.965 0.054 0.960 (0.039) 6.240 1.000 0.151 0.867 (0.298) 3.920 0.887 0.076
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Table 4. Summary of Example 3.3. The average vector correlation coefficient (VCC) with standard error in parentheses, the average number of
predictors selected (MS), true positive rate (TPR) and false positive rate (FPR), based on 200 data replications, for model (3.6), are reported

β1 β2 β3

VCC MS TPR FPR VCC MS TPR FPR VCC MS TPR FPR

Model (3.6): (n,p0) = (100,10), autoregressive correlation
gMAVE 0.968 (0.088) 0.965 (0.069) 0.979 (0.026)
SgMAVE-LASSO 0.962 (0.154) 6.970 0.975 0.627 0.977 (0.071) 7.410 0.995 0.677 0.968 (0.140) 7.105 0.977 0.643
SgMAVE-SCAD 0.973 (0.120) 4.570 0.987 0.324 0.981 (0.028) 4.685 0.997 0.336 0.970 (0.139) 4.685 0.980 0.340
SgMAVE-MCP 0.973 (0.121) 3.880 0.985 0.238 0.978 (0.071) 4.060 0.995 0.258 0.970 (0.139) 4.070 0.980 0.263

Model (3.6): (n,p0) = (100,10), compound symmetry
gMAVE 0.975 (0.014) 0.966 (0.052) 0.978 (0.010)
SgMAVE-LASSO 0.985 (0.014) 6.535 1.000 0.566 0.978 (0.053) 6.815 0.997 0.602 0.987 (0.010) 6.825 1.000 0.603
SgMAVE-SCAD 0.987 (0.014) 4.030 1.000 0.253 0.980 (0.071) 3.945 0.995 0.244 0.988 (0.011) 4.320 1.000 0.290
SgMAVE-MCP 0.984 (0.013) 3.845 1.000 0.230 0.977 (0.071) 3.835 0.995 0.230 0.985 (0.010) 4.150 1.000 0.268

Model (3.6): (n,p0) = (200,20), autoregressive correlation
gMAVE 0.979 (0.007) 0.977 (0.009) 0.983 (0.006)
SgMAVE-LASSO 0.997 (0.003) 5.815 1.000 0.211 0.995 (0.004) 8.215 1.000 0.345 0.997 (0.003) 5.935 1.000 0.218
SgMAVE-SCAD 0.996 (0.006) 4.505 1.000 0.139 0.995 (0.006) 4.705 1.000 0.150 0.997 (0.005) 4.570 1.000 0.142
SgMAVE-MCP 0.994 (0.006) 4.240 1.000 0.124 0.993 (0.006) 4.230 1.000 0.123 0.995 (0.005) 4.445 1.000 0.135

Model (3.6): (n,p0) = (200,20), compound symmetry
gMAVE 0.976 (0.008) 0.974 (0.011) 0.980 (0.007)
SgMAVE-LASSO 0.997 (0.002) 3.845 1.000 0.102 0.995 (0.004) 6.340 1.000 0.241 0.997 (0.003) 4.315 1.000 0.128
SgMAVE-SCAD 0.996 (0.006) 3.170 1.000 0.065 0.996 (0.005) 3.370 1.000 0.076 0.997 (0.005) 3.330 1.000 0.073
SgMAVE-MCP 0.991 (0.007) 4.095 1.000 0.116 0.989 (0.009) 4.210 1.000 0.122 0.992 (0.006) 4.310 1.000 0.128
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Table 4. (Continued)

β1 β2 β3

VCC MS TPR FPR VCC MS TPR FPR VCC MS TPR FPR

Model (3.6): (n,p0) = (200,30), autoregressive correlation
gMAVE 0.960 (0.013) 0.951 (0.017) 0.967 (0.012)
SgMAVE-LASSO 0.993 (0.070) 3.680 0.995 0.060 0.996 (0.003) 7.470 1.000 0.195 0.993 (0.070) 3.840 0.995 0.066
SgMAVE-SCAD 0.997 (0.006) 3.710 1.000 0.061 0.996 (0.008) 4.335 1.000 0.083 0.998 (0.004) 4.005 1.000 0.071
SgMAVE-MCP 0.995 (0.007) 3.810 1.000 0.064 0.992 (0.009) 4.255 1.000 0.080 0.995 (0.006) 4.030 1.000 0.072

Model (3.6): (n,p0) = (200,30), compound symmetry
gMAVE 0.951 (0.014) 0.943 (0.021) 0.959 (0.015)
SgMAVE-LASSO 0.997 (0.003) 2.895 1.000 0.031 0.995 (0.003) 6.340 1.000 0.155 0.998 (0.003) 3.010 1.000 0.036
SgMAVE-SCAD 0.998 (0.003) 2.345 1.000 0.012 0.998 (0.003) 2.635 1.000 0.022 0.998 (0.002) 2.375 1.000 0.013
SgMAVE-MCP 0.989 (0.009) 4.190 1.000 0.078 0.986 (0.012) 4.820 1.000 0.100 0.991 (0.007) 4.310 1.000 0.082
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Table 5. Run times (CPU seconds) for shrinkage group-wise MAVE of various sizes n, p and different
correlation structures among the predictors for model (3.6) in Example 3.3

Autoregressive correlation Compound symmetry

(n,p) = (100,30) 14 13
(n,p) = (200,60) 87 99
(n,p) = (200,90) 186 200

reductase (DHFR) by pyrimidines. It contains a structural information on 74 2,4-diamino-5-
(substituted benzyl)pyrimidines used as inhibitors of DHFR in Escherichia coli. Each pyrimidine
compound has 3 positions of substitution where chemical activity occurs, and at each position the
substituent is assigned nine physicochemical attributes: polarity (PL), size (SZ), flexibility (FL),
number of hydrogen-bond donors (HD), number of hydrogen-bond acceptors (HA), strength and
presence of π -donors (πD), strength and presence of π -acceptors (πA), polarisability of the
molecular orbitals (PO) and σ -effect (σE). The response variable is the experimentally assayed
activity of the inhibitors.

The attributes in this data set naturally fall into 3 groups corresponding to the substitution
positions 1, 2 and 3. This is further confirmed by the graphical representation of the correlation
matrix of the attributes in Figure 1; for example, the attributes belonging to the third substitution
position have a moderately strong correlation, but are weakly associated with most of the other
attributes. We write Vl = (PLl ,SZl ,FLl ,HDl ,HAl , πDl , πAl ,POl , σEl)

� for l = 1,2 and 3,
where the attributes are represented by their two-letter abbreviations with the subscripts denoting
the position of substitution. All predictors are standardized to have mean zero and unit length
(the predictor πA3 has no variability and is then removed). Thus, in this data set, the sample
size is n = 74, the predictor dimension is p = 26, and the group information is (g,p1,p2,p3) =
(3,9,9,8). We regard this “prior” information on predictor group structure as a given fact.

Ordinary least squares (OLS), LASSO, SCAD, MCP, group-wise MAVE (gMAVE) and
shrinkage group-wise MAVE (SgMAVE-LASSO, SgMAVE-SCAD and SgMAVE-MCP) are
applied to this data set. Before applying the group-wise MAVE procedure, we need to de-
termine (d1, d2, d3). The BIC-type criterion of Li, Li and Zhu [19] that is a modification of
Wang and Yin [29] yields (d1, d2, d3) = (1,1,1), indicating that each predictor group is con-
nected with the response variable through a single linear combination. The same criterion, when
the group information is ignored (g = 1), also shows a three-dimensional structure in regres-
sion.

The corresponding coefficient estimates are shown in the second through ninth columns of
Table 6. Using the attribute representation (that is, representing molecules by a set of physic-
ochemical attributes), these methods generate a variety of possible influences of structure on
activity. As we can see, the substituent at position 1 should not be a hydrogen-bond acceptor
(HA1). We can also see that both the size and the flexibility of the substituent at positions 1 and
3, say SZ1,FL1,SZ3 and FL3, are informative to the activity of the pyrimidines. Previous anal-
ysis of the crystal structure of the complex formed between trimethoprim and DHFR shows that
the substituents at positions 1 and 3, are buried in a hydrophobic environment, and restrictions
on size and flexibility are consistent with this (Hirst, King and Sternberg [15]). The shrinkage
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Figure 1. Graphical representation of the absolute correlation matrix of the 26 predictors for the pyrimidine
data. The magnitude of each pairwise correlation is represented by a block in the grayscale image.

group-wise MAVE methods also identify the σ -effect of the substituent at position 1 (σE1) as
an influencing factor, which is in accordance with previous studies using machine learning tech-
niques. However, the ordinary variable selection methods fail to detect it.

Let B̂1 ∈ R9, B̂2 ∈ R9 and B̂3 ∈ R8 denote direction estimates for the three predictor groups,
respectively. We next consider the group-wise additive index model

Y = G1(Z1) + G2(Z2) + G3(Z3) + ε,

where Zl = B̂�
l Vl , l = 1,2 and 3, are the extracted linear predictors, and Gl(·)’s are unknown

univariate functions. We fit this model by applying the gam function in the publicly available
R package mgcv. The adjusted percentages of total deviance explained, namely the adjusted
R-squared values, for various methods are summarized in the last row of Table 6. Unreported re-
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Table 6. Pyrimidine data. Estimated coefficients and adjusted R-squared values (R̄2) from various methods

OLS LASSO SCAD MCP gMAVE SgMAVE-LASSO SgMAVE-SCAD SgMAVE-MCP

V1: attributes of a substituent at position 1
PL1 −0.0437 0 0 0 0.6240 0.5620 0.6043 0.5896
SZ1 0.0435 0.0358 0 0.0586 −0.3154 −0.3772 −0.3336 −0.3470
FL1 −0.0444 −0.0323 −0.0216 −0.0537 0.2890 0.3444 0.3035 0.3198
HD1 −0.0249 −0.0197 −0.0480 −0.0273 0.1079 0.1589 0.1288 0.1407
HA1 0.0139 0 0.0358 0 −0.0227 0 0 0
πD1 0.0083 0.0025 0.0185 0.0207 −0.0521 −0.0928 −0.0898 −0.0916
πA1 0.0122 0 0.0160 0 −0.1901 −0.1818 −0.1985 −0.1949
PO1 0.0288 0.0224 0.0291 0 −0.3498 −0.3604 −0.3701 −0.3711
σE1 0.0386 0.0080 0 0 −0.5040 −0.4756 −0.4798 −0.4749

V2: attributes of a substituent at position 2
PL2 −0.0281 0 −0.0025 0 0.6924 0.6763 0.6894 0.6812
SZ2 0.0396 0.0152 0.0324 0 −0.1058 −0.1023 −0.0991 −0.0849
FL2 −0.0430 −0.0240 −0.0407 −0.0179 −0.1802 −0.2211 −0.1904 −0.2232
HD2 0.0076 0 0 0 −0.0982 −0.0556 −0.0841 −0.0574
HA2 0.0068 0 0 0 0.0402 0.0440 0.0328 0.0494
πD2 −0.0132 0.0100 0 0 0.0663 0 0.0534 0
πA2 0.0030 0 0 0 −0.1654 −0.1702 −0.1672 −0.1770
PO2 0.0218 0.0145 0.0148 0.0257 −0.3264 −0.3575 −0.3348 −0.3462
σE2 0.0176 0 0 0 −0.5720 −0.5667 −0.5722 −0.5673

V3: attributes of a substituent at position 3
PL3 0.0103 0 0 0 −0.0925 −0.1599 −0.1506 −0.1501
SZ3 0.0458 0.0579 0.0955 0.0740 0.7768 0.8369 0.9125 0.9126
FL3 −0.0311 −0.0079 −0.0309 −0.0208 −0.1757 −0.1957 −0.2048 −0.2070
HD3 −0.0540 −0.0424 −0.0294 −0.0340 0.0586 0 0 0
HA3 0.0595 0 0 0 −0.2928 −0.2298 −0.2689 −0.2667
πD3 −0.1958 −0.0696 −0.1620 −0.1459 −0.3503 −0.3490 −0.1738 −0.1744
PO3 0.0696 0.0365 0.0470 0.0623 −0.0992 0.0080 0 0
σE3 0.0987 0.0363 0.0864 0.0806 0.3677 0.2468 0 0

R̄2 0.8206 0.7934 0.8311 0.8226 0.9150 0.9241 0.9170 0.9210
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sults show that the nonparametric smoothing of all the three predictors yields better performance
than the additive model using smoothing of every single predictor, but the improvement is not
statistically significant. As we can see, the proposed semi-parametric methods outperform the
classical parametric ones as they can provide a mechanism for exploring nonlinear relationships
between molecular structure and biological activity.

Figure 2 provides the plots of estimated index functions, using for illustration the shrink-
age group-wise MAVE method with the minimax concave penalty (SgMAVE-MCP). From Fig-
ures 2(a) and (b), it can be seen that G1(·) has a linear trend, while G2(·) is clearly curved,
indicating a nonlinear parabolic dependence of activity on the extracted linear combination of
attributes at the second position of substitution. It can also be seen from Figure 2(c) that G3(·)
is very complicated, and nonparametric smoothing performs poorly in areas where observations
are sparse.

4. Discussion

In this paper, we only provide the convergence rate of the shrinkage group-wise MAVE esti-
mator. It is possible to derive the limiting distribution. However, the limiting distribution is too
complicated to be applied for inference. Thus, for the time being, we are frustrated by the lack
of a good approximation to the limiting distribution that can be used to set standard errors or to
carry out tests on the parameter vector.

As remarked by Knight and Fu [16], attaching standard errors to LASSO-type estimators is
nontrivial. They then considered using the residual-based bootstrap method to estimate the sam-
pling distribution of the LASSO estimator in a multiple linear regression. However, Chatterjee
and Lahiri [3] showed that the conditional residual bootstrap distribution given the data converges
to a random measure; that is, the residual bootstrap estimate of the LASSO distribution is incon-
sistent. In a subsequent paper, Chatterjee and Lahiri [4] proposed a modified bootstrap method,
and showed that it provides a valid approximation to the distribution of the LASSO estimator.

But it is unclear yet whether or not the modified bootstrap method of Chatterjee and Lahiri
[4] can be applied to our setting. The situation is complicated by the fact that in semi-parametric
multiple-index models we need to take into account the interaction between nonparametric func-
tion estimation and shrinkage direction estimation. Work along this line is in progress.

Appendix

We need the following regularity conditions:

(A1) E|Y |k < ∞ and E‖X‖k
2 < ∞ for some large k > 0, where ‖ · ‖2 denotes the 
2 norm.

(A2) The density function of X has a bounded second derivative; E(X|B�X = w) and
E(XX�|B�X = w) have bounded derivatives with respect to w and B for B in a small
neighborhood of B∗, that is, ‖PB − PB∗‖2 ≤ ζ for some small ζ > 0.

(A3) The function E(Y |B�X = w) has a bounded and continuous fourth derivative with re-
spect to w and B for B in a small neighborhood of B∗.

(A4) The kernel K(·) is a Gaussian probability density function.
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Figure 2. The panels show the estimates of the terms in the group-wise additive index model for the pyrim-
idine data using for illustration SgMAVE-MCP. The upper left panel, the upper right panel and the lower
panel are the smooth functions of the extracted linear predictor in predictor group one, two and three, re-
spectively. The rug plots, along the bottom of each plot, show the values of the predictors of each smooth.
Thin plate regression splines were used with smoothing parameters being selected by GCV.
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(A5) d ≤ 3 and h ∝ n−1/(d+4).

(A6) B̃l = B∗
l D0

l + OP (n−1/2) and ˜̃Bl = B∗
l D0

l + OP (n−1/2) for some dl × dl nonsingular
matrix D0

l for l = 1, . . . , g.

Note that conditions (A1)–(A4) are standard in the literature, see for instance Wang and Xia
[28], Xia [32] and Li, Li and Zhu [19]. As shown in Xia [32], the ordinary MAVE estimator is
root-n consistent under conditions similar to (A1)–(A5). Consequently, condition (A6) is very
reasonable because we can view B̃ =⊕g

l=1 B̃l as a special case of a general B̃ in Xia’s proof. If
higher order local polynomial smoothing is used, the root-n consistency can also be achieved for
d > 3; see Remark 5.3 in Xia [32]. Nevertheless, in practice models with d > 3 are not attractive
due to the “curse of dimensionality”.

Before we begin the proof, we need to introduce some additional notation. For a positive
integer m, 0m stands for an m-dimensional vector of zeros. For an m1 × m2 matrix A, vec(A)

stands for the m1m2-dimensional vector obtained by stacking the columns of A. For a diagonal
matrix, we get the (generalized) inverse by taking the reciprocal of each nonzero element on the
diagonal, leaving the zeros in place, and transposing the resulting matrix.

Let B̂l = diag(α̂l )
˜̃Bl . Then B̂ =⊕g

l=1 B̂l . Let ˜̃
Blst denote the (s, t)th element of ˜̃Bl . Without

loss of generality, we assume that D0
l = Idl

, and the first ql components of B∗
l1 are nonzero. For

each l = 1, . . . , g, we define

H∗
l =

⎛
⎜⎝

diag
(
B∗

l1

)
...

diag
(
B∗

ldl

)
⎞
⎟⎠{

diag
(
B∗

l1

)}−1 and ˜̃Hl =
⎛
⎜⎝

diag(
˜̃Bl1)

...

diag(
˜̃Bldl

)

⎞
⎟⎠{

diag(
˜̃Bl1)

}−1
,

where B∗
lt denotes the t th column of B∗

l and ˜̃Blt denotes the t th column of ˜̃Bl , t = 1, . . . , dl . Let

H∗ =⊕g

l=1 H∗
l and ˜̃H =⊕g

l=1
˜̃Hl . By condition (A6), ‖H∗ − ˜̃H‖2 = OP (n−1/2).

Proof of Theorem 2.1. We shall concentrate on the optimization problem (2.5). The proof fol-
lows Theorem 1 of Bondell and Li [1] closely. First, we formulate an equivalent optimization
problem that is easier to analyze theoretically. To see this, we note that

n∑
i=1

n∑
j=1

{
yj − ãi −

g∑
l=1

b̃i�
l

˜̃Bl
�

diag
(
vj
l − vi

l

)
αl

}2

w̃i
j

=
n∑

i=1

n∑
j=1

[
yj − ãi −

g∑
l=1

{
b̃i�

l ⊗ (
vj
l − vi

l

)�}
⎛
⎜⎝

diag(
˜̃Bl1)

...

diag(
˜̃Bldl

)

⎞
⎟⎠αl

]2

w̃i
j

=
n∑

i=1

n∑
j=1

[
yj − ãi −

g∑
l=1

{
b̃i�

l ⊗ (
vj
l − vi

l

)�} ˜̃Hl diag(
˜̃Bl1)αl

]2

w̃i
j .
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Suppose that {B̌l1 = (B̌l11, . . . , B̌lpl1)
� ∈ Rpl , l = 1, . . . , g} is the minimizer of

n∑
i=1

n∑
j=1

[
yj − ãi −

g∑
l=1

{
b̃i�

l ⊗ (
vj
l − vi

l

)�} ˜̃HlBl1

]2

w̃i
j + λn

g∑
l=1

pl∑
s=1

|Bls1|
| ˜̃Bls1|

(A.1)

with respect to {Bl1 = (Bl11, . . . ,Blpl1)
� ∈ Rpl , l = 1, . . . , g}. From Definition 2.1, it is easy to

see that α̂ls = (
˜̃
Bls1)

−1B̌ls1 for all l = 1, . . . , g and s = 1, . . . , pl . Further, vec(B̂l ) = ˜̃HlB̌l1.
Below we shall describe the details of the proof by breaking it up into two steps. Step I estab-

lishes the convergence rate of B̂. Step II shows that B̂ attains sparsity.
Step I. Let u = (u�

1 , . . . ,u�
g )� ∈ Rp , where ul = (ul1, . . . , ulpl

)� ∈ Rpl for l = 1, . . . , g. De-
fine

Jn(u) = λn

g∑
l=1

pl∑
s=1

| ˜̃Bls1|−1
∣∣∣∣B∗

ls1 + uls√
n

∣∣∣∣.
Then, we have

Jn(u) − Jn(0p) = λn√
n

g∑
l=1

pl∑
s=1

| ˜̃Bls1|−1√n

(∣∣∣∣B∗
ls1 + uls√

n

∣∣∣∣− ∣∣B∗
ls1

∣∣).

If uls = 0, then

λn√
n
| ˜̃Bls1|−1√n

(∣∣∣∣B∗
ls1 + uls√

n

∣∣∣∣− ∣∣B∗
ls1

∣∣)= 0.

If uls �= 0 and B∗
ls1 �= 0, then | ˜̃Bls1|−1 →P |B∗

ls1|−1 and

√
n

(∣∣∣∣B∗
ls1 + uls√

n

∣∣∣∣− ∣∣B∗
ls1

∣∣)→ uls × sgn
(
B∗

ls1

)
,

where sgn(·) is the sign function. By Slutsky’s theorem,

λn√
n
| ˜̃Bls1|−1√n

(∣∣∣∣B∗
ls1 + uls√

n

∣∣∣∣− ∣∣B∗
ls1

∣∣)= oP

(
h2).

If uls �= 0 and B∗
ls1 = 0, then

λn√
n
| ˜̃Bls1|−1√n

(∣∣∣∣B∗
ls1 + uls√

n

∣∣∣∣− ∣∣B∗
ls1

∣∣)= λn

√
n| ˜̃Bls1|

|uls | →P ∞.

Define

�n(u) =
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i=1

n∑
j=1
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{
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l ⊗ (
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After some algebra one gets

�n(u) − �n(0p)

=
n∑

i=1

n∑
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[
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(
B∗

l1 − ˜̃Bl1
)]

w̃i
j .

Let v∗ = (B∗�
11 , . . . ,B∗�

g1 )� and ˜̃v = (
˜̃B11

�
, . . . ,

˜̃Bg1
�
)�. Then, we have

�n(u) − �n(0p) = u� ˜̃H�
(

1

n
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ṽij ṽ�
ij w̃

i
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where ṽij = (ṽ�
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ijg)
� ∈ Rp1d1+···+pgdg , ṽij l = b̃i

l ⊗ (vj
l − vi

l ) ∈ Rpldl , l = 1, . . . , g.
First, we consider T1. Note that

T1 = u�H∗�
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n
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i
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≡ T11 + T12 + T13 + T14.
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By Lemma 4 in Wang and Xia [28],

1

n

n∑
i=1

n∑
j=1

ṽij ṽ�
ij w̃

i
j = � + oP (1),

where � is a nonnegative definite matrix. Hence, we obtain

T11 = OP (1), T12 = OP

(
n−1/2), T13 = OP

(
n−1/2) and T14 = OP

(
n−1).

Next, we consider T2. Note that ˜̃v = v∗ + OP (n−1/2) and

T2 = 2u�H∗�
(

1

n
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ij w̃

i
j

)
H∗{√n

(
v∗ − ˜̃v)}

+ 2u�( ˜̃H − H∗)�(1

n

n∑
i=1

n∑
j=1
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≡ T21 + T22 + T23 + T24.

Thus, we arrive at

T21 = OP (1), T22 = OP

(
n−1/2), T23 = OP

(
n−1/2) and T24 = OP

(
n−1).

Let Ln(u) = �n(u) + Jn(u). If uls �= 0 for some l ∈ {1, . . . , g} and s ∈ {ql + 1, . . . , pl}, then
Ln(u) − Ln(0p) →P ∞ > 0. So we assume in the sequel that u ∈ U , where

U = {
u ∈Rp : uls = 0 for all l = 1, . . . , g and s = ql + 1, . . . , pl

}
.

It follows that Jn(u) − Jn(0p) = oP (h2) for any u ∈ U . Let u ∈ U .
We consider the problem of minimizing Ln(u) over U . Because nh4 → ∞, we obtain

Ln(u) − Ln(0p) = T11 + T21 + oP

(
h2).

Let (B∗
l ,A∗

l ) be an orthogonal matrix. Let C = ⊕g

l=1{Idl
⊗ (B∗

l ,A∗
l )}. Then, according to

Lemma 4 of Wang and Xia [28], the long version, there exists a (
∑g

l=1 dlpl) × (
∑g

l=1 dlpl)

permutation matrix � =⊕g

l=1 �l such that

1

n

n∑
i=1

n∑
j=1

ṽij ṽ�
ij w̃

i
j = C�

(
�11n �12n

�21n �22n

)
(C�)� + oP

(
h2),
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where h−2�11n →P �11, h−2�12n →P �12, h−2�21n →P �21 and �22n →P �22. Moreover,
both �11 and �22 are positive definite.

Write C� = (D1,D2) with D1 being of order (
∑g

l=1 dlpl)× (
∑g

l=1 d2
l ). Let z1 = D�

1 H∗u and
z2 = D�

2 H∗u. Write z = (z�
1 , z�

2 )�. Now consider the function

Gn(z) = z�
(

�11n �12n

�21n �22n

)
z

+ 2z�
(

�11n �12n

�21n �22n

)
(C�)�H∗{√n

(
v∗ − ˜̃v)}+ oP

(
h2).

Denote ž = (ž�
1 , ž�

2 )� the minimizer of Gn(z). It turns out that the conditions of Theorem 1 of
Radchenko [22] are satisfied and, consequently, we have ž1 = OP (1) and ž2 = OP (1). Over U ,
because u = (H∗�H∗)−1H∗�(D1,D2)z, we have ǔ = OP (1). We thus conclude that there exists
a minimizer {B̌l1, l = 1, . . . , g} of (A.1) such that ‖B̌l1 −B∗

l1‖2 = OP (n−1/2) for all l = 1, . . . , g.

Since vec(B∗
l ) = H∗

l B∗
l1 and vec(B̂l ) = ˜̃HlB̌l1, by triangular inequality we have

∥∥vec(B̂l ) − vec
(
B∗

l

)∥∥
2 ≤ ∥∥vec

(
H∗

l B̌l1
)− vec

(
H∗

l B∗
l1

)∥∥
2 + ∥∥vec( ˜̃HlB̌l1) − vec

(
H∗

l B̌l1
)∥∥

2.

Therefore, ‖B̂l − B∗
l ‖2 = OP (n−1/2) for all l = 1, . . . , g.

Step II. We show the variable selection consistency. Write Al = I(B∗
l ) and Anl = I(B̂l ). For

any s ∈ ⋃g

l=1 Al , that is, s ∈ Al for some l, the estimation consistency result indicates that
α̂ls →P 1. Thus, P(s ∈⋃g

l=1 Anl) → 1. It then suffices to show that for any s′ /∈⋃g

l=1 Al , P(s′ ∈⋃g

l=1 Anl) → 0. Consider the event {s′ ∈ Anl}. By standard Karush–Kuhn–Tucker conditions for
optimality, we know that

2√
n

n∑
i=1

n∑
j=1

[
yj − ãi −

g∑
l=1

{
b̃i�

l ⊗ (
vj
l − vi

l

)�} ˜̃HlB̌l1

]

× [{
b̃i�

l ⊗ (
vj
l − vi

l

)�} ˜̃Hlels′
]× w̃i

j = | ˜̃Bls′1|−1 sgn(B̌ls′1)
λn√
n
,

where els′ ∈ Rpl is the vector containing a 1 in the s′th position and zeros elsewhere. Note that

| ˜̃Bls′1|−1 λn√
n

= λn

√
n| ˜̃Bls′1|

→P ∞

and

2√
n

n∑
i=1

n∑
j=1

[
yj − ãi −

g∑
l=1

{
b̃i�

l ⊗ (
vj
l − vi

l

)�} ˜̃HlB̌l1

]

× [{
b̃i�

l ⊗ (
vj
l − vi

l

)�} ˜̃Hlels′
]× w̃i

j = OP (1).
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Thus, we obtain

P

(
s′ ∈

g⋃
l=1

Anl

)
≤

g∑
l=1

P
(
s′ ∈Anl

)→ 0.

The proof is complete. �

Proof of Theorem 2.2. According to whether the fitted model Mλ is under-fitted, correctly
fitted or over-fitted, we can divide R+ = [0,∞) into three disjoint parts:

− = {λ : Mλ �MT }, 0 = {λ : Mλ =MT }
and

+ = {λ :Mλ ⊇MT ,Mλ �=MT }.
Further, we assume a reference sequence of tuning parameters, {λn}∞n=1, which satisfies the con-

ditions in Theorem 2.1. Clearly, B̌l1 = B∗
l1 + OP (n−1/2) and P(Mλn =MT ) → 1.

We write α = (α�
1 , . . . ,α�

g )� ≡ (α1, . . . , αp)� ∈ Rp and define

RSSM = min
α∈SM

n∑
i=1

n∑
j=1

{
yj − ãi −

g∑
l=1

b̃i�
l

˜̃Bl
�

diag
(
vj
l − vi

l

)
αl

}2

w̃i
j

≡ min
α∈SM

n∑
i=1

n∑
j=1

[
yj − ãi −

g∑
l=1

{
b̃i�

l ⊗ (
vj
l − vi

l

)�} ˜̃Hl diag(
˜̃Bl1)αl

]2

w̃i
j ,

where SM = {w = (w1, . . . ,wp)� ∈Rp : ws = 0, s /∈M}.
For a generic model M, let {B̆11(M), . . . , B̆g1(M)} be the minimizer of

n∑
i=1

n∑
j=1

[
yj − ãi −

g∑
l=1

{
b̃i�

l ⊗ (
vj
l − vi

l

)�} ˜̃HlBl1

]2

w̃i
j

with respect to (B�
11, . . . ,B�

g1)
� ∈ SM. Then, we have

RSSM =
n∑

i=1

n∑
j=1

[
yj − ãi −

g∑
l=1

{
b̃i�

l ⊗ (
vj
l − vi

l

)�} ˜̃HlB̆l1

]2

w̃i
j .

Further, for the full model MF , B̆l1(MF ) = ˜̃Bl1 for all l = 1, . . . , g.
We first consider under-fitted models, that is, Mλ �MT . Note that

inf
λ∈−

RSSλ −RSSλn ≥ inf
λ∈−

RSSMλ
−RSSλn ≥ min

M�MT

RSSM −RSSλn .
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By definition, we know that

RSSM −RSSMF
=

n∑
i=1

n∑
j=1

[
yj − ãi −

g∑
l=1

{
b̃i�

l ⊗ (
vj
l − vi

l

)�} ˜̃HlB̆l1(M)

]2

w̃i
j

−
n∑

i=1

n∑
j=1

[
yj − ãi −

g∑
l=1

{
b̃i�

l ⊗ (
vj
l − vi

l

)�} ˜̃Hl
˜̃Bl1

]2

w̃i
j

=
n∑

i=1

n∑
j=1

[
g∑

l=1

{
b̃i�

l ⊗ (
vj
l − vi

l

)�} ˜̃Hl

{
B̆l1(M) − ˜̃Bl1

}]2

w̃i
j .

According to Lemma 4 of Wang and Xia [28], there exists some constant κ > 0 such that, for
any M�MT ,

RSSM −RSSMF
≥ κnh2

with probability tending to 1. Since log(1 + x) ≥ min{0.5x, log(2)} for any x > 0, we have

log(RSSM) − log(RSSMF
) = log

(
1 + RSSM −RSSMF

RSSMF

)

≥ min

{
log(2),

RSSM −RSSMF

2 RSSMF

}
.

Following an argument similar to the one used in the proof of Lemma 1 of Xia et al. [34], one can
show that n−1 RSSMF

→P σ 2 for some σ > 0. This, together with n−1 log(n) = o(h2), yields
that

P
{

min
M�MT

BICM −BICMF
+oP

(
h2)> 0

}
→ 1.

Because ˜̃Bl1 = B∗
l1 + OP (n−1/2) and B̌l1 = B∗

l1 + OP (n−1/2), we obtain

RSSλn −RSSMF
= OP

(
1

n

)
= oP

(
h2).

Thus, we have

P
(

inf
λ∈−

BICλ −BICλn > 0
)

≥ P
(

inf
M�MT

BICM −BICMF
+BICMF

−BICλn > 0
)

→ 1.

Next, we consider over-fitted models, that is, Mλ ⊇MT but Mλ �=MT . Observe that

inf
λ∈+

RSSλ −RSSλn ≥ inf
λ∈+

RSSMλ
−RSSλn ≥ min

M⊇MT ,M �=MT

RSSM −RSSλn .
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For a generic model M, if M ⊇MT , then one can show that

RSSM = RSSMF
+OP

(
1

n

)
.

Because RSSMF
−RSSλn = OP (n−1), it follows that

min
M⊇MT ,M �=MT

RSSM −RSSλn = OP

(
1

n

)
.

Then, with probability tending to 1, we have

inf
λ∈+

RSSλ −RSSλn + log(n)

n
> 0.

As a consequence,

P
(

inf
λ∈+

BICλ −BICλn > 0
)

≥ P

(
inf

λ∈+
RSSλ −RSSλn + log(n)

n
> 0

)
→ 1.

Combining, the proof is complete. �
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