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Due to its low computational cost, Lasso is an attractive regularization method for high-dimensional statis-
tical settings. In this paper, we consider multivariate counting processes depending on an unknown function
parameter to be estimated by linear combinations of a fixed dictionary. To select coefficients, we propose
an adaptive �1-penalization methodology, where data-driven weights of the penalty are derived from new
Bernstein type inequalities for martingales. Oracle inequalities are established under assumptions on the
Gram matrix of the dictionary. Nonasymptotic probabilistic results for multivariate Hawkes processes are
proven, which allows us to check these assumptions by considering general dictionaries based on his-
tograms, Fourier or wavelet bases. Motivated by problems of neuronal activity inference, we finally carry
out a simulation study for multivariate Hawkes processes and compare our methodology with the adaptive
Lasso procedure proposed by Zou in (J. Amer. Statist. Assoc. 101 (2006) 1418–1429). We observe an ex-
cellent behavior of our procedure. We rely on theoretical aspects for the essential question of tuning our
methodology. Unlike adaptive Lasso of (J. Amer. Statist. Assoc. 101 (2006) 1418–1429), our tuning pro-
cedure is proven to be robust with respect to all the parameters of the problem, revealing its potential for
concrete purposes, in particular in neuroscience.

Keywords: adaptive estimation; Bernstein-type inequalities; Hawkes processes; Lasso procedure;
multivariate counting process

1. Introduction

The Lasso, proposed in [58], is a well-established method that achieves sparsity of an estimated
parameter vector via �1-penalization. In this paper, we focus on using Lasso to select and estimate
coefficients in the basis expansion of intensity processes for multivariate point processes.

Recent examples of applications of multivariate point processes include the modeling of mul-
tivariate neuron spike data [42,47], stochastic kinetic modeling [7] and the modeling of the dis-
tribution of ChIP-seq data along the genome [20]. In the previous examples, the intensity of a
future occurrence of a point depends on the history of all or some of the coordinates of the point
processes, and it is of particular interest to estimate this dependence. This can be achieved us-
ing a parametric family of models, as in several of the papers above. Our aim is to provide a
nonparametric method based on the Lasso.
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The statistical properties of Lasso are particularly well understood in the context of regression
with i.i.d. errors or for density estimation where a range of oracle inequalities have been estab-
lished. These inequalities, now widespread in the literature, provide theoretical error bounds that
hold on events with a controllable (large) probability. See, for instance, [5,6,15–18,61]. We refer
the reader to [13] for an excellent account on many state-of-the-art results. One main challenge
in this context is to obtain as weak conditions as possible on the design – or Gram – matrix. The
other important challenge is to be able to provide an �1-penalization procedure that provides ex-
cellent performance from both theoretical and practical points of view. Standard Lasso proposed
in [58] and based on deterministic constant weights constitutes a major contribution from the
methodological point of view, but underestimation due to its shrinkage nature may lead to poor
practical performance in some contexts. Alternative two step procedures have been suggested to
overcome this drawback (see [43,60,64]). Zou in [64] also discusses problems for standard Lasso
to cope with variable selection and consistency simultaneously. He overcomes these problems by
introducing nonconstant data-driven �1-weights based on preliminary consistent estimates.

1.1. Our contributions

In this paper, we consider an �1-penalized least squares criterion for the estimation of coefficients
in the expansion of a function parameter. As in [5,35,60,64], we consider nonconstant data-
driven weights. However the setup is here that of multivariate point processes and the function
parameter that lives in a Hilbert space determines the point process intensities. Even in this
unusual context, the least squares criterion also involves a random Gram matrix as well, and in
this respect, we present a fairly standard oracle inequality with a strong condition on this Gram
matrix (see Theorem 1 in Section 2).

One major contribution of this article is to provide probabilistic results that enable us to cali-
brate �1-weights in the most general setup (see Theorem 2 in Section 2). This is naturally linked
to sharp Bernstein type inequalities for martingales. In the literature, those kinds of inequalities
generally provide upper bounds for the martingale that are deterministic and unobservable [57,
59]. To choose data-driven weights, we need observable bounds. More recently, there have been
some attempts to use self-normalized processes in order to provide more flexible and random up-
per bounds [4,25–27]. Nevertheless, those bounds are usually not (completely) observable when
dealing with counting processes. We prove a result that goes further in this direction by providing
a completely sharp random observable upper bound for the martingale in our counting process
framework (see Theorem 3 in Section 3).

The second main contribution is to provide a quite theoretical and abstract framework to deal
with processes whose intensity is (or is well approximated by) a linear transformation of de-
terministic parameters to infer. This general framework also allows for different asymptotics in
terms of the number of observed processes or in terms of the duration of the recording of observa-
tions, according to the setup. We focus in this paper on three main examples: the Poisson model,
the Aalen multiplicative intensity model and the multivariate Hawkes process, but many other
situations can be expressed in the present framework, which has the advantage of full flexibility.
The first two examples have been extensively studied in the literature as we detail hereafter, but
Hawkes processes are typical of situations where very little is known from a nonparametric point
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of view, and where fully implementable adaptive methods do not exist until the present work,
to the best of our knowledge. They also constitute processes that are often used in practice – in
particular in neuroscience – as explained below.

It is also notable that we, in each of these three previous examples, can verify explicitly if
the strong condition on the Gram matrix mentioned previously is fulfilled with probability close
to 1 (see Section 4 for the Poisson and Aalen cases and Section 5 for the Hawkes case). For
the multivariate Hawkes process, this involves novel probabilistic inequalities. Even though the
Hawkes processes have been studied extensively in the literature, see [9,24], very little is known
about exponential inequalities and nonasymptotic tail control. Besides the univariate case [51],
no exponential inequality controlling the number of points per interval is known to us. We derive
such results and other sharp controls on the convergence in the ergodic theorem to obtain control
on the Gram matrix.

Finally, we carry out a simulation study in Section 6 for the most intricate process, namely
the multivariate Hawkes process, with a main aim: to convince practitioners, for instance in neu-
roscience, that this method is indeed fully implementable and gives good results in practice.
Data-driven weights for practical purposes are slight modifications of theoretical ones. These
modifications essentially aim at reducing the number of tuning parameters to one. Due to non-
negligible shrinkage that is unavoidable, in particular for large coefficients, we propose a two step
procedure where estimation of coefficients is handled by using ordinary least squares estimation
on the support preliminary determined by our Lasso methodology. Tuning issues are extensively
investigated in our simulation study, and Table 1 in Section 6.3 shows that our methodology can
easily and robustly be tuned by using limit values imposed by assumptions of Theorem 2. We
naturally compare our procedure with adaptive Lasso of [64] for which weights are proportional
to the inverse of ordinary least squares estimates. The latter is very competitive for estimation
aspects since shrinkage becomes negligible if the preliminary OLS estimates are large. But adap-
tive Lasso does not incorporate random fluctuations of coefficient estimators. So it is most of the
time outperformed by our procedure. In particular, tuning adaptive Lasso in the Hawkes setting is
a difficult task, which cannot be tackled by using standard cross-validation. Our simulation study
shows that the performance of adaptive Lasso is very sensitive to the choice of the tuning param-
eter. Robustness with respect to tuning is another advantage of our method over adaptive Lasso.
For simulations, the framework of neuronal networks is used. Our short study proves that our
methodology can be used for solving concrete problems in neuroscience such as the inference of
functional connectivity graphs.

1.2. Multivariate counting process

The framework introduced here and used throughout the paper aims at unifying several situations,
making the reading easier. Main examples are then shortly described, illustrating the use of this
setup.

We consider an M-dimensional counting process (N
(m)
t )m=1,...,M , which can also be seen as a

random point measure on R with marks in {1, . . . ,M}, and corresponding predictable intensity
processes (λ

(m)
t )m=1,...,M under a probability measure P (see [8] or [24] for precise definitions).
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Classical models assume that the intensity λ
(m)
t can be written as a linear predictable trans-

formation of a deterministic function parameter f0 belonging to a Hilbert space H (the structure
of H, and then of f0, will differ according to the context, as illustrated below). We denote this
linear transformation by

ψ(f )= (ψ(1)(f ), . . . ,ψ(M)(f )
)
. (1.1)

Therefore, for classical models, for any t ,

λ
(m)
t =ψ

(m)
t (f0). (1.2)

The main goal in classical settings is to estimate f0 based on observing (N
(m)
t )m=1,...,M for

t ∈ [0, T ]. Actually, we do not require in Theorems 1 and 2 that (1.2) holds. Our aim is mainly to
furnish an estimate of the best linear approximation ψ

(m)
t (f0) of the underlying intensity λ

(m)
t .

Let us illustrate the general setup with three main examples: First, the case with i.i.d. obser-
vations of an inhomogeneous Poisson process on [0,1] and unknown intensity, second, the well
known Aalen multiplicative intensity model and third, the central example of the multivariate
Hawkes process. For the first two models, asymptotics is with respect to M (T is fixed). For the
third one, M is fixed and asymptotics is with respect to T .

1.2.1. The Poisson model

Let us start with a very simple example which will be somehow a toy problem here compared
to the other examples. In this example, we take T = 1 and assume that we observe M i.i.d.
Poisson processes on [0,1] with common intensity f0 : [0,1] �−→R+. Asymptotic properties are
obtained when M tends to infinity. In this case, the intensity λ(m) of the mth process N(m) is f0,
which does not depend on m: Therefore, for any m ∈ {1, . . . ,M} and any t , we set

ψ
(m)
t (f0) := f0(t),

and H= L2([0,1]) is equipped with the classical norm defined by

‖f ‖ =
(∫ 1

0
f 2(t)dt

)1/2

.

This framework has already been extensively studied from an adaptive point of view: see for
instance [48,63] for model selection methods, [50] for wavelet thresholding estimation or [53]
for kernel estimates. In this context, our present general result matches with existing minimax
adaptation results where asymptotics is with respect to M .

1.2.2. The Aalen multiplicative intensity model

This is one of the most popular counting processes because of its adaptivity to various situations
(from Markov models to censored lifetime models) and its various applications to biomedical
data (see [2]). Given X a Hilbert space, we consider f0 : [0, T ] ×X �−→R+, and we set for any
t ∈R,

λ
(m)
t =ψ

(m)
t (f0) := f0

(
t,X(m)

)
Y

(m)
t ,
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where Y (m) is an observable predictable process and X(m) represents covariates. In this case,
H = L2([0, T ] × X ). Our goal is to estimate f0 and not to select covariates. So, to fix ideas
one sets X = [0,1] and T = 1. Hence H can be identified with L2([0,1]2). For right-censored
data, f0 usually represents the hazard rate. The presence of covariates in this pure nonparametric
model is the classical generalization of the semi-parametric model proposed by Cox (see [39],
for instance). Note that the Poisson model is a special case of the Aalen model.

The classical framework consists in assuming that (X(m), Y (m),N(m))m=1,...,M is an i.i.d. M-
sample and as for the Poisson model, it is natural to investigate asymptotic properties when
M →+∞. If there are no covariates, several adaptive approaches already exist: See [11,12,
49] for various penalized least-squares contrasts and [21] for kernel methods in special cases of
censoring. In the presence of covariates, one can mention [1,2] for a parametric approach, [23,
39] for a model selection approach and [29] for a Lasso approach. Let us also cite [14] where
covariate selection via penalized MLE has been studied. Once again, our present general result
matches with existing oracle results. In [21], exponential control of random fluctuations leading
to adaptive results are derived without using the martingale theory. In more general frameworks
(as in [23], for instance), martingales are required and this even when i.i.d. processes are involved.

1.2.3. Hawkes processes

Hawkes processes are the point processes equivalent to autoregressive models. In seismology,
Hawkes processes can model earthquakes and their aftershocks [62]. More recently they have
been used to model favored or avoided distances between occurrences of motifs [32] or Tran-
scription Regulatory Elements [20] on the DNA. We can also mention the use of Hawkes pro-
cesses as models of social interactions [44] or financial phenomena [3].

In the univariate setting, with M = 1, the intensity of a nonlinear Hawkes process (Nt )t>0 is
given by

λt = φ

(∫ t−

−∞
h(t − u)dNu

)
,

where φ :R �→ R+ and h :R+ �→ R (see [9]). A particular case is Hawkes’s self exciting point
process, for which h is nonnegative and φ(x) = ν + x where ν > 0 (see [9,24,34]). For in-
stance, for seismological purposes, ν represents the spontaneous occurrences of real original
earthquakes. The function h models self-interaction: after a shock at time u, we observe an af-
tershock at time t with large probability if h(t − u) is large.

These notions can be easily extended to the multivariate setting and in this case the intensity
of N(m) takes the form:

λ
(m)
t = φ(m)

(
M∑

�=1

∫ t−

−∞
h

(m)
� (t − u)dN(�)(u)

)
.

Theorem 7 of [9] gives conditions on the functions φ(m) (namely Lipschitz properties) and on
the functions h

(m)
� to obtain existence and uniqueness of a stationary version of the associated

process. Throughout this paper, we assume that for any m ∈ {1, . . . ,M},
φ(m)(x)= (ν(m) + x

)
+,
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where ν(m) > 0 and (·)+ denotes the positive part. Note that in [20,22], the case φ(m)(x) =
exp(ν(m) + x) was studied. However, Lipschitz properties required in [9] are not satisfied
in this case. By introducing, as previously, the linear predictable transformation ψ(f ) =
(ψ(1)(f ), . . . ,ψ(M)(f )) with for any m and any t

ψ
(m)
t (f0) := ν(m) +

M∑
�=1

∫ t−

−∞
h

(m)
� (t − u)dN(�)(u), (1.3)

with f0 = (ν(m), (h
(m)
� )�=1,...,M)m=1,...,M , we have λ

(m)
t = (ψ

(m)
t (f0))+. Note that the upper in-

tegration limits in (1.3) are t−, that is, the integrations are all over the open interval (−∞, t).
This assures predictability of the intensity disregarding the values of h

(m)
� (0). Alternatively, it can

be assumed throughout that h
(m)
� (0)= 0, in which case the integrals in (1.3) can be over (−∞, t]

without compromising predictability. The parameter ν(m) is called the spontaneous rate, whereas
the function h

(m)
� is called the interaction function of N(�) on N(m). The goal is to estimate f0

by using Lasso estimates. In the sequel, we will assume that the support of h
(m)
� is bounded. By

rescaling, we can then assume that the support is in [0,1], and we will do so throughout. Note
that in this case we will need to observe the process on [−1, T ] in order to compute ψ

(m)
t (f0) for

t ∈ [0, T ]. The Hilbert space H associated with this setup is

H = (R×L2
([0,1])M)M

=
{
f = ((μ(m),

(
g

(m)
�

)
�=1,...,M

)
m=1,...,M

) :
g

(m)
� with support in [0,1] and ‖f ‖2 =

∑
m

(
μ(m)

)2 +∑
m

∑
�

∫ 1

0
g

(m)
� (t)2 dt <∞

}
.

Some theoretical results are established in this general setting but to go further, we shall consider
in Section 5 the case where the functions h

(m)
� are nonnegative and then λ

(m)
t is a linear function

of f0, as in Sections 1.2.1 and 1.2.2:

λ
(m)
t =ψ

(m)
t (f0).

The multivariate point process associated with this setup is called the multivariate Hawkes self
exciting point process (see [34]). In this example, M is fixed and asymptotic properties are ob-
tained when T tends to infinity.

To the best of our knowledge, nonparametric estimation for Hawkes models has only been
proposed in [52] in the univariate setting where the method is based on �0-penalization of the
least-squares contrast. However, due to �0-penalization, the criterion is not convex and the com-
putational cost, in particular for the memory storage of all the potential estimators, is huge.
Therefore, this method has never been adapted to the multivariate setting. Moreover, the penalty
term in this method is not data-driven and ad-hoc tuning procedures have been used for simu-
lations. This motivates the present work and the use of a convex Lasso criterion combined with
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data-driven weights, to provide a fully implementable and theoretically valid data-driven method,
even in the multivariate case.

Applications in neuroscience

Hawkes processes can naturally be applied to model neuronal activity. Extracellular action po-
tentials can be recorded by electrodes and the recorded data for the neuron m can be seen as a
point process, each point corresponding to the peak of one action potential of this neuron (see
[10], for instance, for precise definitions). When M neurons are simultaneously recorded, one
can assume that we are faced with a realization of N = (N(m))m=1,...,M modeled by a multi-
variate Hawkes process. We then assume that the intensity associated with the activity of the
neuron m is given by λ

(m)
t = (ψ

(m)
t (f0))+, where ψ

(m)
t (f0) is given in (1.3). At any occurrence

u < t of N(�), ψ
(m)
t (f0) increases (excitation) or decreases (inhibition) according to the sign of

h
(m)
� (t − u). Modeling inhibition is essential from the neurobiological point of view. So, we can-

not assume that all interaction functions are nonnegative, and we cannot omit the positive part.
More details are given in Section 6.

In neuroscience, Hawkes processes combined with maximum likelihood estimation have been
used in the seminal paper [22], but the application of the method requires a too huge number of
observations for realistic practical purposes. Models based on Hawkes processes have neverthe-
less been recently discussed in neuroscience, since they constitute one of the few simple models
able to produce dependence graphs between neurons, that may be interpreted in neuroscience as
functional connectivity graphs [45,46]. However, many nonparametric statistical questions arise
that are not solved yet in order to furnish a fully applicable tool for real data analysis [38]. We
think that the Lasso-based methodology presented in this paper may furnish the first robust tool
in this direction.

1.3. Notation and overview of the paper

Some notation from the general theory of stochastic integration is useful to simplify the otherwise
quite heavy notation. If H = (H (1), . . . ,H (M)) is a multivariate process with locally bounded
coordinates, say, and X = (X(1), . . . ,X(M)) is a multivariate semi-martingale, we define the real
valued process H •X by

H •Xt :=
M∑

m=1

∫ t

0
H(m)

s dX(m)
s .

Given F :R �−→ R we use F(H) to denote the coordinatewise application of F, that is F(H)=
(F(H (1)), . . . ,F(H (M))). In particular,

F(H) •Xt =
M∑

m=1

∫ t

0
F
(
H(m)

s

)
dX(m)

s .
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We also define the following scalar product on the space of multivariate processes. For any mul-
tivariate processes H = (H (1), . . . ,H (M)) and K = (K(1), . . . ,K(M)), we set

〈H,K〉proc :=
M∑

m=1

∫ T

0
H(m)

s K(m)
s ds,

the corresponding norm being denoted ‖H‖proc. Since ψ introduced in (1.1) is linear, the Hilbert
space H inherits a bilinear form from the previous scalar product, that we denote, for all f,g

in H,

〈f,g〉T :=
〈
ψ(f ),ψ(g)

〉
proc =

M∑
m=1

∫ T

0
ψ(m)

s (f )ψ(m)
s (g)ds,

and the corresponding quadratic form is denoted ‖f ‖2
T .

The compensator �= (�(m))m=1,...,M of N = (N(m))m=1,...,M is finally defined for all t by

�
(m)
t =

∫ t

0
λ(m)

s ds.

Section 2 gives our main oracle inequality and the choice of the �1-weights in the general
framework of counting processes. Section 3 provides the fundamental Bernstein-type inequality.
Section 4 details the meaning of the oracle inequality in the Poisson and Aalen setups. The
probabilistic results needed for the Hawkes processes as well as the interpretation of the oracle
inequality in this framework is done in Section 5. Simulations on multivariate Hawkes processes
are performed in Section 6. The last Section is dedicated to the proofs of our results.

2. Lasso estimate and oracle inequality

We wish to estimate the true underlying intensity so our main goal consists in estimating the
parameter f0. For this purpose, we assume we are given � a dictionary of functions (whose
cardinality is denoted |�|) and we define fa as a linear combination of the functions of �, that
is,

fa :=
∑
ϕ∈�

aϕϕ,

where a = (aϕ)ϕ∈� belongs to R�. Then, since ψ is linear, we get

ψ(fa)=
∑
ϕ∈�

aϕψ(ϕ).

We use the following least-squares contrast C defined on H by

C(f ) := −2ψ(f ) •NT + ‖f ‖2
T , ∀f ∈H. (2.1)
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This contrast, or some variations of C, have already been used in particular setups (see, for
instance, [52] or [29]). The main heuristic justification lies in following arguments. Since ψ(f )

is a predictable process, the compensator at time T of C(f ) is given by

C̃(f ) := −2ψ(f ) •�T + ‖f ‖2
T ,

which can also be written as C̃(f ) = −2〈ψ(f ),λ〉proc + ‖ψ(f )‖2
proc. Note that C̃ is minimum

when ‖ψ(f ) − λ‖proc is minimum. If λ = ψ(f0) and if ‖ · ‖T is a norm on the Hilbert space
H, then the unique minimizer of C̃ is f0. Therefore, to get the best linear approximation of λ of
the form ψ(f ), it is natural to look at minimizers of C(f ). Restricting to linear combinations of
functions of �, since ψ is linear, we obtain

C(fa)=−2a′b+ a′Ga,

where a′ denotes the transpose of the vector a and for ϕ1, ϕ2 ∈�,

bϕ1 =ψ(ϕ1) •NT , Gϕ1,ϕ2 = 〈ϕ1, ϕ2〉T . (2.2)

Note that both the vector b of dimension |�| and the Gram matrix G of dimensions |�| × |�|
are random but nevertheless observable.

To estimate a we minimize the contrast, C(fa), subject to an �1-penalization on the a-vector.
That is, we introduce the following �1-penalized estimator

â ∈ arg min
a∈R�

{−2a′b+ a′Ga + 2d ′|a|}, (2.3)

where |a| = (|aϕ |)ϕ∈� and d ∈ R�+. With a good choice of d the solution of (2.3) will achieve
both sparsity and good statistical properties. Finally, we let f̂ = fâ denote the Lasso estimate
associated with â.

Our first result establishes theoretical properties of f̂ by using the classical oracle approach.
More precisely, we establish a bound on the risk of f̂ if some conditions are true. This is a
nonprobabilistic result that only relies on the definition of â by (2.3). In the next section we will
deal with the probabilistic aspect, which is to prove that the conditions are fulfilled with large
probability.

Theorem 1. Let c > 0. If

G� cI (2.4)

and if for all ϕ ∈�

|bϕ − b̄ϕ | ≤ dϕ, (2.5)

where

b̄ϕ =ψ(ϕ) •�T ,
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then there exists an absolute constant C, independent of c, such that

∥∥ψ(f̂ )− λ
∥∥2

proc ≤ C inf
a∈R�

{∥∥λ−ψ(fa)
∥∥2

proc + c−1
∑

ϕ∈S(a)

d2
ϕ

}
, (2.6)

where S(a) is the support of a. If λ=ψ(f0), the oracle inequality (2.6) can also be rewritten as

‖f̂ − f0‖2
T ≤ C inf

a∈R�

{
‖f0 − fa‖2

T + c−1
∑

ϕ∈S(a)

d2
ϕ

}
. (2.7)

The proof of Theorem 1 is given in Section 7.1. Note that assumption (2.4) ensures that G is
invertible and then coordinates of â are finite almost surely. Assumption (2.4) also ensures that
‖f ‖T is a real norm on f at least when f is a linear combination of the functions of �.

Two terms are involved on the right-hand sides of (2.6) and (2.7). The first one is an approx-
imation term and the second one can be viewed as a variance term providing a control of the
random fluctuations of the bϕ’s around the b̄ϕ’s. Note that bϕ − b̄ϕ =ψ(ϕ) • (N −�)T is a mar-
tingale (see also the comments after Theorem 2 for more details). The approximation term can
be small but the price to pay may be a large support of a, leading to large values for the second
term. Conversely, a sparse a leads to a small second term. But in this case the approximation
term is potentially larger. Note that if the function f0 can be approximated by a sparse linear
combination of the functions of �, then we obtain a sharp control of ‖f̂ − f0‖2

T . In particular, if
f0 can be decomposed on the dictionary, so we can write f0 = fa0 for some a0 ∈R�, then (2.7)
gives

‖f̂ − f0‖2
T ≤ Cc−1

∑
ϕ∈S(a0)

d2
ϕ.

In this case, the right-hand side can be viewed as the sum of the estimation errors made by
estimating the components of a0.

Such oracle inequalities are now classical in the huge literature of Lasso procedures. See, for
instance, [5,6,15–18,37,61], who established oracle inequalities in the same spirit as in Theo-
rem 1. We bring out the paper [19], which gives technical and heuristic arguments for justifying
optimality of such oracle inequalities (see Section 1.3 of [19]). Most of these papers deal with
independent data.

In the sequel, we prove that assumption (2.4) is satisfied with large probability by using the
same approach as [55,56] and to a lesser extent as Section 2.1 of [19] or [54]. Section 5 is in
particular mainly devoted to show that (2.4) holds with large probability for the multivariate
Hawkes processes.

For Theorem 1 to be of interest, the condition on the martingale, condition (2.5), needs to hold
with large probability as well. From this control, we deduce convenient data-driven �1-weights
that are the key parameters of our estimate. Note that our estimation procedure does not depend
on the value of c in (2.4). So knowing the latter is not necessary for implementing our procedure.
Therefore, one of the main contributions of the paper is to provide new sharp concentration
inequalities that are satisfied by multivariate point processes. This is the main goal of Theorem 3
in Section 3 where we establish Bernstein type inequalities for martingales. We apply it to the
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control of (2.5). This allows us to derive the following result, which specifies the choice of the
dϕ’s needed to obtain the oracle inequality with large probability.

Theorem 2. Let N = (N(m))m=1,...,M be a multivariate counting process with predictable inten-

sities λ
(m)
t and almost surely finite corresponding compensator �

(m)
t . Define


V,B =
{

for any ϕ ∈�, sup
t∈[0,T ],m

∣∣ψ(m)
t (ϕ)

∣∣≤ Bϕ and
(
ψ(ϕ)

)2 •NT ≤ Vϕ

}
,

for positive deterministic constants Bϕ and Vϕ and


c = {G� cI }.

Let x and ε be strictly positive constants and define for all ϕ ∈�,

dϕ =
√

2(1+ ε)V̂
μ
ϕ x + Bϕx

3
, (2.8)

with

V̂ μ
ϕ =

μ

μ− φ(μ)

(
ψ(ϕ)

)2 •NT +
B2

ϕx

μ− φ(μ)

for a real number μ such that μ > φ(μ), where φ(u)= exp(u)−u−1. Let us consider the Lasso
estimator f̂ of f0 defined in Section 2. Then, with probability larger than

1− 4
∑
ϕ∈�

(
log(1+μVϕ/(B2

ϕx))

log(1+ ε)
+ 1

)
e−x − P

(

c

V,B

)− P
(

c

c

)
,

inequality (2.7) is satisfied, that is,

∥∥ψ(f̂ )− λ
∥∥2

proc ≤ C inf
a∈R�

{∥∥λ−ψ(fa)
∥∥2

proc + c−1
∑

ϕ∈S(a)

d2
ϕ

}
.

If moreover λ=ψ(f0), then

‖f̂ − f0‖2
T ≤C inf

a∈R�

{
‖f0 − fa‖2

T + c−1
∑

ϕ∈S(a)

d2
ϕ

}
,

where C is a constant independent of c, �, T and M .

The first oracle inequality gives a control of the difference between the true intensity and
ψ(f̂ ). The equality λ = ψ(f0) is not required and we can apply this result, for instance, with
λ= (ψ(f0))+.
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Of course, the smaller the dϕ’s the better the oracle inequality. Therefore, when x increases, the
probability bound and the dϕ’s increase and we have to realize a compromise to obtain a mean-
ingful oracle inequality on an event with large probability. The choice of x is deeply discussed
below, in Sections 4 and 5 for theoretical purposes and in Section 6 for practical purposes.

Let us first discuss more deeply the definition of dϕ (derived from subsequent Theorem 3)
which seems intricate. Up to a constant depending on the choice of μ and ε, dϕ is of same order
as max(

√
x(ψ(ϕ))2 •NT ,Bϕx). To give more insight on the values of dϕ , let us consider the

very special case where for any m ∈ {1, . . . ,M} for any s, ψ
(m)
s (ϕ)= cm1{s∈Am}, where cm is a

positive constant and Am a compact set included into [0, T ]. In this case, by naturally choosing
Bϕ =max1≤m≤M cm, we have:

√
x
(
ψ(ϕ)

)2 •NT ≥ Bϕx ⇐⇒
M∑

m=1

c2
mN

(m)
Am
≥ x max

1≤m≤M
c2
m,

where N
(m)
Am

represents the number of points of N(m) falling in Am. For more general vector

functions ψ(ϕ), the term
√

x(ψ(ϕ))2 •NT will dominate Bϕx if the number of points of the
process lying where ψ(ϕ) is large, is significant. In this case, the leading term in dϕ is expected

to be the quadratic term
√

2(1+ ε)
μ

μ−φ(μ)
x(ψ(ϕ))2 •NT and the linear terms in x can be viewed

as residual terms. Furthermore, note that when μ tends to 0,

μ

μ− φ(μ)
= 1+ μ

2
+ o(μ),

x

μ− φ(μ)
∼ x

μ
→+∞

since x > 0. So, if μ and ε tend to 0, the quadratic term tends to
√

2x(ψ(ϕ))2 •NT , but the price
to pay is the explosion of the linear term in x. In any case, it is possible to make the quadratic term
as close to

√
2x(ψ(ϕ))2 •NT as desired. Basically, this term cannot be improved (see comments

after Theorem 3 for probabilistic arguments).
Let us now discuss the choice of x. In more classical contexts such as density estimation

based on an n-sample, the choice x = γ log(n) plugged in the parameters analog to the dϕ’s is
convenient, since it both ensures a small probability bound and a meaningful order of magnitude
for the oracle bound (see [5] for instance). See also Sections 4 and 5 for similar evaluations
in our setup. But it has also been further established that the choice γ = 1 is the best. Indeed
if the components of d are chosen smaller than the analog of

√
2x(ψ(ϕ))2 •NT in the density

framework, then the resulting estimator is definitely bad from the theoretical point of view, but
simulations also show that, to some extent, if the components of d are larger than the analog
of
√

2x(ψ(ϕ))2 •NT , then the estimator deteriorates too. A similar result is out of reach in our
setting, but similar conclusions may remain valid here since density estimation often provides
some clues about what happens for more intricate heteroscedastic models. In particular, the main
heuristic justifying the optimality of this tuning result in the density setting is that the quadratic
term (and in particular the constant

√
2 ) corresponds to the rate of the central limit theorem and

in this sense, it provides the “best approximation” for the fluctuations. For further discussion, see
the simulation study in Section 6.
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Finally, it remains to control P(
V,B) and P(
c). These are the goals of Section 4 for Poisson
and Aalen models and Section 5 for multivariate Hawkes processes.

3. Bernstein type inequalities for multivariate point processes

We establish a Bernstein type concentration inequality based on boundedness assumptions. This
result, which has an interest per se from the probabilistic point of view, is the key result to
derive the convenient values for the vector d in Theorem 2 and so is capital from the statistical
perspective.

Theorem 3. Let N = (N(m))m=1,...,M be a multivariate counting process with predictable inten-

sities λ
(m)
t and corresponding compensator �

(m)
t with respect to some given filtration. Let B > 0.

Let H = (H (m))m=1,...,M be a multivariate predictable process such that for all ξ ∈ (0,3), for
all t ,

exp(ξH/B) •�t <∞ a.s. and exp
(
ξH 2/B2) •�t <∞ a.s. (3.1)

Let us consider the martingale defined for all t ≥ 0 by

Mt =H • (N −�)t .

Let v > w and x be positive constants and let τ be a bounded stopping time. Let us define

V̂ μ = μ

μ− φ(μ)
H 2 •Nτ + B2x

μ− φ(μ)

for a real number μ ∈ (0,3) such that μ > φ(μ), where φ(u)= exp(u)− u− 1. Then, for any
ε > 0,

P

(
Mτ ≥

√
2(1+ ε)V̂ μx + Bx

3
and w ≤ V̂ μ ≤ v and sup

m,t≤τ

∣∣H(m)
t

∣∣≤ B

)
(3.2)

≤ 2

(
log(v/w)

log(1+ ε)
+ 1

)
e−x.

This result is based on the exponential martingale for counting processes, which has been used
for a long time in the context of the counting process theory. See, for instance, [8,57] or [59].
This basically gives a concentration inequality taking the following form (the result is stated here
in its univariate form for comparison purposes): for any x > 0,

P

(
Mτ ≥

√
2ρx + Bx

3
and

∫ τ

0
H 2

s λ(s)ds ≤ ρ and sup
s∈[0,τ ]

|Hs | ≤ B

)
≤ e−x. (3.3)

In (3.3), ρ is a deterministic upper bound of v = ∫ τ

0 H 2
s λ(s)ds, the bracket of the martingale,

and consequently the martingale equivalent of the variance term. Moreover, B is a deterministic
upper bound of sups∈[0,τ ] |Hs |. The leading term for moderate values of x and τ large enough is
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consequently
√

2ρx. The central limit theorem for martingales states that, under some assump-
tions, a sequence of martingales (Mn)n with respective brackets (vn)n tending to a deterministic
value v̄, once correctly normalized, tends to a Gaussian process with bracket v̄. Therefore, a term
of the form

√
2v̄x in the upper bound is not improvable, in particular the constant

√
2. However

the replacement of the limit v̄ by a deterministic upper bound ρ constitutes a loss. In this sense,
Theorem 3 improves the bound and consists of plugging in the unbiased estimate v̂ = ∫ τ

0 H 2
s dNs

instead of a nonsharp deterministic upper bound of v. Note that we are not able to obtain exactly
the term

√
2 but any value strictly larger than

√
2, as close as we want to

√
2 up to some additive

terms depending on B that are negligible for moderate values of x.
The proof is based on a peeling argument that was first introduced in [40] for Gaussian pro-

cesses and is given in Section 7.3.
Note that there exist also inequalities that seem nicer than (3.3) which constitutes the basic

brick for our purpose. For instance, in [27], it is established that for any deterministic positive
real number θ , for any x > 0,

P

(
Mτ ≥

√
2θx and

∫ τ

0
H 2

s d�s +
∫ τ

0
H 2

s dNs ≤ θ

)
≤ e−x. (3.4)

At first sight, this seems better than Theorem 3 because no linear term depending on B appears,
but if we wish to use the estimate 2

∫ τ

0 H 2
s dNs instead of θ in the inequality, we have to bound

|Hs | by some B in any case. Moreover, by doing so, the quadratic term will be of order
√

4v̂x

which is worse than the term
√

2v̂x derived in Theorem 3, even if this constant
√

2 can only be
reached asymptotically in our case.

There exists a better result if the martingale Mt is for instance conditionally symmetric (see
[4,25,27]): for any x > 0,

P

(
Mτ ≥

√
2κx and

∫ τ

0
H 2

s dNs ≤ κ

)
≤ e−x, (3.5)

which seems close to the ideal inequality. But there are actually two major problems with this
inequality. First, one needs to assume that the martingale is conditionally symmetric, which can-
not be the case in our situation for general counting processes and general dictionaries. Second,
it depends on the deterministic upper bound κ instead of v̂. To replace κ by v̂ and then to apply
peeling arguments as in the proof of Theorem 3, we need to assume the existence of a positive
constant w such that v̂ ≥w. But if the process is empty, then v̂ = 0, so we cannot generally find

such a positive lower bound, whereas in our theorem, we can always take w = B2x
μ−φ(μ)

as a lower

bound for V̂ μ.
Finally, note that in Proposition 6 (see Section 7.3), we also derive a similar bound where

V̂ μ is replaced by
∫ τ

0 H 2
s d�s . Basically, it means that the same type of results hold for the

quadratic characteristic instead of the quadratic variation. Though this result is of little use here,
since the quadratic characteristic is not observable, we think that it may be of interest for readers
investigating self-normalized results as in [26].
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4. Applications to the Poisson and Aalen models

We now apply Theorem 2 to the Poisson and Aalen models. The case of the multivariate Hawkes
process, which is much more intricate, will be the subject of the next section.

4.1. The Poisson model

Let us recall that in this case, we observe M i.i.d. Poisson processes with intensity f0 supported
by [0,1] (with M ≥ 2) and that the norm is given by ‖f ‖2 = ∫ 1

0 f 2(x)dx. We assume that � is
an orthonormal system for ‖ · ‖. In this case,

‖ · ‖2
1 =M‖ · ‖2 and G=MI,

where I is the identity matrix. One applies Theorem 2 with c=M (so P(
c
c)= 0) and

Bϕ = ‖ϕ‖∞, Vϕ = ‖ϕ‖2∞(1+ δ)Mm1,

for δ > 0 and m1 =
∫ 1

0 f0(t)dt . Note that here T = 1 and therefore N
(m)
T = N

(m)
1 is the total

number of observed points for the mth process. Using

ψ(ϕ)2 •N1 ≤ ‖ϕ‖2∞
M∑

m=1

N
(m)
1

and since the distribution of
∑M

m=1 N
(m)
1 is the Poisson distribution with parameter Mm1,

Cramer–Chernov arguments give:

P
(

c

V,B

)≤ P

(
M∑

m=1

N
(m)
1 > (1+ δ)Mm1

)
≤ exp

(−{(1+ δ) ln(1+ δ)− δ
}
Mm1

)
.

For α > 0, by choosing x = α log(M), we finally obtain the following corollary derived from
Theorem 2.

Corollary 1. With probability larger than 1 − C1
|�| log(M)

Mα − e−C2M , where C1 is a constant
depending on μ, ε, α, δ and m1 and C2 is a constant depending on δ and m1, we have:

‖f̂ − f0‖2 ≤ C inf
a∈R�

{
‖f0 − fa‖2

+ 1

M2

∑
ϕ∈S(a)

(
log(M)

M∑
m=1

∫ 1

0
ϕ2(x)dN(m)

x + log2(M)‖ϕ‖2∞

)}
,

where C is a constant depending on μ, ε, α, δ and m1.
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To shed some lights on this result, consider an asymptotic perspective by assuming that M

is large. Assume also, for sake of simplicity, that f0 is bounded from below on [0,1]. If the
dictionary � (whose size may depend on M) satisfies

max
ϕ∈�

‖ϕ‖∞ = o

(√
M

logM

)
,

then, since, almost surely,

1

M

M∑
m=1

∫ 1

0
ϕ2(x)dN(m)

x

M→∞−→
∫ 1

0
ϕ2(x)f0(x)dx,

almost surely,

1

M2

∑
ϕ∈S(a)

(
log(M)

M∑
m=1

∫ 1

0
ϕ2(x)dN(m)

x + log2(M)‖ϕ‖2∞

)

= logM

M

∑
ϕ∈S(a)

∫ 1

0
ϕ2(x)f0(x)dx × (1+ o(1)

)
.

The right-hand term corresponds, up to the logarithmic term, to the sum of variance terms when
estimating

∫ 1
0 ϕ(x)f0(x)dx with 1

M

∑M
m=1

∫ 1
0 ϕ(x)dN

(m)
x for ϕ ∈ S(a). This means that the es-

timator adaptively achieves the best trade-off between a bias term and a variance term. The
logarithmic term is the price to pay for adaptation. Furthermore, when M →+∞, the inequality
of Corollary 1 holds with probability that goes to 1 at a polynomial rate. We refer the reader to
[50] for a deep discussion on optimality of such results.

4.2. The Aalen model

Results similar to those presented in this paragraph can be found in [29] under restricted eigenval-
ues conditions instead of (2.4). Recall that we observe an M-sample (X(m), Y (m),N(m))m=1,...,M ,
with Y (m) = (Y

(m)
t )t∈[0,1] and N(m) = (N

(m)
t )t∈[0,1] (with M ≥ 2). We assume that X(m) ∈ [0,1]

and that the intensity of N
(m)
t is f0(t,X

(m))Y
(m)
t . We set for any f ,

‖f ‖2
e := E

(∫ 1

0
f 2(t,X(1)

)(
Y

(1)
t

)2 dt

)
.

We assume that � is an orthonormal system for ‖ · ‖2, the classical norm on L2([0,1]2), and we
assume that there exists a positive constant r such that

∀f ∈ L2
([0,1]2), ‖f ‖e ≥ r‖f ‖2, (4.1)
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so that ‖ · ‖e is a norm. If we assume, for instance, that the density of the X(m)’s is lower bounded
by a positive constant c0 and there exists c1 > 0 such that for any t ,

E
[(

Y
(1)
t

)2|X(1)
]≥ c1

then (4.1) holds with r2 = c0c1. The empirical version of ‖f ‖e, denoted ‖f ‖emp, is defined by

‖f ‖2
emp :=

1

M
‖f ‖2

T =
1

M

M∑
m=1

∫ 1

0
f 2(t,X(m)

)(
Y

(m)
t

)2 dt.

Unlike the Poisson model, since the intensity depends on covariates X(m)’s and variables Y (m)’s,
the control of P(
c

c) is much more cumbersome for the Aalen case, even if it is less intricate than
for Hawkes processes (see Section 5). We have the following result proved in Section 7.5.1.

Proposition 1. We assume that (4.1) is satisfied, the density of the covariates X(m) is bounded
by D and

sup
t∈[0,1]

max
m∈{1,...,M}

Y
(m)
t ≤ 1 almost surely. (4.2)

We consider an orthonormal dictionary � of functions of L2([0,1]2) that may depend on M ,
and we let r� denote the spectral radius of the matrix H whose components are Hϕ,ϕ′ =∫ ∫ |ϕ(t, x)||ϕ′(t, x)|dt dx. Then, if

max
ϕ∈�

‖ϕ‖2∞ × r�|�| × logM

M
→ 0, (4.3)

when M →+∞ then, for any β > 0, there exists C1 > 0 depending on β , D and f0 such that
with c= C1M , we have

P
(

c

c

)=O
(|�|2M−β

)
.

Assumption (4.2) is usually satisfied in most of the practical examples where Aalen models
are involved. See [2] for explicit examples and see, for instance, [30,49] for other articles where
this assumption is made. In the sequel, we also assume that there exists a positive constant R

such that

max
m∈{1,...,M}

N
(m)
1 ≤R a.s. (4.4)

This assumption, considered by [49], is obviously satisfied in survival analysis where there is at
most one death per individual. It could have been relaxed in our setting, by considering expo-
nential moments assumptions, to include Markov cases for instance. However, this much simpler
assumption allows us to avoid tedious and unnecessary technical aspects since we only wish to
illustrate our results in a simple framework. Under (4.2) and (4.4), almost surely,

ψ(ϕ)2 •NT =
M∑

m=1

∫ 1

0

[
Y

(m)
t

]2
ϕ2(t,X(m)

)
dN

(m)
t ≤

M∑
m=1

∫ 1

0
ϕ2(t,X(m)

)
dN

(m)
t ≤MR‖ϕ‖2∞.
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So, we apply Theorem 2 with Bϕ = ‖ϕ‖∞, Vϕ =MR‖ϕ‖2∞ (so P(
V,B)= 1) and x = α log(M)

for α > 0. We finally obtain the following corollary.

Corollary 2. Assume that (4.2) and (4.4) are satisfied. With probability larger than 1 −
C1

|�| log(M)
Mα − P(
c

c), where C1 is a constant depending on μ, ε, α and R, we have:

‖f̂ − f0‖2
emp ≤ C inf

a∈R�

{
‖f0 − fa‖2

emp

+ 1

M2

∑
ϕ∈S(a)

(
log(M)

M∑
m=1

∫ 1

0
ϕ2(t,X(m)

)
dN

(m)
t + log2(M)‖ϕ‖2∞

)}
,

where C is a constant depending on μ, ε, α and R.

To shed lights on this result, assume that the density of the X(m)’s is upper bounded by a
constant R̃. In an asymptotic perspective with M →∞, we have almost surely,

1

M

M∑
m=1

∫ 1

0
ϕ2(t,X(m)

)
dN

(m)
t → E

(∫ 1

0
ϕ2(t,X(1)

)
f0
(
t,X(1)

)
Y (1) dt

)
.

But

E

(∫ 1

0
ϕ2(t,X(1)

)
f0
(
t,X(1)

)
Y (1) dt

)
≤ ‖f0‖∞E

(∫ 1

0
ϕ2(t,X(1)

)
dt

)
≤ R̃‖f0‖∞.

So, if the dictionary � satisfies

max
ϕ∈�

‖ϕ‖∞ =O

(√
M

logM

)
,

which is true under (4.3) if r�|�| ≥ 1, then, almost surely, the variance term is asymptotically
smaller than log(M)

|S(a)|‖f0‖∞
M

up to constants. So, we can draw the same conclusions as for the
Poisson model. We have not discussed here the choice of � and Condition (4.3). This will be
extensively done in Section 5.2 where we deal with a similar condition but in a more involved
setting.

5. Applications to the case of multivariate Hawkes process

For a multivariate Hawkes model, the parameter f0 = (ν(m), (h
(m)
� )�=1,...,M)m=1,...,M belongs to

H=HM =
{

f = (f(m)
)
m=1,...,M

∣∣∣ f(m) ∈H and ‖f ‖2 =
M∑

m=1

∥∥f(m)
∥∥2

}
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where

H =
{

f= (μ, (g�)�=1,...,M

) ∣∣∣ μ ∈R, g� with support in [0,1]

and ‖f‖2 = μ2 +
M∑

�=1

∫ 1

0
g2

� (x)dx <∞
}

.

If one defines the linear predictable transformation κ of H by

κt (f)= μ+
M∑

�=1

∫ t−

t−1
g�(t − u)dN(�)

u , (5.1)

then the transformation ψ on H is given by

ψ
(m)
t (f )= κt

(
f(m)
)
.

The first oracle inequality of Theorem 2 provides theoretical guaranties of our Lasso methodol-
ogy in full generality and in particular, even if inhibition takes place (see Section 1.2.3). Since

V,B and 
c are observable events, we know whether the oracle inequality holds. However we
are not able to determine P(
V,B) and P(
c) in the general case. Therefore, in Sections 5.1 and
5.2, we assume that all interaction functions are nonnegative and that there exists f0 in H so that
for any m and any t ,

λ
(m)
t =ψ

(m)
t (f0).

We also assume that the process is observed on [−1, T ] with T > 1.

5.1. Some useful probabilistic results for multivariate Hawkes processes

In this paragraph, we present some particular exponential results and tail controls for Hawkes
processes. As far as we know, these results are new: They constitute the generalization of [51] to
the multivariate case. In this paper, they are used to control P(
c

c) and P(
c
V,B) but they may be

of independent interest.
Since the functions h

(m)
� ’s are nonnegative, a cluster representation exists. We can indeed con-

struct the Hawkes process by the Poisson cluster representation (see [24]) as follows:

• Distribute ancestral points with marks � = 1, . . . ,M according to homogeneous Poisson
processes with intensities ν(�) on R.

• For each ancestral point, form a cluster of descendant points. More precisely, starting with
an ancestral point at time 0 of a certain type, we successively build new generations as
Poisson processes with intensity h

(m)
� (· − T ), where T is the parent of type � (the corre-

sponding children being of type m). We will be in the situation where this process becomes
extinguished and we denote by H the last children of all generations, which also repre-
sents the length of the cluster. Note that the number of descendants is a multitype branching
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process (and there exists a branching cluster representation (see [9,24,34])) with offspring
distributions being Poisson variables with means

γ�,m =
∫ 1

0
h

(m)
� (t)dt.

The essential part we need is that the expected number of offsprings of type m from a point of
type � is γ�,m. With � = (γ�,m)�,m=1,...,M , the theory of multitype branching processes gives that
the clusters are finite almost surely if the spectral radius of � is strictly smaller than 1. In this
case, there is a stationary version of the Hawkes process by the Poisson cluster representation.

Moreover, if � has spectral radius strictly smaller than 1, one can provide a bound on the
number of points in a cluster. We denote by P� the law of the cluster whose ancestral point is of
type �, E� is the corresponding expectation.

The following lemma is very general and holds even if the function h
(m)
� have infinite support

as long as the spectral radius � is strictly less than 1.

Lemma 1. If W denotes the total number of points of any type in the cluster whose ancestral
point is of type �, then if the spectral radius of � is strictly smaller than 1 there exists ϑ� > 0,
only depending on � and on �, such that

E�

(
eϑ�W

)
<∞.

This easily leads to the following result, which provides the existence of the Laplace transform
of the total number of points in an arbitrary bounded interval, when the functions h

(m)
� have

bounded support.

Proposition 2. Let N be a stationary multivariate Hawkes process, with compactly supported
nonnegative interactions functions and such that the spectral radius of � is strictly smaller
than 1. For any A > 0, let N[−A,0) be the total number of points of N in [−A,0), all marks
included. Then there exists a constant θ > 0, depending on the distribution of the process and
on A, such that

E := E
(
eθN[−A,0)

)
<∞,

which implies that for all positive u

P(N[−A,0) ≥ u)≤ Ee−θu.

Moreover, one can strengthen the ergodic theorem in a nonasymptotic way, under the same
assumptions.

Proposition 3. Under the assumptions of Proposition 2, let A > 0 and let Z(N) be a function
depending on the points of N lying in [−A,0). Assume that there exist b and η nonnegative
constants such that ∣∣Z(N)

∣∣≤ b
(
1+N

η

[−A,0)

)
,
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where N[−A,0) represents the total number of points of N in [−A,0), all marks included. We
denote S the shift operator, meaning that Z ◦St (N) depends now in the same way as Z(N) on
some points that are now the points of N lying in [t −A, t).

We assume E[|Z(N)|]<∞ and for short, we denote E(Z)= E[Z(N)]. Then, for any α > 0,
there exists a constant T (α, η,f0,A) > 1 such that for T > T (α, η,f0,A), there exist C1, C2,
C3 and C4 positive constants depending on α,η,A and f0 such that

P

(∫ T

0

[
Z ◦St (N)−E(Z)

]
dt ≥ C1σ

√
T log3(T )+C2b

(
log(T )

)2+η
)
≤ C4

T α
,

with σ 2 = E([Z(N)−E(Z)]21
N[−A,0)≤Ñ ) and Ñ = C3 log(T ).

Finally, to deal with the control of P(
c), we shall need the next result. First, we define a
quadratic form Q on H by

Q(f,g)= EP

(
κ1(f)κ1(g)

)= EP

(
1

T

∫ T

0
κt (f)κt (g)dt

)
, f,g ∈H. (5.2)

We have:

Proposition 4. Under the assumptions of Proposition 2, if the function parameter f0 satisfies

min
m∈{1,...,M}ν

(m) > 0 and max
l,m∈{1,...,M}

sup
t∈[0,1]

h
(m)
� (t) <∞ (5.3)

then there is a constant ζ > 0 such that for any f ∈H,

Q(f, f)≥ ζ‖f‖2.

We are now ready to establish oracle inequalities for multivariate Hawkes processes.

5.2. Lasso for Hawkes processes

In the sequel, we still consider the main assumptions of the previous subsection: We deal with
a stationary Hawkes process whose intensity is given by (1.3) such that the spectral radius of �

is strictly smaller than 1 and (5.3) is satisfied. We recall that the components of � are the γ�,m’s
with

γ�,m =
∫ 1

0
h

(m)
� (t)dt.

One of the main results of this section is to link properties of the dictionary (mainly orthonor-
mality but also more involved assumptions) to properties of G (the control of 
c). To do so, let
us define for all f ∈H,

‖f ‖∞ =max
{

max
m=1,...,M

∣∣μ(m)
∣∣, max

m,�=1,...,M

∥∥g(m)
�

∥∥∞}.
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Then, let us set ‖�‖∞ :=max{‖ϕ‖∞, ϕ ∈�}. The next result is based on the probabilistic results
of Section 5.1.

Proposition 5. Assume that the Hawkes process is stationary, that (5.3) is satisfied and that the
spectral radius of � is strictly smaller than 1. Let r� be the spectral radius of the matrix H

defined by

H=
(∑

m

[∣∣μ(m)
ϕ

∣∣∣∣μ(m)
ρ

∣∣+ M∑
�=1

∫ 1

0

∣∣(gϕ)
(m)
�

∣∣∣∣(gρ)
(m)
�

∣∣(u)du

])
ϕ,ρ∈�

.

Assume that � is orthonormal and that

A�(T ) := r�‖�‖2∞|�|
[
log
(‖�‖∞)+ log

(|�|)] log5(T )

T
→ 0 (5.4)

when T →∞. Then, for any β > 0, there exists C1 > 0 depending on β and f0 such that with
c= C1T , we have

P
(

c

c

)=O
(|�|2T −β

)
.

Up to logarithmic terms, (5.4) is similar to (4.3) with M replaced with T . The dictionary �

can be built via a dictionary (ϒk)k=1,...,K of functions of L2([0,1]) (that may depend on T ) in
the following way. A function ϕ = (μ

(m)
ϕ , ((gϕ)

(m)
� )�)m belongs to � if and only if only one of

its M +M2 components is nonzero and in this case,

• if μ
(m)
ϕ �= 0, then μ

(m)
ϕ = 1,

• if (gϕ)
(m)
� �= 0, then there exists k ∈ {1, . . . ,K} such that (gϕ)

(m)
� =ϒk .

Note that |�| =M +KM2. Furthermore, assume from now on that (ϒk)k=1,...,K is orthonormal
in L2([0,1]). Then � is also orthonormal in H endowed with ‖ · ‖.

Before going further, let us discuss assumption (5.4). First, note that the matrix H is block
diagonal. The first block is the identity matrix of size M . The other M2 blocks are identical to
the matrix:

HK =
(∫ ∣∣ϒk1(u)

∣∣∣∣ϒk2(u)
∣∣du

)
1≤k1,k2≤K

.

So, if we denote r̃K the spectral radius of HK , we have:

r� =max(1, r̃K).

We analyze the behavior of r̃K with respect to K . Note that for any k1 and any k2,

(HK)k1,k2 ≥ 0.

Therefore,

r̃K ≤ sup
‖x‖�1=1

‖HKx‖�1 ≤max
k1

∑
k2

(HK)k1,k2 .
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We now distinguish three types of orthonormal dictionaries (remember that M is viewed as a
constant here):

• Let us consider regular histograms. The basis is composed of the functions ϒk =
δ−1/21((k−1)δ,kδ] with Kδ = 1. Therefore, ‖�‖∞ = δ−1/2 = √K . But HK is the identity
matrix and r̃K = 1. Hence, (5.4) is satisfied as soon as

K2 log(K) log5(T )

T
→ 0

when T →∞, which is satisfied if K = o(
√

T

log3(T )
).

• Assume that ‖�‖∞ is bounded by an absolute constant (Fourier dictionaries satisfy this
assumption). Since r̃K ≤K , (5.4) is satisfied as soon as

K2 log(K) log5(T )

T
→ 0

when T →∞, which is satisfied if K = o(
√

T

log3(T )
).

• Assume that (ϒk)k=1,...,K is a compactly supported wavelet dictionary where resolution
levels belong to the set {0,1, . . . , J }. In this case, K is of the same order as 2J , ‖�‖∞ is of
the same order as 2J/2 and it can be established that r̃K ≤ C2J/2 where C is a constant only
depending on the choice of the wavelet system (see [33] for further details). Then, (5.4) is
satisfied as soon as

K5/2 log(K) log5(T )

T
→ 0

when T →∞, which is satisfied if K = o( T 2/5

log12/5(T )
).

To apply Theorem 2, it remains to control 
V,B . Note that

ψ
(m)
t (ϕ)=

⎧⎨
⎩

1 if μ
(m)
ϕ = 1,∫ t−

t−1
ϒk(t − u)dN(�)

u if (gϕ)
(m)
� =ϒk.

Let us define


N =
{
for all t ∈ [0, T ], for all m ∈ {1, . . . ,M} we have N

(m)
[t−1,t] ≤N

}
.

We therefore set

Bϕ = 1 if μ(m)
ϕ = 1 and Bϕ = ‖ϒk‖∞N if (gϕ)

(m)
� =ϒk. (5.5)

Note that on 
N , for any ϕ ∈�,

sup
t∈[0,T ],m

∣∣ψ(m)
t (ϕ)

∣∣≤ Bϕ.
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Now, for each ϕ ∈�, let us determine Vϕ that constitutes an upper bound of

Mϕ =
M∑

m=1

∫ T

0

[
ψ

(m)
t (ϕ)

]2 dN
(m)
t .

Note that only one term in this sum is nonzero. We set

Vϕ = �T �N if μ(m)
ϕ = 1 and Vϕ = ‖ϒk‖2∞�T �N 3 if (gϕ)

(m)
� =ϒk, (5.6)

where �T � denotes the smallest integer larger than T . With this choice, one has that 
N ⊂
V,B ,
which leads to the following result.

Corollary 3. Assume that the Hawkes process is stationary, that (5.3) is satisfied and that the
spectral radius of � is strictly smaller than 1. With the choices (5.5) and (5.6),

P(
V,B)≥ P(
N )≥ 1−C1T exp(−C2N ),

where C1 and C2 are positive constants depending on f0.
If N � log(T ), then for all β > 0,

P
(

c

V,B

)≤ P
(

c
N
)= o

(
T −β

)
.

We are now ready to apply Theorem 2.

Corollary 4. Assume that the Hawkes process is stationary, that (5.3) is satisfied and that the
spectral radius of � is strictly smaller than 1. Assume that the dictionary � is built as previously
from an orthonormal family (ϒk)k=1,...,K . With the notations of Theorem 2, let Bϕ be defined by
(5.5) and dϕ be defined accordingly with x = α log(T ). Then, with probability larger than

1− 4
(
M +M2K

)( log(1+μ�T �N /(α log(T )))

log(1+ ε)
+ 1

)
T −α − P

(

c
N
)− P

(

c

c

)
,

1

T
‖f̂ − f0‖2

T ≤ C inf
a∈R�

{
1

T
‖f0 − fa‖2

T +
∑

ϕ∈S(a)

(
log(T )(ψ(ϕ))2 •NT

T 2
+ B2

ϕ log2(T )

T 2

)}
,

where C is a constant depending on f0, μ, ε, and α.
From an asymptotic point of view, if the dictionary also satisfies (5.4), and if N = log2(T ) in

(5.5), then for T large enough with probability larger than 1−C1K log(T )T −α

1

T
‖f̂ − f0‖2

T ≤ C2 inf
a∈R�

{
1

T
‖f0 − fa‖2

T +
log3(T )

T

∑
ϕ∈S(a)

[
1

T
‖ϕ‖2

T +
log7/2(T )√

T
‖�‖2∞

]}
,

where C1 and C2 are constants depending on M , f0, μ, ε, and α.
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We express the oracle inequality by using 1
T
‖ · ‖T simply because, when T goes to +∞, by

ergodicity of the process (see, for instance, [24], and Proposition 3 for a nonasymptotic state-
ment),

1

T
‖f ‖2

T =
M∑

m=1

1

T

∫ T

0

(
κt

(
f(m)
))2 dt −→

M∑
m=1

Q
(
f(m), f(m)

)
under assumptions of Proposition 5. Note that the right-hand side is a true norm on H by Propo-
sition 4. Note also that

log7/2(T )√
T

‖�‖2∞
T→∞→ 0,

as soon as (5.4) is satisfied for the Fourier basis and compactly supported wavelets. It is also the

case for histograms as soon as K = o(
√

T

log7/2(T )
). Therefore, this term can be viewed as a residual

one. In those cases, the last inequality can be rewritten as

1

T
‖f̂ − f0‖2

T ≤ C inf
a∈R�

{
1

T
‖f0 − fa‖2

T +
log3(T )

T

∑
ϕ∈S(a)

1

T
‖ϕ‖2

T

}
,

for a different constant C, the probability of this event tending to 1 as soon as α ≥ 1/2 in the
Fourier and histogram cases and α ≥ 2/5 for the compactly supported wavelet basis. Once again,
as mentioned for the Poisson or Aalen models, the right-hand side corresponds to a classical
“bias-variance” trade off and we obtain a classical oracle inequality up to the logarithmic terms.
Note that asymptotics is now with respect to T and not with respect to M as for Poisson or Aalen
models. So, the same result, namely Theorem 2, allows to consider both asymptotics.

6. Simulations for the multivariate Hawkes process

This section is devoted to illustrations of our procedure on simulated data of multivariate Hawkes
processes and comparisons with the well-known adaptive Lasso procedure proposed by [64]. We
consider the general case and we do no longer assume that the functions h

(m)
� are nonnegative as

in Section 5. However, if the parameter ν(m) is large with respect to the h
(m)
� ’s, then ψ(m)(f0) is

nonnegative with large probability and therefore λ(m) = ψ(m)(f0) with large probability. Hence,
Theorem 2 implies that f̂ is close to f0.

6.1. Description of the data

As mentioned in the introduction, Hawkes processes can be used in neuroscience to model the
action potentials of individual neurons. So, we perform simulations whose parameters are close,
to some extent, to real neuronal data. For a given neuron m ∈ {1, . . . ,M}, we recall that its
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activity is modeled by a point process N(m) whose intensity is

λ
(m)
t =

(
ν(m) +

M∑
�=1

∫ t−

−∞
h

(m)
� (t − u)dN(�)(u)

)
+
.

The interaction function h
(m)
� represents the influence of the past activity of the neuron � on the

neuron m. The spontaneous rate ν(m) may somehow represent the external excitation linked to
all the other neurons that are not recorded. It is consequently of crucial importance not only to
correctly infer the interaction functions, but also to reconstruct the spontaneous rates accurately.
Usually, activity up to 10 neurons can be recorded in a “stationary” phase during a few seconds
(sometimes up to one minute). Typically, the points frequency is of the order of 10–80 Hz and
the interaction range between points is of the order of a few milliseconds (up to 20 or 40 ms).
We first lead three experiments in the pure excitation case where all the interaction functions are
nonnegative by simulating multivariate Hawkes processes (two with M = 2, one with M = 8)
based on these typical values. More precisely, we take for any m ∈ {1, . . . ,M}, ν(m) = 20 and
the interaction functions h

(m)
� are defined as follows (supports of all the functions are assumed to

lie in the interval [0,0.04]):

Experiment 1 (M = 2 and piecewise constant functions).

h
(1)
1 = 30× 1(0,0.02], h

(1)
2 = 30× 1(0,0.01], h

(2)
1 = 30× 1(0.01,0.02], h

(2)
2 = 0.

In this case, each neuron depends on the other one. The spectral radius of the matrix � is 0.725.

Experiment 2 (M = 2 and “smooth” functions). In this experiment, h
(1)
1 and h

(2)
1 are not piece-

wise constant.

h
(1)
1 (x) = 100e−200x × 1(0,0.04](x), h

(1)
2 (x)= 30× 1(0,0.02](x),

h
(2)
1 (x) = 1

0.008
√

2π
e
− (x−0.02)2

2∗0.0042 × 1(0,0.04](x), h
(2)
2 (x)= 0.

In this case, each neuron depends on the other one as well. The spectral radius of the matrix �

is 0.711.

Experiment 3 (M = 8 and piecewise constant functions).

h
(1)
2 = h

(1)
3 = h

(2)
2 = h

(3)
1 = h

(3)
2 = h

(5)
8 = h

(6)
5 = h

(7)
6 = h

(8)
7 = 25× 1(0,0.02]

and all the other 55 interaction functions are equal to 0. Note in particular that this leads to 3
independent groups of dependent neurons {1,2,3}, {4} and {5,6,7,8}. The spectral radius of the
matrix � is 0.5.

We also lead one experiment in the pure inhibition case where all the interaction functions are
nonpositive:
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Figure 1. Raster plots of two data sets with T = 2 corresponding to Experiment 2 on the left and Ex-
periment 3 on the right. The x-axis correspond to the time of the experiment. Each line with ordinate m

corresponds to the points of the process N(m). From bottom to top, we observe 124 and 103 points for
Experiment 2 and 101, 60, 117, 38, 73, 75, 86 and 86 points for Experiment 3.

Experiment 4 (M = 2). In this experiment, the interaction functions are the opposite of the
functions introduced in Experiment 2. We take for any m ∈ {1, . . . ,M}, ν(m) = 60 so that ψt(f0)

is positive with high probability.

For each simulation, we let the process “warm up” during 1 second to reach the stationary
state.1 Then the data are collected by taking recordings during the next T seconds. For instance,
we record about 100 points per neuron when T = 2 and 1000 points when T = 20. Figure 1
shows two instances of data sets with T = 2.

6.2. Description of the methods

To avoid approximation errors when computing the matrix G, we focus on a dictionary
(ϒk)k=1,...,K whose functions are piecewise constant. More precisely, we take ϒk =
δ−1/21((k−1)δ,kδ] with δ = 0.04/K and K , the size of the dictionary, is chosen later.

Our practical procedure strongly relies on the theoretical one based on the dϕ’s defined in
(2.8), with x, μ and ε to be specified. First, using Corollary 4, we naturally take x = α log(T ).
Then, three hyperparameters would need to be tuned, namely α, μ and ε, if we directly used the
Lasso estimate of Theorem 2. So, for simplifications, we implement our procedure by replacing

1Note that since the size of the support of the interaction functions is less or equal to 0.04, the “warm up” period is 25
times the interaction range.
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the Lasso parameters dϕ with

d̃ϕ(γ )=
√

2γ log(T )
(
ψ(ϕ)

)2 •NT + γ log(T )

3
sup

t∈[0,T ],m

∣∣ψ(m)
t (ϕ)

∣∣,
where γ is a constant to be tuned. Besides taking x = α log(T ), our modification consists in

neglecting the linear part
B2

ϕx

μ−φ(μ)
in V̂ μ and replacing Bϕ with supt∈[0,T ],m |ψ(m)

t (ϕ)|. Then,

note that, up to these modifications, the choice γ = 1 corresponds to the limit case where α→ 1,
ε→ 0 and μ→ 0 in the definition of the dϕ’s (see the comments after Theorem 2). Note also

that, under the slight abuse consisting in identifying Bϕ with supt∈[0,T ],m |ψ(m)
t (ϕ)|, for every

parameter μ, ε and α of Theorem 2 with x = α ln(T ), one can find two parameters γ and γ ′
such that

d̃ϕ(γ )≤ dϕ ≤ d̃ϕ

(
γ ′
)
.

Therefore, this practical choice is consistent with the theory and tuning hyperparameters reduces
to only tuning γ . Our simulation study will provide sound answers to the question of tuning γ .

We compute the Lasso estimate by using the shooting method of [28] and the R-package
Lassoshooting. In particular, we need to invert the matrix G. In all simulations, this matrix
was invertible, which is consistent with the fact that 
c happens with large probability. Note
also that the value of c, namely the smallest eigenvalue of G, can be very small (about 10−4)
whereas the largest eigenvalue is potentially as large as 105, both values highly depending on the
simulation and on T . Fortunately, those values are not needed to compute our Lasso estimate.
Since it is based on Bernstein type inequalities, our Lasso method is denoted B in the sequel.

Due to their soft thresholding nature, Lasso methods are known to underestimate the coef-
ficients [43,64]. To overcome biases in estimation due to shrinkage, we propose a two steps
procedure, as usually suggested in the literature: Once the support of the vector has been es-
timated by B, we compute the ordinary least-square estimator among the vectors a having the
same support, which provides the final estimate. This method is denoted BO in the sequel.

Another popular method is adaptive Lasso proposed by Zou [64]. This method overcomes the
flaws of standard Lasso by taking �1-weights of the form

da
ϕ(γ )= γ

2|âo
ϕ|p

,

where p > 0, γ > 0 and âo
ϕ is a preliminary consistent estimate of the true coefficient. Even if

the shapes of the weights are different, the latter are data-driven and this method constitutes a
natural competitive method with ours. The most usual choice, which is adopted in the sequel,
consists in taking p = 1 and the ordinary least squares estimate for the preliminary estimate
(see [35,60,64]). Then, penalization is stronger for coefficients that are preliminary estimated by
small values of the ordinary least square estimate. In the literature, the parameter γ of adaptive
Lasso is usually tuned by cross-validation, but this does not make sense for Hawkes data that
are fully dependent. Therefore, a preliminary study has been performed to provide meaningful
values for γ . Results are given in the next section. This adaptive Lasso method is denoted A in
the sequel and AO when combined with ordinary least squares in the same way as for BO.
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Figure 2. Reconstructions corresponding to Experiment 2 with the OLS estimate with T = 2 and K = 8.

Each line m represents the function h
(m)
�

, for �= 1,2. The spontaneous rates associated with each line m

are given above the graphs where S∗ denotes the true spontaneous rate and its estimator is denoted by SO.
The true interactions functions are plotted in black whereas the OLS estimates are plotted in magenta.

Simulations are performed in R. The computational time is small (merely a few seconds for
one estimate even when M = 8, T = 20 and K = 8 on a classical laptop computer), which
constitutes a clear improvement with respect to existing adaptive methods for Hawkes processes.
For instance, the “Islands” method2 of [52] is limited to the estimation of one or two dozens
of coefficients at most, because of an extreme computational memory cost whereas here when
M = 8 and K = 8, we can easily deal with M +KM2 = 520 coefficients.

6.3. Results

First, we provide in Figure 2 reconstructions by using the OLS estimate on the whole dictionary,
which corresponds to the case where all the weights dϕ are null. As expected, reconstructions are
not sparse and also bad due to a small signal to noise ratio (remember that T = 2).

2This method developed for M = 1 could easily be theoretically adapted for larger values of M , but its extreme compu-
tational cost prevents us from using it in practice.
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Now let us consider methods leading to sparsity. A precise study over 100 simulations has
been carried out corresponding to Experiments 1 and 3 for which we can precisely check if the
support of the vector â is the correct one. For each method, we have selected 3 values for the
hyperparameter γ based on results of preliminary simulations. Before studying mean squared
errors, we investigate the following problems that are stated in order of importance. We wonder
whether our procedure can identify:

- the dependency groups. Recall that two neurons belong to the same group if and only if they
are connected directly or through the intermediary of one or several neurons. This issue is
essential from the neurobiological point of view since knowing interactions between two
neurons is of capital importance.

- the nonzero interaction functions h
(m)
� ’s and nonzero spontaneous rates ν(m)’s. For �,m ∈

{1, . . . ,M}, the neuron � has a significative direct interaction on neuron m if and only if
h

(m)
� �= 0;

- the nonzero coefficients of nonzero interaction functions. This issue is more mathematical.
However, it may provide information about the maximal range for direct interactions be-
tween two given neurons or about the favored delay of interaction.

Note that the dependency groups are the only features that can be detected by classical analysis
tools of neuroscience, such as the Unitary Events method [31]. In particular, to the best of our
knowledge, identification of the nonzero interaction functions inside a dependency group is a
problem that has not been solved yet as far as we know.

Results for our method and for adaptive Lasso can be found in Table 1. This preliminary study
also provides answers for tuning issues. The line “DG” gives the number of correct identifications
of dependency groups. For instance, for M = 8, “DG” gives the number of simulations for which
the 3 dependency groups {1,2,3}, {4} and {5,6,7,8} are recovered by the methods. When M =
2, both methods correctly find that neurons 1 and 2 are dependent, even if T = 2. When 8 neurons
are considered, the estimates should find 3 dependency groups. We see that even with T = 2, our
method with γ = 1 correctly guesses the dependency groups for 32% of the simulations. It’s close
or equal to 100% when T = 20 with γ = 1 or γ = 2. The adaptive Lasso has to take γ = 1000
for T = 2 and T = 20 to obtain as convincing results. Clearly, smaller choices of γ for adaptive
Lasso leads to bad estimations of the dependency groups. Next, let us focus on the detection
of nonzero spontaneous rates. Whatever the experiment and the parameter γ , our method is
optimal whereas adaptive Lasso misses some nonzero spontaneous rates when T = 2. Under this
criterion, for adaptive Lasso, the choice γ = 1000 is clearly bad when T = 2 (the optimal value
of S is S = 2 when M = 2 and S = 8 when M = 8) on both experiments, whereas γ = 2 or
γ = 200 is better. Not surprisingly, the number of additional nonzero functions and additional
nonzero coefficients decreases when T grows and when γ grows, whatever the method whereas
the number of missing functions or coefficients increases. We can conclude from these facts and
from further analysis of Table 1 that the choice γ = 0.5 for our method and the choice γ = 2 for
the adaptive Lasso are wrong choices of the tuning parameters. In conclusion of this preliminary
study, our method with γ = 1 or γ = 2 seems a good choice and is robust with respect to T .
When T = 20, the optimal choice for adaptive Lasso is γ = 1000. When T = 2, the choice is not
so clear and depends on the criterion we wish to favor.
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Table 1. Numerical results of both procedures over 100 runs with K = 4. Results for Experiment 1 (top) and Experiment 3 (bottom) are given
for T = 2 (left) and T = 20 (right). “DG” gives the number of correct identifications of dependency groups over 100 runs. “S” gives the median
number of nonzero spontaneous rate estimates, “*” means that all the spontaneous rate estimates are nonzero over all the simulations. “F+” gives
the median number of additional nonzero interaction functions w.r.t. the truth. “F−” gives the median number of missing nonzero interaction
functions w.r.t. the truth. “Coeff+” and “Coeff−” are defined in the same way for the coefficients. “SpontMSE” is the Mean Square Error for the
spontaneous rates with or without the additional “ordinary least squares step”. “InterMSE” is the analog for the interaction functions. In bold, we
give the optimal values

M = 2, T = 2 Our Lasso method Adaptive Lasso M = 2, T = 20 Our Lasso method Adaptive Lasso

γ 0.5 1 2 2 200 1000 γ 0.5 1 2 2 200 1000

DG 100 100 98 100 100 98 DG 100 100 100 100 100 100
S ∗ ∗ ∗ 2 2 1 S ∗ ∗ ∗ ∗ ∗ ∗
F+ 0 0 0 1 0 0 F+ 0 0 0 1 0 0
F− 0 0 0 0 0 0 F− 0 0 0 0 0 0
Coeff+ 2 1 0 11 2 0 Coeff+ 1 0 0 11 2 0
Coeff− 0 0 0 0 0 0 Coeff− 0 0 0 0 0 0
SpontMSE 108 140 214 150 193 564 SpontMSE 22 37 69 14 12 27

+ols 104 96 95 151 154 516 +ols 11 10 9 14 12 10
InterMSE 7 9 15 13 8 11 InterMSE 2 3 6 1.4 0.6 0.5

+ols 7 7 7 14 10 10 +ols 0.6 0.5 0.4 1.4 0.9 0.4

M = 2, T = 2 Our Lasso method Adaptive Lasso M = 2, T = 20 Our Lasso method Adaptive Lasso

γ 0.5 1 2 2 200 1000 γ 0.5 1 2 2 200 1000

DG 0 32 24 0 0 32 DG 63 99 100 0 0 90
S ∗ ∗ ∗ 8 7 5 S ∗ ∗ ∗ ∗ ∗ ∗
F+ 17 6 1 55 13 0.5 F+ 3 1 0 55 10 0
F− 0 0 2 0 0 2 F− 0 0 0 5.5d0 0 0
Coeff+ 22 7 1 199.5 17 1 Coeff+ 4 1 0 197 13 0
Coeff− 0.5 2 7 0 2 7 Coeff− 0 0 0 0 0 0
SpontMSE 295 428 768 1445 1026 1835 SpontMSE 82 166 355 104 43 64

+ols 1327 587 859 1512 1058 1935 +ols 41 26 24 107 74 26
InterMSE 38 51 79 214 49 65 InterMSE 10 19 39 16 2.9 3.17

+ols 63 45 61 228 84 70 +ols 3 2.1 1.9 17 6.3 2
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Now let us look at mean squared errors (MSE). Since the spontaneous rates do not behave like
the other coefficients, we split the MSE in two parts: one for the spontaneous rates:

SpontMSE=
M∑

m=1

(
ν̂(m) − ν(m)

)2
,

and one for interactions:

InterMSE=
M∑

m=1

M∑
�=1

∫ (
ĥ

(m)
� (t)− h

(m)
� (t)

)2 dt.

We still report the results for B, BO, A and AO in Table 1. Our comments mostly focus on
cases where the results for the previous study are good. First, note that results on such cases
are better by using the second step (OLS). Furthermore, MSE is increasing with γ for B and A,
since underestimation is stronger when γ increases. This phenomenon does not appear for two
step procedures, which leads to a more stable MSE. For adaptive Lasso, when T = 2, the choice
γ = 200 leads to good MSE, but the MSE are smaller for BO with γ = 1. When T = 20, the
choice γ = 1000 for AO leads to results that are of the same magnitude as the ones obtained by
BO with γ = 1 or 2. Still for T = 20, results for the estimate B are worse than results for A. It
is due to the fact that shrinkage is larger in our method for the coefficients we want to keep than
shrinkage of adaptive Lasso that becomes negligible as soon as the true coefficients are large
enough. However the second step overcomes this problem.

Note also that a more thorough study of the tuning parameter γ has been performed by [5]
where it is mathematically proved that the choice γ < 1 leads to very degenerate estimates in the
density setting. Their method for choosing Lasso parameters being analogous to ours, it seems
coherent to obtain worse MSE for γ = 0.5 than for γ = 1 or γ = 2, at least for BO. The boundary
γ = 1 in their simulation study seems to be a robust choice there, and it seems to be the case here
too.

We now provide some reconstructions by using Lasso methods. Figures 3 and 4 give the re-
constructions corresponding to Experiment 2 (M = 2) with K = 8 for T = 2 and T = 20, respec-
tively. The reconstructions are quite satisfying. Of course, the quality improves when T grows.
We also note improvements by using BO instead of B. For adaptive Lasso, improvements by
using the second step are not significative and this is the reason why we do not represent recon-
structions with AO. Graphs of the right-hand side of Figure 3 illustrate the difficulties of adaptive
Lasso to recover the exact support of interactions functions, namely h

(1)
2 and h

(2)
2 for T = 2. Fig-

ure 5 provides another illustration in the case of Experiment 3 (M = 8) with K = 8 for T = 20.
For the sake of clarity, we only represent reconstructions for the first 4 neurons. From the estima-
tion point of view, this illustration provides a clear hierarchy between the methods: BO seems to
achieve the best results and B the worst. Finally, Figure 6 shows that even in the inhibition case,
we are able to recover the negative interactions.
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Figure 3. Reconstructions corresponding to Experiment 2 with T = 2 and K = 8. Each line m represents

the function h
(m)
�

, for � = 1,2. The spontaneous rates estimation associated with each line m is given
above the graphs: S∗ denotes the true spontaneous rate and its estimators computed by using B, BO and A
respectively are denoted by SB, SBO and SA. The true interactions functions (in black) are reconstructed
by using B, BO and A providing reconstructions in green, red and blue respectively. We use γ = 1 for B
and BO and γ = 200 for A.

6.4. Conclusions

With respect to the problem of tuning our methodology based on Bernstein type inequalities, our
simulation study is coherent with theoretical aspects since we achieve our best results by taking
γ = 1, which constitutes the limit case of assumptions of Theorem 2. For practical aspects, we
recommend the choice γ = 1 even if γ = 2 is acceptable. More importantly, this choice is robust
with respect to the duration of recordings, which is not the case for adaptive Lasso. Implemented
with γ = 1, our method outperforms adaptive Lasso and it is able to recover the dependency
groups, the nonzero spontaneous rates, the nonzero functions and even the nonzero coefficients
as soon as T is large enough. Most of the time, the two step procedure BO seems to achieve the
best results for parameter estimation.

It is important to note that the question of tuning adaptive Lasso remains open. Some values of
γ allow us to obtain very good results but they are not robust with respect to T , which may con-
stitute a serious problem for practitioners. In the standard regression setting, this problem may
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Figure 4. Reconstructions corresponding to Experiment 2 with T = 20 and K = 8. Same convention as in
Figure 3. We use γ = 1 for B and BO and γ = 1000 for A.

be overcome by using cross-validation on independent data, which somehow estimates random
fluctuations. But in this multivariate Hawkes setup, independence assumptions on data cannot be
made and this explains the problems for tuning adaptive Lasso. Our method based on Bernstein
type concentration inequalities takes into account those fluctuations. It also takes into account the
nature of the coefficients and the variability of their estimates which differ for spontaneous rates
on the one hand and coefficients of interaction functions on the other hand. The shape of weights
of adaptive Lasso does not incorporate this difference, which explains the contradictions for tun-
ing the method when T = 2. For instance, in some cases, adaptive Lasso tends to estimate some
spontaneous rates to zero in order to achieve better performance on the interaction functions.

7. Proofs

This section is devoted to the proofs of the results of the paper. Throughout, C is a constant
whose value may change from line to line.
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Figure 5. Reconstructions corresponding to Experiment 3 with T = 20 and K = 8 and for the first 4 neurons. Each line m represents the function

h
(m)
�

, for �= 1,2,3,4. Same convention as in Figure 3. We use γ = 1 for B and BO and γ = 1000 for A.
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Figure 6. Reconstructions corresponding to Experiment 4 with T = 20 and K = 8. Same conventions as
in Figure 3. We use γ = 1 for B and BO and γ = 1000 for A.

7.1. Proof of Theorem 1

The proof of Theorem 1 is standard (see for instance [15]), but for the sake of completeness, we
give it. We use ‖ · ‖�2 for the Euclidian norm of R�. Given a recall that

fa =
∑
ϕ∈�

aϕϕ.

Then, we have f̂ = fâ ,

a′b=ψ(fa) •NT

and

a′Ga = ‖fa‖2
T =

∥∥ψ(fa)
∥∥2

proc.

Then,

−2ψ(fâ) •NT + ‖fâ‖2
T + 2d ′|â| ≤ −2ψ(fa) •NT + ‖fa‖2

T + 2d ′|a|.
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So,∥∥ψ(fâ)− λ
∥∥2

proc =
∥∥ψ(fâ)

∥∥2
proc + ‖λ‖2

proc − 2
〈
ψ(fâ), λ

〉
proc

≤ ∥∥ψ(fa)
∥∥2

proc + ‖λ‖2
proc + 2ψ(fâ − fa) •NT

+ 2d ′
(|a| − |â|)− 2

〈
ψ(fâ), λ

〉
proc

= ∥∥ψ(fa)− λ
∥∥2

proc + 2
〈
ψ(fa − fâ), λ

〉
proc

+ 2ψ(fâ − fa) •NT + 2d ′
(|a| − |â|)

= ∥∥ψ(fa)− λ
∥∥2

proc + 2ψ(fa − fâ) • (�−N)T + 2d ′
(|a| − |â|)

= ∥∥ψ(fa)− λ
∥∥2

proc + 2
∑
ϕ∈�

(aϕ − âϕ)ψ(ϕ) • (�−N)T + 2d ′
(|a| − |â|)

≤ ∥∥ψ(fa)− λ
∥∥2

proc + 2
∑
ϕ∈�

|aϕ − âϕ | × |b̄ϕ − bϕ | + 2d ′
(|a| − |â|).

Using (2.5), we obtain:∥∥ψ(fâ)− λ
∥∥2

proc ≤
∥∥ψ(fa)− λ

∥∥2
proc + 2

∑
ϕ∈�

dϕ |aϕ − âϕ | + 2
∑
ϕ∈�

dϕ

(|aϕ | − |âϕ |
)

≤ ∥∥ψ(fa)− λ
∥∥2

proc + 2
∑
ϕ∈�

dϕ

(|aϕ − âϕ | + |aϕ | − |âϕ |
)
.

Now, if ϕ /∈ S(a), |aϕ − âϕ | + |aϕ | − |âϕ | = 0, and∥∥ψ(fâ)− λ
∥∥2

proc ≤
∥∥ψ(fa)− λ

∥∥2
proc + 2

∑
ϕ∈S(a)

dϕ

(|aϕ − âϕ | + |aϕ | − |âϕ |
)

≤ ∥∥ψ(fa)− λ
∥∥2

proc + 4
∑

ϕ∈S(a)

dϕ

(|aϕ − âϕ |
)

≤ ∥∥ψ(fa)− λ
∥∥2

proc + 4‖â − a‖�2

( ∑
ϕ∈S(a)

d2
ϕ

)1/2

.

We now use the assumption on the Gram matrix given by (2.4) and the triangular inequality for
‖ · ‖T , which yields

‖â − a‖2
�2
≤ c−1(â − a)′G(â − a)

= c−1‖fâ − fa‖2
T

≤ 2c−1(∥∥ψ(fâ)− λ
∥∥2

proc +
∥∥ψ(fa)− λ

∥∥2
proc

)
.
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Let us take α ∈ (0,1). Since for any x ∈R and any y ∈R, 2xy ≤ αx2 + α−1y2, we obtain:∥∥ψ(fâ)− λ
∥∥2

proc ≤
∥∥ψ(fa)− λ

∥∥2
proc

+ 4
√

2c−1/2

√∥∥ψ(fâ)− λ
∥∥2

proc +
∥∥ψ(fa)− λ

∥∥2
proc

( ∑
ϕ∈S(a)

d2
ϕ

)1/2

≤ ∥∥ψ(fa)− λ
∥∥2

proc

+ α
(∥∥ψ(fâ)− λ

∥∥2
proc +

∥∥ψ(fa)− λ
∥∥2

proc

)+ 8α−1c−1
∑

ϕ∈S(a)

d2
ϕ

≤ (1− α)−1
(

(1+ α)
∥∥ψ(fa)− λ

∥∥2
proc + 8α−1c−1

∑
ϕ∈S(a)

d2
ϕ

)
.

The theorem is proved just by taking an arbitrary absolute value for α ∈ (0,1).

7.2. Proof of Theorem 2

Let us first define

T =
{
t ≥ 0

/
sup
m

∣∣ψ(m)
t (ϕ)

∣∣> Bϕ

}
. (7.1)

Let us define the stopping time τ ′ = infT and the predictable process H by

H
(m)
t =ψ

(m)
t (ϕ)1t≤τ ′ .

Let us apply Theorem 3 to this choice of H with τ = T and B = Bϕ . The choice of v and w

will be given later on. To apply this result, we need to check that for all t and all ξ ∈ (0,3),∑
m

∫ t

0 eξH
(m)
s /Bϕλ

(m)
s ds is a.s. finite. But if t > τ ′, then

∫ t

0
eξH

(m)
s /Bϕλ(m)

s ds =
∫ τ ′

0
eξH

(m)
s /Bϕλ(m)

s ds +
∫ t

τ ′
λ(m)

s ds,

where the second part is obviously finite (it is just �
(m)
t −�

(m)

τ ′ ). Hence, it remains to prove that
for all t ≤ τ ′, ∫ t

0
eξH

(m)
s /Bϕλ(m)

s ds

is finite. But for all s < t , s < τ ′ and consequently s /∈ T . Therefore, |H(m)
s | ≤ Bϕ . Since we are

integrating with respect to the Lebesgue measure, the fact that it eventually does not hold in t is
not a problem and ∫ t

0
eξH

(m)
s /Bϕλ(m)

s ds ≤ eξ�
(m)
t ,
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which is obviously finite a.s. The same reasoning can be applied to show that a.s. exp(ξH 2/B2)•
�t <∞. We can also apply Theorem 3 to −H in the same way. We obtain at the end that for all
ε > 0

P

(∣∣H • (N −�)T
∣∣≥√2(1+ ε)V̂ μx + Bϕx

3
and w ≤ V̂ μ ≤ v and sup

m,t≤T

∣∣H(m)
t

∣∣≤ Bϕ

)
(7.2)

≤ 4

(
log(v/w)

log(1+ ε)
+ 1

)
e−x.

But on 
V,B it is clear that ∀t ∈ [0, T ], t /∈ T . Therefore, τ ′ ≥ T . Therefore for all t ≤ T , one
also has t ≤ τ ′ and H

(m)
t =ψ

(m)
t (ϕ). Consequently, on 
V,B ,

H • (N −�)T = bϕ − b̄ϕ and V̂ μ = V̂ μ
ϕ .

Moreover, on 
V,B , one has that

B2
ϕx

μ− φ(μ)
≤ V̂ μ

ϕ ≤
μ

μ− φ(μ)
Vϕ +

B2
ϕx

μ− φ(μ)
.

So, we take w and v as respectively the left- and right-hand side of the previous inequality.
Finally note that on 
V,B ,

sup
m,t≤T

∣∣H(m)
t

∣∣= sup
m,t≤T

∣∣ψ(m)
t (ϕ)

∣∣≤ Bϕ.

Hence, we can rewrite (7.2) as follows

P

(
|bϕ − b̄ϕ | ≥

√
2(1+ ε)V̂

μ
ϕ x + Bϕx

3
and 
V,B

)
≤ 4

(
log(1+μVϕ/B2

ϕx)

log(1+ ε)
+ 1

)
e−x. (7.3)

Apply this to all ϕ ∈�, we obtain that

P
(∃ϕ ∈� s.t. |bϕ − b̄ϕ | ≥ dϕ and 
V,B

)≤ 4
∑
ϕ∈�

(
log(1+μVϕ/B2

ϕx)

log(1+ ε)
+ 1

)
e−x.

Now on the event 
c ∩
V,B ∩ {∀ϕ ∈�, |bϕ − b̄ϕ | ≤ dϕ}, one can apply Theorem 1. To obtain
Theorem 2, it remains to bound the probability of the complementary event by

P
(

c

c

)+ P
(

c

V,B

)+ P
(∃ϕ ∈� s.t. |bϕ − b̄ϕ | ≥ dϕ and 
V,B

)
.

7.3. Proof of Theorem 3

First, replacing H with H/B , we can always assume that B = 1. Next, let us fix for the moment

ξ ∈ (0,3). If one assumes that almost surely for all t > 0,
∑M

m=1

∫ t

0 eξH
(m)
s λ

(m)
s ds <∞ (i.e., that
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the process eξH •� is well defined) then one can apply Theorem 2 of [8], page 165, stating that
the process (Et )t≥0 defined for all t by

Et = exp
(
ξH • (N −�)t − φ(ξH) •�t

)
is a supermartingale. It is also the case for Et∧τ if τ is a bounded stopping time. Hence for any
ξ ∈ (0,3) and for any x > 0, one has that

P
(
Et∧τ > ex

)≤ e−xE(Et∧τ )≤ e−x,

which means that

P
(
ξH • (N −�)t∧τ − φ(ξH) •�t∧τ > x

)≤ e−x.

Therefore,

P

(
ξH • (N −�)t∧τ − φ(ξH) •�t∧τ > x and sup

s≤τ,m

∣∣H(m)
s

∣∣≤ 1
)
≤ e−x.

But if sups≤τ,m |H(m)
s | ≤ 1, then for any ξ > 0 and any s,

φ
(
ξH(m)

s

)≤ (H(m)
s

)2
φ(ξ).

So, for every ξ ∈ (0,3), we obtain:

P

(
Mτ ≥ ξ−1φ(ξ)H 2 •�τ + ξ−1x and sup

s≤τ,m

∣∣H(m)
s

∣∣≤ 1
)
≤ e−x. (7.4)

Now let us focus on the event H 2 • �τ ≤ v where v is a deterministic quantity. We have that
consequently

P

(
Mτ ≥ ξ−1φ(ξ)v + ξ−1x and H 2 •�τ ≤ v and sup

s≤τ,m

∣∣H(m)
s

∣∣≤ 1
)
≤ e−x.

It remains to choose ξ such that ξ−1φ(ξ)v+ ξ−1x is minimal. But this expression has no simple
form. However, since 0 < ξ < 3, one can bound φ(ξ) by ξ2(1− ξ/3)−1/2. Hence, we can start
with

P

(
Mτ ≥ ξ

2(1− ξ/3)
H 2 •�τ + ξ−1x and sup

s≤τ,m

∣∣H(m)
s

∣∣≤ 1

)
≤ e−x (7.5)

and also

P

(
Mτ ≥ ξ

2(1− ξ/3)
v+ ξ−1x and H 2 •�τ ≤ v and sup

s≤τ,m

∣∣H(m)
s

∣∣≤ 1

)
≤ e−x. (7.6)

It remains now to minimize ξ �−→ ξ
2(1−ξ/3)

v + ξ−1x.
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Lemma 2. Let a, b and x be positive constants and let us consider on (0,1/b),

g(ξ)= aξ

(1− bξ)
+ x

ξ
.

Then minξ∈(0,1/b) g(ξ)= 2
√

ax + bx and the minimum is achieved in ξ(a, b, x)= xb−√ax

xb2−a
.

Proof. The limits of g in 0+ and (1/b)− are +∞. The derivative is given by

g′(ξ)= a

(1− bξ)2
− x

ξ2

which is null in ξ(a, b, x) (remark that the other solution of the polynomial does not lie in
(0,1/b)). Finally, it remains to evaluate the quantity in ξ(a, b, x) to obtain the result. �

Now, we apply (7.6) with ξ(v/2,1/3, x) and we obtain this well known formula which can be
found in [57] for instance,

P

(
Mτ ≥

√
2vx + x/3 and H 2 •�τ ≤ v and sup

s≤τ,m

∣∣H(m)
s

∣∣≤ 1
)
≤ e−x. (7.7)

Now we would like first to replace v by its random version H 2 •�τ . Let w,v be some positive
constants and let us concentrate on the event

w ≤H 2 •�τ ≤ v. (7.8)

For all ε > 0 we introduce K a positive integer depending on ε, v and w such that (1+ε)Kw ≥ v.
Note that K = �log(v/w)/ log(1 + ε)� is a possible choice. Let us denote v0 = w, v1 = (1 +
ε)w, . . . , vK = (1+ ε)Kw. For any 0 < ξ < 3 and any k in {0, . . . ,K − 1}, one has, by applying
(7.5),

P

(
Mτ ≥ ξ

2(1− ξ/3)
H 2 •�τ + ξ−1x

and vk ≤H 2 •�τ ≤ vk+1 and sup
s≤τ,m

∣∣H(m)
s

∣∣≤ 1

)
≤ e−x.

This implies that

P

(
Mτ ≥ ξ

2(1− ξ/3)
vk+1 + ξ−1x and vk ≤H 2 •�τ ≤ vk+1 and sup

s≤τ,m

∣∣H(m)
s

∣∣≤ 1

)
≤ e−x.

Using Lemma 2, with ξ = ξ(vk+1/2,1/3, x), this gives

P

(
Mτ ≥

√
2vk+1x + x/3 and vk ≤H 2 •�τ ≤ vk+1 and sup

s≤τ,m

∣∣H(m)
s

∣∣≤ 1
)
≤ e−x.
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But if vk ≤H 2 •�τ , vk+1 ≤ (1+ ε)vk ≤ (1+ ε)H 2 •�τ , so

P

(
Mτ ≥

√
2(1+ ε)

(
H 2 •�τ

)
x + x/3

and vk ≤H 2 •�τ ≤ vk+1 and sup
s≤τ,m

∣∣H(m)
s

∣∣≤ 1
)
≤ e−x.

Finally summing on k, this gives

P

(
Mτ ≥

√
2(1+ ε)

(
H 2 •�τ

)
x + x/3

(7.9)
and w ≤H 2 •�τ ≤ v and sup

s≤τ,m

∣∣H(m)
s

∣∣≤ 1
)
≤Ke−x.

This leads to the following result that has interest per se.

Proposition 6. Let N = (N(m))m=1,...,M be a multivariate counting process with predictable

intensities λ
(m)
t and corresponding compensator �

(m)
t with respect to some given filtration. Let

B > 0. Let H = (H (m))m=1,...,M be a multivariate predictable process such that for all ξ ∈ (0,3),
eξH/B •�t <∞ a.s. for all t . Let us consider the martingale defined for all t by

Mt =H • (N −�)t .

Let v > w be positive constants and let τ be a bounded stopping time. Then for any ε, x > 0

P

(
Mτ ≥

√
2(1+ ε)

(
H 2 •�τ

)
x + Bx

3
and w ≤H 2 •�τ ≤ v and sup

m,t≤τ

∣∣H(m)
t

∣∣≤ B

)
(7.10)

≤
(

log(v/w)

log(1+ ε)
+ 1

)
e−x.

Next, we would like to replace H 2 •�τ , the quadratic characteristic of M , with its estimator
H 2 • Nτ , that is, the quadratic variation of M . For this purpose, let us consider Wt = −H 2 •
(N − �)t which is still a martingale since the −(H

(m)
s )2’s are still predictable processes. We

apply (7.4) with μ instead of ξ , noticing that on the event {sups≤τ,m |H(m)
s | ≤ 1}, one has that

H 4 •�τ ≤H 2 •�τ . This gives that

P

(
H 2 •�τ ≥H 2 •Nτ +

{
φ(μ)/μ

}
H 2 •�τ + x/μ and sup

s≤τ,m

∣∣H(m)
s

∣∣≤ 1
)
≤ e−x,

which means that

P

(
H 2 •�τ ≥ V̂ μ and sup

s≤τ,m

∣∣H(m)
s

∣∣≤ 1
)
≤ e−x. (7.11)
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So we use again (7.5) combined with (7.11) to obtain that for all ξ ∈ (0,3)

P

(
Mτ ≥ ξ

2(1− ξ/3)
V̂ μ + ξ−1x and sup

s≤τ,m

∣∣H(m)
s

∣∣≤ 1

)

≤ P

(
Mτ ≥ ξ

2(1− ξ/3)
V̂ μ + ξ−1x and sup

s≤τ,m

∣∣H(m)
s

∣∣≤ 1 and H 2 •�τ ≤ V̂ μ

)

+ P

(
H 2 •�τ ≥ V̂ μ and sup

s≤τ,m

∣∣H(m)
s

∣∣≤ 1
)
≤ 2e−x.

This new inequality replaces (7.5) and it remains to replace H 2 • �τ by V̂ μ in the peeling
arguments to obtain as before that

P

(
Mτ ≥

√
2(1+ ε)V̂ μx + x/3 and w ≤ V̂ μ ≤ v and sup

s≤τ,m

∣∣H(m)
s

∣∣≤ 1
)
≤ 2Ke−x. (7.12)

7.4. Proofs of the probabilistic results for Hawkes processes

7.4.1. Proof of Lemma 1

Let K(n) denote the vector of the number of descendants in the nth generation from a single
ancestral point of type �, define K(0)= e� and let W(n)=∑n

k=0 K(k) denote the total number
of points in the first n generations. Define for θ ∈RM

φ�(θ)= logE�eθT K(1).

Thus, φ�(θ) is the log-Laplace transform of the distribution of K(1) given that there is a single
initial ancestral point of type �. We define the vector φ(θ) by φ(θ)′ = (φ1(θ), . . . , φM(θ)). Note
that φ only depends on the law of the number of children per parent, that is, it only depends on
�. Then

E�eθT W(n) = E�

(
eθT W(n−1)E

(
eθT K(n) |K(n− 1), . . . ,K(1)

))
= E�

(
eθT W(n−1)eφ(θ)T K(n−1)

)
= E�e(θ+φ(θ))T K(n−1)+θT W(n−2).

Defining g(θ)= θ + φ(θ) we arrive by recursion at the formula

E�eθT W(n) = E�eg◦(n−1)(θ)T K(1)+θT W(0)

= eφ(g◦(n−1)(θ))�+θ�

= eg◦n(θ)� ,
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where for any n, g◦(n) = g ◦ · · · ◦ g n times. Or, in other words, we have the following represen-
tation

logE�eθT W(n) = g◦n(θ)�

of the log-Laplace transform of W(n).
Below we show that φ is a contraction in a neighborhood containing 0, that is, for some r > 0

and a constant C < 1 (and a suitable norm), ‖φ(s)‖ ≤ C‖s‖ for ‖s‖ ≤ r . If θ is chosen such that

‖θ‖
1−C

≤ r

we have ‖θ‖ ≤ r , and if we assume that g◦k(θ) ∈ B(0, r) for k = 1, . . . , n− 1 then∥∥g◦n(θ)
∥∥ ≤ ‖θ‖ + ∥∥φ(g◦(n−1)(θ)

)∥∥
≤ ‖θ‖ +C

∥∥g◦(n−1)(θ)
∥∥

≤ ‖θ‖(1+C +C2 + · · · +Cn
)

≤ r.

Thus, by induction, g◦n(θ) ∈ B(0, r) for all n ≥ 1. Since n �→Wm(n) is increasing and goes to
Wm(∞) for n→∞, with Wm(∞) the total number of points in a cluster of type m, and since
W =∑m Wm(∞)= 1T W(∞), we have by monotone convergence that for ϑ ∈R

logE�eϑW = lim
n→∞g◦n(ϑ1)�.

By the previous result, the right-hand side is bounded if |ϑ | is sufficiently small. This completes
the proof up to proving that φ is a contraction.

To this end, we note that φ is continuously differentiable (on RM in fact, but a neighborhood
around 0 suffices) with derivative Dφ(0)= � at 0. Since the spectral radius of � is strictly less
than 1 there is a C < 1 and, by the Householder theorem, a norm ‖ · ‖ on RM such that for the
induced operator norm of � we have

‖�‖ = max
x:‖x‖≤1

‖�x‖< C.

Since the norm is continuous and Dφ(s) is likewise there is an r > 0 such that∥∥Dφ(s)
∥∥≤ C < 1

for ‖s‖ ≤ r . This, in turn, implies that φ is Lipschitz continuous in the ball B(0, r) with Lipschitz
constant C, and since φ(0)= 0 we get ∥∥φ(s)

∥∥≤ C‖s‖
for ‖s‖ ≤ r . This ends the proof of the lemma.
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Note that we have not at all used the explicit formula for φ above, which is obtainable and
simple since the offspring distributions are Poisson. The only thing we needed was the fact that
φ is defined in a neighborhood around 0, thus that the offspring distributions are sufficiently
light-tailed.

7.4.2. Proof of Proposition 2

We use the cluster representation, and we note that any cluster with ancestral point in [−n −
1,−n] must have at least n + 1 − �A� points in the cluster if any of the points are to fall in
[−A,0). This follows from the assumption that all the h

(m)
� -functions have support in [0,1].

With ÑA,� the number of points in [−A,0) from a cluster with ancestral points of type �, we
thus have the bound

ÑA,� ≤
∑
n

An∑
k=1

max
{
Wn,k − n+ �A�,0

}
,

where An is the number of ancestral points in [−n− 1,−n] of type � and Wn,k is the number
of points in the respective clusters. Here the An’s and the Wn,k’s are all independent, the An’s
are Poisson distributed with mean ν� and the Wn,k’s are i.i.d. with the same distribution as W in
Lemma 1. Moreover,

Hn(ϑ�) := E�eϑ� max{W−n+�A�,0} ≤ P�

(
W ≤ n− �A�)+ e−ϑ�(n−�A�)E�eϑ�W ,

which is finite for |ϑ�| sufficiently small according to Lemma 1. Then we can compute an upper
bound on the Laplace transform of ÑA,�:

Eeϑ�ÑA,� ≤
∏
n

E

An∏
k=1

E
(
eϑ� max{Wn,k−n+�A�,0} |An

)
≤
∏
n

EHn(ϑ�)
An

=
∏
n

eν�(Hn(ϑ�)−1)

= eν�

∑
n(Hn(ϑ�)−1).

Since Hn(ϑ�) − 1 ≤ e−ϑ�(n−�A�)E�eϑ�W we have
∑

n(Hn(ϑ�) − 1) < ∞, which shows that
the upper bound is finite. To complete the proof, observe that N[−A,0) = ∑� ÑA,� where
ÑA,� for � = 1, . . . ,M are independent. Since all variables are positive, it is sufficient to take
θ =min� ϑ�.

7.4.3. Proof of Proposition 3

In this paragraph, the notation � simply denotes a generic positive absolute constant that
may change from line to line. The notation �θ1,θ2,... denotes a positive constant depending on
θ1, θ2, . . . that may change from line to line.
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Let

u= C1σ log3/2(T )
√

T +C2b
(
log(T )

)2+η
, (7.13)

where the choices of C1 and C2 will be given later. For any positive integer k such that x :=
T/(2k) > A, we have by stationarity:

P

(∫ T

0

[
Z ◦St (N)−E(Z)

]
dt ≥ u

)
= P

(
k−1∑
q=0

∫ 2qx+x

2qx

[
Z ◦St (N)−E(Z)

]
dt

+
∫ 2qx+2x

2qx+x

[
Z ◦St (N)−E(Z)

]
dt ≥ u

)

≤ 2P

(
k−1∑
q=0

∫ 2qx+x

2qx

[
Z ◦St (N)−E(Z)

]
dt ≥ u

2

)
.

Similarly to [51], we introduce (M̃x
q )q a sequence of independent Hawkes processes, each being

stationary with intensities per mark given by ψ
(m)
t . For each q , we then introduce Mx

q the trun-

cated process associated with M̃x
q , where truncation means that we only consider the points lying

in [2qx −A,2qx + x]. So, if we set

Fq =
∫ 2qx+x

2qx

[
Z ◦St

(
Mx

q

)−E(Z)
]

dt,

(7.14)

P

(∫ T

0

[
Z ◦St (N)−E(Z)

]
dt ≥ u

)
≤ 2P

(
k−1∑
q=0

Fq ≥ u

2

)
+ 2kP

(
Te >

T

2k
−A

)
,

where Te represents the time to extinction of the process. More precisely, Te is the last point of
the process if in the cluster representation only ancestral points before 0 are appearing. For more
details, see Section 3 of [51]. So, denoting al the ancestral points with marks l and Hl

al
the length

of the corresponding cluster whose origin is al , we have:

Te = max
l∈{1,...,M}

max
al

{
al +Hl

al

}
.

But, for any a > 0,

P(Te ≤ a) = E

[
M∏
l=1

∏
al

E[1{al+Hl
al
≤a}|al]

]

= E

[
M∏
l=1

∏
al

exp
(
log
(
P
(
Hl

0 ≤ a − al

)))]
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= E

[
M∏
l=1

exp

(∫ 0

−∞
log
(
P
(
Hl

0 ≤ a − x
))

dÑ (l)
x

)]
,

where Ñ(l) denotes the process associated with the ancestral points with marks l. So,

P(Te ≤ a) = exp

(
M∑
l=1

∫ 0

−∞
(
exp
(
log
(
P
(
Hl

0 ≤ a − x
)))− 1

)
ν(l) dx

)

= exp

(
−

M∑
l=1

ν(l)

∫ +∞

a

P
(
Hl

0 > u
)

du

)
.

Now, by Lemma 1, there exists some ϑl > 0, such that cl = E�(eϑlW ) < +∞, where W is the
number of points in the cluster. But if all the interaction functions have support in [0,1], one
always have that Hl

0 < W . Hence,

P
(
Hl

0 > u
) ≤ E

[
exp
(
ϑlH

l
0

)]
exp(−ϑlu)

≤ cl exp(−ϑlu).

So,

P(Te ≤ a) ≥ exp

(
−

M∑
l=1

ν(l)

∫ +∞

a

cl exp(−ϑlu)du

)

= exp

(
−

M∑
l=1

ν(l)cl/ϑl exp(−ϑla)

)

≥ 1−
M∑
l=1

ν(l)cl/ϑl exp(−ϑla).

So, there exists a constant Cα,f0,A depending on α,A, and f0 such that if we take k =
�Cα,A,f0T/ log(T )�, then

kP

(
Te >

T

2k
−A

)
≤ T −α.

In this case x = T
2k
≈ log(T ) is larger than A for T large enough (depending on A,α,f0).

Now, let us focus on the first term B of (7.14), where

B = P

(
k−1∑
q=0

Fq ≥ u

2

)
.
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Let us consider some Ñ where Ñ will be fixed later and let us define the measurable events


q =
{

sup
t

{
Mx

q |[t−A,t)

}≤ Ñ
}
,

where Mx
q |[t−A,t) represents the set of points of Mx

q lying in [t − A, t). Let us also consider

=⋂1≤q≤k 
q . Then

B ≤ P

(∑
q

Fq ≥ u/2 and 


)
+ P

(

c
)
.

We have P(
c) ≤∑q P(
c
q). Each 
q can also be easily controlled. Indeed it is sufficient to

split [2qx − A,2qx + x] in intervals of size A (there are about �α,A,f0 log(T ) of those) and
require that the number of points in each subinterval is smaller than Ñ /2. By stationarity, we
obtain that

P
(

c

q

)≤�α,A,f0 log(T )P(N[−A,0) > Ñ /2).

Using Proposition 2 with u= �Ñ /2� + 1/2, we obtain:

P
(

c

q

) ≤ �α,A,f0 log(T ) exp(−�α,A,f0Ñ ) and
(7.15)

P
(

c
) ≤ �α,A,f0T exp(−�α,A,f0Ñ ).

Note that this control holds for any positive choice of Ñ . Hence, this gives also the following
lemma that will be used later.

Lemma 3. For any R> 0,

P
(
there exists t ∈ [0, T ] |Mx

q |[t−A,t) >R
)≤�α,A,f0T exp(−�α,A,f0R).

Hence by taking Ñ = C3 log(T ) for C3 large enough this is smaller than �α,A,f0T
−α′ , where

α′ =max(α,2).
It remains to obtain the rate of D := P(

∑
q Fq ≥ u/2 and 
). For any positive constant θ that

will be chosen later, we have:

D ≤ e−θu/2E

(
eθ
∑

q Fq
∏
q

1
q

)
(7.16)

≤ e−θu/2
∏
q

E
(
eθFq 1
q

)
since the variables (Mx

q )q are independent. But

E
(
eθFq 1
q

)= 1+ θE(Fq1
q )+
∑
j≥2

θj

j ! E
(
F

j
q 1
q

)
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and E(Fq1
q )= E(Fq)−E(Fq1
c
q
)=−E(Fq1
c

q
).

Next note that if for any integer l,

lÑ < sup
t

Mx
q |[t−A,t) ≤ (l + 1)Ñ

then

|Fq | ≤ xb
[
(l + 1)ηÑ η + 1

]+ xE(Z).

Hence, cutting 
c
q in slices of the type {lÑ < supt M

x
q [t−A,t) ≤ (l + 1)Ñ } and using Lemma 3,

we obtain by taking C3 large enough,

∣∣E(Fq1
q )
∣∣= ∣∣E(Fq1
c

q
)
∣∣ ≤ +∞∑

l=1

x
(
b
[
(l + 1)ηÑ η + 1

]+ ∣∣E(Z)
∣∣)

× P
(
there exists t ∈ [0, T ] | {Mx

q |[t−A,t)

}
> �Ñ

)
≤ �α,A,f0

+∞∑
l=1

x
(
b
[
(l + 1)ηÑ η + 1

]+ ∣∣E(Z)
∣∣) log(T )e−�α,A,f0 lÑ

≤ �α,A,f0

+∞∑
l=1

x
(
bÑ η + ∣∣E(Z)

∣∣) log(T )2lηe−�α,A,f0 lÑ

≤ �α,η,A,f0 log2(T )bÑ η e−�α,A,f0Ñ

1− 2ηe−�α,A,f0Ñ

≤ z1 :=�α,η,A,f0bT −α′ .

Note that in the previous inequalities, we have bounded |E(Z)| by bE[Nη

[−A,0)
]. In the same way,

one can bound

E
(
F

j
q 1
q

)≤ E
(
F 2

q 1
q

)
z
j−2
b ,

with zb := xb[Ñ η + 1] + xE(Z)=�α,η,A,f0b log(T )1+η . One can also note that by stationarity,

E
(
F 2

q 1
q

) ≤ xE

[∫ 2qx+x

2qx

[
Z ◦ θs

(
Mx

q

)−E(Z)
]21{for all t,Mx

q |[t−A,t)≤Ñ } ds

]

≤ xE

[∫ 2qx+x

2qx

[
Z ◦ θs

(
Mx

q

)−E(Z)
]21{Mx

q |[s−A,s)≤Ñ } ds

]

≤ x2E
([

Z(N)−E(Z)
]21

N[−A,0)≤Ñ
)

≤ zv :=�α,η,A,f0

(
log(T )

)2
σ 2.
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Now let us go back to (7.16). We have that

D ≤ exp

[
−θu

2
+ k ln

(
1+ θz1 +

∑
j≥2

zvz
j−2
b

θj

j !
)]

≤ exp

[
−θ

(
u

2
− kz1

)
+ k

∑
j≥2

zvz
j−2
b

θj

j !
]
,

using that ln(1 + u) ≤ u. It is sufficient now to recognize a step of the proof of the Bernstein
inequality (weak version see [41], page 25). Since kz1 =�α,η,sbT 1−α′/(log(T )), one can choose
α′ > 1,C1 and C2 in the definition (7.13) of u (not depending on b) such that u/2 − kz1 ≥√

2kzvz+ 1
3zbz for some z= C4 log(T ), where C4 is a constant. Hence,

D ≤ exp

[
−θ

(√
2kzvz+ 1

3
zbz

)
+ k

∑
j≥2

zvz
j−2
b

θj

j !
]
.

One can choose accordingly θ (as for the proof of the Bernstein inequality) to obtain a bound in
e−z. It remains to choose C4 large enough and only depending on α,η,A and f0 to guarantee
that D ≤ e−z ≤�α,η,A,f0T

−α . This concludes the proof of the proposition.

7.4.4. Proof of Proposition 4

Let Q denote a measure such that under Q the distribution of the full point process restricted to
(−∞,0] is identical to the distribution under P and such that on (0,∞) the process consists of
independent components each being a homogeneous Poisson process with rate 1. Furthermore,
the Poisson processes should be independent of the process on (−∞,0]. From Corollary 5.1.2
in [36], the likelihood process is given by

Lt = exp

(
Mt −

∑
m

∫ t

0
λ(m)

u du+
∑
m

∫ t

0
logλ(m)

u dN(m)
u

)

and we have for t ≥ 0 the relation

EPκt (f)2 = EQκt (f)2Lt , (7.17)

where EP and EQ denote the expectation with respect to P and Q, respectively. Let, further-
more, Ñ1 =N[−1,0) denote the total number of points on [−1,0). Proposition 4 will be an easy
consequence of the following lemma.

Lemma 4. If the point process is stationary under P, if

ed ≤ λ
(m)
t ≤ a(N1 + Ñ1)+ b

for t ∈ [0,1] and for constants d ∈R and a, b > 0, and if EP(1+ ε)Ñ1 <∞ for some ε > 0 then
for any f,

Q(f, f)≥ ζ‖f‖2 (7.18)
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for some constant ζ > 0.

Proof. We use Hölders inequality on κ1(f)2/pL1/p

1 and κ1(f)2/qL−1/p

1 to get

EQκ1(f)2 ≤ (EQκ1(f)2L1
)1/p(

EQκ1(f)2L−q/p

1

)1/q =Q(f, f)1/p
(
EQκ1(f)2L1−q

1

)1/q
, (7.19)

where 1
p
+ 1

q
= 1. We choose q ≥ 1 (and thus p) below to make q − 1 sufficiently small. For

the left-hand side, we have by independence of the homogeneous Poisson processes that if f =
(μ, (g�)�=1,...,M),

EQκ1(f)2 = (EQκ1(f)
)2 +VQκ1(f)

=
(

μ+
∑

�

∫ 1

0
g�(u)du

)2

+
∑

�

∫ 1

0
g�(u)2 du.

Exactly as on page 32 in [52] there exists c′ > 0 such that

EQκ1(f)2 ≥ c′
(

μ2 +
∑

�

∫ 1

0
g2

� (u)du

)
= c′‖f‖2. (7.20)

To bound the second factor on the right-hand side in (7.19) we observe, by assumption, that we
have the lower bound

L1 ≥ eM(1−b)e(d−aM)N1e−aMÑ1

on the likelihood process. Under Q we have that (κ1(f),N1) and Ñ1 are independent, and with
ρ = e(q−1)(aM−d) and ρ̃ = e(q−1)(aM) we get that

EQκ1(f)2L1−q

1 ≤ e(q−1)M(b−1)EQρ̃Ñ1EQκ1(f)2ρN1 .

Here we choose q such that ρ̃ is sufficiently close to 1 to make sure that EQρ̃Ñ1 = EPρ̃Ñ1 <∞
(see Proposition 2). Moreover, by Cauchy–Schwarz’ inequality

κ2
1 (f)≤

(
μ2 +

∑
�

∫ 1−

0
g2

� (1− u)dN(�)
u

)
(1+N1). (7.21)

Under Q the point processes on (0,∞) are homogeneous Poisson processes with rate 1 and N1,
the total number of points, is Poisson. This implies that conditionally on (N

(1)
1 , . . . ,N

(M)
1 ) =

(n(1), . . . , n(M)) the n(m)-points for the mth process are uniformly distributed on [0,1], hence

EQκ1(f)2L1−q

1 ≤
(

μ2 +
∑

�

∫ 1

0
g2

� (u)du

)
e(q−1)M(b−1)EQρ̃Ñ1EQ(1+N1)

2ρN1︸ ︷︷ ︸
c′′

(7.22)
= c′′‖f‖2.
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Combining (7.20) and (7.22) with (7.19) we get that

c′‖f‖2 ≤ (c′′)1/q‖f‖2/qQ(f, f)1/p

or by rearranging that

Q(f, f)≥ ζ‖f‖2

with ζ = (c′)p/(c′′)p−1. �

For the Hawkes process, it follows that if ν(m) > 0 and if

sup
t∈[0,1]

h
(m)
� (t) <∞

for l,m= 1, . . . ,M then for t ∈ [0,1] we have ed ≤ λ
(m)
t ≤ a(N1 + Ñ1)+ b with

d = logν(m), a =max
l

sup
t∈[0,1]

h
(m)
� (t), b= ν(m).

Proposition 2 proves that there exists ε > 0 such that EP(1+ε)Ñ1 <∞. This completes the proof
of Proposition 4.

7.5. Proofs of the results of Sections 4.2 and 5.2

7.5.1. Proof of Propositions 5 and 1

We first prove Proposition 5. As in the proof of Proposition 3, we use the notation �. Note that
for any ϕ1 and any ϕ2 belonging to �,

Gϕ1,ϕ2 =
M∑

m=1

∫ T

0
κt

(
ϕ1

(m)
)
κt

(
ϕ2

(m)
)

dt

and E(Gϕ1,ϕ2)= T
∑M

m=1 Q(ϕ1
(m), ϕ2

(m)) by using (5.2). This implies that

E
(
a′Ga

)= a′E(G)a = T
∑
m

Q
(
f(m)
a , f(m)

a

)
.

Hence by Proposition 4, E(a′Ga)≥ T ζ
∑

m ‖f(m)
a ‖2 = T ζ‖fa‖2 by definition of the norm on H.

Since � is an orthonormal system, this implies that E(a′Ga) ≥ T ζ‖a‖�2 . Hence, to show that

c is a large event for some c > 0, it is sufficient to show that for some 0 < ε < ζ , with high
probability, for any a ∈R�, ∣∣a′Ga − a′E(G)a

∣∣≤ T ε‖a‖2
�2

. (7.23)
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Indeed, (7.23) implies that, with high probability, for any a ∈R�,

a′Ga ≥ a′E(G)a − T ε‖a‖�2 ≥ T (ζ − ε)‖a‖�2,

and the choice c = T (ζ − ε) is convenient. So, first one has to control all the coefficients of
G−E(G). For all ϕ,ρ ∈�, we apply Proposition 3 to

Z(N)=
∑
m

ψ
(m)
0 (ϕ)ψ

(m)
0 (ρ).

Note that Z only depends on points lying in [−1,0). Therefore, |Z(N)| ≤ 2M‖ϕ‖∞‖ρ‖∞(1+
N2
[−1,0)). This leads to

P

(
1

T

∣∣Gϕ,ρ −E(Gϕ,ρ)
∣∣≥ xϕ,ρ

)
≤�β,f0T

−β

with

xϕ,ρ =�β,f0,M

[
σϕ,ρ log3/2(T )T −1/2 + ‖ϕ‖∞‖ρ‖∞ log4(T )T −1]

and

σ 2
ϕ,ρ = E

[[∑
m

ψ
(m)
0 (ϕ)ψ

(m)
0 (ρ)−E

(∑
m

ψ
(m)
0 (ϕ)ψ

(m)
0 (ρ)

)]2

1
N[−1,0)≤Ñ

]
.

Hence, with probability larger than 1−�β,f0 |�|2T −β one has that

∣∣a′Ga − a′E(G)a
∣∣≤�β,f0

( ∑
ϕ,ρ∈�

|aϕ ||aρ |
[
σϕ,ρ log3/2(T )T 1/2 + ‖ϕ‖∞‖ρ‖∞ log4(T )

])
.

Hence, for any positive constant δ chosen later,∣∣a′Ga − a′E(G)a
∣∣

≤�β,f0

[
T
∑

ϕ,ρ∈�

|aϕ ||aρ |
[
δ

σ 2
ϕ,ρ

‖ϕ‖∞‖ρ‖∞ (7.24)

+
[

1

δ log(T )
+ 1

]
‖ϕ‖∞‖ρ‖∞ log4(T )

T

]]
.

Now let us focus on E :=∑ϕ,ρ∈� |aϕ ||aρ | σ 2
ϕ,ρ

‖ϕ‖∞‖ρ‖∞ . First, we have:

E ≤ 2
∑

ϕ,ρ∈�

|aϕ ||aρ |
E([∑m ψ

(m)
0 (ϕ)ψ

(m)
0 (ρ)]21

N[−1,0)≤Ñ )+ (E[∑m ψ
(m)
0 (ϕ)ψ

(m)
0 (ρ)])2

‖ϕ‖∞‖ρ‖∞
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with Ñ :=�β,f0 log(T ). Next,

∑
m

ψ
(m)
0 (ϕ)ψ

(m)
0 (ρ)≤ 2M‖ϕ‖∞‖ρ‖∞

(
1+N2

[−1,0)

)
.

Hence, if N[−1,0) ≤ Ñ =�β,f0 log(T ), for T large enough,

∑
m

ψ
(m)
0 (ϕ)ψ

(m)
0 (ρ)≤�β,M,f0‖ϕ‖∞‖ρ‖∞ log2(T )

and

E

(∑
m

ψ
(m)
0 (ϕ)ψ

(m)
0 (ρ)

)
≤�β,M,f0‖ϕ‖∞‖ρ‖∞ log2(T ).

Hence,

E ≤�β,M,f0 log2(T )
∑

ϕ,ρ∈�

|aϕ ||aρ |E
(∣∣∣∣∑

m

ψ
(m)
0 (ϕ)ψ

(m)
0 (ρ)

∣∣∣∣
)

.

But note that for any f , |ψ(m)
0 (f )| ≤ψ

(m)
0 (|f |) where |f | = ((|μ(m)|, (|g(m)

� |)�=1,...,M)m=1,...,M).
Therefore,

E ≤ �β,M,f0 log2(T )
∑

ϕ,ρ∈�

|aϕ ||aρ |E
(∑

m

ψ
(m)
0

(|ϕ|)ψ(m)
0

(|ρ|))

≤ �β,M,f0 log2(T )
∑
m

E

([∑
ϕ∈�

|aϕ |ψ(m)
0

(|ϕ|)]2)

≤ �β,M,f0 log2(T )
∑
m

E

([
ψ

(m)
0

(∑
ϕ∈�

|aϕ ||ϕ|
)]2)

.

But if ϕ = (μ
(m)
ϕ , ((gϕ)

(m)
� )�)m, then

[
ψ

(m)
0

(∑
ϕ∈�

|aϕ ||ϕ|
)]2

=
[∑

ϕ

|aϕ |μ(m)
ϕ +

M∑
�=1

∫ 0−

−1

∑
ϕ

|aϕ |
∣∣(gϕ)

(m)
�

∣∣(−u)dN(�)
u

]2

.

If one creates artificially a process N(0) with only one point and if we decide that (gϕ)
(m)
0 is the

constant function equal to μ
(m)
ϕ , this can also be rewritten as

[
ψ

(m)
0

(∑
ϕ∈�

|aϕ ||ϕ|
)]2

=
[

M∑
�=0

∫ 0−

−1

∑
ϕ

|aϕ |
∣∣(gϕ)

(m)
�

∣∣(−u)dN(�)
u

]2

.
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Now we apply the Cauchy–Schwarz inequality for the measure
∑

� dN(�), which gives

[
ψ

(m)
0

(∑
ϕ∈�

|aϕ ||ϕ|
)]2

≤ (N[−1,0) + 1)

M∑
�=0

∫ 0−

−1

[∑
ϕ

|aϕ |
∣∣(gϕ)

(m)
�

∣∣(−u)

]2

dN(�)
u .

Consequently,

E ≤ �β,M,f0 log2(T )

M∑
m=1

M∑
�=0

E

(
(N[−1,0) + 1)

∫ 0−

−1

[∑
ϕ

|aϕ |
∣∣(gϕ)

(m)
�

∣∣(−u)

]2

dN(�)
u

)

≤ �β,M,f0 log2(T )

M∑
m=1

M∑
�=0

∑
ϕ,ρ∈�

|aϕ ||aρ |

×E

(∫ 0−

−1
(N[−1,0) + 1)

∣∣(gϕ)
(m)
�

∣∣(−u)
∣∣(gρ)

(m)
�

∣∣(−u)dN(�)
u

)
.

Now let us use the fact that for every x, y ≥ 0, η, θ > 0 that will be chosen later,

xy − ηeθx ≤ y

θ

[
log(y)− log(ηθ)− 1

]
,

with the convention that y log(y) = 0 if y = 0. Let us apply this to x = N[−1,0) + 1 and y =
|(gϕ)

(m)
� |(−u)|(gρ)

(m)
� |(−u). We obtain that

E ≤ �β,M,f0η log2(T )

M∑
m=1

∑
ϕ,ρ∈�

|aϕ ||aρ |E
(
(N[−1,0) + 1)eθ(N[−1,0)+1)

)

+�β,M,f0θ
−1 log2(T )

M∑
m=1

M∑
�=0

∑
ϕ,ρ∈�

|aϕ ||aρ |

×E

(∫ 0−

−1

∣∣(gϕ)
(m)
�

∣∣∣∣(gρ)
(m)
�

∣∣(−u)
[
log
(∣∣(gϕ)

(m)
�

∣∣∣∣(gρ)
(m)
�

∣∣(−u)
)− log(ηθ)− 1

]
dN�

u

)
.

Since for � > 0, dN
(�)
u is stationary, one can replace E(dN

(�)
u ) by �f0 du. Moreover, since

by Proposition 2, N[−1,0) has some exponential moments there exists θ = �f0 such that
E((N[−1,0) + 1)eθ(N[−1,0)+1))=�f0 . With |�| the size of the dictionary, this leads to

E ≤ �β,M,f0η|�| log2(T )‖a‖2
�2

+�β,M,f0 log2(T )

×
M∑

m=1

[ ∑
ϕ,ρ∈�

|aϕ ||aρ |
∣∣μ(m)

ϕ

∣∣∣∣μ(m)
ρ

∣∣[log
(∣∣μ(m)

ϕ

∣∣∣∣μ(m)
ρ

∣∣)− log(ηθ)− 1
]
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+
M∑

�=1

∑
ϕ,ρ∈�

|aϕ ||aρ |
∫ 1

0

∣∣(gϕ)
(m)
�

∣∣∣∣(gρ)
(m)
�

∣∣(u)

× [log
(∣∣(gϕ)

(m)
�

∣∣∣∣(gρ)
(m)
�

∣∣(u)
)− log(ηθ)− 1

]
du

]
.

Consequently, using ‖�‖∞ and r�,

E ≤�β,M,f0η|�| log2(T )‖a‖2
�2
+�β,M,f0 log2(T )r�

[
2 log

(‖�‖∞)− log(ηθ)− 1
]‖a‖2

�2
.

We choose η= |�|−1 and obtain that

E ≤�β,M,f0 log2(T )r�
[
log
(‖�‖∞)+ log

(|�|)]‖a‖2
�2

.

Now, let us choose δ = ω/(log2(T )r�[log(‖�‖∞)+ log(|�|)]) where ω depends only on β,M

and f0 and will be chosen later and let us go back to (7.24):

1

T

∣∣a′Ga − a′E(G)a
∣∣ ≤ �β,M,f0ω‖a‖2

�2

+�β,f0,ωr�
[
log
(‖�‖∞)+ log

(|�|)]
×
∑

ϕ,ρ∈�

|aϕ ||aρ |‖ϕ‖∞‖ρ‖∞ log5(T )

T

≤ �β,M,f0ω‖a‖2
�2
+�β,f0,ω‖a‖2

�2
A�(T ).

Under assumptions of Proposition 5, for T0 large enough and T ≥ T0,

1

T

∣∣a′Ga − a′E(G)a
∣∣≤�β,M,f0ω‖a‖2

�2
.

It is now sufficient to take ω small enough and then T0 large enough to obtain (7.23) with ε < ζ

and Proposition 5 is proved.
Arguments for the proof of Proposition 1 are similar. So we just give a brief sketch of the

proof. Now,

Gϕ1,ϕ2 =
M∑

m=1

∫ 1

0

(
Y

(m)
t

)2
ϕ1
(
t,X(m)

)
ϕ2
(
t,X(m)

)
dt.

Let β > 0. With probability larger than 1− 2M−β ,

1

M

∣∣Gϕ1,ϕ2 −E[Gϕ1,ϕ2 ]
∣∣≤√2βvϕ1,ϕ2 logM

M
+ βbϕ1,ϕ2 logM

3M
,
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with

bϕ1,ϕ2 = ‖ϕ1‖∞‖ϕ2‖∞,

vϕ1,ϕ2 = E

(∫ 1

0

(
Y

(m)
t

)2
ϕ1
(
t,X(m)

)
ϕ2
(
t,X(m)

)
dt

)2

≤D‖ϕ1‖∞‖ϕ2‖∞
〈|ϕ1|, |ϕ2|

〉
,

where 〈·, ·〉 denotes the standard L2-scalar product. We have just used the classical Bernstein
inequality combined with (4.2). So, with probability larger than 1− 2|�|2M−β , for any vector a

and any δ > 0,∣∣a′Ga −E
[
a′Ga

]∣∣ ≤ �D,β

∑
ϕ1,ϕ2

|aϕ1 ||aϕ2 |
[
δM
〈|ϕ1|, |ϕ2|

〉+ δ−1 logM‖ϕ1‖∞‖ϕ2‖∞
]

≤ �D,β

(
δMr� + δ−1‖�‖2∞|�| logM

)‖a‖2
�2

.

We choose δ =
√
‖�‖2∞|�| logM

Mr�
, so that with probability larger than 1− 2|�|2M−β ,

1

M

∣∣a′Ga −E
[
a′Ga

]∣∣≤�D,β

√
‖�‖2∞r�|�| logM

M
‖a‖2

�2
.

We use (4.1) and (4.3) to conclude as for Proposition 5 and we obtain Proposition 1.

7.5.2. Proof of Corollary 3

First, let us cut [−1, T ] in �T � + 2 intervals I ’s of the type [a, b) such that the first �T � + 1
intervals are of length 1 and the last one is of length strictly smaller than 1 (eventually it is just a
singleton). Then, any interval of the type [t−1, t] for t in [0, T ] is included into the union of two
such intervals. Therefore, the event where all the NI ’s are smaller than u=N /2 is included into

N . It remains to control the probability of the complementary of this event. By stationarity,
all the first NI ’s have the same distribution and satisfy Proposition 2. The last one can also be
viewed as the truncation of a stationary point process to an interval of length smaller than 1.
Therefore, the exponential inequality of Proposition 2 also applies to the last interval. It remains
to apply �T � + 2 times this exponential inequality and to use a union bound.

7.5.3. Proof of Corollary 4

As in the proof of Proposition 3, we use the notation �. The nonasymptotic part of the result is
just a pure application of Theorem 2, with the choices of Bϕ and Vϕ given by (5.5) and (5.6).
The next step consists in controlling the martingale ψ(ϕ)2 • (N −�)T on 
V,B . To do so, let us
apply (7.7) to H such that for any m,

H
(m)
t =ψ

(m)
t (ϕ)21t≤τ ′ ,

with B = B2
ϕ and τ = T and where τ ′ is defined in (7.1) (see the proof of Theorem 2). The

assumption to be fulfilled is checked as in the proof of Theorem 2. But as previously, on 
V,B ,
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H • (N−�)T =ψ(ϕ)2 • (N−�)T and also H 2 •�T =ψ(ϕ)4 •�T . Moreover, on 
N ⊂
V,B

H 2 •�T =ψ(ϕ)4 •�T ≤ v := T M
(

max
m

ν(m) +N max
m,�

h
(m)
�

)
B4

ϕ.

Recall that x = α log(T ). So on 
V,B , with probability larger than 1− (M +KM2)e−x = 1−
(M +KM2)T −α , one has that for all ϕ ∈�,

ψ(ϕ)2 •NT ≤ψ(ϕ)2 •�T +
√

2vx + B2
ϕx

3
.

So that for all ϕ ∈�,

ψ(ϕ)2 •NT ≤�M,f0

[
N‖ϕ‖2

T + ‖�‖2∞N 2
√

TN log(T )
]
.

Also, since N = log2(T ), one can apply Corollary 3, with β = α. We finally choose c as in
Proposition 5. This leads to the result.
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