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In this paper, the asymptotic behavior of the conditional least squares (CLS) estimators of the offspring
means (α,β) and of the criticality parameter � := α + β for a 2-type critical doubly symmetric positively
regular Galton–Watson branching process with immigration is described.
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1. Introduction

Asymptotic behavior of CLS estimators for critical Galton–Watson processes is available only
for single-type processes, see Wei and Winnicki [20,21] and Winnicki [22], see also the mono-
graph of Guttorp [4]. In the present paper, the asymptotic behavior of the CLS estimators of the
offspring means and criticality parameter for 2-type critical doubly symmetric positively regu-
lar Galton–Watson process with immigration is described, see Theorem 3.1. This study can be
considered as the first step of examining the asymptotic behavior of the CLS estimators of param-
eters of multitype critical branching processes with immigration. Shete and Sriram [18] obtained
convergence results for weighted CLS estimators in the supercritical case.

Let us recall the results for a single-type Galton–Watson branching process (Xk)k∈Z+ with
immigration and with initial value X0 = 0. Suppose that it is critical, that is, the offspring mean

equals 1. Wei and Winnicki [20] proved a functional limit theorem X (n) D−→X as n → ∞, where
X (n)

t := n−1X�nt� for t ∈ R+, n ∈ N, where �x� denotes the (lower) integer part of x ∈ R, and
(Xt )t∈R+ is a (nonnegative) diffusion process with initial value X0 = 0 and with generator

Lf (x) = mεf
′(x) + 1

2Vξxf
′′(x), f ∈ C∞

c (R+),

where mε denotes the immigration mean, Vξ denotes the offspring variance, and C∞
c (R+) de-

notes the space of infinitely differentiable functions on R+ with compact support. The process
(Xt )t∈R+ can also be characterized as the unique strong solution of the stochastic differential
equation (SDE)

dXt = mε dt +
√

VξX+
t dWt , t ∈ R+,
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with initial value X0 = 0, where (Wt )t∈R+ is a standard Wiener process, and x+ denotes the pos-
itive part of x ∈ R. Note that this so-called square-root process is also known as Feller diffusion,
or Cox–Ingersoll–Ross model in financial mathematics (see Musiela and Rutkowski [15], page
290). In fact, (4V −1

ξ Xt )t∈R+ is the square of a 4V −1
ξ mε-dimensional Bessel process started at 0

(see Revuz and Yor [17], XI.1.1).
Assuming that the immigration mean mε is known, for the conditional least squares estimator

(CLSE)

α̂n(X1, . . . ,Xn) =
∑n

k=1 Xk−1(Xk − mε)∑n
k=1 X2

k−1

of the offspring mean based on the observations X1, . . . ,Xn, one can derive

n
(̂
αn(X1, . . . ,Xn) − 1

) D−→
∫ 1

0 Xt d(Xt − mεt)∫ 1
0 X 2

t dt
as n → ∞.

(Wei and Winnicki [21] contains a similar result for the CLS estimator of the offspring mean
when the immigration mean is unknown.)

In Section 2, we recall some preliminaries on 2-type Galton–Watson models with immigration.
Section 3 contains our main results. Sections 4, 5, 6 and 7 contain the proofs. Appendix A is
devoted to the CLS estimators. In Appendix B, we present estimates for the moments of the
processes involved. Appendices C and D are for a version of the continuous mapping theorem
and for convergence of random step processes, respectively. For a detailed discussion of the
whole paper, see Ispány et al. [8].

2. Preliminaries on 2-type Galton–Watson models with
immigration

Let Z+, N, R and R+ denote the set of nonnegative integers, positive integers, real numbers
and non-negative real numbers, respectively. Every random variable will be defined on a fixed
probability space (�,A,P).

For each k, j ∈ Z+ and i, � ∈ {1,2}, the number of individuals of type i in the kth generation
will be denoted by Xk,i , the number of type � offsprings produced by the j th individual who is
of type i belonging to the (k − 1)th generation will be denoted by ξk,j,i,�, and the number of type
i immigrants in the kth generation will be denoted by εk,i . Then

[
Xk,1
Xk,2

]
=

Xk−1,1∑
j=1

[
ξk,j,1,1
ξk,j,1,2

]
+

Xk−1,2∑
j=1

[
ξk,j,2,1
ξk,j,2,2

]
+
[

εk,1
εk,2

]
, k ∈N. (2.1)

Here {X0, ξ k,j,i ,εk : k, j ∈N, i ∈ {1,2}} are supposed to be independent, where

Xk :=
[

Xk,1
Xk,2

]
, ξ k,j,i :=

[
ξk,j,i,1
ξk,j,i,2

]
, εk :=

[
εk,1
εk,2

]
.
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Moreover, {ξ k,j,1 : k, j ∈ N}, {ξ k,j,2 : k, j ∈ N} and {εk : k ∈ N} are supposed to consist of iden-
tically distributed random vectors.

We suppose E(‖ξ1,1,1‖2) < ∞, E(‖ξ1,1,2‖2) < ∞ and E(‖ε1‖2) < ∞. Introduce the notations

mξ i
:= E(ξ1,1,i ) ∈R

2+, mξ := [ mξ1
mξ2

] ∈ R
2×2+ ,

Vξ i
:= Var(ξ1,1,i ) ∈R

2×2, Vξ := 1
2 (Vξ1

+ Vξ2
) ∈ R

2×2,

mε := E(ε1) ∈R
2+, Vε := Var(ε1) ∈ R

2×2.

Note that many authors define the offspring mean matrix as m	
ξ . For k ∈ Z+, let Fk :=

σ(X0,X1, . . . ,Xk). By (2.1),

E(Xk|Fk−1) = Xk−1,1mξ1
+ Xk−1,2mξ2

+ mε = mξ Xk−1 + mε. (2.2)

Consequently, E(Xk) = mξE(Xk−1) + mε , k ∈ N, which implies

E(Xk) = mk
ξE(X0) +

k−1∑
j=0

mj

ξ mε, k ∈N. (2.3)

Hence, the offspring mean matrix mξ plays a crucial role in the asymptotic behavior of the se-
quence (Xk)k∈Z+ . Since mξ has nonnegative entries, the Frobenius–Perron theorem (see, e.g.,
Horn and Johnson [7], Theorems 8.2.11 and 8.5.1) describes the behavior of the powers mk

ξ as
k → ∞. According to this behavior, a 2-type Galton–Watson process (Xk)k∈Z+ with immigra-
tion is referred to respectively as subcritical, critical or supercritical if � < 1, � = 1 or � > 1,
where � denotes the spectral radius of the offspring mean matrix mξ (see, e.g., Athreya and Ney
[1] or Quine [16]). We will consider doubly symmetric 2-type Galton–Watson processes with
immigration, when the offspring mean matrix has the form

mξ :=
[

α β

β α

]
. (2.4)

Its spectral radius is � = α + β , which will be called criticality parameter. We will focus only
on positively regular doubly symmetric 2-type Galton–Watson processes with immigration, that
is, when there is a positive integer k ∈ N such that the entries of mk

ξ are positive (see Kesten and
Stigum [13]), which is equivalent with α > 0 and β > 0.

For the sake of simplicity, we consider a zero start Galton–Watson process with immigration,
that is, we suppose X0 = 0. In the sequel, we always assume mε 
= 0, otherwise Xk = 0 for all
k ∈N.

3. Main results

In order to find CLS estimators of the criticality parameter � = α + β , we introduce a further
parameter δ := α − β . Then α = (� + δ)/2 and β = (� − δ)/2, thus the recursion (4.2) can be
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written in the form

Xk = 1

2

[
� + δ � − δ

� − δ � + δ

]
Xk−1 + Mk + mε, k ∈ N.

For each n ∈ N, a CLS estimator (�̂n, δ̂n) of (�, δ) based on a sample X1, . . . ,Xn can be obtained
by minimizing the sum of squares

n∑
k=1

∥∥∥∥Xk − 1

2

[
� + δ � − δ

� − δ � + δ

]
Xk−1 − mε

∥∥∥∥2

with respect to (�, δ) over R2, and it has the form

�̂n :=
∑n

k=1〈1,xk − mε〉〈1,xk−1〉∑n
k=1〈1,xk−1〉2

, (3.1)

δ̂n :=
∑n

k=1〈̃u,xk − mε〉〈̃u,xk−1〉∑n
k=1〈̃u,xk−1〉2

(3.2)

on the set Hn ∩ H̃n, where

1 :=
[

1
1

]
∈ R

2, ũ :=
[

1
−1

]
∈R

2,

and

Hn :=
{

(x1, . . . ,xn) ∈ (
R

2)n :
n∑

k=1

〈1,xk−1〉2 > 0

}
, (3.3)

H̃n :=
{

(x1, . . . ,xn) ∈ (
R

2)n :
n∑

k=1

〈̃u,xk−1〉2 > 0

}
, (3.4)

where x0 := 0 is the zero vector in R
2. In a natural way, we extend the CLS estimators �̂n and δ̂n

to the set Hn and H̃n, respectively. Moreover, for each n ∈ N, any CLS estimator (̂αn, β̂n) of the
offspring means (α,β) based on a sample X1, . . . ,Xn has the form[

α̂n

β̂n

]
= 1

2

[
1 1
1 −1

][
�̂n

δ̂n

]
, (3.5)

whenever the sample belongs to the set Hn ∩ H̃n. For the proof see Ispány et al. [8], Lemma A.1.
In what follows, we always assume that (Xk)k∈Z+ is a 2-type doubly symmetric Galton–

Watson process with offspring means (α,β) ∈ (0,1)2 such that α + β = 1 (hence it is crit-
ical and positively regular), X0 = 0, E(‖ξ1,1,1‖8) < ∞, E(‖ξ1,1,2‖8) < ∞, E(‖ε1‖8) < ∞,
and mε 
= 0. Then limn→∞ P((X1, . . . ,Xn) ∈ Hn) = 1. If 〈Vξ ũ, ũ〉 > 0, or if 〈Vξ ũ, ũ〉 = 0 and
E(〈̃u,ε1〉2) > 0, then limn→∞ P((X1, . . . ,Xn) ∈ H̃n) = 1, see Proposition A.3.
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Let (Yt )t∈R+ be the unique strong solution of the stochastic differential equation (SDE)

dYt = 〈1,mε〉dt +
√

〈Vξ 1,1〉Y+
t dWt , t ∈ R+, Y0 = 0, (3.6)

where (Wt )t∈R+ is a standard Wiener process.

Theorem 3.1. We have

n(�̂n − 1)
D−→

∫ 1
0 Yt d(Yt − 〈1,mε〉t)∫ 1

0 Y2
t dt

, as n → ∞. (3.7)

If 〈Vξ 1,1〉 = 0, then

n3/2(�̂n − 1)
D−→ N

(
0,

3〈Vε1,1〉
〈1,mε〉2

)
, as n → ∞. (3.8)

If 〈Vξ ũ, ũ〉 > 0, then[
n1/2(̂αn − α)

n1/2(β̂n − β)

]
D−→√

αβ

∫ 1
0 Yt dW̃t∫ 1

0 Yt dt

[
1

−1

]
, as n → ∞, (3.9)

where (W̃t )t∈R+ is a standard Wiener process, independent from (Wt )t∈R+ .
If 〈Vξ ũ, ũ〉 = 0 and E(〈̃u,ε1〉2) > 0, then[

n1/2(̂αn − α)

n1/2(β̂n − β)

]
D−→ N

(
0,

〈Vεũ, ũ〉
4E(〈̃u,ε1〉2)

)[
1

−1

]
, as n → ∞. (3.10)

Remark 3.2. If 〈Vξ ũ, ũ〉 > 0 and 〈Vξ 1,1〉 = 0 then in (3.9) we have

√
αβ

∫ 1
0 Yt dW̃t∫ 1

0 Yt dt

[
1

−1

]
D=N

(
0,

4

3
αβ

)[
1

−1

]
.

Remark 3.3. Note that the assumption 〈Vξ 1,1〉 = 0 is fulfilled if and only if ξ1,1,1,1 + ξ1,1,1,2
a.s.=

1 and ξ1,1,2,1 + ξ1,1,2,2
a.s.= 1, that is, the total number of offsprings produced by an individual

of type 1 is 1, and the same holds for individuals of type 2. In a similar way, the assumption
〈Vξ ũ, ũ〉 = 0 is fulfilled if and only if α = β = 1

2 , ξ1,1,1,1
a.s.= ξ1,1,1,2 and ξ1,1,2,1

a.s.= ξ1,1,2,2, that
is, the number of offsprings of type 1 and of type 2 produced by an individual of type 1 are the
same, and the same holds for individuals of type 2. Observe that the assumptions 〈Vξ 1,1〉 = 0
and 〈Vξ ũ, ũ〉 = 0 can not be fulfilled at the same time.

Condition E(〈̃u,ε1〉2) > 0 fails to hold if and only if ε1,1 − ε1,2
a.s.= 0, and, under the as-

sumption 〈Vξ ũ, ũ〉 = 0, this implies Xk,1
a.s.= Xk,2 (see Lemma A.2), when P((X1, . . . ,Xn) ∈

Hn ∩ H̃n) = 0 for all n ∈ N, and hence the LSE of the offspring means (α,β) is not defined
uniquely, see Appendix A.
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Remark 3.4. For each n ∈N, consider the random step process

X (n)
t := n−1X�nt�, t ∈ R+.

Theorem 5.1 implies convergence (5.3), hence

X (n) D−→X := 1
2Y1 as n → ∞, (3.11)

where the process (Yt )t∈R+ is the unique strong solution of the SDE (3.6) with initial value
Y0 = 0. Note that convergence (3.11) holds even if 〈Vξ 1,1〉 = 0, when the unique strong solution
of (3.6) is the deterministic function Yt = 〈1,mε〉t , t ∈R+.

The SDE (3.6) has a unique strong solution (Y(y)
t )t∈R+ for all initial values Y(y)

0 = y ∈ R, and

if y ≥ 0, then Y(y)
t is nonnegative for all t ∈R+ with probability one, hence Y+

t may be replaced
by Yt under the square root in (3.6), see, for example, Barczy et al. [3], Remark 3.3.

Remark 3.5. We note that in the critical positively regular case the limit distributions for the CLS
estimators of the offspring means (α,β) are concentrated on the line {(u, v) ∈ R

2 : u+v = 0}. In
order to handle the difficulty caused by this degeneracy, we use an appropriate reparametrization.
Surprisingly, the scaling factor of the CLS estimators of (α,β) is always

√
n, which is the same

as in the subcritical case. The reason of this strange phenomenon can be understood from the
joint asymptotic behavior of the numerator and the denominator of the CLS estimators given in
Theorems 4.1, 4.2 and 4.3. The scaling factor of the estimators of the criticality parameter � is
usually n, except in a particular special case of 〈Vξ 1,1〉 = 0, when it is n3/2. One of the decisive
tools in deriving the needed asymptotic behavior is a good bound for the moments of the involved
processes, see Corollary B.6.

Remark 3.6. The shape of
∫ 1

0 Yt d(Yt − 〈1,mε〉t)/
∫ 1

0 Y2
t dt in (3.7) is similar to the limit dis-

tribution of the Dickey–Fuller statistics for unit root test of AR(1) time series, see, for exmple,
Hamilton [6], formulas 17.4.2 and 17.4.7, or Tanaka [19], (7.14) and Theorem 9.5.1. The shape of∫ 1

0 Yt dW̃t /
∫ 1

0 Yt dt in (3.9) is also similar, but it contains two independent standard Wiener pro-
cesses. This phenomenon is very similar to the appearance of two independent standard Wiener
processes in limit theorems for CLS estimators of the variance of the offspring and immigration
distributions for critical branching processes with immigration in Winnicki [22], Theorems 3.5
and 3.8. Finally, note that the limit distribution of the CLS estimator of the criticality param-
eter � is non-symmetric and non-normal in (3.7), and symmetric normal in (3.8), but the limit
distribution of the CLS estimator of the offspring means (α,β) is always symmetric, although
non-normal in (3.9).

Remark 3.7. The eighth order moment conditions on the offspring and immigration distributions
in Theorem 3.1 seem to be too strong, but we note that the process (Xk)k∈Z+ can be considered
as a heteroscedastic time series. Indeed, Xk = mξ Xk−1 + mε + Mk , see (4.2), and by (B.1),
E(MkM	

k |Fk−1) = Xk−1,1Vξ1
+Xk−1,2Vξ2

+ Vε , k ∈ N. That is why we think that the behavior
of the process (Xk)k∈Z+ is similar to GARCH models, where, even in the stable case, high mo-
ment conditions are needed for convergence of estimators such as the quasi-maximum likelihood
estimator in Hall and Yao [5] or the Whittle estimator in Mikosch and Straumann [14].
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4. Proof of the main results

Applying (2.2), let us introduce the sequence

Mk := Xk −E(Xk|Fk−1) = Xk − mξ Xk−1 − mε, k ∈ N, (4.1)

of martingale differences with respect to the filtration (Fk)k∈Z+ . By (4.1), the process (Xk)k∈Z+
satisfies the recursion

Xk = mξ Xk−1 + mε + Mk, k ∈N. (4.2)

Next, let us introduce the sequence

Uk := 〈1,Xk〉 = Xk,1 + Xk,2, k ∈ Z+.

One can observe that Uk ≥ 0 for all k ∈ Z+, and

Uk = Uk−1 + 〈1,mε〉 + 〈1,Mk〉, k ∈ N, (4.3)

since 〈1,mξ Xk−1〉 = 1	mξ Xk−1 = 1	Xk−1 = Uk−1, because � = α + β = 1 implies that 1 is a
left eigenvector of the mean matrix mξ belonging to the eigenvalue 1. Hence, (Uk)k∈Z+ is a non-
negative unstable AR(1) process with positive drift 〈1,mε〉 and with heteroscedastic innovation
(〈1,Mk〉)k∈N. Moreover, let

Vk := 〈̃u,Xk〉 = Xk,1 − Xk,2, k ∈ Z+.

Note that we have

Vk = (α − β)Vk−1 + 〈̃u,mε〉 + 〈̃u,Mk〉, k ∈N, (4.4)

since 〈̃u,mξ Xk−1〉 = ũ	mξ Xk−1 = (α − β)̃u	Xk−1 = (α − β)Vk−1, because ũ is a left eigen-
vector of the mean matrix mξ belonging to the eigenvalue α −β . Thus (Vk)k∈N is a stable AR(1)

process with drift 〈̃u,mε〉 and with heteroscedastic innovation (〈̃u,Mk〉)k∈N. Observe that

Xk,1 = (Uk + Vk)/2, Xk,2 = (Uk − Vk)/2, k ∈ Z+. (4.5)

By (3.1), for each n ∈ N, we have

�̂n − 1 =
∑n

k=1〈1,Mk〉Uk−1∑n
k=1 U2

k−1

,

whenever (X1, . . . ,Xn) ∈ Hn, where Hn, n ∈ N, are given in (3.3). By (3.2), for each n ∈ N, we
have

δ̂n − δ =
∑n

k=1〈̃u,Mk〉Vk−1∑n
k=1 V 2

k−1

, (4.6)

whenever (X1, . . . ,Xn) ∈ H̃n, where H̃n, n ∈ N, are given in (3.4).
Theorem 3.1 will follow from the following statements by the continuous mapping theorem.
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Theorem 4.1. We have, as n → ∞,

n∑
k=1

⎡⎢⎢⎣
n−3U2

k−1
n−2V 2

k−1
n−2〈1,Mk〉Uk−1

n−3/2〈̃u,Mk〉Vk−1

⎤⎥⎥⎦ D−→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫ 1

0
Y2

t dt

(4αβ)−1〈Vξ ũ, ũ〉 ∫ 1
0 Yt dt∫ 1

0
Yt d

(
Yt − 〈1,mε〉t

)
(4αβ)−1/2〈Vξ ũ, ũ〉

∫ 1

0
Yt dW̃t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Theorem 4.2. If 〈Vξ 1,1〉 = 0 then, as n → ∞,

n∑
k=1

⎡⎢⎢⎣
n−3U2

k−1
n−2V 2

k−1
n−3/2〈1,Mk〉Uk−1
n−3/2〈̃u,Mk〉Vk−1

⎤⎥⎥⎦ D−→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫ 1

0
Y2

t dt

(4αβ)−1〈Vξ ũ, ũ〉
∫ 1

0
Yt dt

〈Vε1,1〉1/2
∫ 1

0 Yt d ˜̃W t

(4αβ)−1/2〈Vξ ũ, ũ〉
∫ 1

0
Yt dW̃t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where ( ˜̃W t )t∈R+ is a standard Wiener process, independent from (Wt )t∈R+ and (W̃t )t∈R+ .

Note that (Yt )t∈R+ is now the deterministic function Yt = 〈1,mε〉t , t ∈ R+, hence
∫ 1

0 Y2
t dt =

〈1,mε〉2/3,
∫ 1

0 Yt dt = 〈1,mε〉/2,
∫ 1

0 Yt d ˜̃W t = 〈1,mε〉
∫ 1

0 t d ˜̃W t and
∫ 1

0 Yt dW̃t =
〈1,mε〉

∫ 1
0 t dW̃t .

Theorem 4.3. If 〈Vξ ũ, ũ〉 = 0 then, as n → ∞,

n∑
k=1

⎡⎢⎢⎣
n−3U2

k−1
n−1V 2

k−1
n−2〈1,Mk〉Uk−1

n−1/2〈̃u,Mk〉Vk−1

⎤⎥⎥⎦ D−→

⎡⎢⎢⎢⎢⎢⎢⎣

∫ 1

0
Y2

t dt

E
(〈̃u,ε1〉2

)∫ 1

0
Yt d

(
Yt − 〈1,mε〉t

)
[〈Vεũ, ũ〉E(〈̃u,ε1〉2

)]1/2W̃1

⎤⎥⎥⎥⎥⎥⎥⎦ .

5. Proof of Theorem 4.1

Consider the sequence of stochastic processes

Z(n)
t :=

⎡⎣M(n)
t

N (n)
t

P(n)
t

⎤⎦ :=
�nt�∑
k=1

Z(n)
k ,
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with

Z(n)
k :=

[
n−1Mk

n−2MkUk−1
n−3/2MkVk−1

]
=
[

n−1

n−2Uk−1
n−3/2Vk−1

]
⊗ Mk

for t ∈ R+ and k,n ∈ N, where ⊗ denotes Kronecker product of matrices. Theorem 4.1 follows
from Lemma A.1 and the following theorem (this will be explained after Theorem 5.1).

Theorem 5.1. We have

Z(n) D−→ Z, as n → ∞, (5.1)

where the process (Zt )t∈R+ with values in (R2)3 is the unique strong solution of the SDE

dZt = γ (t,Zt )

[
dWt

dW̃t

]
, t ∈R+, (5.2)

with initial value Z0 = 0, where (Wt )t∈R+ and (W̃t )t∈R+ are independent 2-dimensional stan-
dard Wiener processes, and γ :R+ × (R2)3 → (R2×2)3×2 is defined by

γ (t,x) :=

⎡⎢⎢⎢⎣
〈
1, (x1 + tmε)

+〉1/2V
1/2
ξ 0〈

1, (x1 + tmε)
+〉3/2V

1/2
ξ 0

0

( 〈Vξ ũ, ũ〉
4αβ

)1/2

〈1,x1 + tmε〉V1/2
ξ

⎤⎥⎥⎥⎦
for t ∈R+ and x = (x1,x2,x3) ∈ (R2)3.

(Note that the statement of Theorem 5.1 holds even if 〈Vξ ũ, ũ〉 = 0, when the last 2-
dimensional coordinate process of the unique strong solution (Zt )t∈R+ is 0.)

The SDE (5.2) has the form

dZt =
[dMt

dNt

dPt

]
=

⎡⎢⎢⎢⎣
〈
1, (Mt + tmε)

+〉1/2V
1/2
ξ dWt〈

1, (Mt + tmε)
+〉3/2V

1/2
ξ dWt( 〈Vξ ũ, ũ〉

4αβ

)1/2

〈1,Mt + tmε〉V1/2
ξ dW̃t

⎤⎥⎥⎥⎦ , t ∈ R+.

Ispány and Pap [9] proved that the first 2-dimensional equation of this SDE has a unique strong
solution (Mt )t∈R+ with initial value M0 = 0, and (Mt + tmε)

+ may be replaced by Mt + tmε

(see the proof of [9, Theorem 3.1]). Thus, the SDE (5.2) has a unique strong solution with initial
value Z0 = 0, and we have

Zt =
[Mt

Nt

Pt

]
=

⎡⎢⎢⎢⎢⎢⎢⎣

∫ t

0
〈1,Mt + tmε〉1/2V

1/2
ξ dWs∫ t

0
〈1,Mt + tmε〉dMs( 〈Vξ ũ, ũ〉

4αβ

)1/2 ∫ t

0
〈1,Mt + tmε〉V1/2

ξ dW̃s

⎤⎥⎥⎥⎥⎥⎥⎦ , t ∈R+.
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By the method of the proof of X (n) D−→ X in Theorem 3.1 in Barczy et al. [3], applying
Lemma C.2, one can easily derive[

X (n)

Z(n)

]
D−→

[
X
Z

]
, as n → ∞, (5.3)

where

X (n)
t := n−1X�nt�, Xt := 1

2 〈1,Mt + tmε〉1, t ∈R+, n ∈N,

see Ispány et al. [8], page 10. Now, with the process

Yt := 〈1,Xt 〉 = 〈1,Mt + tmε〉, t ∈ R+,

we have

Xt = 1
2Yt1, t ∈ R+.

By Itô’s formula, we obtain that the process (Yt )t∈R+ satisfies the SDE (3.6). Next, similarly to
the proof of (A.2), by Lemma C.3, convergence (5.3) and Lemma A.1 with Uk−1 = 〈1,Xk−1〉
implies

n∑
k=1

⎡⎢⎢⎣
n−3U2

k−1
n−2V 2

k−1
n−2〈1,Mk〉Uk−1

n−3/2〈̃u,Mk〉Vk−1

⎤⎥⎥⎦ D−→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫ 1

0
〈1,Xt 〉2 dt

〈Vξ ũ, ũ〉
4αβ

∫ 1

0
〈1,Xt 〉dt∫ 1

0
Yt d〈1,Mt 〉( 〈Vξ ũ, ũ〉

4αβ

)1/2 ∫ 1

0
Yt d

〈̃
u,V

1/2
ξ W̃t

〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

as n → ∞. This limiting random vector can be written in the form as given in Theorem 4.1, since

〈1,Xt 〉 = Yt , 〈1,Mt 〉 = 〈1,Xt 〉 − 〈1,mε〉t = Yt − 〈1,mε〉t and 〈̃u,V
1/2
ξ W̃t 〉 = 〈Vξ ũ, ũ〉1/2W̃t

for all t ∈ R+ with a (one-dimensional) standard Wiener process (W̃t )t∈R+ .

Proof of Theorem 5.1. In order to show convergence Z(n) D−→Z , we apply Theorem D.1 with
the special choices U := Z , U(n)

k := Z(n)
k , n, k ∈ N, (F (n)

k )k∈Z+ := (Fk)k∈Z+ and the function γ

which is defined in Theorem 5.1. Note that the discussion after Theorem 5.1 shows that the SDE
(5.2) admits a unique strong solution (Zz

t )t∈R+ for all initial values Zz
0 = z ∈ (R2)3.

Now we show that conditions (i) and (ii) of Theorem D.1 hold. The conditional variance
E(Z(n)

k (Z(n)
k )	|Fk−1) has the form⎡⎣ n−2 n−3Uk−1 n−5/2Vk−1

n−3Uk−1 n−4U2
k−1 n−7/2Uk−1Vk−1

n−5/2Vk−1 n−7/2Uk−1Vk−1 n−3V 2
k−1

⎤⎦⊗ VMk
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for n ∈N, k ∈ {1, . . . , n}, with VMk
:= E(MkM	

k |Fk−1), and γ (s,Z(n)
s )γ (s,Z(n)

s )	 has the form

⎡⎢⎢⎣
〈
1,M(n)

s + smε

〉 〈
1,M(n)

s + smε

〉2 0〈
1,M(n)

s + smε

〉2 〈
1,M(n)

s + smε

〉3 0

0 0
〈Vξ ũ, ũ〉

4αβ

〈
1,M(n)

s + smε

〉2
⎤⎥⎥⎦⊗ Vξ

for s ∈ R+, where we used that 〈1,M(n)
s + smε〉+ = 〈1,M(n)

s + smε〉, s ∈ R+, n ∈ N. Indeed,
by (4.1), we get

〈
1,M(n)

s + smε

〉 = 1

n

�ns�∑
k=1

〈1,Xk − mξ Xk−1 − mε〉 + 〈1, smε〉

= 1

n
〈1,X�ns�〉 + ns − �ns�

n
〈1,mε〉 (5.4)

= 1

n
U�ns� + ns − �ns�

n
〈1,mε〉 ∈ R+

for s ∈ R+, n ∈ N, since 1	mξ = 1	 implies 〈1,mξ Xk−1〉 = 1	mξ Xk−1 = 1	Xk−1 =
〈1,Xk−1〉.

In order to check condition (i) of Theorem D.1, we need to prove that for each T > 0, as
n → ∞,

sup
t∈[0,T ]

∥∥∥∥∥ 1

n2

�nt�∑
k=1

VMk
−
∫ t

0

〈
1,M(n)

s + smε

〉
Vξ ds

∥∥∥∥∥ P−→ 0, (5.5)

sup
t∈[0,T ]

∥∥∥∥∥ 1

n3

�nt�∑
k=1

Uk−1VMk
−
∫ t

0

〈
1,M(n)

s + smε

〉2Vξ ds

∥∥∥∥∥ P−→ 0, (5.6)

sup
t∈[0,T ]

∥∥∥∥∥ 1

n4

�nt�∑
k=1

U2
k−1VMk

−
∫ t

0

〈
1,M(n)

s + smε

〉3Vξ ds

∥∥∥∥∥ P−→ 0, (5.7)

sup
t∈[0,T ]

∥∥∥∥∥ 1

n3

�nt�∑
k=1

V 2
k−1VMk

− 〈Vξ ũ, ũ〉
4αβ

∫ t

0

〈
1,M(n)

s + smε

〉2Vξ ds

∥∥∥∥∥ P−→ 0, (5.8)

sup
t∈[0,T ]

∥∥∥∥∥ 1

n5/2

�nt�∑
k=1

Vk−1VMk

∥∥∥∥∥ P−→ 0, (5.9)

sup
t∈[0,T ]

∥∥∥∥∥ 1

n7/2

�nt�∑
k=1

Uk−1Vk−1VMk

∥∥∥∥∥ P−→ 0. (5.10)
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First, we show (5.5). By (5.4),
∫ t

0 〈1,M(n)
s + smε〉ds has the form

1

n2

�nt�−1∑
k=1

Uk + nt − �nt�
n2

U�nt� + �nt� + (nt − �nt�)2

2n2
〈1,mε〉.

Using Lemma B.1, we obtain

VMk
= Uk−1Vξ + 1

2Vk−1(Vξ1
− Vξ2

) + Vε. (5.11)

Thus, in order to show (5.5), it suffices to prove

n−2
�nT �∑
k=1

|Vk| P−→ 0, n−2 sup
t∈[0,T ]

U�nt�
P−→ 0, (5.12)

n−2 sup
t∈[0,T ]

[�nt� + (
nt − �nt�)2]→ 0, (5.13)

as n → ∞. Using (B.4) with (�, i, j) = (2,1,1) and (B.5) with (�, i, j) = (2,1,0), we have
(5.12). Clearly, (5.13) follows from |nt − �nt�| ≤ 1, n ∈ N, t ∈ R+, thus we conclude (5.5). The
convergences (5.6) and (5.7) can be checked in a similar way.

Next, we turn to prove (5.8). By (5.11) and (B.4), we get

n−3 sup
t∈[0,T ]

∥∥∥∥∥
�nt�∑
k=1

Uk−1VMk
−

�nt�∑
k=1

U2
k−1Vξ

∥∥∥∥∥ P−→ 0, (5.14)

as n → ∞ for all T > 0. Using (5.6), in order to prove (5.8), it is sufficient to show that

n−3 sup
t∈[0,T ]

∥∥∥∥∥
�nt�∑
k=1

V 2
k−1VMk

− 〈Vξ ũ, ũ〉
4αβ

�nt�∑
k=1

U2
k−1Vξ

∥∥∥∥∥ P−→ 0, (5.15)

as n → ∞ for all T > 0. By (5.11),
∑�nt�

k=1 V 2
k−1VMk

has the form

�nt�∑
k=1

Uk−1V
2
k−1Vξ + 1

2

�nt�∑
k=1

V 3
k−1(Vξ1

− Vξ2
) +

�nt�∑
k=1

V 2
k−1Vε.

Using (B.4) with (�, i, j) = (6,0,3) and (�, i, j) = (4,0,2), we have

n−3
�nT �∑
k=1

|Vk|3 P−→ 0, n−3
�nT �∑
k=1

V 2
k

P−→ 0, as n → ∞,

hence (5.15) will follow from

n−3 sup
t∈[0,T ]

∥∥∥∥∥
�nt�∑
k=1

Uk−1V
2
k−1 − 〈Vξ ũ, ũ〉

4αβ

�nt�∑
k=1

U2
k−1

∥∥∥∥∥ P−→ 0, (5.16)
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as n → ∞ for all T > 0. By the method of the proof of Lemma A.1, we obtain a decomposition
of

∑�nt�
k=1 Uk−1V

2
k−1 as a sum of a martingale and some negligible terms, namely,

�nt�∑
k=1

Uk−1V
2
k−1 = 1

4αβ

�nt�∑
k=2

[
Uk−1V

2
k−1 −E

(
Uk−1V

2
k−1|Fk−2

)]

+ 〈Vξ ũ, ũ〉
4αβ

�nt�∑
k=2

U2
k−2 − (α − β)2

4αβ
U�nt�−1V

2�nt�−1 + O(n)

+ lin. comb. of
�nt�∑
k=2

Uk−2Vk−2,

�nt�∑
k=2

V 2
k−2,

�nt�∑
k=2

Uk−2 and
�nt�∑
k=2

Vk−2.

Using (B.6) with (�, i, j) = (8,1,2) we have

n−3 sup
t∈[0,T ]

∣∣∣∣∣
�nt�∑
k=2

[
Uk−1V

2
k−1 −E

(
Uk−1V

2
k−1

∣∣∣∣∣Fk−2
)]| P−→ 0, as n → ∞.

Thus, in order to show (5.16), it suffices to prove

n−3
�nT �∑
k=1

|UkVk| P−→ 0, n−3
�nT �∑
k=1

V 2
k

P−→ 0, (5.17)

n−3
�nT �∑
k=1

Uk
P−→ 0, n−3

�nT �∑
k=1

|Vk| P−→ 0, (5.18)

n−3 sup
t∈[0,T ]

U�nt�V 2�nt�
P−→ 0, n−3/2 sup

t∈[0,T ]
U�nt�

P−→ 0, (5.19)

as n → ∞. Using (B.4) with (�, i, j) = (2,1,1), (�, i, j) = (4,0,2), (�, i, j) = (2,1,0) and
(�, i, j) = (2,0,1), we have (5.17) and (5.18). By (B.5) with (�, i, j) = (4,1,2) and by (B.5),
we have (5.19). Thus, we conclude (5.8). Convergences (5.9) and (5.10) can be proved similarly.

Finally, we check condition (ii) of Theorem D.1, that is, the conditional Lindeberg condition

�nT �∑
k=1

E
(∥∥Z(n)

k

∥∥21{‖Z(n)
k ‖>θ}|Fk−1

) P−→ 0, as n → ∞ (5.20)

for all θ > 0 and T > 0. We have E(‖Z(n)
k ‖21{‖Z(n)

k ‖>θ}|Fk−1) ≤ θ−2
E(‖Z(n)

k ‖4|Fk−1) and

∥∥Z(n)
k

∥∥4 ≤ 3
(
n−4 + n−8U4

k−1 + n−6V 4
k−1

)‖Mk−1‖4.
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Hence, for all θ > 0 and T > 0, we have

�nT �∑
k=1

E
(∥∥Z(n)

k

∥∥21{‖Z(n)
k ‖>θ}

)→ 0, as n → ∞,

since E(‖Mk‖4) = O(k2), E(‖Mk‖4U4
k−1) ≤

√
E(‖Mk‖8)E(U8

k−1) = O(k6) and

E(‖Mk‖4V 4
k−1) ≤

√
E(‖Mk‖8)E(V 8

k−1) = O(k4) by Corollary B.6. Here we call the attention

that our eighth order moment conditions E(‖ξ1,1,1‖8) < ∞, E(‖ξ1,1,2‖8) < ∞ and E(‖ε1‖8) <

∞ are used for applying Corollary B.6. This yields (5.20). �

6. Proof of Theorem 4.2

This is similar to the proof of Theorem 4.1. Consider the sequence of stochastic processes

Z(n)
t :=

⎡⎣M(n)
t

N (n)
t

P(n)
t

⎤⎦ :=
�nt�∑
k=1

Z(n)
k with Z(n)

k :=
[

n−1Mk

n−3/2〈1,Mk〉Uk−1
n−3/2MkVk−1

]

for t ∈ R+ and k,n ∈ N. Theorem 4.2 follows from Lemma A.1 and the following theorem (this
will be explained after Theorem 6.1).

Theorem 6.1. If 〈Vξ 1,1〉 = 0 then

Z(n) D−→Z, as n → ∞, (6.1)

where the process (Zt )t∈R+ with values in R
2 ×R×R

2 is the unique strong solution of the SDE

dZt = γ (t,Zt )

⎡⎣ dWt

d ˜̃W t

dW̃t

⎤⎦ , t ∈R+, (6.2)

with initial value Z0 = 0, where (Wt )t∈R+ , ( ˜̃W t )t∈R+ and (W̃t )t∈R+ are independent standard
Wiener processes of dimension 2, 1 and 2, respectively, and γ (t,x) is a block diagonal ma-

trix with the matrices 〈1, (x1 + tmε)
+〉1/2V

1/2
ξ , 〈Vε1,1〉1/2〈1,mε〉t and (

〈Vξ ũ,̃u〉
4αβ

)1/2〈1,x1 +
tmε〉V1/2

ξ in its diagonal for each t ∈ R+ and x = (x1, x2,x3) ∈R
2 ×R×R

2.
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As in the case of Theorem 4.1, the SDE (6.2) has a unique strong solution with initial value
Z0 = 0, for which we have

Zt =
[Mt

Nt

Pt

]
=

⎡⎢⎢⎢⎢⎢⎢⎣

∫ t

0
Y1/2

t V
1/2
ξ dWs

〈Vε1,1〉1/2〈1,mε〉
∫ t

0
s d ˜̃Ws( 〈Vξ ũ, ũ〉

4αβ

)1/2 ∫ t

0
YtV

1/2
ξ dW̃s

⎤⎥⎥⎥⎥⎥⎥⎦ , t ∈ R+,

where now 〈Vξ 1,1〉 = 0 yields Yt = 〈1,mε〉t , t ∈R+. One can again easily derive

[
X (n)

Z(n)

]
D−→

[
X
Z

]
, as n → ∞, (6.3)

where

X (n)
t := n−1X�nt�, Xt := 1

2
〈1,Mt + tmε〉1 = t

2
〈1,mε〉1,

for t ∈ R+ and n ∈ N, since Xt = 1
2Yt1 = t

2 〈1,mε〉1, t ∈ R+. Next, similarly to the proof of
(A.2), by Lemma C.3, convergence (6.3) and Lemma A.1 with Uk−1 = 〈1,Xk−1〉 imply

n∑
k=1

⎡⎢⎢⎣
n−3U2

k−1
n−2V 2

k−1
n−3/2〈1,Mk〉Uk−1
n−3/2〈̃u,Mk〉Vk−1

⎤⎥⎥⎦ D−→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫ 1

0
〈1,Xt 〉2 dt( 〈Vξ ũ, ũ〉

4αβ

)∫ 1

0
〈1,Xt 〉dt

〈Vε1,1〉1/2〈1,mε〉
∫ 1

0
t d ˜̃W t( 〈Vξ ũ, ũ〉

4αβ

)1/2 ∫ 1

0
Yt d

〈̃
u,V

1/2
ξ W̃t

〉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

as n → ∞. This limiting random vector can be written in the form as given in Theorem 4.2

since 〈1,Xt 〉 = Yt = 〈1,mε〉t , and 〈̃u,V
1/2
ξ W̃t 〉 = 〈Vξ ũ, ũ〉1/2W̃t for all t ∈ R+ with a (one-

dimensional) standard Wiener process (W̃t )t∈R+ .

Proof of Theorem 6.1. Similar to the proof of Theorem 5.1. The conditional variance
E(Z(n)

k (Z(n)
k )	|Fk−1) has the form

⎡⎣ n−2VMk
n−5/2Uk−1VMk

1 n−5/2Vk−1VMk

n−5/2Uk−11	VMk
n−3U2

k−11	VMk
1 n−3Uk−1Vk−11	VMk

n−5/2Vk−1VMk
n−3Uk−1Vk−1VMk

1 n−3V 2
k−1VMk

⎤⎦
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for n ∈ N, k ∈ {1, . . . , n}, with VMk
:= E(MkM	

k |Fk−1), and γ (s,Z(n)
s )γ (s,Z(n)

s )	 has the
form ⎡⎢⎣

〈
1,M(n)

s + smε

〉
Vξ 0 0

0 〈Vε1,1〉〈1,mε〉2s2 0

0 0
〈Vξ ũ, ũ〉

4αβ

〈
1,M(n)

s + smε

〉2Vξ

⎤⎥⎦
for s ∈ R+.

In order to check condition (i) of Theorem D.1, we need to prove only that for each T > 0,

sup
t∈[0,T ]

∥∥∥∥∥ 1

n5/2

�nt�∑
k=1

Uk−11	VMk

∥∥∥∥∥ P−→ 0, (6.4)

sup
t∈[0,T ]

∣∣∣∣∣ 1

n3

�nt�∑
k=1

U2
k−11	VMk

1 −
∫ t

0
〈Vε1,1〉〈1,mε〉2s2 ds

∣∣∣∣∣ P−→ 0, (6.5)

sup
t∈[0,T ]

∥∥∥∥∥ 1

n3

�nt�∑
k=1

Uk−1Vk−11	VMk

∥∥∥∥∥ P−→ 0, (6.6)

as n → ∞, since the rest, namely, (5.5), (5.8) and (5.9) have already been proved.
Clearly, 〈Vξ 1,1〉 = 0 implies 〈Vξ1

1,1〉 = 0 and 〈Vξ2
1,1〉 = 0. For each i ∈ {1,2}, we have

〈Vξ i
1,1〉 = 1	Vξ i

1 = (V1/2
ξ i

1)	(V1/2
ξ i

1) = ‖V1/2
ξ i

1‖2, hence we obtain V1/2
ξ i

1 = 0, thus Vξ i
1 =

V1/2
ξ i

(V1/2
ξ i

1) = 0, and hence 1	Vξ i
= 0, implying also 1	Vξ = 0.

First we show (6.4). By (5.11), 1	Vξ = 0 and 1	Vξ i
= 0 for i ∈ {1,2}, we obtain

�nt�∑
k=1

Uk−11	VMk
=

�nt�∑
k=1

Uk−11	Vε, (6.7)

hence using (B.4) with (�, i, j) = (2,1,0), we conclude (6.4).
Now we turn to check (6.5). By (5.11),

�nt�∑
k=1

U2
k−11	VMk

1 =
�nt�∑
k=1

U2
k−11	Vε1 =

�nt�∑
k=1

U2
k−1〈Vε1,1〉,

hence, in order to show (6.5), it suffices to prove

sup
t∈[0,T ]

∣∣∣∣∣ 1

n3

�nt�∑
k=1

U2
k−1 − t3

3
〈1,mε〉2

∣∣∣∣∣ P−→ 0, as n → ∞. (6.8)
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We have ∣∣∣∣∣ 1

n3

�nt�∑
k=1

U2
k−1 − t3

3
〈1,mε〉2

∣∣∣∣∣ ≤ 1

n3

�nt�∑
k=1

∣∣U2
k−1 − (k − 1)2〈1,mε〉2

∣∣
+
∣∣∣∣∣ 1

n3

�nt�∑
k=1

(k − 1)2 − t3

3

∣∣∣∣∣〈1,mε〉2,

where

sup
t∈[0,T ]

∣∣∣∣∣ 1

n3

�nt�∑
k=1

(k − 1)2 − t3

3

∣∣∣∣∣→ 0, as n → ∞,

hence, in order to show (6.5), it suffices to prove

1

n3

�nT �∑
k=1

∣∣U2
k − k2〈1,mε〉2

∣∣ P−→ 0, as n → ∞. (6.9)

For all k ∈ N, by Remark 3.3, 〈Vξ 1,1〉 = 0 implies

Uk =
Xk−1,1∑
j=1

(ξk,j,1,1 + ξk,j,1,2) +
Xk−1,2∑
j=1

(ξk,j,2,1 + ξk,j,2,2) + (εk,1 + εk,2)

a.s.= Xk−1,1 + Xk−1,2 + εk,1 + εk,2 = Uk−1 + 〈1,εk〉,
hence Uk =∑k

i=1〈1,εi〉. By Kolmogorov’s maximal inequality,

P

(
n−1 max

k∈{1,...,�nT �}
∣∣Uk − k〈1,mε〉

∣∣≥ ε
)

≤ n−2ε−2 Var(U�nT �)

= �nT �
n2ε2

Var
(〈1,ε1〉2)→ 0

as n → ∞ for all ε > 0, thus

n−1 max
k∈{1,...,�nT �}

∣∣Uk − k〈1,mε〉
∣∣ P−→ 0, as n → ∞.

We have ∣∣U2
k − k2〈1,mε〉2

∣∣≤ ∣∣Uk − k〈1,mε〉
∣∣2 + 2k〈1,mε〉

∣∣Uk − k〈1,mε〉
∣∣,

hence

n−2 max
k∈{1,...,�nT �}

∣∣U2
k − k2〈1,mε〉2

∣∣ ≤
(
n−1 max

k∈{1,...,�nT �}
∣∣Uk − k〈1,mε〉

∣∣)2

+ 2�nT �
n2

〈1,mε〉 max
k∈{1,...,�nT �}

∣∣Uk − k〈1,mε〉
∣∣ P−→ 0,
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as n → ∞. Consequently,

1

n3

�nT �∑
k=1

∣∣U2
k−1 − (k − 1)2〈1,mε〉2

∣∣
≤ �nT �

n3
max

k∈{1,...,�nT �}
∣∣U2

k−1 − (k − 1)2〈1,mε〉2
∣∣ P−→ 0,

as n → ∞, thus we conclude (6.9), and hence (6.5).
Finally, we check (6.6). By (5.11),

�nt�∑
k=1

Uk−1Vk−11	VMk
=

�nt�∑
k=1

Uk−1Vk−11	Vε,

hence using (B.4) with (�, i, j) = (2,1,1), we conclude (6.6). Condition (ii) of Theorem D.1 can
be checked as in case of Theorem 5.1. �

7. Proof of Theorem 4.3

This proof is also similar to the proof of Theorem 4.1. Consider the sequence of stochastic pro-
cesses

Z(n)
t :=

⎡⎣M(n)
t

N (n)
t

P(n)
t

⎤⎦ :=
�nt�∑
k=1

Z(n)
k with Z(n)

k :=
[

n−1Mk

n−2MkUk−1
n−1/2〈̃u,Mk〉Vk−1

]

for t ∈ R+ and k,n ∈ N. Theorem 4.3 follows from Lemma A.2 and the following theorem (this
will be explained after Theorem 7.1).

Theorem 7.1. If 〈Vξ ũ, ũ〉 = 0 then

Z(n) D−→Z, as n → ∞, (7.1)

where the process (Zt )t∈R+ with values in R
2 ×R

2 ×R is the unique strong solution of the SDE

dZt = γ (t,Zt )

[
dWt

dW̃t

]
, t ∈ R+, (7.2)

with initial value Z0 = 0, where (Wt )t∈R+ and (W̃t )t∈R+ are independent standard Wiener pro-
cesses of dimension 2 and 1, respectively, and γ :R+ × (R2 ×R

2 ×R) → R
5×3 is defined by

γ (t,x) :=
⎡⎢⎣
〈
1, (x1 + tmε)

+〉1/2V
1/2
ξ 0〈

1, (x1 + tmε)
+〉3/2V

1/2
ξ 0

0
[〈Vεũ, ũ〉E(〈̃u,ε1〉2

)]1/2

⎤⎥⎦
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for t ∈R+ and x = (x1,x2, x3) ∈ R
2 ×R

2 ×R.

As in the case of Theorem 4.1, the SDE (7.2) has a unique strong solution with initial value
Z0 = 0, for which we have

Zt =
[Mt

Nt

Pt

]
=

⎡⎢⎢⎢⎢⎣
∫ t

0
Y1/2

s V
1/2
ξ dWs∫ t

0
Ys dMs[〈Vεũ, ũ〉E(〈̃u,ε1〉2

)]1/2W̃t

⎤⎥⎥⎥⎥⎦ , t ∈R+.

One can again easily derive [
X (n)

Z(n)

]
D−→

[
X
Z

]
, as n → ∞, (7.3)

where

X (n)
t := n−1X�nt�, Xt := 1

2 〈1,Mt + tmε〉1, t ∈R+, n ∈N.

Next, similarly to the proof of (A.2), by Lemma C.3, convergence (7.3) and Lemma A.2 imply

n∑
k=1

⎡⎢⎢⎣
n−3U2

k−1
n−1V 2

k−1
n−2〈1,Mk〉Uk−1

n−1/2〈̃u,Mk〉Vk−1

⎤⎥⎥⎦ D−→

⎡⎢⎢⎢⎢⎢⎢⎣

∫ 1

0
〈1,Xt 〉2 dt

E
(〈̃u,ε1〉2

)∫ 1

0
Yt d〈1,Mt 〉[〈Vεũ, ũ〉E(〈̃u,ε1〉2

)]1/2W̃1

⎤⎥⎥⎥⎥⎥⎥⎦ ,

as n → ∞. Note that this convergence holds even in case E[〈̃u,ε1〉2] = 0. The limiting random
vector can be written in the form as given in Theorem 4.3, since 〈1,Xt 〉 = Yt and 〈1,Mt 〉 =
Yt − 〈1,mεt〉 for all t ∈ R+.

Proof of Theorem 7.1. Similar to the proof of Theorem 5.1. The conditional variance
E(Z(n)

k (Z(n)
k )	|Fk−1) has the form⎡⎣ n−2VMk

n−3Uk−1VMk
n−3/2Vk−1VMk

ũ
n−3Uk−1VMk

n−4U2
k−1VMk

n−5/2Uk−1Vk−1VMk
ũ

n−3/2Vk−1ũ	VMk
n−5/2Uk−1Vk−1ũ	VMk

n−1V 2
k−1ũ	VMk

ũ

⎤⎦
for n ∈N, k ∈ {1, . . . , n}, with VMk

:= E(MkM	
k |Fk−1), and γ (s,Z(n)

s )γ (s,Z(n)
s )	 has the form⎡⎣

〈
1,M(n)

s + smε

〉
Vξ

〈
1,M(n)

s + smε

〉2Vξ 0〈
1,M(n)

s + smε

〉2Vξ

〈
1,M(n)

s + smε

〉3Vξ 0
0 0 〈Vεũ, ũ〉E(〈̃u,ε1〉2

)
⎤⎦
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for s ∈ R+.
In order to check condition (i) of Theorem D.1, we need to prove only that for each T > 0,

sup
t∈[0,T ]

∣∣∣∣∣1

n

�nt�∑
k=1

V 2
k−1ũ	VMk

ũ − t〈Vεũ, ũ〉E(〈̃u,ε1〉2)∣∣∣∣∣ P−→ 0, (7.4)

sup
t∈[0,T ]

∥∥∥∥∥ 1

n3/2

�nt�∑
k=1

Vk−1ũ	VMk

∥∥∥∥∥ P−→ 0, (7.5)

sup
t∈[0,T ]

∥∥∥∥∥ 1

n5/2

�nt�∑
k=1

Uk−1Vk−1ũ	VMk

∥∥∥∥∥ P−→ 0, (7.6)

as n → ∞, since the rest, namely, (5.5), (5.6) and (5.7), have already been proved.
Clearly, 〈Vξ ũ, ũ〉 = 0 implies 〈Vξ1

ũ, ũ〉 = 0 and 〈Vξ2
ũ, ũ〉 = 0. For each i ∈ {1,2}, we have

〈Vξ i
ũ, ũ〉 = ũ	Vξ i

ũ = (V1/2
ξ i

ũ)	(V1/2
ξ i

ũ) = ‖V1/2
ξ i

ũ‖2, hence we obtain V1/2
ξ i

ũ = 0, thus Vξ i
ũ =

V1/2
ξ i

(V1/2
ξ i

ũ) = 0, and hence ũ	Vξ i
= 0.

First, we show (7.4). By (5.11),

�nt�∑
k=1

V 2
k−1ũ	VMk

ũ =
�nt�∑
k=1

V 2
k−1ũ	Vεũ,

hence, in order to show (7.4), it suffices to prove

sup
t∈[0,T ]

∣∣∣∣∣1

n

�nt�∑
k=1

V 2
k−1 − tE

(〈̃u,ε1〉2)∣∣∣∣∣ P−→ 0.

For all k ∈N, by Remark 3.3, 〈Vξ ũ, ũ〉 = 0 implies

Vk =
Xk−1,1∑
j=1

(ξk,j,1,1 − ξk,j,1,2) +
Xk−1,2∑
j=1

(ξk,j,2,1 − ξk,j,2,2) + (εk,1 − εk,2)

a.s.= εk,1 − εk,2 = 〈̃u,εk〉.

We have ∣∣∣∣∣1

n

�nt�∑
k=1

V 2
k−1 − tE

(〈̃u,ε1〉2)∣∣∣∣∣ ≤ 1

n

∣∣∣∣∣
�nt�∑
k=1

[〈̃u,εk−1〉2 −E
(〈̃u,εk−1〉2)]∣∣∣∣∣

+ |nt − �nt�|
n

E
(〈̃u,εk〉2),
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where |nt − �nt�| ≤ 1, hence, in order to show (7.4), it suffices to prove

1

n
sup

t∈[0,T ]

∣∣∣∣∣
�nt�∑
k=1

[〈̃u,εk〉2 −E
(〈̃u,εk〉2)]∣∣∣∣∣

(7.7)

= 1

n
max

N∈{1,...,�nT �}

∣∣∣∣∣
N∑

k=1

[〈̃u,εk〉2 −E
(〈̃u,εk〉2)]∣∣∣∣∣ P−→ 0.

Applying Kolmogorov’s maximal inequality, we obtain

P

(
n−1 max

N∈{1,...,�nT �}

∣∣∣∣∣
N∑

k=1

[〈̃u,εk〉2 −E
(〈̃u,εk〉2)]∣∣∣∣∣≥ ε

)

≤ 1

n2ε2
Var

(�nT �∑
k=1

〈̃u,εk〉2

)
= �nT �

n2ε2
Var

(〈̃u,εk〉2)→ 0, as n → ∞

for all ε > 0, thus we conclude (7.7), and hence (7.4).
Now we turn to check (7.5). By (5.11),

�nt�∑
k=1

Vk−1ũ	VMk
=

�nt�∑
k=1

Vk−1ũ	Vε.

Again by the strong law of large numbers, n−1 ∑�nT �
k=1 |Vk−1| a.s.−→ tE(|〈̃u,ε1〉|) as n → ∞ for all

T > 0, hence we conclude (7.5).
Finally, we check (7.6). By (5.11),

�nt�∑
k=1

Uk−1Vk−1ũ	
E
(
MkM	

k |Fk−1
)=

�nt�∑
k=1

Uk−1Vk−1ũ	Vε.

Applying Vk = 〈̃u,εk〉, k ∈ N, and Corollary B.6, we have E(|Uk−1Vk−1|) ≤√
E(U2

k−1)E(V 2
k−1) = O(k), which clearly implies (7.6). Condition (ii) of Theorem D.1 can

be checked again as in case of Theorem 5.1. �

Appendix A: CLS estimators

In order to analyse existence and uniqueness of the estimators given in (3.1), (3.2) and (3.5) in
case of a critical doubly symmetric 2-type Galton–Watson process, that is, when � = 1, we need
the following approximations.
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Lemma A.1. We have

n−2

(
n∑

k=1

V 2
k − 〈Vξ ũ, ũ〉

4αβ

n∑
k=1

Uk−1

)
P−→ 0, as n → ∞.

Proof. In order to prove the statement, we derive a decomposition of
∑n

k=1 V 2
k as a sum of a

martingale and some negligible terms. Using recursion (4.4), Lemma B.1 and (4.5), we obtain

E
(
V 2

k |Fk−1
) = (α − β)2V 2

k−1 + 2(α − β)〈̃u,mε〉Vk−1 + 〈̃u,mε〉2

+ ũ	
E
(
MkM	

k |Fk−1
)̃
u

= (α − β)2V 2
k−1 + 1

2 ũ	(Vξ1
+ Vξ2

)̃uUk−1 + constant + constant × Vk−1.

Thus,

n∑
k=1

V 2
k =

n∑
k=1

[
V 2

k −E
(
V 2

k |Fk−1
)]+ (α − β)2

n∑
k=1

V 2
k−1 + ũ	Vξ ũ

n∑
k=1

Uk−1

+ O(n) + constant ×
n∑

k=1

Vk−1.

Consequently,

n∑
k=1

V 2
k = 1

1 − (α − β)2

n∑
k=1

[
V 2

k −E
(
V 2

k |Fk−1
)]

+ 1

1 − (α − β)2
〈Vξ ũ, ũ〉

n∑
k=1

Uk−1 (A.1)

− (α − β)2

1 − (α − β)2
V 2

n + O(n) + constant ×
n∑

k=1

Vk−1.

Using (B.6) with (�, i, j) = (8,0,2), we obtain

1

n2

n∑
k=1

[
V 2

k −E
(
V 2

k |Fk−1
)] P−→ 0, as n → ∞.

By Corollary B.6, we obtain E(V 2
n ) = O(n), and hence n−2V 2

n

P−→ 0. Moreover, n−2 ×∑n
k=1 Vk−1

P−→ 0 as n → ∞ follows by (B.4) with the choices (�, i, j) = (4,0,1). Conse-
quently, by (A.1), we obtain the statement, since 1 − (α − β)2 = 4αβ . �
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Lemma A.2. If 〈Vξ ũ, ũ〉 = 0, then

n−1
n∑

k=1

V 2
k

a.s.−→ E
(〈̃u,ε1〉2), as n → ∞,

and E(〈̃u,ε1〉2) = 0 if and only if Xk,1
a.s.= Xk,2 for all k ∈N.

Proof. By Remark 3.3, 〈Vξ ũ, ũ〉 = 0 implies Vk
a.s.= εk,1 − εk,2 = 〈̃u,ε1〉 for all k ∈N, hence the

convergence follows from the strong law of large numbers. Clearly E(〈̃u,ε1〉2) = 0 is equivalent
to 〈̃u,ε1〉 = ε1,1 − ε1,2

a.s.= 0, and hence it is equivalent to Xk,1 − Xk,2
a.s.= 0 for all k ∈ N. �

Now we can prove existence and uniqueness of CLS estimators of the offspring means and of
the criticality parameter.

Proposition A.3. We have limn→∞ P((X1, . . . ,Xn) ∈ Hn) = 1, where Hn is defined in (3.3), and
hence the probability of the existence of a unique CLS estimator �̂n converges to 1 as n → ∞,
and this CLS estimator has the form given in (3.1) whenever the sample (X1, . . . ,Xn) belongs to
the set Hn.

If 〈Vξ ũ, ũ〉 > 0, or if 〈Vξ ũ, ũ〉 = 0 and E(〈̃u,ε〉2) > 0, then limn→∞ P((X1, . . . ,Xn) ∈ H̃n) =
1, where H̃n is defined in (3.4), and hence the probability of the existence of unique CLS esti-
mators δ̂n and (̂αn, β̂n) converges to 1 as n → ∞. The CLS estimator δ̂n has the form given in
(3.2) whenever the sample (X1, . . . ,Xn) belongs to the set H̃n. The CLS estimator (̂αn, β̂n) has
the form given in (3.5) whenever the sample (X1, . . . ,Xn) belongs to the set Hn ∩ H̃n.

Proof. Recall convergence X (n) D−→ X = 1
2Y1 from (3.11). By Lemmas C.2 and C.3 one can

show

1

n3

n∑
k=1

(
X2

k−1,1 + X2
k−1,2

) D−→ 1

2

∫ 1

0
Y2

t dt, as n → ∞, (A.2)

see Ispány et al. [8], Proposition A.4. Since mε 
= 0, by the SDE (3.6), we have P(Yt = 0, t ∈
[0,1]) = 0, which implies that P(

∫ 1
0 Y2

t dt > 0) = 1. Consequently, the distribution function of∫ 1
0 Y2

t dt is continuous at 0, and hence, by (A.2),

P

(
n∑

k=1

〈1,Xk−1〉2 > 0

)
→ P

(
1

2

∫ 1

0
Y2

t dt > 0

)
= 1, as n → ∞.

Now suppose that 〈Vξ ũ, ũ〉 > 0 holds. In a similar way, using Lemma A.1, convergence (3.11),
and Lemmas C.2 and C.3, one can show

1

n2

n∑
k=1

〈̃u,Xk−1〉2 D−→ 〈Vξ ũ, ũ〉
4αβ

∫ 1

0
Yt dt, as n → ∞,
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implying

P

(
n∑

k=1

〈̃u,Xk−1〉2 > 0

)
→ P

(∫ 1

0
Yt dt > 0

)
= 1, as n → ∞,

hence we obtain the statement under the assumption 〈Vξ ũ, ũ〉 > 0.
Next, we suppose that 〈Vξ ũ, ũ〉 = 0 and E(〈̃u,ε〉2) > 0 hold. Then

P

(
n∑

k=1

〈̃u,Xk−1〉2 > 0

)
= P

(
1

n

n∑
k=1

V 2
k−1 > 0

)
→ 1, as n → ∞,

since Lemma A.2 yields n−1 ∑n
k=1 V 2

k−1
P−→ E(〈̃u,ε1〉2) > 0, and hence we conclude the state-

ment under the assumptions 〈Vξ ũ, ũ〉 = 0 and E(〈̃u,ε〉2) > 0. �

Appendix B: Estimations of moments

In the proof of Theorem 3.1, good bounds for moments of the random vectors and variables
(Mk)k∈Z+ , (Xk)k∈Z+ , (Uk)k∈Z+ and (Vk)k∈Z+ are extensively used. First note that, for all k ∈N,
E(Mk|Fk−1) = 0 and E(Mk) = 0, since Mk = Xk −E(Xk|Fk−1).

Lemma B.1. Let (Xk)k∈Z+ be a 2-type Galton–Watson process with immigration and with
X0 = 0. If E(‖ξ1,1,1‖2) < ∞, E(‖ξ1,1,2‖2) < ∞ and E(‖ε1‖2) < ∞ then

E
(
MkM	

k |Fk−1
)= Xk−1,1Vξ1

+ Xk−1,2Vξ2
+ Vε, k ∈N. (B.1)

If E(‖ξ1,1,1‖3) < ∞, E(‖ξ1,1,2‖3) < ∞ and E(‖ε1‖3) < ∞, then

E
(
M⊗3

k |Fk−1
) = Xk−1,1E

[
(ξ1,1,1 −E(ξ1,1,1)

⊗3]
(B.2)

+ Xk−1,2E
[
(ξ1,1,2 −E(ξ1,1,2)

⊗3]+E
[
(ε1 −E(ε1)

⊗3], k ∈ N.

Proof. By (2.1) and (4.1), Mk has the form

Xk−1,1∑
j=1

(
ξ k,j,1 −E(ξ k,j,1)

)+
Xk−1,2∑
j=1

(
ξ k,j,2 −E(ξ k,j,2)

)+ (
εk −E(εk)

)
(B.3)

for all k ∈ N. The random vectors {ξ k,j,1 −E(ξ k,j,1), ξ k,j.2 −E(ξ k,j,2),εk −E(εk) : j ∈ N} are
independent of each other, independent of Fk−1, and have zero mean vector, thus we conclude
(B.1) and (B.2). �

Lemma B.2. Let (ζ k)k∈N be independent and identically distributed random vectors with values
in R

d such that E(‖ζ 1‖�) < ∞ with some � ∈ N.
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(i) Then there exists Q = (Q1, . . . ,Qd�) :R → R
d�

, where Q1, . . . ,Qd� are polynomials
having degree at most � − 1 such that

E
(
(ζ 1 + · · · + ζN)⊗�

)= N�
[
E(ζ 1)

]⊗� + Q(N), N ∈N,N ≥ �.

(ii) If E(ζ 1) = 0, then there exists R = (R1, . . . ,Rd�) :R→ R
d�

, where R1, . . . , Rd� are poly-
nomials having degree at most ��/2� such that

E
(
(ζ 1 + · · · + ζN)⊗�

)= R(N), N ∈N,N ≥ �.

The coefficients of the polynomials Q and R depend on the moments E(ζ i1
⊗ · · · ⊗ ζ i�

),
i1, . . . , i� ∈ {1, . . . ,N}.

Proof. (i) We have

E
(
(ζ 1 + · · · + ζN)⊗�

)
=

∑
s∈{1,...,�},k1,...,ks∈Z+,

k1+2k2+···+sks=�,ks 
=0

(
N

k1

)(
N − k1

k2

)
· · ·

(
N − k1 − · · · − ks−1

ks

)

×
∑

(i1,...,i�)∈P
(N,�)
k1,...,ks

E(ζ i1
⊗ · · · ⊗ ζ i�

),

where the set P
(N,�)
k1,...,ks

consists of permutations of all the multisets containing pairwise different
elements jk1 , . . . , jks of the set {1, . . . ,N} with multiplicities k1, . . . , ks , respectively. Since(

N

k1

)(
N − k1

k2

)
· · ·

(
N − k1 − · · · − ks−1

ks

)
= N(N − 1) · · · (N − k1 − k2 − · · · − ks + 1)

k1!k2! · · ·ks !
is a polynomial of the variable N having degree k1 + · · · + ks ≤ �, there exists P =
(P1, . . . ,Pd�) :R → R

d�
, where P1, . . . ,Pd� are polynomials having degree at most � such that

E((ζ 1 + · · · + ζN)⊗�) = P(N). A term of degree � can occur only in case k1 + · · · + ks = �,
when k1 + 2k2 + · · · + sks = � implies s = 1 and k1 = �, thus the corresponding term of degree
� is N(N − 1) · · · (N − � + 1)[E(ζ 1)]⊗�, hence we obtain the statement. Part (ii) can be proved
in a similar way. �

Lemma B.2 can be generalized in the following way.

Lemma B.3. For each i ∈ N, let (ζ i,k)k∈N be independent and identically distributed random
vectors with values in R

d such that E(‖ζ i,1‖�) < ∞ with some � ∈ N. Let j1, . . . , j� ∈ N.
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(i) Then there exists Q = (Q1, . . . ,Qd�) :R� → R
d�

, where Q1, . . . ,Qd� are polynomials of
� variables having degree at most � − 1 such that

E
(
(ζ j1,1 + · · · + ζ j1,N1

) ⊗ · · · ⊗ (ζ j�,1 + · · · + ζ j�,N�
)
)

= N1 · · ·N�E(ζ j1,1) ⊗ · · · ⊗E(ζ j�,1) + Q(N1, . . . ,N�)

for N1, . . . ,N� ∈ N with N1 ≥ �, . . . , N� ≥ �.
(ii) If E(ζ j1,1) = · · · = E(ζ j�,1) = 0, then there exists R = (R1, . . . ,Rd�) :R� → R

d�
, where

R1, . . . , Rd� are polynomials of � variables having degree at most ��/2� such that

E
(
(ζ j1,1 + · · · + ζ j1,N1

) ⊗ · · · ⊗ (ζ j�,1 + · · · + ζ j�,N�
)
)= R(N1, . . . ,N�)

for N1, . . . ,N� ∈ N with N1 ≥ �, . . . , N� ≥ �.

The coefficients of the polynomials Q and R depend on the moments E(ζ j1,i1
⊗ · · · ⊗ ζ j�,i�

),
i1 ∈ {1, . . . ,N1}, . . . , i� ∈ {1, . . . ,N�}.

Lemma B.4. If (α,β) ∈ [0,1] with α + β = 1, then the matrix mξ defined in (2.4) has eigenval-
ues 1 and α − β , and the powers of mξ take the form

mj

ξ = 1

2

[
1 1
1 1

]
+ 1

2
(α − β)j

[
1 −1

−1 1

]
, j ∈ Z+.

Consequently, ‖mj

ξ‖ = O(1), that is, supj∈N ‖mj

ξ‖ < ∞.

Lemma B.5. Let (Xk)k∈Z+ be a 2-type doubly symmetric Galton–Watson process with immi-
gration with offspring means (α,β) ∈ [0,1] such that α + β = 1 (hence it is critical). Sup-
pose X0 = 0, and E(‖ξ1,1,1‖�) < ∞, E(‖ξ1,1,2‖�) < ∞, E(‖ε1‖�) < ∞ with some � ∈ N. Then
E(‖Xk‖�) = O(k�), that is, supk∈N k−�

E(‖Xk‖�) < ∞.

Proof. The statement is clearly equivalent with E(|P(Xk,1,Xk,2)|) ≤ cP k�, k ∈ N, for all poly-
nomials P of two variables having degree at most �, where cP depends only on P .

If � = 1, then (2.3) and Lemma B.4 imply

E(Xk) =
k−1∑
j=0

mj

ξ mε =
(

k

2

[
1 1
1 1

]
+ 1 − (α − β)k

4β

[
1 −1

−1 1

])
mε,

for all k ∈N, which yields the statement.
Using part (i) of Lemma B.3 and separating the terms having degree 2 and less than 2, we

obtain

E
(
X⊗2

k |Fk−1
) = X2

k−1,1m⊗2
ξ1

+ X2
k−1,2m⊗2

ξ2
+ Xk−1,1Xk−1,2(mξ1

⊗ mξ2
+ mξ2

⊗ mξ1
)

+ Q2(Xk−1,1,Xk−1,2)
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= (Xk−1,1mξ1
+ Xk−1,2mξ2

)⊗2 + Q2(Xk−1,1,Xk−1,2)

= (mξ Xk−1)
⊗2 + Q2(Xk−1,1,Xk−1,2) = m⊗2

ξ X⊗2
k−1 + Q2(Xk−1,1,Xk−1,2),

where Q2 = (Q2,1,Q2,2,Q2,3,Q2,4) :R2 →R
4, and Q2,1, Q2,2, Q2,3 and Q2,4 are polynomials

of two variables having degree at most 1. Hence

E
(
X⊗2

k

)= m⊗2
ξ E

(
X⊗2

k−1

)+E
[
Q2(Xk−1,1,Xk−1,2)

]
.

In a similar way,

E
(
X⊗�

k

)= m⊗�
ξ E

(
X⊗�

k−1

)+E
[
Q�(Xk−1,1,Xk−1,2)

]
,

where Q� = (Q�,1, . . . ,Q�,2� ) :R2 →R
2�

, and Q�,1, . . . ,Q�,2� are polynomials of two variables
having degree at most � − 1, implying

E
(
X⊗�

k

) =
k∑

j=1

(
m⊗�

ξ

)k−j
E
[
Q�(Xj−1,1,Xj−1,2)

]

=
k−1∑
j=0

(
m⊗�

ξ

)j
E
[
Q�(Xk−j−1,1,Xk−j−1,2)

]

=
k−1∑
j=0

(
mj

ξ

)⊗�
E
[
Q�(Xk−j−1,1,Xk−j−1,2)

]
.

Let us suppose now that the statement holds for 1, . . . , � − 1. Then

E
[∣∣Q�,i(Xk−j−1,1,Xk−j−1,2)

∣∣]≤ cQ�,i
k�−1, k ∈N, i ∈ {

1, . . . ,2�
}
.

By Lemma B.4 ‖(mj

ξ )
⊗�‖ = O(1), hence we obtain the assertion for �. �

Corollary B.6. Let (Xk)k∈Z+ be a 2-type doubly symmetric Galton–Watson process with im-
migration having offspring means (α,β) ∈ (0,1)2 such that α + β = 1 (hence it is critical and
positively regular). Suppose X0 = 0, and E(‖ξ1,1,1‖�) < ∞, E(‖ξ1,1,2‖�) < ∞, E(‖ε1‖�) < ∞
with some � ∈N. Then E(‖Xk‖�) = O(k�), E(M⊗�

k ) = O(k��/2�), E(U�
k ) = O(k�) and E(V

2j
k ) =

O(kj ) for j ∈ Z+ with 2j ≤ �.

Proof. The first statement is just Lemma B.5. Next, we turn to prove E(M⊗�
k ) = O(k��/2�).

Using (B.3), part (ii) of Lemma B.3, and that the random vectors {ξ k,j,1 − E(ξ k,j,1), ξ k,j.2 −
E(ξ k,j,2),εk − E(εk) : j ∈ N} are independent of each other, independent of Fk−1, and have

zero mean vector, we obtain E(M⊗�
k |Fk−1) = R(Xk−1,1,Xk−1,2) with R = (R1, . . . ,R2� ) :R2 →

R
2�, where R1, . . . ,R2� are polynomials of two variables having degree at most �/2. Hence

E(M⊗�
k ) = E(R(Xk−1,1,Xk−1,2)). By Lemma B.5, we conclude E(M⊗�

k ) = O(k��/2�). The rest
of the proof can be carried out as in Corollary 9.1 of Barczy et al. [2]. �
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The next corollary can be derived as Corollary 9.2 of Barczy et al. [2].

Corollary B.7. Let (Xk)k∈Z+ be a 2-type doubly symmetric Galton–Watson process with immi-
gration having offspring means (α,β) ∈ (0,1)2 such that α + β = 1 (hence, it is critical and
positively regular). Suppose X0 = 0, and E(‖ξ1,1,1‖�) < ∞, E(‖ξ1,1,2‖�) < ∞, E(‖ε1‖�) < ∞
with some � ∈N. Then

(i) for all i, j ∈ Z+ with max{i, j} ≤ ��/2�, and for all κ > i + j
2 + 1, we have

n−κ
n∑

k=1

∣∣Ui
kV

j
k

∣∣ P−→ 0, as n → ∞, (B.4)

(ii) for all i, j ∈ Z+ with max{i, j} ≤ �, for all T > 0, and for all κ > i + j
2 + i+j

�
, we have

n−κ sup
t∈[0,T ]

∣∣Ui�nt�V
j
�nt�

∣∣ P−→ 0, as n → ∞, (B.5)

(iii) for all i, j ∈ Z+ with max{i, j} ≤ ��/4�, for all T > 0, and for all κ > i + j
2 + 1

2 , we
have

n−κ sup
t∈[0,T ]

∣∣∣∣∣
�nt�∑
k=1

[
Ui

kV
j
k −E

(
Ui

kV
j
k |Fk−1

)]∣∣∣∣∣ P−→ 0, as n → ∞. (B.6)

Remark B.8. In the special case (�, i, j) = (2,1,0), one can improve (B.5), namely, one can
show

n−κ sup
t∈[0,T ]

U�nt�
P−→ 0, as n → ∞ for κ > 1, (B.7)

see Barczy et al. [2].

Appendix C: A version of the continuous mapping theorem

A function f :R+ →R
d is called càdlàg if it is right continuous with left limits. Let D(R+,Rd)

and C(R+,Rd) denote the space of all Rd -valued càdlàg and continuous functions on R+, re-
spectively. Let B(D(R+,Rd)) denote the Borel σ -algebra on D(R+,Rd) for the metric defined
in Jacod and Shiryaev [11], Chapter VI, (1.26) (with this metric D(R+,Rd) is a complete and
separable metric space and the topology induced by this metric is the so-called Skorokhod topol-
ogy). For Rd -valued stochastic processes (Yt )t∈R+ and (Y(n)

t )t∈R+ , n ∈N, with càdlàg paths, we

write Y(n) D−→ Y if the distribution of Y(n) on the space (D(R+,R),B(D(R+,Rd))) converges
weakly to the distribution of Y on the space (D(R+,R),B(D(R+,Rd))) as n → ∞. Concerning

the notation
D−→ we note that if ξ and ξn, n ∈ N, are random elements with values in a metric

space (E,d), then we also denote by ξn
D−→ ξ the weak convergence of the distributions of ξn
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on the space (E,B(E)) towards the distribution of ξ on the space (E,B(E)) as n → ∞, where
B(E) denotes the Borel σ -algebra on E induced by the given metric d .

The following version of continuous mapping theorem can be found, for example, in Kallen-
berg [12, Theorem 3.27].

Lemma C.1. Let (S, dS) and (T , dT ) be metric spaces and (ξn)n∈N, ξ be random elements with

values in S such that ξn
D−→ ξ as n → ∞. Let f :S → T and fn :S → T , n ∈ N, be mea-

surable mappings and C ∈ B(S) such that P(ξ ∈ C) = 1 and limn→∞ dT (fn(sn), f (s)) = 0 if

limn→∞ dS(sn, s) = 0 and s ∈ C. Then fn(ξn)
D−→ f (ξ), as n → ∞.

For the case S = D(R+,Rd) and T = R
q (or T = D(R+,Rq)), where d , q ∈ N, we formulate

a consequence of Lemma C.1.

For functions f and fn, n ∈N, in D(R+,Rd), we write fn
lu−→ f if (fn)n∈N converges to f lo-

cally uniformly, that is, if supt∈[0,T ] ‖fn(t)−f (t)‖ → 0 as n → ∞ for all T > 0. For measurable
mappings � : D(R+,Rd) → R

q (or � : D(R+,Rd) → D(R+,Rq)) and �n : D(R+,Rd) → R
q

(or �n : D(R+,Rd) → D(R+,Rq)), n ∈ N, we will denote by C�,(�n)n∈N the set of all functions

f ∈ C(R+,Rd) such that �n(fn) → �(f ) (or �n(fn) → lu−→ �(f )) whenever fn
lu−→ f with

fn ∈ D(R+,Rd), n ∈ N.
We will use the following version of the continuous mapping theorem several times, see, for

example, Ispány and Pap [10], Lemma 3.1.

Lemma C.2. Let d, q ∈ N, and (Ut )t∈R+ and (U (n)
t )t∈R+ , n ∈ N, be R

d -valued stochastic pro-

cesses with càdlàg paths such that U (n) D−→ U . Let � : D(R+,Rd) → R
q (or � : D(R+,Rd) →

D(R+,Rq)) and �n : D(R+,Rd) → R
q (or �n : D(R+,Rd) → D(R+,Rq)), n ∈ N, be measur-

able mappings such that there exists C ⊂ C�,(�n)n∈N with C ∈ B(D(R+,Rd)) and P(U ∈ C) = 1.

Then �n(U (n))
D−→ �(U).

In order to apply Lemma C.2, we will use the following statement several times, see Barczy et
al. [2], Lemma B.3.

Lemma C.3. Let d,p,q ∈ N, h :Rd → R
q be a continuous function and K : [0,1] ×R

2d →R
p

be a function such that for all R > 0 there exists CR > 0 such that∥∥K(s, x) − K(t, y)
∥∥≤ CR

(|t − s| + ‖x − y‖) (C.1)

for all s, t ∈ [0,1] and x, y ∈ R
2d with ‖x‖ ≤ R and ‖y‖ ≤ R. Moreover, let us define the map-

pings �,�n : D(R+,Rd) → R
q+p , n ∈N, by

�n(f ) :=
(

h
(
f (1)

)
,

1

n

n∑
k=1

K

(
k

n
,f

(
k

n

)
, f

(
k − 1

n

)))
,

�(f ) :=
(

h
(
f (1)

)
,

∫ 1

0
K
(
u,f (u), f (u)

)
du

)
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for all f ∈ D(R+,Rd). Then the mappings � and �n, n ∈ N, are measurable, and C�,(�n)n∈N =
C(R+,Rd) ∈ B(D(R+,Rd)).

Appendix D: Convergence of random step processes

We recall a result about convergence of random step processes towards a diffusion process, see
Ispány and Pap [10]. This result is used for the proof of convergence (5.1).

Theorem D.1. Let γ :R+ × R
d → R

d×r be a continuous function. Assume that uniqueness in
the sense of probability law holds for the SDE

dUt = γ (t,Ut )dWt , t ∈R+, (D.1)

with initial value U0 = u0 for all u0 ∈R
d , where (Wt )t∈R+ is an r-dimensional standard Wiener

process. Let (Ut )t∈R+ be a solution of (D.1) with initial value U0 = 0 ∈R
d .

For each n ∈ N, let (U(n)
k )k∈N be a sequence of d-dimensional martingale differences with

respect to a filtration (F (n)
k )k∈Z+ , that is, E(U(n)

k |F (n)
k−1) = 0, n ∈ N, k ∈N. Let

U (n)
t :=

�nt�∑
k=1

U(n)
k , t ∈R+, n ∈ N.

Suppose E(‖U(n)
k ‖2) < ∞ for all n, k ∈ N. Suppose that for each T > 0,

(i) supt∈[0,T ] ‖
∑�nt�

k=1 E(U(n)
k (U(n)

k )	|F (n)
k−1) − ∫ t

0 γ (s,U (n)
s )γ (s,U (n)

s )	 ds‖ P−→ 0,

(ii)
∑�nT �

k=1 E(‖U(n)
k ‖21{‖U(n)

k ‖>θ}|F
(n)
k−1)

P−→ 0 for all θ > 0,

where
P−→ denotes convergence in probability. Then U (n) D−→ U , as n → ∞.

Note that in (i) of Theorem D.1, ‖ · ‖ denotes a matrix norm, while in (ii) it denotes a vector
norm.
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