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We consider the Random Walk Metropolis algorithm on R” with Gaussian proposals, and when the tar-
get probability measure is the n-fold product of a one-dimensional law. It is well known (see Roberts et
al. (Ann. Appl. Probab. 7 (1997) 110-120)) that, in the limit n — oo, starting at equilibrium and for an
appropriate scaling of the variance and of the timescale as a function of the dimension n, a diffusive limit
is obtained for each component of the Markov chain. In Jourdain et al. (Optimal scaling for the transient
phase of the random walk Metropolis algorithm: The mean-field limit (2012) Preprint), we generalize this
result when the initial distribution is not the target probability measure. The obtained diffusive limit is the
solution to a stochastic differential equation nonlinear in the sense of McKean. In the present paper, we
prove convergence to equilibrium for this equation. We discuss practical counterparts in order to optimize
the variance of the proposal distribution to accelerate convergence to equilibrium. Our analysis confirms the
interest of the constant acceptance rate strategy (with acceptance rate between 1/4 and 1/3) first suggested
in Roberts et al. (Ann. Appl. Probab. 7 (1997) 110-120).

We also address scaling of the Metropolis-Adjusted Langevin Algorithm. When starting at equilibrium,
a diffusive limit for an optimal scaling of the variance is obtained in Roberts and Rosenthal (J. R. Stat.
Soc. Ser. B. Stat. Methodol. 60 (1998) 255-268). In the transient case, we obtain formally that the optimal
variance scales very differently in n depending on the sign of a moment of the distribution, which vanishes
at equilibrium. This suggest that it is difficult to derive practical recommendations for MALA from such
asymptotic results.
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1. Introduction

Many Markov Chain Monte Carlo (MCMC) methods are based on the Metropolis—Hastings al-
gorithm, see [13,16]. To set up the notation, let us recall this well-known sampling technique. Let
us consider a target probability distribution on R” with density p. Starting from an initial random
variable X, the Metropolis—Hastings algorithm generates iteratively a Markov chain (X )x>0 in
two steps. At time k, given Xy, a candidate Y4 is sampled using a proposal distribution with
density g (X, y). Then, the proposal Yj is accepted with probability o(Xy, Yx+1), where

POY0.x)
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Here and in the following, we use the standard notation a A b = min(a, b). If the proposed value
is accepted, then Xy = Yi41 otherwise Xy = Xx. The Markov Chain (X )0 is by construc-
tion reversible with respect to the target density p, and thus admits p as an invariant distribution.
The efficiency of this algorithm highly depends on the choice of the proposal distribution g. One
common choice is a Gaussian proposal centered at point x € R” with variance od,xn:

1 lx — yI?
1= Gty S\ T g7 )

Since the proposal is symmetric (g (x, y) = g(y, x)), the acceptance probability reduces to

a(x,y):l/\w. €))]

p(x)

Metropolis—Hastings algorithms with symmetric kernels are called random walk Metropolis
(RWM). Another popular choice yields the so called Metropolis adjusted Langevin algorithm
(MALA). In this case, the proposal distribution is a Gaussian random variable with variance
021d,,«, and centered at point x + %Vln(p(x)) (in particular, it is not symmetric). It cor-
responds to one step of a time-discretization with timestep o2 of the (overdamped) Langevin
dynamics: dX; = dB; + %V In p(X;) dr which is ergodic with respect to p(x)dx (here, B; is a
standard n-dimensional Brownian motion).

In both cases (RWM and MALA), the variance o2 remains to be chosen. It should be suf-
ficiently large to ensure a good exploration of the state space, but not too large otherwise the
rejection rate becomes typically very high since the proposed moves fall in low probability re-
gions, in particular in high dimension. It is expected that the higher the dimension, the smaller
the variance of the proposal should be. The first theoretical results to optimize the choice of o2
in terms of the dimension n can be found in [22]. The authors study the RWM algorithm under
two fundamental (and somewhat restrictive) assumptions: (i) the target probability distribution is
the n-fold tensor product of a one-dimensional density:

p@) =] Jexp(=V), )
i=1

where x = (x1,...,x,) and fR exp(—V) =1, and (ii) the initial distribution is the target proba-
bility (what we refer to as the stationarity assumption in the following):

Xo ~ p(x)dx.

The superscript  in the Markov chain (X})x=0 explicitly indicates the dependency on the dimen-
sion n. Then, under additional regularity assumption on V, the authors prove that for a proper
scaling of the variance as a function of the dimension, namely
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where ¢ is a fixed constant, the Markov process (XE;,'; J)IZO (where X ,i’" € R denotes the first
component of X} € R") converges in law to a diffusion process:

dX; =vh(I,0)dB, — h(I,O1V'(X,) dt, (3)
where
h(I,E):ZKZQ(—¥> and I:f(V’)2eXp(—V). )
R

Here and in the following, |-| denotes the integer part (for y e R, |y] € Z and |y| <y <
ly] + 1) and @ is the cumulative distribution function of the normal distribution (®(x) =
\/% ffoo exp(—y2 /2)dy). The scalings of the variance and of the time as a function of the

dimension are indications on how to make the RWM algorithm efficient in high dimension.
Moreover, a practical counterpart of this result is that £ should be chosen such that i(/, £) is
maximum (the optimal value of ¢ is % with ¢g >~ 2.38), in order to optimize the time scaling

in (3). This optimal value of £ corresponds equivalently to a constant average acceptance rate,
with approximate value 0.234: for this choice of £, in the limit n large,

//oz(x, V)Ip(x)g(x,y)dxdy =~ 0.234.

Notice that the optimal average acceptance rate does not depend on I, and is thus the same
whatever the target probability. Thus, the practical way to choose o2 is to scale it in such a
way that the average acceptance rate is roughly 1/4. Similar results have been obtained for the
MALA algorithm in [23]. In this case, the scaling for the variance is a,% = nt%, the time scaling
is (X ’Lln' /3] )r>0 and the optimal average acceptance rate is 0.574.

There exists several extensions of such results for various Metropolis—Hastings algorithms, see
[6-8,10,17,18,23,24], and some of them relax in particular the first main assumption mentioned
above about the separated form of the target distribution, see [4,5,9,11]. Extensions to infinite
dimensional settings have also been explored, see [9,15,21].

All these results assume stationarity: the initial measure is the target probability. To the best
of the authors’ knowledge, the only works which deal with a nonstationary case are [12] where
the RWM and the MALA algorithms are analyzed in the Gaussian case and [20]. In the latter
paper, the target measure is assumed to be absolutely continuous with respect to the law of an
infinite dimensional Gaussian random field and this measure is approximated in a space of di-
mension n where the MCMC algorithm is performed. The authors consider a modified RWM al-
gorithm (called preconditioned Crank—Nicolson walk) started at a deterministic initial condition
and prove that when o), tends to 0 as n tends to oo (with no restriction on the rate of convergence
of o, to 0), the rescaled algorithm converges to a stochastic partial differential equation, started
at the same initial condition.

The aim of this article is to discuss extensions of the previous results for the RWM and the
MALA algorithms, without assuming stationarity. The main findings are the following.

Concerning the RWM algorithm, in the companion paper [14], we prove that, using the same

scaling for the variance and the time as in the stationary case (namely 0,% = % and considering
(X bzl: [ ):>0), one obtains in the limit n goes to infinity a diffusion process nonlinear in the sense



Optimal scaling for the transient phase of MH algorithms 1933

of McKean (see Equation (7) below). This is discussed in Section 2. Contrary to (3), this dif-
fusion process cannot be obtained from the simple Langevin dynamics dX; = dB; — % dr
by a deterministic time-change and its long-time behavior is not obvious. In Section 3, we first
prove that its unique stationary distribution is e =) dx. Assuming that this measure satisfies a
logarithmic Sobolev inequality, we prove that the Kullback—Leibler divergence of the marginal
distribution at time ¢ with respect to e~V ) dx converges to 0 at an exponential rate. In Section 4,
we discuss optimizing strategies which take into account the transient phase. Roughly speaking,
the usual strategy which consists in choosing £ (recall that anz = ln—z) such that the average accep-
tance rate is constant (with value between 1/4 and 1/3) seems to be a very good strategy. This is
numerically illustrated in Section 5.

Concerning the MALA algorithm, the situation is much more complicated. The scaling to
be used seems to depend on the sign of an average quantity (see Section 6.1.3). In particular,
the scaling 0,12 = lﬁ% which has been identified in [23] under the stationary assumption is not
adapted to the transient phase. It seems difficult to draw any practical recommendation from this
analysis. This is explained with details in Section 6.

2. Scaling limit for the RWM algorithm

In this section, we state the diffusion limit for the RWM algorithm, and explain formally why
this result holds. A rigorous proof can be found in [14].

2.1. The RWM algorithm and the convergence result

We consider a Random Walk Metropolis algorithm using Gaussian proposal with variance 0,12 =

Kn—z, and with target p defined by (2). The Markov chain generated using this algorithm writes:

, . 0. .
X =X+ ﬁciﬂlmw l<i<n &)

with

A1 ={Uiq1 < CZLI(V(X;;n)_V(Xi'n“e/ﬁ)(;;“))},

where (G;;)i,kzl is a sequence of independent and identically distributed (i.i.d.) normal ran-
dom variables independent from a sequence (Ug)i>1 of i.i.d. random variables with uni-
form law on [0, 1]. We assume that the initial positions (X(l)‘”, ..., Xy") are exchangeable
(namely the law of the vector is invariant under permutation of the indices) and independent
from all the previous random variables. Exchangeability is preserved by the dynamics: for
all k> 1, (X,i’", ..., X;°") are exchangeable. We denote by F' the sigma field generated by

(Xp"..... X" and (G}..... G} UD<i=k.
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Fort>0andi e{l,...,n},let

V" = (Ine] = ne) Xy, + (nr = Lne ) Xy

i,n ¢ i
= XL’mJ + (nt — Lntj)ﬁGW] lArnﬂ

be the linear interpolation of the Markov chain obtained by rescaling time (the characteristic time
scale is 1/n). This is the classical diffusive time-scale for a random walk, since the variance of
each move is of order 1/n.

Let us define the notion of convergence (namely the propagation of chaos) that will be useful
to study the convergence of the interacting particle system ((Ytl’", oy Y™ 50)n>1 in the limit
n goes to infinity.

Definition 1. Let E be a separable metric space. A sequence (X1, ..., X, )n=1 0f exchangeable
E"-valued random variables is said to be v-chaotic where v is a probability measure on E if for
fixed j € N*, the law of (x{, ..., X}“) converges in distribution to v®/ as n goes to co.

According to [25], Proposition 2.2, the v-chaoticity is equivalent to a law of large numbers
result, namely the convergence in probability of the empirical measures u"* = % Y8 X' to the
constant v when the space of probability measures on E is endowed with the weak convergence
topology.

We are now in position to state the convergence result for the RWM algorithm, taken from
[14]. Here and in the following, the bracket notation refers to the duality bracket for probability
measures on R: for u a probability measure and ¢ a bounded measurable function,

(. ) =f¢du-

Theorem 1. Let m be a probability measure on R such that (m, (V/)4) < 400. Let us also
assume that

VisaC? function on R with bounded second and third order derivatives. (6)

If the initial positions (X(l)’", e, Xg’n),,zl are m-chaotic and such that
sup B[(V/(X}"))"] < +oc.
n

then the processes ((Ytl’", e, Ytn’n)zzo)nzl are P-chaotic where P denotes the law (on the
space C(R4, R) of continuous function with values in R) of the unique solution to the stochastic
differential equation nonlinear in the sense of McKean

dx, = TV2(E[(V/ (X)), E[V" (X)) €) dB
(N
— GE[(V' (X)) E[V"(X)], €) V' (X, dt,
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where (B;)>1 is a Brownian motion independent from the initial position X distributed accord-

ing to m. The functions I and G are, respectively, defined by: for £ € (0, +00), a € [0, +00] and
beR,

£2¢<_%>+g2eﬁz(ab)/2cb<g< b ﬁ)) ifa € (0, +00),

2Ja
I'(a,b,t)=1 ¢ 8
@no=y 2 facioo, ®
€267£2b+/2’ ifa — 0’

where bt = max(b, 0), and

b
62662(11—[7)/2(1)(5(_ — \/E>>, ifa € (0, 4+00),

_ 2a
g(a5b9 E)_ 0’ l:fa=+oo, (9)
L=y e~ E012, ifa=0.
Notice that the assumption on (X(])’”, ..., X3 )n=1 is for example satisfied when the random
variables X(l)’", ..., X" are i.i.d. according to some probability measure m on R.

This convergence result generalizes the previous result by Roberts et al. [22] where the same
diffusive limit is obtained under the restrictive assumption that the vector of initial positions
(X(l)’", ..., X" is distributed according to the target distribution p(x)dx. In this case, (X;);=0
indeed solves the stochastic differential equation (3)—(4) with time-homogeneous coefficients
(here, we use the fact that '(1, 1,€) = 2G(1, 1, £) = h(I, £) where I = [, (V' (x))*e™V® dx =
Jr V" (x)e”V® dx < oo, see [14], Lemma 1). Moreover, by taking V (x) = % + %ln(Zn), this
theorem also yields similar results as [12], where the authors consider a nonstationary case, but
restrict their analysis to the evolution of k % Yoy (X,i’")2 for Gaussian targets.

In addition to the previous convergence result, we are able to identify the limiting average
acceptance rate.

Proposition 1. Under the assumptions of Theorem 1, the function

1
t > B P(Amj 11 ) = 5 T E[(V X0) L E[V(X0)].0)

converges locally uniformly to O and in particular, the average acceptance rate t +— P(A|;)+1)
converges locally uniformly to t — acc(E[(V'(X,))2], E[V"(X,)], £) where for any a > 0 and
beR,

I'(a,b,0)

acc(a, b, l) = 72

(10)
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2.2. A formal derivation of the limiting process (7)

Let us introduce the infinitesimal generator L, associated to (7):

L) = 5T ((1e, (V') (1, V), 009" () = G({pe, (V') i, V7))V 000/ o). (1)

For a probability measure x on R, (i, V") is well defined by boundedness of V" (see (6)), and
(w, (V’)z) is also well defined in [0, +00].

The relationship between (7) and (11) is the following: if X, satisfies (7), then for any smooth
test function ¢, ¢(X;) — fot L p,¢(Xy)ds is amartingale, where P; denotes the law of X;: for any
s<t,

t
E(w(xf) - / LP,<p<X,>dr}fs) — o(Xy). (12)

Actually, as explained in [14], Section 3.1, the martingale representation of the solution is a weak
formulation of (7): solutions to (12) are solutions in distribution to (7).

Let us now present formally how (7) is derived. First, let us explain how the scaling of o, as
a function of n is chosen. The idea (see [24]) is to choose o5 in such a way that the limiting
acceptance rate (when n — 00) is neither zero nor one. In the first case, this would mean that
the variance of the proposal is too large, so that all proposed moves are rejected. In the second
case, the variance of the proposal is too small, and the rate of convergence to equilibrium is thus
not optimal. In particular, it is easy to check that o, should go to zero as n goes to infinity. Now,
notice that the limiting acceptance rate is:

E(l.AkH |]:l:l) = E(eZLl(V(X]i"l)_V(X]tn+gnG;.{+l)) A 1|-7:n)
_ (e SV O Gl VG p ) 4 O(no) + O(Vio?)

~oo 3 )olam ) o (5
+0(na}}) + O(vnol), (13)

where a, = o2 Y7 (V/(X;™)? and b, = 02 Y7_, V"(X}"). The formula (13) is obtained by
explicit computations (see [22], Proposition 2.4). From this expression assuming a propagation
of chaos (law of large numbers) on the random variables (X )1<l <n, one can check that the

correct scaling for the variance is o> = Z

(see [14], Section 2.3).
Using this scaling, we observe that, for a test function ¢ : R — R,

E(p (X)) I177)

ln ¢
_E( < +ﬁGllc+llAk+1 |}-l?

in order to obtain a nontrivial limiting acceptance rate
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L
1, 1, 1
= (X, ") +¢' (X ") EE(Gk—H L 177
e 12 n ~32
5,9 (X" E((Grs1) Laen 1 FE) +O(n™7). (14)
We compute (by conditioning with respect to G}( 1)
1
IE(Gk+1 L |~7:l?)
— E(G}MeZ?:l<V(X2”>fV<XL"’+<l/ﬁ>Gi+1>> AT
_E(GL, e (VX /Gl VX E @) 5 1A +0(n™)

= V(X =G (o (V) o V) )+ 07, (1s)

where

denotes the empirical distribution associated to the interacting particle system. The equation (15)
is again a consequence of explicit computations (see [14], Equation (A.3)), and the fact that the
remainder is of order ! requires a detailed analysis (see [14], Proposition 7). Likewise, for the
diffusion term, we get

2
E((Gliﬂ) 1Ak+1|‘7:1?)
_ ]E((G,‘m)2e2?:1<V(X5€")‘V(Xi'n“e/ﬁ)q“)) AED)

_ ]E((G;lﬂ)ze_ I (VXM VDGy +V (X Cn) 17 + @(n—l)

= 2T (V)L V0 + 0. (16)

To obtain (16), we again used an explicit computation (see [14], Equation (A.5)). ‘
By plugging (15) and (16) into (14), we see that the correct scaling in time is to consider Y, "
such that Y,i /"ll = X" (diffusive timescale), and we get:

1

B (Y /| F4) = (V) =@ (V) =V (GG (0 (V))). it v o)
r, N n n2 n oy —
20" (V)T (O (V)] (V7). ) + 02

= o( k/n)Jr (Lv”‘ﬂ)( k/n)+o( n=?),
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where L, is defined by (11). This can be seen as a discrete-in-time version (over a timestep
of size 1/n) of the martingale property (12). Thus, by sending n to infinity, assuming that v}’
converges to the law of Yk1 /n» WE expect Y,l’" to converge to a solution to (7). For a rigorous
proof, we refer to [14].

3. Longtime convergence for the RWM nonlinear dynamics

We would like to study the limiting dynamics (7) obtained for the RWM algorithm, that we recall
for convenience

dx, =T2(B[(V'(X))*]. E[V"(X)], £) dB, — G(E[(V'(X))*] E[V"(Xn)], €)V' (X)) dt,

where I" and G are, respectively, defined by (8) and (9). The associated Fokker—Planck equation
is (Y; denotes the density of the random variable X;):

Wi = 8x(G(alye], bLY), €) V' + T (alyp ], byl £) 8x e /2),

17
where a[x/x,]:/R(V/)zw, and b[%]:/RV”wI. 1n

Let us denote o, = exp(—V). Notice that [V« ] = b[Vxo] and G(a, a,£) =T'(a,a, £)/2. We
thus expect ¥/« to be the longtime limit of ;.

3.1. Stationary solution

We start the analysis of the limiting process by checking that the solution of (7) has the expected
stationary distribution.

Proposition 2. There exists a unique stationary distribution | for the process X; defined by (7).
In addition, this distribution is absolutely continuous with respect to the Lebesgue measure, with

density Yoo (x) = exp(—V (x)).

Before proving Proposition 2, we need some preliminary facts the proof of which is postponed
to Appendix A.

Lemma 1. Defining the function sign by:

1, if x>0,
sign(x) =3 0, if x=0, (18)
-1, if x<0,

one has

sign (I'(a, b, ¢) —2G(a, b, £)) =sign (a — b). (19)
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Moreover, the function F defined for a >0, b € R and £ > 0 by
bI'(a,b, ) —2aG(a,b, t)

b ifa#b,
—a
Fabb=3 2a N AN a . 0)
20 1+ — )| — ) — expl—— ) ), ifa=>n,
4 2 227 8
is a continuous function satisfying
Ve >0,VM € (0, +00), inf F(a,b,t)> 0. 21

(a,b)e[0,M]x[-M,M]

Proof of Proposition 2. Let ¢ = fR(V’(x))ZwOO (x)dx. Since V” is bounded then one can
check that ¢ = fR V" (x)¥e0(x) dx < 00 (see [14], Lemma 1). By (19), we get that I'(c, ¢, £) =
2G(c, ¢, £). Let us define the Langevin diffusion

dX, =v2G(c,c,€)dB, — G(c,c, O)V'(X,) dt

with X distributed according to the dens1ty Voo Itis well known that for any 7 > 0 the density of
Xt is ¥~ and therefore ¢ = E[(V’ (X,)) 1= E[V”(X,)] Then it is clear that the process X, sat-
isfies (7). Hence, Yoo (x) dx is a stationary probability distribution for the stochastic differential
equation (7).

Let us now prove the uniqueness of the invariant measure. Assume that there exists another
stationary probability measure with density poo (the fact that the stationary measure admits a
density is standard, since the diffusion term is bounded from below). Assume fR V2 Poo = +00.
Since G(+00,b,£) =0 and I'(+00, b, ) = %, the stochastic differential equation (7) with X
distributed according to the density pso reduces in this case to dX; = % dB; which does not
admit a stationary distribution. Thus, necessarily, we have

/ V" pos < 00.
R

Let us denote a = [, V2 pso and b = Jg V" Poo. Then, Equation (7) with X distributed accord-
ing to the density pso reduces to

dX, =T"%(a,b,0)dB, — G(a, b, )V'(X,)dt.
The stationary distribution thus writes

2G(a, b, ) V)

Poo X EXp <_ F'(a.b.0)

By integration by parts, we obtain that

bT(a, b, ) = 2aG(a, b, {).

Hence, by definition of F and (21), we obtain a = b and by (19) we get that 219((“ bb ;)) =1.1In

conclusion, po =exp(—V) = Y.
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3.2. Longtime convergence

It is actually possible to prove that, for fixed £ > 0, the law of X, solution to (7) converges
exponentially fast to the equilibrium density ¥ ,. The proof is based on entropy estimates, using
the Fokker—Planck equation (17), and requires the notion of logarithmic Sobolev inequality.

Definition 2. The probability measure v satisfies a logarithmic Sobolev inequality with constant
p > 0 (in short LSI(p)) if and only if, for any probability measure w absolutely continuous with
respect to v,

1
H(plv) = Z—I(MIV), (22)
P

where H(u|v) = [ ln(i—"f) duw is the Kullback—Leibler divergence (or relative entropy) of . with
respectto v and I (u|v) = f |Vln(g—’]f)|2 duw is the Fisher information of u with respect to v.

With a slight abuse of notation, we will denote in the following H (¥ |¢) and I(y¥|¢)
the Kullback-Leibler divergence and the Fisher information associated with the continuous
probability distributions ¥ (x)dx and ¢(x)dx. We recall that, by the Csiszar—Kullback in-

equality (see, for instance, [2], Théoreme 8.2.7, page 139), for any probability densities
and ¢,

AI¢—¢IS\/2H(¢I¢), (23)

so that H (1 |¢) may be seen as a measure of the “distance” between v and ¢.
Theorem 2. Let us assume (6), and that X admits a density Vo such that E[(V'(X))?] < +00
and H (Yo|Yeo) < 00. Then, for all t > 0,

F(aly:], [y, ©)
2

d
g HWilYeo) = - (Y| ¥oo), (24)

and the function t — H (V1| Vo) is decreasing.
Let us assume moreover that Yoo = eV satisfies a LSI(p). Then there exists a positive and
nonincreasing function A : [0, 4+00) — (0, +00) such that ¥Vt > 0

H Wil ¥oo) < e MWD H (g groc). (25)
Equation (25) shows that ¥, converges exponentially fast to ¥/.

Remark 1. Roughly speaking, ¥, satisfies a LSI if V grows sufficiently fast at infinity. For
example, according to [2], Théoreme 6.4.3, a sufficient condition for 1/« to satisfy a LSI, is that
|V'| does not vanish outside of some compact subset of R and

5 Vi(x) . [V (x) +In|V'(x)]l
im ——— =0 and limsup
=00 (V/(x))? Jx|—>o00 (V'(x))?

In the Gaussian case V(x) = % + %ln(Zn), Yoo (x) = \/% exp(—%) satisfies LSI(1).
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Proof of Theorem 2. By simple computation, we have (for notational convenience, we write

a, b for a[y,], b[Y:]):

d
d_/ E”tln(lﬁt/lﬁm):f 3t1//t1n1ﬁt+f V 0
rJR R R
:/ 3:(G(a, b, V'Y +T(a, b, €) 05, /2) In
R
+/ V 0, (Ga, b, )V'¢; +T(a, b, £) 8, ¥:/2)
R
— —G(a,b,0) fR V' 0.9 — (T, b, £)/2) /R (3 In )
—g(a,b,e)/R(v’)zw,—(r(a,b,Jz)/z)/Rv/axw,

=G(a,b, )b — (F(a,b,Z)/Z)/R(ax Iny,)?y,

—G(a,b,0)a+T(a,b,0)b/2. (26)

On the other hand, we have

/R (00 (¥ /ro0)) 1 = /R (0 n vy + V'),
_ f 00 )2 +2 / @ Iny) V' + f (V') v,
R R R
=/(8xln¢,)2w,—2b+a.
R

We thus obtain

d
a /R Vi In(Y: /Yoo)

= Ga,b, )b — (T(a, b, )/2) [ /R (9 In(W /¥o)) W +2b — a}
—G(a,b,)a+T(a,b,0)b/2

— —(T(a.b,0)/2) /R (30 In(W /o)) W + (b — a)(Gla b, £) — T(a. b, £)/2)

= (. 0,0)/2) [— /R(ax 111(1#:/%0))2% + Lpsa) (b — a)? gla.b,t) ~I'a. b. 8)/2]

b—a)l(a,b,t)/2
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G(a,b,t)—T(a,b,0)/2
(b—a)I'(a,b,0)/2

2 2
(a—b)?= ( /R (V'Y — /R V”w,> = ( /R V’(V’w,+axw,)>
2 2
= (f V/axln(lﬁ,/e_v)wt> fa/(ﬁxln(lﬂ,/woo)) Y.
R R

Using the function F' defined in (20), we deduce that

where the ratio is nonnegative by (19). We remark that

G(a,b,t) —T'(a,b,0)/2
b—a)'(a,b,t)/2

d 2
E/RWIIH(WI/WOO) < (F(a,b,ﬁ)/Z)[—1+a }A(Bxln(wz/wm)) (2

F(a,b,?t
< —% / (34 In( o)) 2,
R

which is (24). Since by Lemma 1, F is positive, we deduce that

d
= fR Y I /Ye) < 0.

Let us now assume that v/, satisfies a logarithmic-Sobolev inequality (22) with parameter p.
We thus have, from (24),

d
g HWilYeo) = —pF (aly], bl ], ) H (Wi [ rc0). 27

Thus, to obtain exponential convergence, in view of Lemma 1 and since b[y] € [—|| V" |lc0s
V" lso], we need a (uniform-in-time) upper bound on fR(V’ )2y, to get a (uniform-in-time)
positive lower bound on F (a[v], b[Y], £). This is the aim of the next paragraph.

First, notice that by [14], Lemma 1 and Lemma 3, fR(V’)Z(I//, 4+ Yoo) < +00. Now, according
to [19], Theorem 1, since ¥, satisfies a LSI(p), Yoo also satisfies the transport inequality: for
any probability density ¢ on R,

2 2
Wi o) = inf /R =y < fR 010 o) =~ H o),

@(x)dx
@AV <y may

where, in the definition of the quadratic Wasserstein distance W5, the infimum is taken over all
coupling measures y on R? with marginals ¢(x)dx and ¥ (y)dy. Moreover, for a coupling
measure y between the probability measures ¥, (x) dx and ¥ (y) dy, we have, using Cauchy—
Schwarz inequality,

‘/R(V/)Z(I/fz - Woo)‘ = ‘/Rz(V'(X) +VW)(V'(x) V/(y))V(dx,dy)‘

12
< (2 / (V'Y + o) | V]2, / (x—y>2y<dx,dy)> :
R R?
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By taking the infimum over all coupling measures between v, (x) dx and ¥, (y) dy, using the
above transport inequality and the monotonicity of the relative entropy with respect to ¢, we
deduce that

‘ / ) (i —

1/2
5( IV 2 H leo) / <¢,+wm>)
1/2
(||V”|| Hwowoo)(V (g — woo)‘+2 )2%@)) .

Setting ¢ = %n V|12 H (Wol¥oo) and d = %n V12 J2 (V)2 ¥, one concludes that | [ (V)2 x

. 2
(Wi — Voo)| < YT 0 that

2
vt >0, f(V’)zwt S/(V’)2¢OO+C+7 V62+4d
R R

By definition of a[,], this yields an upper bound on a[;] which depends on H (Yo|{o0). Now,
since b[¥;] € [V lloo> |V loo], (21) implies that ¢ — F(a[y;], b[¥:], £) is bounded from
below by a positive and nonincreasing function of H (¥o|¥eo) = fR Yoln(Yo/V¥eo). We conclude
that there exists a positive and nonincreasing function A : Ry — R such that

d
g HWilYeo) = —(H (Y0l ¥00)) H (Y| ¥o0),

which yields (25). ([

4. Optimization strategies for the RWM algorithm

In this section, we discuss how to choose the constant ¢ in the scaling a,% = % in order to optimize
the convergence to equilibrium, using the nonlinear diffusion limit (7).

As a preliminary remark, notice that we will restrict the discussion to cases when
bly] =E(V" (X)) > 0. (28)

Indeed, points where V" is negative correspond to neighborhood of local maxima of the po-
tential V, which are visited with very low probability over large time intervals by the dynam-
ics (7). Moreover, we observe from (26) that if b[v;] < 0, then, since I' and G are nonneg-
ative functions and a[y;] > 0, iH(%W ) < —w /R(ax Iny,)%y, so that, since
limy—, 0 ['(a, b, £) = 400 (when b < 0), £ should be chosen as large as possible in order to leave
the concave region.

In the following, we thus assume (28).
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4.1. Maximization of the exponential rate of convergence

In view of the inequalities (24) and (27), it seems natural to try to choose £ maximizing (for given

values (a, b) = (a[Y;], b[¥]))
L+ F(a,b,?),

in order to maximize the exponential rate of convergence to zero of H (Y;|¥~). In view of (20),
for a # b, this is equivalent to maximizing £ — |bT"(a, b, £) — 2aG(a, b, £)|.

Remark 2. We notice that, for X; solution to (7),
d
25]E(V(Xt)) =bI'(a,b,t) —2aG(a,b, ) (29)

with (a, b) = (E(V'(X})), E(V"(X}))), so that this optimization procedure has a simple interpre-
tation in terms of the evolution of the energy: it amounts to maximizing |%]E(V(X +))|, namely
making the largest possible moves in terms of energy. This seems quite a reasonable objective.

Remark 3. In the Gaussian case (namely when V (x) = % + %ln(2n)), and assuming that the
initial condition is also Gaussian, the density remains Gaussian for all time. Let us denote m(¢) =
E(X,) its mean and s(¢) = E(X ,2) its second order moment, which completely characterize the
Gaussian law at time 7. Simple computations, still valid for non-Gaussian initial conditions, yield

d
d—j =I(s,1,£) —2sG(s,1,£) = F(s,1,0)(1 — ),
dm

dr

(30)
=—G(s,1,0)m,

where the first equation corresponds to (29), since V'(x) = x and V" (x) = 1. We observe that the
optimization procedure in this case amounts to maximizing | g—f |. This accelerates the convergence
to the equilibrium value 1 of s.

Let us denote

2 Kz :
L7 exp -5 ) if s =0,

2132((1 + £>q><_£> e <_f))
Fi(s,0) = F(s,1,0) = 4 2} 242n 8/))

ifs=1,

o) e (52)( )

if s € (0, 1) U (1, 400),
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the function to be maximized in the Gaussian case, see Remark 3. We observe that (using the fact
that b > 0),

F(a,b,0) = %Fl(%,éﬁ) 31)

so that the general maximization problem on F can be reduced to the maximization problem
on F. Notice that the function Fj is C*° on Ry x R;.

Lemma 2. Forany s > 0, the function £ — Fi(s, £) admits a unique global maximum at a point

£*(s) = argmax Fy (s, £). (32)
£>0

The proof of this lemma is quite tedious and is given in Appendix B. From Lemma 2 and
Equation (31), we deduce that, for (a, b) € Ry x R* , there exists a unique £*(a, b) such that

0*(a,b) = argmax F(a, b, ), (33)
£>0
and that
~ 1 a
(a,b)y=—0 - ). 34
@b =75 <b> OY

In particular, £*(s) = 2*(s, 1). Notice that these scaling results show that a constant ¢ strategy is
far from optimal in the transient case, since when a and b vary, the optimal value 2*(a, b) also
varies.

We now consider three regimes: the near equilibrium case s — 1 (recall that at equilibrium,
a =>b and thus s = a/b = 1), and the two situations far from equilibrium s — 0 and s — oo (see
Figure 1 for an illustration). In the Gaussian case (see Remark 3), s(¢) = ]E(X,z) so that these
three regimes are easy to understand in terms of second moment.

Lemma 3. We have the following asymptotic behaviors for the function €*:

e s — 1: The function £ +— F1(1, £) admits a unique maximum at point £*(1) ~ 1.85. More-

over,
Sll_r:ll £ (s) = £ (1), (35)
and thus E*(a, b) ~a/p—1 %.
o s — 0: The function £ — Fy(0,€) admits a unique maximum at point €*(0) = /2. More-
over,
lim £*(s) = £°(0) = V2, (36)

and thus 7*(a, b) ~a/p0 %
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0 2 4 6 8 10 12 14 16 18 20

Figure 1. Solid line: the function s — £*(s). Dashed line: the function: s > x*./s.

e s — 00: Let us introduce ¥ (x) = x\/ge_xz/8 —szD(—%). The function ¥ admits a unique

maximum at point x* ~ 1.22. Moreover,

. ()
lim =

s—>—+00 ﬁ

x* (37)

so that *(a, b) ~a/b—o0 %

Proof. The first two statements for s = 1 and s = 0 are simple consequences of Lemma 2 and
the implicit function theorem applied to Fj (s, £), respectively, at point (1, £*(1)) and (0, £*(0)),
using the fact that 2ZL(1, ¢%(1)) # 0 and £LL(0,£4(0)) # 0 (see Equations (B.3) and (B.1)
below).

Let us now consider the case s — oo and recall the well-known Mill’s inequalities:

—x < x2> o) 1 ( x2> (38)
7m(1+x2)exp 5 < d(x <—x 2ﬂexp -5 )

Vx <0,

One has ¥/(x) = \/ge—xz/g — 2x®(—3%) so that y'(0) = \/g > 0 and, by (38), ¥/(x) ~
—\/ge_xz/ 8 <0 as x — +00. Moreover, by the lower-bound in (38),

2
(ex2/81,ﬁ’(x))/ = —2<1 + xz)exz/8d><—§) + \/% <0 for x > 0.

Whence the existence and uniqueness of x*.



Optimal scaling for the transient phase of MH algorithms 1947

For 5 > 1/2, by the upper-bound in (38), (2s — D)e’” ¢~ D/2g({1=2 2”) < Jj__ e=t*/®9 5o that,
fors > 1, Fi(s, £) < ;¥ (£/4/s). For & > 0, one deduces thatllmseoosupw\/—[x —exye] F1(5,
€) < SUPygirr_g x+4e) ¥ (X). On the other hand,

hmsupFl(s e (s)) > hm Fl(s X \/E):w(x*) > sup v (x).

s—>—+00 x¢[x*—e,x*+¢]
Hence, for s large enough, Fi(s, £*(s)) > SUPyg[xr—g x4 ¥ (x) and ejf) €[x* —e,x*+¢]
Since ¢ > 0 is arbitrary, this yields (37). O

4.2. Comparison with the constant average acceptance rate strategy

Under the stationarity assumption, it is standard (see [22]) to associate to the optimal value of
¢ ~ 238 ap average acceptance rate (see the Introduction). Indeed, in this case, there is a one-to-

Vi

one correspondence between £ and the limiting acceptance rate

acc(1,1,¢) =

LU LY _ W0, f T
02 02 2

More precisely, £ =~ %}8 is equivalent to

2.38
acc(l,1,0)~ 2@(—7) ~0.23

which does not depend on /. A natural strategy is thus to adjust the variance in such a way that
the average acceptance rate is 23%. In this section, we discuss how to use an equivalent approach
in the transient phase. Of course, the interest of the constant average acceptance rate strategy is
that it can be implemented using the so-called adaptive scaling Metropolis algorithm (see [1,3]):
at iteration k, the standard deviation o is chosen equal to exp(6x) where 6 is updated using the
Robbins—-Monro procedure 041 = 6x + yi+1(ox — o) where a4 is the observed acceptance
rate (1) at iteration k, o € (0, 1) is the target acceptance rate and () is a deterministic fixed
sequence of step sizes.

The first question is: for given values of a and b, does an acceptance rate o € (0, 1) corresponds
in a one-to-one way to a value £ > 0? The average acceptance rate is (see Proposition 1)

=P o) (- 0)

We recall that we only consider the case b > 0, see the discussion at the beginning of Section 4.
(Actually, if b <0, acc(a, b, ) > <I>(— ) > 1/2 for all a > 0 and ¢ > 0, so that it is not
possible to solve acc(a, b, £) = « for any values of o, which is again an indication of the ill-
posedness of the optimization procedure when b <0.)
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Now, for b > 0, observe that
a
acc(a, b, l) = J(E Eﬁ)

where

T L ()

Solving acc(a, b, £) = a amounts to solving J(%, b) = .

Lemma 4. Let s > 0 be fixed. The function £ — J (s, ) is decreasing. Moreover, for all a €
(0, 1) there exists a unique solution to the equation J (s, £) = a. This solution is denoted £*(s)
in the following.

Proof. Let us first prove that, for a given s > 0, £ — J (s, £) is strictly decreasing. We compute

aJ H=— |2 _ﬁ (s — 1 EZ(S;U — (1-=2
2 0= VzneXp( 8s)+(s mp( 2 )<2f( ”)

The right-hand side is negative for s € (0, 1]. For s > 1, we have, using the upper-bound in (38),

aJ s 1 02
=0 <—/]— exp( —— ) <o.
ae 21t (25 — 1) 8s

This shows that £ — J (s, £) is strictly decreasing.
It is easy to see that J(s,0) = 1. Now, using again the upper-bound in (38) for s > 1/2, one
has

¢ 02 V2s 02
J(s, ) < ¢<2¢_> + 15<1/2)exp (—(S - 1)) + 1>1/2) s = l)f (——) (40)

so that limy_, o, J (s, £) = 0. By continuity and strict monotonicity of J, we then get that for any
a € (0, 1) there exists a unique £*(s) such that J (s, £%(s)) = «. O

_ As a corollary of this lemma, we get that for any a > 0, b > 0, @ € (0, 1), there exists a unique
£%(a, b) > 0 such that
acc(a, b, £%(a, b)) =

and that
- 1 a
(a, b) = —@“(—). 1)
/b \b
In particular, £%(s) = (s, 1).

Let us now compare the strategy based on the maximization of the exponential rate of conver-
gence, presented in Section 4.1, with a strategy based on a constant average acceptance rate. By
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comparing (34) and (41), we observe that the scalings of 7* and £* in terms of a and b are the
same, which is already an indication of the fact that a constant acceptance rate strategy is very
natural.

Near equilibrium, namely in the limit a/b — 1, the two strategies are the same if « is chosen
such that £% (1) = €*(1) which corresponds to

o ~0.35. (42)

Notice that this value is not far (but different, since we take into account the transient phase
around equilibrium) from the acceptance probability 0.23 obtained under the stationarity as-
sumption.

To study the two limits s — 0 and s — 0o, we need the following lemma.

Lemma 5. We have the following asymptotic behaviors for the function £%:

e s — 0: Foranya € (0,1),
lirr(l) £4(s) =/ —21n(a), (43)
S—>

and thus €% (a, b) ~a/b—0 @

e s — o0o: Forany o € (0, %),
Ea
tim “ = 2071 (@), (44)

§— 00 ﬁ

and thus 0% (@,b) ~a/p—o0 —2¢1! (ot)#.

Proof. Let us first consider the case s — 0. Observe that for any given £ > 0, it holds

—p?
lim J (s, £) = — ). 45
sgng(s)exp<2) @5)
Let ¢ € (0, —2In(«)). By the monotonicity property of £ > J (s, £) stated in Lemma 4,

sup J(s,0) < J(s,v/—2In(a) + &) —> 50 aexp (;)

€>/—2In(x)+¢

In the same way, liminfs_winfzS J=2Tn(a)—¢ = ®EXp (%). Therefore, for s close enough to 0,
£9(s) € [/—2In(a) — &, /—2In(a) + ] and (43) holds.
Let us now consider the case s — oco. Observe that J (s, £) > &(— ZL:E)' Hence, if

ZO(
liminf ) —

§—>00 ﬁ 0
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then liminfs_, o J (s, £%(s)) > % Therefore, there exists a constant C; > 0 such that, for large
enough s, £%(s) > C14/s. Using (40) for the upper-bound, we get that, for s large enough,

() € (s) V2 i
®<_ 2ﬁ> == ®<_ Zﬁ) T e —n P <_?>'

Therefore,
eﬂt
lim & — ) =
§—00 2 ﬁ
The continuity of ®~! concludes the proof of (44). |

By comparing (36) with (43), we observe that in the regime a/b — 0, the two strategies are
the same if o is chosen such that /—2In(«r) = +/2 namely

a=e1~0.37. (46)

Finally, by comparing (37) with (44), we observe that in the regime a/b — oo, the two strate-
gies are the same if « is chosen such that —2d~! («) = x* namely

a~027. 47

In view of (42), (46) and (47), the constant average acceptance rate strategy with target value
between 1/4 and 1/3 seems to be a very good strategy, since it is almost equivalent to the optimal
exponential rate strategy.

5. Numerical experiments

In this section, we present numerical experiments to illustrate results from Section 4.

5.1. On the choice of the target average acceptance rate

In this section, we would like to discuss the choice of the average acceptance rate « in the con-
stant average acceptance rate strategy. As mentioned above, we identified three different values
of o for the constant average acceptance rate to be equivalent to the optimization of the expo-
nential rate of convergence, depending on the regimes: 7 — 1 (¢ = 0.35); 7 — 0 (¢ = 0.37);
% — 00 (a2~ 0.27).

In practice, a value has to be chosen for «. On Figure 2, we plot as a function of a and
b the relative loss in terms of exponential rate of convergence, for the constant average ac-
ceptance rate strategy compared to the optimization of the exponential rate of convergence:
F(a,b,0*(a,b)—F(a,b,*

F(a,b,t*(a,b))
The main output of these numerical experiments is that the choice o >~ 0.27 seems to be the

most robust, namely the one which leads to an exponential rate of convergence the closest to
the optimal one, over the largest range of variation of a and b. This confirms the interest of the
constant acceptance rate strategy.

(@) , for the three values of @ mentioned above.
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Figure

5.2. Gaussian case

Let us first consider the Gaussian target V (x) = %(x2 +1In(27)) (see Remark 3), with a Gaussian
initial condition X such that m(0) = E(X() and s(0) = E(X, 8). At time ¢, the law of X, solution
to the limiting stochastic differential equation (7) is Gaussian with mean m(f) and second mo-
ment s(¢), where m and s satisfies (30). The Kullback-Leibler divergence admits an analytical
expression in terms of m and s:

HWilYo) = L (s(0) = In(s(0) = m(0)?) = 1),

and its derivative writes

[ )_l<§_ds/dz—2mdm/dt

dr s—m

_ %(FI(S,Z)(I - Fi(s, O)(1 — ) + 2mG(s, 1,5))_

s —m?

In the Gaussian case, it is thus possible, for each time ¢ (and thus for fixed values of m(¢) and
s(1)), to minimize %H (Y1|¥oo) in £. This yields the best strategy that we could think of and
implement numerically, in terms of the speed of convergence of the Kullback—Leibler divergence
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to 0. In the following, let us denote

Zm%md)=mng<FM&£x1_sy_FM&EXI—S)+2mQ@,L@).

S — m2

In the numerical experiments, we thus compare four strategies: (i) the constant £ strategy, with
£ = 2.38 (which is the optimal value under stationarity assumption since / = 1 in the Gaussian
case); (ii) the constant average acceptance rate strategy, using £*(a, b) (for ¢« >~ 0.27 and @ =
e~ ! ~0.37); (iii) the optimal exponential rate of convergence using £*(a, b); (iv) the optimal
strategy for the convergence of the entropy using £°™(m, s). Notice that in the Gaussian case, a =
E(X ,2) =s(t) and b = 1, so that £* and £* are actually functions of s only. Let us also mention
that there are actually two ways to implement (ii): either using a numerical approximation for
£%(a, 1) (and an estimator a of a), or using the adaptive scaling Metropolis algorithm mentioned
at the beginning of Section 4.2 (see [1,3]).

The dimension is fixed to n = 100. To assess the convergence, we observe, as a function of the
so-called burn-in time 7y, the convergence to zero of the square biases:

A 2 A 2
(E(Itf),”,o) - 1) and (E(It’(;l,ﬂto)) ’ (48)
where
T+to 1,2 10042
o 1 (X)) + -+ (X
Itf),T-i-to =4 Z 100 (49)
k:t()+1
and
T+t 1 100
jm. 1 ZO X+ + X, (50)
T 100 '

k=l‘0+1

The expectations in (48) are approximated by empirical averages over 200 independent realiza-
tions of (Xl, e X,loo)ong,OJrT. The size of the time window is 7 = 1500. When needed, we
estimate the values of s = a and m using empirical averages over the n = 100 components of the
process.

On Figure 3, we first consider the initial condition Xo = (0, ..., 0). The first moment is thus
already at equilibrium, and we only observe the convergence of the second moment. Clearly,
the constant ¢ strategy is the worst. Using £* yields a convergence which is almost the optimal
one, obtained for £ = £°™. And the constant average rate strategies also lead to excellent results
in terms of convergence compared to the optimal scenario, even though it is here implemented
using an adaptive scaling Metropolis algorithm.

On Figure 4, we perform similar experiments with the initial condition Xo = (10, ..., 10). We
observe the convergence of the first and second moment. It is clear that the constant ¢ strategy
is outperformed by all the other strategies. We notice also that the adaptive scaling Metropo-
lis implementation leads to slightly slower convergences compared to an implementation using
£%(a, 1). This difference could certainly be reduced by optimizing the parameters in the adaptive
scaling Metropolis algorithm.



Optimal scaling for the transient phase of MH algorithms 1953

© —— (=238
5_ 1\ ] eeeseee- é‘O 27
° 2119
L R N &
g g o N0 e gent
3
g
n
[=3
S -
o
o
(=]
g
o T T T T T T
0 100 200 300 400 500
burn—in-time
Figure 3. Square bias of 1 7 as afunction of the burn-in-time ¢ for various strategies. The initial con-
dition is (0, ..., 0), and the constant acceptance rate strategies are implemented using an adaptive scaling

Metropolis algor1thm.

In conclusion, we observed that: (i) The constant ¢ strategy is bad; (ii) The constant average
acceptance rate strategy (using £%) leads to convergence curves which are very close to the ones
obtained with the optimal exponential rate of convergence strategy (using £*); (iii) the optimal
exponential rate of convergence strategy is as good as the most optimal strategy one could design
in terms of entropy decay (using £°M).

5.3. Non-Gaussian case

Let us now consider a non-Gaussian target, and more precisely a double-well potential. In order
to satisfy the assumptions of Theorem 1, we consider the function V given up to a normalizing
additive constant by:

(x = D2(x + 1), if [x] <1,
Vv =
*x) { 2—8|x| +4, otherwise.

Simple calculations yield

2060 = Dx+ D2 4+2(x = D2(x + 1), if |x| <1,
8x — 8sign(x), otherwise,

V/(x) = {

and

V() = 20+ D2 4+8(x — D(x + 1) +2(x — )2, if x| <1,
8, otherwise.

Of course, no analytical expression for the entropy is available in this context, and we thus

concentrate on the three following strategies: (i) the constant £ strategy; (ii) £ = £“(a, b) and

(iii) £ = £*(a, b). For the constant ¢ strategy, we use £ = % = 1.18 (where we recall, I is

defined by (4)). When needed, a and b are approximated by the estimators over the n components
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Figure 4. Square bias of Its0 741, (top) and It’:yT +o
various strategies. The initial condition is (10, ..., 10). The notations 2027 _ A and €927 — N refer to
the two implementations of the constant average acceptance rate: A for the adaptive scaling Metropolis
algorithm and N for the numerical approximation of £%(a, 1).

(bottom) as a function of the burn-in-time #y for

a=13" vi(xH?and b= 13" v”(X!). The parameters n = 100 and T = 1500 are the
same as in the Gaussian case.

Let us first consider as an initial condition Xo = (10, ..., 10). On Figure 5, we observe the
convergence of the first moment to its equilibrium value (namely 0). Again, the constant £ strat-
egy appears to be very bad, and the other strategies perform approximately equally well.

Finally, let us consider X distributed according to a Gaussian distribution with mean 1 and
variance 0.1431d. The mean and the variance are chosen in such a way that a = E(V’ (X0)?) =
5.24 and b = E(V"(Xo)) = 5.24. On Figure 6, we observe the convergence of the first and
second moments to their equilibrium values (namely O and 0.96). For the constant acceptance
rate strategy, we compare the results obtained with « = 0.35 and « = 0.27. Here, it is much
more complicated to draw general conclusions from these plots. Basically, all strategies yield
comparable results. One could wonder why £* performs poorly for the first moment. The reason
is probably that its bias cannot be encoded into a and b which are integrals of even functions
with respect to the current marginal distribution.
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Figure 5. Square bias of I for non-Gaussian target as a function of the burn-in-time #y for various

to, T+to
strategies. The initial condition is (10, ..., 10). The notations 0027 _ A and €927 — N refer to the two
implementations of the constant average acceptance rate: A for the adaptive scaling Metropolis algorithm
and N for the numerical approximation of £% (a, b).
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Figure 6. Square bias of / t0.T+1o (top) and [ t0.T+to (bottom) for non-Gaussian target as a function of the

burn-in-time # for various strategies and Gaussian initial condition. The constant acceptance rate strategies
are implemented using an adaptive scaling Metropolis algorithm.
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In conclusion, we observed that the results obtained with the constant acceptance rate strategy
(even when it is implemented using an adaptive scaling Metropolis algorithm) are very similar
to those obtained with the optimal exponential rate of convergence strategy.

6. Scaling limits for the MALA algorithm

The aim of this section is to derive a diffusive limit for the MALA algorithm, following the same
reasoning as for the RWM algorithm in Section 2.
The Markov chain generated by the MALA algorithm writes:

Xk+1 _Xln+zk+11.»4k+1 (51)
. . o2
where Z,’{’L:on Tl — T"V’ X;{"), 1<i<n,
n
and Agy1 = {Uk+1 <exp V(X]i{’” + Z]i’j_l)
i= 1

1

R

is the accepting event. Here again, (Gi)i,kz 1 is a sequence of i.i.d. normal random variables
independent from a sequence (Uy)x>1 of i.i.d. random variables uniform on [0, 1]. In Section 6.1,
we formally derive a limiting diffusion process. It appears that the scaling to be used depend on
the sign of E(((V/)?V" +V® —2vy’ _ (V”)z)(X,i ™). This is more rigorously discussed in
Section 6.2 for a Gaussian target probability measure.

6.1. A formal derivation of the limiting process

6.1.1. Asymptotic analysis and limiting process

We adapt the same strategy as for the RWM algorithm, in Section 2.2. Let us first discuss how to
choose the proper scaling for o,,. Using a Taylor expansion, one obtains:

On

V(Xllcn) V(Xl "+ Zk+1) + ;[( i+1)2 <Gk+l ) —(V'(x X PR (X’ i Zk+1))>2]

3(VOX (3 VIV
n T(Gkﬂ) T4 Tk

4 (V/)Zv//(X]l(,n) V(4)(X;(,n) ; 4 2v(3)V/(XIl(,l’l)+(v//(Xll(,n))2 ; 5
+0" 8 + 24 (Gk+1) - 8 (Gk+1)

+(’)(a,15).
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. n__ 1 n ) . .
Setting, as above, v = m Zi:l 1) X one has by Gaussian computations

n V(3)(Xi,n) ; V/V//(Xi,n) i 2
(e, - )
i=1

= 481E((v,f, 5(V®)? —6v'v'v® 1 3(v'v")?)

(X ) VV”(X G

so that one expects that > (

(G, 1)3 1) = O(4/n) and similarly that
V‘”V Xy ”)+(V”<X’*”>)2

X
S D (G- 3) - 2 ARLALY: ((Gk+l)2— 1)) = O(J/n). If this holds
and hmn_)OO 0, =0, then

n

> (v - v+ 202

i=1

1 i 2 0O, ln i,n ?
+ §|:(Gk+l) (Gk+1 ;(V( )+ V(X +Zk+1))> D
4
- ng” (v, (V)2 V" 4 v® —2vOY — (V")) + O(Vnal) + O(na).

From this,
E(lAk+1 |]:I?) — e(na,‘)/S)(v,';,((V/)Zv//+v<4)72\/(3) V= (V")) Al + O(\/ﬁoﬁ) + (’)(na,f) (52)

Here, we have assumed that (v}, (VHY2V" +v® 2V y’ — (v")2) £ 0. From this formula,
we get the correct scaling for the variance, in order to obtain a nontrivial limiting acceptance rate
(in accordance with [12], Section 5):

£4
4

O'n = ;
Now, following the same reasoning as in Section 2.2, we have: for a test function ¢ : R — R,
E(e(Xf4)17F)

ZE( (X] " +Zk+11v4k+l)|‘/—.}?)
_E< ( l n) +¢/(Xli’n)zlifll¢4k+1 + é‘p//(Xl n)(Zk+1) l.Ak-H |]:k> + O(n_3/4)

= o(Xp") + ¢ (X" E(Z L 1) + 5o (X E((Z) L 1) + O(n ).

Using the Lipschitz continuity of y > e” A 1, one may remove the contribution of the ith coor-
dinate in the acceptance ratio and then introduce it again after using conditional independence to
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check that
E(Gly 1 L4 177) = E(Ght)E(La | 77) + O(07) = O(n—),
]E((G;cﬂ)zlflkﬂ |Fe) = E[(G2+1)2]E(1Ak+, \FI) + @(03) = P( At | 77 + 0(n’3/4),
From this, one obtains
Efp (X))

2
= o0) 49 (0 (G = GV 00 )1 |7

1 . 2 2
+ 59" (B ( (306 = SV () ) |77 ) + Ol

Ez n ’ " 3 ! 4
=p(X}") + (/DL VPVIFVE 2V EVI=(VA) 4\ )

2yn
(V) (L) 4 07 (1) + O ()

The correct scaling in time is thus to consider a piecewise linear process Ytl " such that Yk1 /T/ﬁ =
X ,1’" (this is again the standard diffusive timescale), and the expected propagation of chaos limit

is solution to the nonlinear stochastic differential equation:

dX; =w(t, 0)dB, — w(t, OIV'(X,) dt,

(53)
where w(t, 0) = EZ(e(l4/8)]E(((V/)2V//+V(4),2‘/(3) V/—(V)2)(X,)) A 1)
This equation is obtained by a deterministic (and nonlinear in the sense of McKean) change of
time applied to the standard overdamped Langevin stochastic differential equation with reversible
density e~". Under appropriate assumptions on the potential V', we believe that a rigorous proof
of this result could be done using similar techniques as for the RWM algorithm in [14].

6.1.2. Relation to previous results in the literature

These results are related to previous ones in the literature. First, in the Gaussian case V (x) =

% + % In(21), one obtains from (53) that (E(X tz))zzo solves the ordinary differential equation

d 2 2. (L4 /8)(E(X2)—1 2
SE(x2) = 2(PEHD 1) (1 - B(xD))
We recover here a result from [12], Theorem 2, where it is shown that the process

(,1—Z Yr(X ZL;ﬁt J)2) >0, in the limit 7 — oo satisfies this ordinary differential equation.
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Second, in the stationary case, namely when (X(l)’", ..., X" are distributed according to the
target density p defined by (2), the equalities

/v“)v’(x)e—V(x)dx:/ V@ (x)e V™ gy,

R R

/ V”(V/)z(x)efv(x)dx _ / [V(S)V/+ (V”)z](x)efv(x) dx
R R

imply that (v7, ((VH2V" +v@® —2v® VY’ — (V")?)) =0 and this changes the scaling of the

limiting acceptance rate in (52). In [23], it is shown that in this case, the correct scaling is 0,12 =

2 e . .
neﬁ and then (X tnrll /3 J)tzo converges in distribution to the solution (X;);>¢ of the stochastic
differential equation

1
dX, = V(O dB; — 2(O)5 V' (X)) dr.
(54)

3 3))2 _ 1N\3
Wherez(£)=2£2q><_£ Vm,5(v ; 3(V7) >/3>’

where dm = e~V ® dx.

6.1.3. Practical counterparts

The practical counterparts of the convergence results discussed above are the following. We can
actually distinguish between three regimes:

e On time intervals such that E((V/)2V” + V@ — 2V V' — (V)3 (X)) < 0, then the
correct scaling to obtain a diffusive limit is a,% = n‘% and there exists an optimal value of £
to speed up the time scale of the dynamics of X, by maximizing w(¢, £) (see Equation (53)).

e On time intervals such that E((V/)2V” + V@ — 2V y’ — (V")) (X)) =0, then the
correct scaling to obtain a diffusive limit is 0,% = n‘%, and again, there exists on optimal
value of £ to speed up the convergence to equilibrium, by maximizing z(£) (see Equa-
tion (54) and [23]).

e On time intervals such that E((V/)2V" + V® —2vO vV’ — (v")2)(X;"")) > 0, with the
scaling U,% = n‘%, we observe that w(z, £) = £2 in (53) so that one should take ¢ as large as
possible. This is an indication of the fact that the correct scaling for 0”2 in this case should
be such that anz > ’ﬁ%. Indeed, in the Gaussian case, Proposition 4 below shows that one
should take o,, going to 0 as slowly as possible.

In conclusion, in the MALA case (and contrary to the RWM case), the correct scaling as a
function of the dimension is not the same at equilibrium and in the transient phase. Moreover, in
the transient phase, the scaling depends on the sign of

B((V)V V= 2O - () (x)))
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It seems thus difficult to draw any general simple recommendation for practitioners from this
analysis. It is likely that the assumption that the target probability is the product of n one-
dimensional laws is too restrictive to understand correctly the scaling n — oo in this case.

6.2. Rigorous results in the Gaussian case and when E((X ,lc’")z) >1

In this section, we consider the case of a Gaussian target, namely

x2 1
Vix)= 5 + 7 In(27). (55)
We thus have

2

(V) V" v o@Dy (v =2 1.

The aim of this section is to study in details the situation when
E((V')?V'+V® —2vOV — (v")*) (X)) >0 namely E((X}")%) > 1.

Proposition 3. Let us consider (X,i’”) solution to (51) for the Gaussian target (55), with a vari-
ance independent of n:

on=4L¢€(0,2).

Let m be a probability measure on R such that (m, x*) > We endow the space RN with

1
1—¢2/4°
the product topology. If the initial random variables (Xé’”, ey Xg’") are exchangeable and
m-chaotic, then the processes (X Ln X" are P-chaotic where P denotes the law of the

Markov chain
52
Yiy1 = (1 - 7>Yk + Gyt (56)

with the sequence (Gy) i.i.d. according to the normal law and independent from the initial posi-
tion Yy distributed according to m.

A simple case for which the assumption on the initial condition is satisfied is i.i.d. initial
conditions (X;"); with law m.

Notice that Y converges in law to N (0, —

*1—02/4
converges to the target density when £ — 0. Oé course, for fixed n and i € {1,...,n}, X,i’"
converges in law to (0, 1) as k — +o00. So the limits k — 0o and n — oo do not commute,
meaning that, for large n, the rate of convergence in distribution of (X}(’")kz 1 to AM'(0, 1) should
deteriorate.

) as k — +o00. The asymptotic distribution

Proof of Proposition 3. Let (Y!”, ..., Y™") with Yé’" = XE)’” and Y,ﬁ’_fl =(1- g)Yli’" +EG§<+1

denote the processes obtained when all moves are accepted in the MALA algorithm (51). The
proof is divided into two steps. We are first going to prove that the processes (Y, ..., Y™") are
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P-chaotic (this would be trivial if the initial conditions (X 8") ; were supposed to be i.i.d.). Then,
setting

n

Al = {Uk+1 < EXP{Z(V(Y;J') - V(Ylifl)

+5| G = (Ghn - 50 + v’<Yz11>>)2])}},

we will check that VK € N*, lim,,_, oo ]P’(ﬂ,f:l ./Z(Z) = 1. Since, on the event ﬂ,{;l ~Z, (X,l’”, ey

X Mo<k<kx = (Ykl’”, ..., ¥;"™)o<k<k one obtains the P-chaoticity of the processes (X', ...,
X"y by combining the two steps.
For the first step, notice that for fixed j, K € N*, the law of ((Ykl’", cee, Yk]’n))OSksK is

K-1

my(dyg. -, dyg) TT(Q(vk dvfar) x - x Q(v] dv,)),
k=0

where Q(y,dy’) = ﬁe_@/—y(l_’12/2))2/(2[2) dy" and the law m’j of (X(l)’",...,X(])’") con-

verges weakly to m®/ as n — oo (since the initial conditions (X(])’",...,Xg’") are m-

chaotic). Since y > Q(y,dy’) € P(R) is weakly continuous, this law converges weakly to

]—[{=1 (m (dy(i)) ]—15;01 Q(y,i, dy,’; +1)) which is the j-fold product of the image of P by the canoni-

cal restriction to the K + 1 first coordinates. Hence, the processes (Yl’", ..., Y™™ are P-chaotic.
For the second step, let us introduce

1

st = o (V0 - v 0y + 36 - (k- s + v

P({ AL, )) <P(S{ <0). (57)

Some tedious but simple computations yields (using V (x) = % + % In(2m))

in in 1 i 2 i ¢ in in 2
V) = V) + 5] (G)” = (Gl = 50087 4 V() ) |

e R N A
= GO = @)+ (5 = 5 )16l = 55 00)

so that (in law)

(58)

n

£2 2 Gn 1 :
st= (1= ot (= Nt 7 = 206k
i=1
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with Gk 1= L2 >0}% + L y2) Gk 41 @ normal random variable indepen-

dent from uy = 1 Zl 1 Yln As the exchangeablhty of the initial condition (Y , 6’ )
is preserved by the evolutlon the propagation of chaos result obtained in the ﬁrst step im-
plies (and is actually equivalent to) the convergence in probability of the empirical measures
ut = % Y Syin € PERY) to P (see [25], Proposition 2.2). In particular, j converges in prob-
ability to the law Py of Y, solution to (56).

With this law of large numbers, we see that in order to estimate P(S ,’C’ < 0) we need to under-
stand the evolution of (P, y?) =E((Yx)?) with k. One has (P41, y?) = (1 — %)2<Pk, y2) + €2,

and since (P, y2) = (m, y?) > one easily checks by induction that for all k € N,

1
1-2/4°
(Py, yz) > 1_2—2/4. Hence for fixed k € N, there exists M < 400 and &€ > 0 such that ( Py, y2 A

M) > 11_*2;4. One has

¢—2/¢ G, 14¢
]P) n 2 1 +
+ <(Mk’y )( + < ]_32/4

1= 274 [y
I (2 N2 1+2¢
5P<n2( 1) >1+8)+P<(Mk’y /\M)<1_g2/4>

i=1

142 £-2/¢ ~, evn
+P<(“’<y> 1—¢2/4"1— 132/4G"+1 ¢(1+2s)(1—z2/4)>'

The first term of the right-hand side converges to 0 as n — 400, since, by the strong law of large

numbers, % ZLI (G}‘C +1)2 converges a.s. to 1. The second term converges to 0 since ( ,u;:, y2 AM)

143¢
1—¢2/4°

d(— = 2/€\‘/ %) and also converges to 0. Hence, IP(S} < 0) tends to 0 as n — oo and
with (57), one deduces that for fixed K € N*, P(ﬂk I.A") >1- Zk lIP)({A"} )tendsto 1. O

converges in probability to (P, y> A M) > The third term is bounded from above by

As is clear from the previous proposition, for a fixed variance o, = £ and if E((Xé’")z) > 1,

then, for sufficiently small £ (namely ¢ <2,/1 —1 /]E((X(l)’")z)) and in the limit n — o0, (i) the
components (X,i’"),- do not interact and evolve independently according to the explicit Euler
discretization (56) (with a timestep £2) of the Langevin dynamics dY; = dB; — Y; /2 d¢t and (ii) the
system remains in the region ]E(X,%) > 1 for all k > 0.

Based on the previous result, it is natural to look for a diffusive limit for a o;, which goes to
zero at an arbitrary rate with respect to 7.
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Proposition 4. Let us consider (X,i’”) solution to (51) for the Gaussian target (55), with a vari-
ance o, satisfying:

lim 0, =0 and lim no’ = 4o0.
n—>0oo n—oo

Let m be aprobablllty measure on R such that (m, x%) > 1 and (m, x8) < +o0. Ifthe initial ran-
dom variables (X0 e 0 ") are i.i.d. according to m, then the processes ((XLI/ ZJ)’>0’ e

x" Ut /102 J)’>O) are Q- chaottc where Q denotes the law of the Ornstein—Uhlenbeck process
Y;

with the initial position Yy distributed according to m and independent from the Brownian motion
(Bt)1>0. Moreover, the limiting mean acceptance rate is 1.

Remark 4. For a more general potential V, if the initial random variables (X é’", . 8 "y are

exchangeable and m-chaotic with (m, (V/)2V" + V® —2v® vy’ — (V")2) > 0, one expects
the limit in law to be the one of the solution of Y; = Yy + B; — Ot V! (ZYS) ds. But, unlike in the
Gaussian case, it is not clear that E[{(V/)2V" + V® —2v vy’ — (v")2}(¥;)] > 0 for all > 0.

Therefore, setting 7 = inf{r > 0:E[{(V)2V" + V® — 2V V' — (V")2}(Y¥;)] = 0} with the
convention inf @ = +oo and denoting by Q7 the law of (Y1)te0,7), one actually expects the
processes ((Xit’?gzj),e[oj), L (X Lt/azj)te [0,T)) to be 0T -chaotic.

Proof of Proposition 4. As in the proof of Proposition 3, let (Y1, ..., ¥Y"™") with Yé’" =X 6’"
. 2 . .

and ¥, = (1— )Y, " +06,G| | denote the processes obtained when all moves are accepted in

the MALA algorithm (51). The processes (YLt Jo2)" LY # / o2

distributed and their common distribution converges Weakly to Q by the strong convergence
analysis of the Euler scheme applied to (59). Hence, to conclude the proof, it is enough to check

that for fixed T > 0, lim,,— oo IP’(ﬂLT/ on A’,:) = 1, where, as in the proof of Proposition 3,

) are independent and identically

n

A= {Uk+1 =< eXP!Z(V(YJE'H) V(v

A= (=200 vor) )

To do so, we use an upper-bound sharper than (57). Let us introduce (using (58)):

1

sz=m42{ ) v+ [0 - (6 - 200 +voiz) |

- ZR

nao,
mi=1
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where the random variables

3 2
in _ [ O%n 0, i,n\2 g Riyell In J 2
(rr= (5 =% )i+ (% 1) - Flck’),

are independent and identically distributed. Then, we have

<i<n

I’l0‘4

(A1) = E(( %)) < ("S5 )

o3 "L
_ _n i,n .
4 ( le L, R’k‘"<0}>'
1=

We need to estimate the moments of the random variables R,i’". To do so, we assume from now
on that 7 is large enough so that 0, < +/2 and we first estimate the moments of

. 0'2 ko k 0'2 k=j
Ln n nLn n

(60)

j=1
2 . . C(1_~2 2k
One has, using the fact that o, Z';zl 1- %")k’f ij ~ N1 (0, %),
2N 8k 2 6k 2 1y 2k
; 1-(1-0./2)
E((r")) = (1=20) (m,x8)p28(1-Tn) 2T/, (6

2\ 4k 2 2k \ 2
1—-(1 - 2
+210 1_Ui M (m,x4)
2 1—0,%/4

o\ (1- 1 —02/2)%\°
+420<1—7> <—1_%2/4 >(m,x2>

1—(1—a2/2)%\*
+ 105(—1 —24
< (m, x®) + 56(m, x°) + 840(m, x*) + 3360(m, x*) + 1680.

Therefore, sup, . _ /5 sup;>g E((R,i’")“) < 400. Moreover, for n large enough so that o <

2((m.x})—1) s
a2 (so that we also have o, < 2),

(- (=) ()

—(m )T (m’xz) -1
—2 s

2
— ko2 /(2—o2) Sy xT) — 1

>1+4+e >14e
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where the latter inequality holds for k < | T/ anzj . From now on, we suppose that 7 is large enough

2 2
2Wmx)=D and we fix k < |T/o?2]. Setting c7 = (e_<’"”‘2>T)%, one has

so that a,% < D)

E(RI™) = "7((1 - ?)@((yg")z) _ 1) > 1o,

Therefore (using in particular the fact that E(R,i(’") >0),

n n
-E (Z R" s Ri,n50}> = —nE(R;’")P<Z R" < o)
i=1

i=1

n
i,n in . |
— E(ZI(R]( - ]E(Rk ))1{2?—1(121‘('"]E(R;(’n))fn]E(Rll-ll)}>
1=
0.+ EEL R —ERM)Y
(nIE(R,i’"))3

<

(61)

_ 3n(n = 1) Var? (Ry") +nE((Ry" —E(Ry")Y)

(nE(Ry™)?
_ Gr’+ BoER"Y _ Cr
B cpnio " noy’

where Cr is some constant not depending on n and k. With (60), we deduce that

LT /o] -1 i LT/o2]—1 ) rCr
(U bal)s 3 R 1 -

= 2
k=0 k=0 4}10’”
. ) . \T/07) fny _
Since lim,, o n0,, = 400, we conclude that lim,, .o P((,_, "~ A}) = 1. O
Remark 5. In the case when lim,_, 76> = 0 and the initial conditions (X(l)’", X" are
i.i.d. according to m such that (m, x4) < +00, then, whatever the sign of (m, xz) — 1, the pro-
cesses ((Xb?azj)tzo’ e, (XT;7U2J)QO) are Q-chaotic where Q denotes the law of the Ornstein—

Uhlenbeck process Y; = Yy + B; — fot % ds with the initial position Yy distributed according to
m and independent from the Brownian motion (B;);>¢.

Indeed, for n large enough so that 0, < +/2, one may check that sup;. E((Y,i’")“) < C and
replace (61) by the estimation

n n 2
—E <Z R s RL‘”<0}> <n|E(R;")| +E? ((Z(R,i’" — E(R,i’”))) ) < Cno, +C+/n,

i=1 i=1
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so that

\T/02]-1
P( U {Azﬂ}f)scf(no,%won)

k=0

which converges to zero when n goes to infinity.

Appendix A: Proof of Lemma 1

Let us define for x € R,

f(x) =exp(x?/2)®(x), (A1)
2
h(x) = xf (x) = x exp (%)@(x). (A2)
The derivative of f is
f(x)= b + xex (é)d)(x)
BV ) '

For x > 0, f'(x) > 0. For x < 0, using the upper-bound in (38), we also obtain f’(x) > 0.
Therefore, the function f is increasing.

Since K’ (x) = (1 —i—xz)exp(%)d)(x) 4+ X, it is obvious that 4’ (x) > 0 for x > 0. For x <0

JV2n’

this comes for the lower-bound in (38).
By definitions of I" and G, we get

I'(a,b,0) —2G(a,b,t) ([ —tb 22 b
7 —CD<—) — exp <—(a—b)><b<m —E\/c_l). (A.3)

Using the identity

2 2/ b 2 —02p2
(@ =n) =ew| 5 (577 ~va) Jow (")

the right-hand side of (A.3) can be rewritten in terms of f (defined by (A.1))

T(a,b,0)—2G(a, b, t) <—£2b2> (-ez;) <£(b—2a)>
e —oo ()l (a) - (5]

Now it is clear that

, . _tb b — 2a)
sign(I'(a, b, £) —2G(a, b, £)) = sign [f(m) - f<ﬁ>i|

Recall that the function f is increasing and thus sign(I'(a, b, £) — 2G(a, b, £)) = sign(a — b).
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Similarly,
232 _ —h(—
2{ﬁexp< éab )h(é(b 261)/(2\25)_)a h( Z19/(2x/5))7 ifab.
F(a,b,t) = )
20% exp <%>h/<—%a>, ifa=b.

This shows the continuity of F, and the positivity of F is a consequence of the positivity of /'
Setting for (a,b) e R} xR, x(a,b, ) = 02222 and ¢(a, b, £) = —=t2 and for (x, y) € R2,

2a T 2Ja
-+ = fO) ify o x
) O+ fONE—y) ’
ven=1 o
L otherwise,
S(x)
one has
rae,bns,e, ifa=0,
F(a,b,0)= { T(a,b,0)(1 =¥ (x(a,b,0),t(a, b, b)),  otherwise.

By [14], Lemma 2, Equation (3.2), the function (a, b) — I'(a, b, £) is bounded from below by
a positive constant on [0, +00] x [—M, M]. To show (21), it is then sufficient to show that
SUP(4.pye0.M]xR ¥ (X (a, b, ), ¢(a, b, £)) < 1.

When x > y, since & is increasing, yf(y) < xf (x) which implies —(x + y)(f(x) — f(y)) <
(f(x) + f(y))(x — y) and therefore v (x, y) < 1. This inequality remains valid for y > x by
symmetry of i and for y = x since xf’'(x) + f(x) =h'(x) > 0.

For (x,y)eRz, with x > 0 and —Z\/fo—kyfo, (so that x — y > 2x > 0) one has
0< —% < % and 0 < % < 1 sothat y(x,y) < %. With the symmetry of ¢, one
deduces that SUD (¢ )0/ M <x+y<0,xv y> 0/ M Yx,y) < % Since f is C! and positive, one easily
checks that v is continuous on R2. As Y < 1and {(x, y): —M <x+ y<0,xVvy< Em}
is compact, one obtains that SUD (¢ y):— /M <x+y<0 Yix,y) <1l

As for (a, b) € Rj_ xR, x(a,b,£) +¢(a, b, £) = —L£/a, one concludes that

sup  Y(x(a,b,0),t(a,b,0)<1.
(a,b)e(0,M]xR

Appendix B: Proof of Lemma 2

Recall first that the function (s, £) — Fi(s, £) is C*° on R4 x Ry. It is easily checked that for
any s >0, F1(s,0) =0 and limy_, », F1(s, £) = 0. With (21) and the continuity of £ — Fj(s, £),
one deduces the existence of a point £*(s) > 0 such that Fi (s, £*(s)) = maxg>o Fi (s, £).
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When s = 0, F;(0,¢) = ¢2 exp(—%). This function admits a unique maximum at point
£*(0) = /2. For further use, we observe that

82F1 N
W(o,z (0)) #0. (B.1)

In the case s = 1, we compute the derivatives

dF 5 14 402 &

— 1,0 = 4200 -2 ) - — ——1,
o (L0 =(4+2) ( 2) 4/_2neXp< 8

32 F

Th G = @re)o-L) - 108 e
7z 1O =( ) ( 2> JHGXP< 8>'

As a consequence, at a critical point of £ — Fi(1, £),

92 Fy ¢
W(l,ﬁ) = (¢ —6)<I><—§>. (B.2)

We deduce that any local maximum belongs to (0, \/5] and any local minimum to [\/5, +00).
Since there is a local minimum (resp. maximum) between two distinct local maxima (resp. min-
ima), we conclude that ¢ — Fj(1, £) admits a unique local maximum which is also a global
maximum and belongs to (0, \/6] and no local minimum on (0, +00). For further use, we ob-
serve that % (1, +/6) # 0 and thus (from (B.2))

3%F
721(1,?(1)) +£0. (B.3)

Let us now consider the case s € (0, 1) U (1, 00). The partial derivative of F| with respect to £

@( 6)—(g—£(1— ))F( e)+ez<—\/§ <—£>+eq><—i)) (B.4)
ac 7T\ S )T 7 P\ T8y 255)) '

Of course, % (s, £*(s)) = 0. Then, at any critical point of £ — F (s, £), we have (using the fact

that 221(s, €) = 0) LEL(s, £) = (s, £) where

is:

902
5(s, €) 2 s )R 0 zz,/zs exp ~ & EY-FY
s, )=\ —— — S s, ) — — —— -
p 02 : x O\ T8 2./s
so that %(s, £) = p(s, £) with (using again %(s, £) = 0 to eliminate Fi (s, £))
.0 £—€2+s£2+6 [2s e +2€262—sz2—4¢ ¢
§$,0) =b—————/ —exp| —=— -
P 2 _s2_2 V7w P\ g 2_s2_2 \"2/s
02 —s02—4
= 2’627 ’e 9
e YA
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5.0 = b 1 102—s502-6 [ 02
s, £) = ——— )/ —exp|l ——|.
X 25) T —sr—aV 21 TP T g

B.1. Thecases > 1

where

Let us assume s > 1. In this section, we will prove that the function ¢ — p(s, £) is negative
on some interval (0, £) and positive on (¢, 00), which is equivalent to show that £ — x (s, £) is
negative on (0, E) and positive on (E 00), since the rat10 ‘f;f is positive. This implies that
£+ F (s, ¢) has a unique global maximum at point £*(s). Indeed if £7(s) < £5(s) are two points
in argmaxg>o F1(s, £), then, £5(s) < ¢ and we reach a contradiction by noticing that there is
necessarily a local minimum of £ = F (s, £) in the interval (€] (s), £5(s)).

We note that

M= —_L ! e P(s, 02 B.5
&Y= mop (@2(1—s)—4)2eXp< 8s> (5. €. (B-5)
where
(1—5)% 4 3\ ,
P(s,y):—Ty +(l—s)<s(1—s)+5>y — 2+ 14s5(1 —5))y +24s

(1—s5)? 2 oL 48s
S )t )

We will show that y — P(s, y) is positive on some interval (0, £) and negative on (£, 00). This
means that £ — x (s, £) is increasing on (0, £) and decreasing on (£, 00). Since limg—_, x(s, €)=
—00, limy_ o0 x(5,£) =0 and £ — x(s,£) is a C*° function, this implies that ¢ — x (s, £) is
negative on some interval (0, E) and positive on (Z 00), which concludes the proof.

Let us now study the polynomial y — P(s, y). Let us introduce

1 48s
O(s,y) =y> - (1—+s>y+
—s 1

— S

The discriminant of y — Q(s, y) is

A(s) = (s2(1 —5)* = 10s(1 —s5) + 1).

16
(1—s)?

Since s > 1, and thus s(1 —s) <0, then A(s) > 0. The polynomial y — Q(s, y) has two roots:

1 2
y+=2(1—+s)+ I |(s2(l—s)2—10s(1 —s)+ 1)
— S — S
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and

1 2 1/2
_=2 — 21 —5)2 — 10s(1 — )77,
(1_S+s) |1_S|(s( S) s ( s)+)

Then, Q(s, y) <0 if and only if y € (y—, y+). The roots of y > P (s, y) are {y_, y1, yo} where
2

1—s

Yo =

We notice that y_ < y4 and y; > yo. We observe that

(s2(1 — ) = 10s(1 —s5) +1)"/? < 2

1
_ — 2
Y= =0 (1— +> 1—s| 1—s

= s< (s2(1 —5)> = 10s(1 —s) +1)'?

[T —s]

1
1— _
— ( s)<10

Thus, since s > 1, we have

y-<yo<0<yy,

and y — P(s, y) changes its sign at each of its roots {y_, y, yo}. Since limy_, o P (s, y) = —00,
we deduce that P (s, y) > 0 for y € (0, y;) and P(s, y) <0 for y € (y+, 00). This concludes the
proof in the case s > 1.

B.2. The cases <1

First, we observe that the maximum of ¢ — Fj (s, £) is necessarily in (0, £o) where

bo=yo=
Indeed, if £ > -2, we have (using the fact that F; > 0 and the upper bound in the classical

inequality (38))

@ ¢ 2 _t(1—n)F 0+ 02 _\/§ e + 0D
o= (e ) e & A )
(Fen(g) T o))
<l =/ —exp{ —— )+, —exp| —=—
T 8s T 8s

< 0.

This shows in particular that £*(s) € (0, £p). In all what follows, we only study the function
L+ Fi(s, ) for

£ € (0, £op).
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We need to prove that £ — Fi(s, £) admits a unique global maximum on (0, £p). A sufficient
condition is that £ = p(s, £) is negative for £ < £.

Notice that the function £ > x (s, £) is C*°([0, £9)), has the same sign as p(s, £) and that
limy_ g x (s, £) = —o0 while

N 18(1—5)—6 [+ ( zg>
s, 00) =0 ———) - —-F——— | —exp—=>
x(s. £o) < 2¢E> Lo e5(1—s)—4V2m P\ 785

of _ Lo I \/27 €
- ( M) w0V x exp( 8s>
which is negative, using the upper bound in the classical inequality (38).

Let us now study the sign of x (s, £). As in the previous case, we first study the sign of %—)lf,
namely the sign of P. We distinguish between two cases.

If s(1 —s) >5— /24, then A(s) <0, so that Q(s, y) > O for y < yo. This implies that
P(s,y) > 0 for y < yp. Therefore, in view of (B.5), %—’é(s, £) > 0 for £ < £g. Thus, in this case,
£+ x(s,£) is increasing from O to £g, going from —oo to x (s, £o) which is negative. In conclu-
sion, £ — x (s, £) is negative on (0, £p), and £ — Fi(s, £) admits a unique global maximum.

Now, if s(1 —s) <5 — V24, A(s) > 0, so that y — Q(s, y) has two roots y4 > y_. We recall
that y_ < yg <= s(1 —s) < 11—0 and notice that 11—0 <5 —+/24. Let us thus distinguish between
two subcases.

Ifs(l—s)e [%, 5—4/24),then 0 < yg < y_ < y,. The polynomial y — P(s, y) changes its
sign at each of its roots {yg, y—, y+}, and limy_, oc P (s, y) = —0o0. Thus, in this case, £ — x (s, £)
is increasing from O to £, going from —oo to x (s, £o) which is negative. In conclusion, y (s, £)
is negative, and £ — F (s, £) admits a unique global maximum.

The last subcase to consideris s(1 —s) < %, which is equivalent to

(B.6)

s € (0,s0)U(s1,1)

with

50 = %(l — %) and s = %(l +\/§>
In this case, 0 < y_ < yg < y4. Indeed (using the fact that s < 1),

o0 = (I4+s(1—9)>(s°1—5)>—10s(1 —5)+1)"?
<— s(1—s)>0,

which is true. The polynomial y — P (s, y) changes its sign at each of its roots {y_, yo, y+}, and
limy_, oo P(s, y) = —00. Let us denote £_ = ,/y_. Thus, in this case, £ — x (s, £) is increasing
from O to £_ (going from —oo to x(s,£_)) and then decreasing from ¢_ to £y (going from
x(s,€-) to x(s,£p), which is negative). Thus, if x(s,€_) < 0, then x (s, £) is negative, and
£ — Fi(s, £) admits a unique global maximum.

In conclusion, £ +— Fj(s, £) admits at least one local maximum and at most two local maxima.
The function £ — F (s, £) admits two local maxima E’l* < KE if and only if x (s, £_) > 0, in which

case {7 <{_ < {3, and %(s, ) = %(s, 23)=0.
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B.2.1. The case s € (0, so)

Let us assume the existence of s € (0, sg) such that £ — Fj(s, £) admits two local maxima
£7(s) < £5(s) and let us show that

aF 3°F
3(s, £) € [s, 50] x R%, a—zl(s’e) 821( 0 =0. (B.7)

If 38;'( £7(s)) =0 or 3;1;1 (s, £5(s)) = 0, we are done. Otherwise, we may apply the im-
plicit function theorem to construct for i € {1,2} a continuous curve £;(s) on a maximal in-
terval [s,5s;) with §; > s such that for s € [s,§;), azl (s,£7(s)) =0 and 33;;1 (s,£5(s)) < 0.
In case min(sy, 52) > so, then, since by the uniqueness part of the implicit function theorem,
Vs € [s, min(sy, §2)), £](s) < £5(s), we contradict the fact that £ — F}(so, £) admits a unique

local maximum. Thus, choosmg i €{1,2} such that 5; = min(sy, 52), one has 5; < sg. Since
G(s) < Lo(s) =/ 155
verging to s; and such that £7(s,) converges to some limit denoted by £7(5;) as n — co. By
continuity of %1 (s, ¢) and 9F1 (5, £), one has 31 (5:, €2(51)) = 0 and Rd} (i, (i) < 0. Let

we may find an increasing sequence (s, ),enN of elements of [s,s;) con-

02 02
us now con51der £3_;(5;), defined as the limit of a converging subsequence of (£3_; (sn)), in case
S3_; =5;. If E*(?-) = {5(5;), then from the existence of a local minimum £ € (£7(sy), £5(sy))

such that 362 L(s,,€) > 0, we conclude that 3{2 (s,,é*(s )) = 0. If £7(s;) < £5(s;) and both

%(si, £7(s;)) and %(s,-, £3(s;)) are negative, then, using the implicit function theorem, we

contradict the maximality of ;. This concludes the proof of (B.7).
Let us con51der a point (s, £) such that 3F‘ (s,0) = 33111;1 (s,2) =0, where s € [0, so] U [s1, 1]
and ¢2 < 1= - From 0F1 (s, £) =0, we get:

e 2s e ¢
0=y (T o) re(-57))

From %(s,ﬁ) =0, which implies x (s, £) = 0 (since %(S,E) =0), we get:
© £ 102(1—s)—6 [s 02 BS)
— =- —expl —=— ). .
25) T —s) =4V 2x TP\ T
By combining these two relations, we have
Fi(s, & A 2s 02 +E2(1—s)—6 s 22
$, ) =———5———| —/ —exp| —— -/ —exp| ——
! 2_2(1—ys) O\ T8 ) T =g =4V 2w P\ Tgs
o s 02
————/—€exp|—— ).
21 —s) —aV2m P\ T3y
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Finally, using the expression for Fj (s, £), we get:

¢ (s —1) ¢ -y s e
Q)(_z_ﬁ)“l_zs)exp( 2 )q)(zﬁ_zﬁ)w—ﬁ(l—s) ﬁe’“’(_S_s)'

Using again (B.8), this yields

102(1—s5)—6 [s 22 Pis—=1 ¢
g - 1-2 — o[ ——¢
(1 —s) 4V 2neXp< 8s>+( s)eXp< 2 ) <2ﬁ ﬁ)
21 —s) s 02
=7 szl -2 )
4—-02(1—-5)V 27 8s
which implies

¢ 2020 —-s5)—-3 [ 22 )

We notice that the right-hand side is negative, so that this equation has no solution if 1 — 2s >
0, which leads to a contradiction with (B.7) in the case s € [0, so]. In conclusion, in the case
s € (0, s0), £ — Fi(s,£) admits only one local maximum at point £*(s), which is also a global
maximum.

B.2.2. The case s € (s1, 1)

In the case s € (s1, 1), we need another argument.

Lemma B.1. Let us consider s € (s1, 1) and € € [0, £o(s)] such that %(s, l) = %(s, ) =0.
Then, £ < £_(s).

Proof. We know from the previous computations that (s, £) satisfies (B.9). Using the lower
bound in the classical inequality (38), we get

¢<L —N’) _@(_E(Zs— 1)) £2s — 1)/(24/5) . (_52(2s— 1)2> 1
o5 V)T 2S5 ) T 20s—1)2/@s) P 8s N
From (B.9), we thus obtain (since 1 — 2s < 0)

202(1—s5)—3 [ e )
ST VTR [ ——a -2
C4—02(1—ys) 2neXp( 8 s))

(1—25) £2s — 1)/(24/5) (_ZZ(ZS — 1)2) 1
< T F Qs — 12 P 8s V2
which implies
2(1—-s5)—3 225 — 1)

4-C(1—s) 45+ 02517
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and then (since £2(1 — s) < 2)
(P(1—s)=3)(4s + 225 — D?) < —02(2s — D*(4 = £2(1 — 9)).

This implies that

02 < 12s.
On the other hand, it is easy to check that
()% > 12s.
Indeed
(€ )P>125 2(11 + ) |1ES|(S2(1 — 52— 10s(1—s) +1)"/* > 125

—  1-551 -5 > (s> —5)>—10s(1 —s) +1)"?
< 1-10s(1—5)+255>(1 — )% >s>(1 —5)> —10s(1 —5) + 1

which is obviously true. Thus, (B.9) implies £ < £_. O

Let us now assume the existence of s € (sq, 1) such that £ +— Fi(s,£) admits two local
maxima £](s) < £5(s). We recall that necessarily, x (s, £—(s)) > 0 and £](s) < £_(s) < £5(s).
Lemma B.3 below shows that j x(s,€-(s)) > 0 for s € (s1, 1). This implies that Vs € (s, 1],
x (s, €_(s)) > 0. Using the implicit function theorem, we can construct, a contmuous curve ¢} (s)

on a maximum interval of the form s € [s,s) with s > s such that for s € [s, s), S (s £5(s)) =

%(s, Z;(s)) < 0 and thus x (s, Zg(s)) < 0. Due to the respective signs of the continuous func—

tion y (s, £) on the two continuous curves § E; (s) and s — £_(s), these curves cannot inter-
secton [s, min(s, 1)). Therefore, Vs € [s, min(s, 1)), £5(s) > £_(s). We now distinguish between
three cases.

If 5 > 1, then £5(1) > £_(1) = V12 whereas aF‘ (1,£5(1)) =0 and 6651 (1, £5(1)) <0 so that
we contradict (B.2).

If 5 < 1, then since £3(s) < €o(s) =/ 12,
elements of [s,5) converging to 5 and such that £5(s;) converges to some limit denoted by

£5(5) and which belongs to [¢_(5), £o(5)]. By continuity of %1(s,¢) and 6;[;1

(5, 65(5)) =0, 335;1 (5, £5(5)) < 0 and thus x (5, £5(5)) < 0. ThlS implies that £3(5) > £_(3)

since x (5, £—(5)) > 0. In turn, this implies, by Lemma B.1, that 8 F' (5, £5(s)) < 0. Combining
the implicit function theorem with the uniqueness of local maxima of L Fi(s, ) for > £_(s),
we contradict the maximality of 5.

Let us finally consider the case s = 1. We are going to check that 2f1 (s £) is negative for ¢

we may find an increasing sequence (s;),enN Of

(s, £), one has

large uniformly in s € ( , 1) (see Lemma B.2) so that £3(s) remains bounded in the limit s — 1.
This implies that we may find an increasing sequence (s,,) neN of elements of [s, 1) converging to
1 and such that £3(s,) converges to some limit denoted by £5(1) > £_(1) = +/12. By continuity
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of 2 (s, ¢) and JM’; (s, £), one has 2FL(1, €5(1)) =0 and BM@ (1, £5(1)) < 0 but this contradicts

(B. 2) and concludes the proof of Lemma 2.

Lemma B.2. There exists L > 0 and o < 0 such that, for all £ > L and for all s € (s1, 1),
BF‘ (s,0) <a.

Proof. Lets € (s1, 1). By (B.4) and nonnegativity of Fj, one has

(s £) < - Fl(s O+ —/ —exp| — + LD
T 8s
0]

20 02 2(s—l)
=1, <1+—(1—s)+(1—2s)exp( > ))

26(25‘ _ 1) (@2(5‘ _ 1)) fz/(zﬁ) < xz) dx
— exp eXpl| ——=
1—s 2 025—1)/(2/5) 2/ V2m

202 /s ( 52)
———exp|l——=— ).
27 P 8s

Using two integrations by parts, one obtains

/Z/(Z«/}) eixz/zdx - < 2\/5 B 8S3/2 ) exp(_ £2(2S _ 1)2)
5(25_1)/(2ﬁ) - E(2s — 1) £3(2S — 1)3 8s

2 8s3/2 e
(A5 S3 exp( ——
¢ ¢ 8s

o(-32)= 7= (5 rol(@)enl5)

with the term O( =) uniform in s € (s1, 1). Using the fact that

2 206 _
lz_z <1+£—(1—s)+(1—2s)exp<E7(s2 D))

Pis—1) 20 P2is—1)
—_p3 _
=/ +4£exp< > >+1—s<1 exp( 5 ))

we get, since s < 1,

and

20 22 2 —1) 3
051— 1+?(1—s)+(1—2s)exp — <207 4 44.
— S
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Thus, we get

22 dF
V2 i e W
mXp<8s> oz &9

(s —1 20 (s —1
§(E3+4Eexp( (s2 )>+1_s<1—exp<%>>>
2s 8532 1
(75 ()

_26(2s—1)< 25 8s3/2
1—s \e@2s—1) Z3(2s—1)3>

20(2s — 1) s =1\ /(25 8537 )
T exP( 2 @ )T

200 _ 206 _
:—8s3/2+8\/§exp(6 (s D)—f- 4ys <l—exp (M))

2 1—s5 2

16572 (1_ (ﬂ(s—l)»
Ca—gn\ P 2

4SS N 16s3/2 N <e2(s—1))4ﬁ(2s— D
—s T 22s—1)2(1—s) T 1—s

(s —1)\ 16(2s — 1)s3/2 1

_exp< 2 ) 21 —s) +O(£_2>
1653/22(1 — s) (s —1) 1653/24s(1 — s) 1
_ 32 -
=T e exp( 2 ) 25— 121 —) O( )

02

Therefore, one concludes that

€2\ dF 3 1
N ) it} _g.3/2 —
21exp<8s) Y, (s,0) < —8s +O<£2)’

which indeed shows that %(s, £) is negative for ¢ large uniformly in s € (s1, 1). O
To conclude the proof, we need to prove the following lemma which has been used above.

Lemma B.3. The function s — d%X (s, £_(s)) is positive for s € (s, 1).

Proof. Let us consider the derivative % x(s,€_(s)). Using the fact that %—)l‘(s, £_(s)) =0, we
obtain that

d dx 1 2 1
EX(S,E—(S)) = g(s,ﬁ_(s)) = E“P(‘g) @ 2 _4)2S3/2£_5(S),
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where

2

+202 5% — (% + %)(22(1 —5) = 6)(2(1—5)—4),

221 —s)—4)?

E(s) = 2

where, here and in the following, £_ should be understood as £_(s). Notice that % x(s,2_(s))
has the same sign as £(s). By simple computations, we get:

6
0 (1—95)2 =804 (1 —s) + 1662 Ly

E(s) = 4
K EZ, 4 2 2
—(5+ 5 )t a =92 =102 1 —5)+24)
Ca-5r 3, 2 2.2 5,4 2 2
= ) 2 4205 = e (1= 5502 (1 - s) - 12,

By using the fact that Q(s, 62_) =0, namely 0= 4(11? + s)£2_ — % to rewrite the term pro-
portional to 66,, we obtain

E(s)=—s2(1—s)— 1 (1 —s) + €2 +2025* — 125

so that, using again ¢* = 4(& +5)0% — % to rewrite the term proportional to £4 |

E(s) =252 (25— 1)

which is positive for s € (s1, 1). This concludes the proof. (]
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