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We investigate asymptotic properties of least-absolute-deviation or median quantile estimates of the loca-
tion and scale functions in nonparametric regression models with dependent data from multiple subjects.
Under a general dependence structure that allows for longitudinal data and some spatially correlated data,
we establish uniform Bahadur representations for the proposed median quantile estimates. The obtained
Bahadur representations provide deep insights into the asymptotic behavior of the estimates. Our main the-
oretical development is based on studying the modulus of continuity of kernel weighted empirical process
through a coupling argument. Progesterone data is used for an illustration.
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1. Introduction

There is a vast literature on the nonparametric location-scale model Y = μ(X) + s(X)e,
where X,Y , and e are the covariates, response, and error, respectively. Given observations
{(Xj ,Yj )}j=1,...,m, the latter model has been studied under various settings of data structure.
In terms of the dependence structure, there are independent data and time series data scenarios;
in terms of the design point X, there are random-design and fixed-design Xj = j/m settings. In
these settings, we usually assume that either (Xj ,Yj ) are independent observations from subjects
j = 1, . . . ,m, or {(Xj ,Yj )}j=1,...,m is a sequence of time series observations from the same sub-
ject. We refer the reader to Fan and Yao [9] and Li and Racine [20] for an extensive exposition
of related works.

In this article, we are interested in the following nonparametric location-scale model with
serially correlated data from multiple subjects:

Yi,j = μ(xi,j ) + s(xi,j )ei,j , 1 ≤ j ≤ mi,1 ≤ i ≤ n, (1.1)

where, for each subject i, {(xi,j , Yi,j )}j=1,...,mi
is the sequence of covariates and responses, and

{ei,j }j=1,...,mi
is the corresponding error process. We study (1.1) under a general dependence

framework for {ei,j }j∈N that allows for both longitudinal data and some spatially correlated data.
In typical longitudinal studies, xi,j represents measurement time or covariates at time j , then it
is reasonable to assume that {ei,j }j∈Z is a causal time series, that is, the current observation
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depends only on past but not future observations. In other applications, however, measurements
may be dependent on both the left and right neighboring measurements, especially when xi,j

represents measurement location. A good example of this type of data is the vertical density
profile data in Walker and Wright [27]; see also Section 2.1 for more details. To accommodate
this, we propose a general error dependence structure, which can be viewed as an extension of
the one-sided causal structure in Wu [32] and Dedecker and Prieur [8] to a two-sided noncausal
setting. The proposed dependence framework allows for many linear and nonlinear processes.

We are interested in nonparametric estimation of the location function μ(·) and the scale func-
tion s(·). Least-squares based nonparametric methods have been extensively studied for both
time series data (Fan and Yao [9]) and longitudinal data (Hoover et al. [16], Fan and Zhang [10],
Wu and Zhang [31], Yao, Müller and Wang [35]). While they perform well for Gaussian errors,
least-squares based methods are sensitive to extreme outliers, especially when the errors have a
heavy-tailed distribution. By contrast, robust estimation methods impose heavier penalty on far-
deviated data points to reduce the impact from extreme outliers. For example, median quantile
regression uses the absolute loss and the resultant estimator is based on sample local median.
Since Koenker and Bassett [19], quantile regression has become popular in parametric and non-
parametric inferences and we refer the reader to Yu, Lu and Stander [37] and Koenker [18] for ex-
cellent expositions. Recently, He, Fu and Fung [12], Koenker [17] and Wang and Fygenson [28]
applied quantile regression techniques to parameter estimation of parametric longitudinal mod-
els, He, Zhu and Fung [13] studied median regression for semiparametric longitudinal models,
and Wang, Zhu and Zhou [29] studied inferences for a partially linear varying-coefficient lon-
gitudinal model. Here we focus on quantile regression based estimation for the nonparametric
model (1.1).

We aim to study the asymptotic properties, including uniform Bahadur representations
and asymptotic normalities, of the least-absolute-deviation or median quantile estimates for
model (1.1) under a general dependence structure. Nonparametric quantile regression esti-
mation has been studied mainly under either the i.i.d. setting (Bhattacharya and Gangopad-
hyay [4], Chaudhuri [7], Yu and Jones [36]) or the strong mixing setting (Truong and Stone [26],
Honda [15], Cai [6]). There are relatively scarce results on Bahadur representations of conditional
quantile estimates. Bhattacharya and Gangopadhyay [4] and Chaudhuri [7] obtained point-wise
Bahadur representations for conditional quantile estimation of i.i.d. data. For mixing stationary
processes, Honda [15] obtained point-wise and uniform Bahadur representations of conditional
quantile estimates. For stationary random fields, Hallin, Lu and Yu [11] obtained a point-wise
Bahadur representation for spatial quantile regression function under spatial mixing conditions.
Due to the nonstationarity and dependence structure, it is clearly challenging to establish Bahadur
representations in the context of (1.1).

Our contribution here is mainly on the theoretical side. We establish uniform Bahadur rep-
resentations for the least-absolute-deviation estimates of μ(·) and σ(·) in (1.1). To derive the
uniform Bahadur representations, the key ingredient is to study the modulus of continuity of
certain kernel weighted empirical processes of the nonstationary observations Yi,j in (1.1). Em-
pirical processes have been extensively studied under various settings, including the i.i.d. setting
(Shorack and Wellner [25]), linear processes (Ho and Hsing [14]), strong mixing setting (An-
drews and Pollard [2], Shao and Yu [23]), and general causal stationary processes (Wu [33]).
Using a coupling argument to approximate the dependent process by an m-dependent process
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with a diverging m, we study the modulus of continuity of weighted empirical processes, and
the latter result serves as a key tool in establishing our uniform Bahadur representations. These
Bahadur representations provide deep insights into the asymptotic behavior of the estimates, and
in particular they provide theoretical justification for the profile control chart methodologies in
Wei, Zhao and Lin [30]. These technical treatments are also of interest in other nonparametric
problems involving dependent data.

The article is organized as follows. In Section 2, we introduce the error dependence structure
with examples. In Section 3, we study weighted empirical process through a coupling argument.
Section 4 contains uniform Bahadur representations and asymptotic normality. Section 5 contains
an illustration using progesterone data. Possible extensions to spatial setting are discussed in
Section 6. Proofs are provided in Section 7.

2. Error dependence structure

First, we introduce some notation used throughout this article. For a, b ∈R, let �a� be the integer
part of a, a ∨ b = max(a, b), and a ∧ b = min(a, b). For a random variable Z ∈ Lq, q > 0, if
‖Z‖q = [E(|Z|q)]1/q < ∞. Let Cr (S) be the set of functions with bounded derivatives up to
order r on a set S ⊂R.

Assume that, for each i, the error process {ei,j }j∈N in (1.1) is an independent copy from a
stationary process {ej }j∈N which has the representation

ej = G(εj , εj±1, εj±2, . . .), (2.1)

where εj , j ∈ Z, are i.i.d. random innovations, and G is a measurable function such that ej is
well defined. We can view (2.1) as an input-output system with (εj , εj±1, εj±2, . . .),G, and ej

being, respectively, the input, filter, and output. Wu [32] considered the causal time series case
that ej depends only on the past innovations εj , εj−1, . . . . In contrast, (2.1) allows for noncausal
models and is particularly useful for applications that do not have a time structure. For example,
if xi,j are locations, then the corresponding measurement yi,j depends on both the left and right
neighboring measurements.

Condition 2.1. Let {ε′
j }j∈Z be i.i.d. copies of {εj }j∈Z. There exist constants q > 0 and ρ ∈ (0,1)

such that∥∥e0 − e0(k)
∥∥

q
= O

(
ρk

)
, where e0(k) = G

(
ε0, ε±1, . . . , ε±k, ε

′
±(k+1), ε

′
±(k+2), . . .

)
. (2.2)

In (2.2), e0(k) can be viewed as a coupling process of e0 with {εr}|r|≥k+1 replaced by the
i.i.d. copy {ε′

r}|r|≥k+1 while keeping the nearest 2k + 1 innovations {εr}|r|≤k . In particular, if e0
does not depend on {εr}|r|≥k+1, then e0(k) = e0. Thus, ‖e0 − e0(k)‖q quantifies the contribution
of {εr}|r|≥k+1 to e0, and (2.2) states that the contribution decays exponentially in k. Shao and
Wu [24] and Dedecker and Prieur [8] [cf. equation (4.2) therein] considered one-sided causal
version of (2.2) where e0 depends only on {εr}r≤0.

Propositions 2.1–2.2 below indicate that, if {ei} satisfies (2.2), then its properly transformed
process also satisfies (2.2).
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Proposition 2.1. For 0 < ς ≤ 1 and υ ≥ 0, define the collection of functions h

H(ς,υ) = {
h:

∣∣h(x) − h
(
x′)∣∣ ≤ c

∣∣x − x′∣∣ς (
1 + |x| + ∣∣x′∣∣)υ

, x, x′ ∈R
}
, (2.3)

where c is a constant. Suppose {ej } satisfies (2.2). Then the transformed process e∗
j = h(ej )

satisfies (2.2) with (q,ρ) replaced by q∗ = q/(ς + υ) and ρ∗ = ρς .

In (2.3), H(ς,0) is the class of uniformly Hölder-continuous functions with index ς . If h(x) =
|x|b, b > 1, then h ∈ H(1, b − 1). Clearly, all functions in H(ς,0) are continuous. Interestingly,
for noncontinuous transformations, the conclusion may still hold; see Proposition 2.2 below,
where 1 is the indicator function.

Proposition 2.2. Let e0 have a bounded density. Suppose {ej } satisfies (2.2). Then, for any
given x, {1ej ≤x} satisfies (2.2) with ρ replaced by ρ∗ = ρ1/(1+q).

Propositions 2.1–2.2 along with the examples below show that the error structure (2.1) and
Condition 2.1 are sufficiently general to accommodate many popular linear and nonlinear time
series models and their properly transformed processes.

Example 2.1 (m-dependent sequence). Assume that ej = G(εj , εj±1, . . . , εj±m) for a measur-
able function G. Then ej depends only on the nearest 2m + 1 innovations εj , εj±1, . . . , εj±m.
Clearly, {ej }j∈Z form a (2m + 1)-dependent sequence, ‖e0 − e0(k)‖q = 0 for k ≥ m, and (2.2)
trivially holds. If m = 0, then ej are i.i.d. random variables.

Example 2.2 (Noncausal linear processes). Consider the noncausal linear process ej =∑∞
r=−∞ arεj−r . If εj ∈ Lq and aj = O(ρ|j |), then it is easy to see that (2.2) holds.

Example 2.3 (Iterated random functions). Consider random variables ej defined by

ej = R(ej−1, . . . , ej−d; εj ), (2.4)

where εj , j ∈ Z, are i.i.d. random innovations, and R is a random map. Many widely time se-
ries models are of form (2.4), including threshold autoregressive model ej = a max(ej−1,0) +
b min(ej−1,0) + εj , autoregressive conditional heteroscedastic model ej = εj (a

2 + b2e2
j−1)

1/2,
random coefficient model ej = (a + bεj )ej−1 + εj , and exponential autoregressive model ej =
[a + b exp(−ce2

j−1)]ej−1 + εj , among others. Suppose there exists z0 such that R(z0; ε0) ∈ Lq

and there exist constants a1, . . . , ad such that

d∑
j=1

aj < 1 and
∥∥R(z; ε0) − R

(
z′; ε0

)∥∥1∧q

q
≤

d∑
j=1

aj

∣∣zj − z′
j

∣∣1∧q

holds for all z = (z1, . . . , zd), z′ = (z′
1, . . . , z

′
d). By Shao and Wu [24], (2.2) holds.
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2.1. Some examples

The imposed dependence structure and hence the developed results in Sections 3–4 below are
potentially applicable to a wide range of practical data types. We briefly mention some below.

(Time series data). In the special case of n = 1, m1 = m → ∞ and (x1,j , Y1,j , e1,j ) =
(xj , Yj , ej ) for a stationary time series {ej }, (1.1) becomes the usual nonparametric location-
scale model Yj = μ(xj ) + s(xj )ej with time series data. The latter model has been extensively
studied under both the random-design case and the fixed-design case xj = j/n. See Fan and
Yao [9] for an excellent introduction to various local least-squares based methods under mix-
ing settings. Quantile regression based estimations have been studied in Truong and Stone [26],
Honda [15], and Cai [6] for mixing processes. Despite the popularity of mixing conditions, it
is generally difficult to verify mixing conditions even for linear processes. For example, for
the autoregressive model Xi = ρXi−1 + εi, ρ ∈ (0,1/2], where εi are i.i.d. Bernoulli random
variables P(εi = 1) = 1 − P(εi = 0) = q ∈ (0,1), the stationary solution is not strong mixing
(Andrews [1]). By contrast, as shown above, the imposed Condition 2.1 is easily verifiable for
many linear and nonlinear time series models and their proper transformations.

(Longitudinal data). For each subject i, if xi,j is the j th measurement time or the covariates
at time j , Yi,j is the corresponding response, and {ei,j }j∈N is a stationary causal process [e.g.,
ej = G(εj , εj−1, εj−2, . . .) in (2.1) depends only on the past], then (1.1) becomes a typical lon-
gitudinal data setting. For example, Section 5.2 re-examines the well-studied progesterone data
using the proposed methods. Another popular longitudinal data example is the CD4 cell percent-
age in HIV infection from the Multicenter AIDS Cohort Study. Based on least-squares methods,
this data has been studied previously in Hoover et al. [16] and Fan and Zhang [10]. We can
examine how the response function (CD4 cell percentage) varies with measurement time (age)
using the proposed robust estimation method in Section 4.

(Spatially correlated data). In the vertical density data of Walker and Wright [27], manufactur-
ers are concerned about engineered wood boards’ density, which determines fiberboard’s overall
quality. For each board, densities are measured at various locations along a designated vertical
line. In this example, measurements depend on both the left and right neighboring measurements,
and it is reasonable to impose the dependence structure (2.1). See Wei, Zhao and Lin [30] for a
detailed analysis. Also, as will be discussed in Section 6, the two-sided framework (2.1) can be
extended to spatial lattice settings. We point out that the structure in (1.1) and (2.1) differs from
the usual spatial model setting in the sense that (1.1) allows for observations from multiple inde-
pendent subjects whereas the latter usually assumes that all observations are spatially correlated
(see, e.g., Hallin, Lu and Yu [11] for quantile regression of spatial data).

3. Weighted empirical process

In this section, we study weighted empirical processes through a coupling argument. Dependence
is the main difficulty in extending results developed for independent data to dependent data.
For mixing processes, the widely used large-block-small-block technique partitions the data into
asymptotically independent blocks. Here, we adopt a coupling argument which copes well with
the dependence structure in Section 2.
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We now illustrate the basic idea. By (2.1), the error ei,j in (1.1) has the representation

ei,j = G(εi,j , εi,j±1, εi,j±2, . . .)

for i.i.d. innovations εi,j , i, j ∈ Z. Thus, {ei,j }j∈Z is a dependent series for each fixed i, whereas
{ei1,j }j∈Z and {ei2,j }j∈Z are two independent series for i1 �= i2. Let ε′

i,j,k, i, j, k ∈ Z, be i.i.d.
copies of εi,j . For kn ∈N, define the coupling process of ei,j as

ei,j (kn) = G
(
εi,j , εi,j±1, . . . , εi,j±kn , ε

′
i,j,j±(kn+1), ε

′
i,j,j±(kn+2), . . .

)
(3.1)

by replacing all but the nearest 2kn + 1 innovations with i.i.d. copies. We call kn the coupling
lag. Clearly, ei,j (kn) has the same distribution as ei,j .

By construction, for each fixed i, {ei,j (kn)}j∈Z form (2kn+1)-dependent sequence in the sense
that ei,j (kn) and ei,j ′(kn) are independent if |j − j ′| ≥ 2kn + 1. Consequently, for each fixed i

and s, {ei,(j−1)(2kn+1)+s(kn)}j∈Z are i.i.d. The latter property helps us reduce the dependent data
to an independent case. On the other hand, under (2.2), ‖ei,j −ei,j (kn)‖q = O(ρkn) is sufficiently
small with properly chosen kn and hence the coupling process is close enough to the original one.
Similarly, for Yi,j in (1.1), define its coupling process:

Ỹi,j = μ(xi,j ) + s(xi,j )ei,j (kn). (3.2)

First, we present a general result regarding the sum of functions of the coupling process Ỹi,j .
Let Vn be any finite set. For real-valued functions gi,j (y, v), i, j ∈ N, defined on R × Vn such
that E[gi,j (Ỹi,j , v)] = 0 for all v ∈ Vn, define

Hn(v) =
n∑

i=1

mi∑
j=1

gi,j (Ỹi,j , v), v ∈ Vn.

Throughout, let Nn = m1 + · · · + mn be the total number of observations.

Theorem 3.1. Assume that the cardinality |Vn| of Vn and the coupling lag kn grow no faster
than a polynomial of Nn. Further assume |gi,j (y, v)| ≤ c for a constant c < ∞, and for some
sequence χn,

max
v∈Vn

n∑
i=1

mi∑
j=1

E
[
g2

i,j (Ỹi,j , v)
] ≤ χn. (3.3)

(i) If χn = O(1), then maxv∈Vn
|Hn(v)| = Op(kn logNn).

(ii) If supn logNn/χn < ∞, then maxv∈Vn
|Hn(v)| = Op[kn(χn logNn)

1/2].

By Theorem 3.1, the magnitude of maxv∈Vn
|Hn(v)| increases with the coupling lag kn. In-

tuitively, as kn increases, there is stronger dependence in the coupling process Ỹi,j and conse-
quently a larger bound for Hn(v). Therefore, a small kn is preferred in order to have a tight bound
for Hn(v). On the other hand, a reasonably large kn is needed in order for the coupling process to
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be sufficiently close to the original process. Under (2.2), for kn = O(logNn), the coupling process
converges to the original one at a polynomial rate, and meanwhile the maximum bound in Theo-
rem 3.1 is optimal up to a logarithm factor. For example, if χn = O(1), then maxv∈Vn

|Hn(v)| =
Op[(logNn)

2]; if supn logNn/χn < ∞, then maxv∈Vn
|Hn(v)| = Op{[χn(logNn)

3]1/2}.
In what follows, we consider the special case of weighted empirical process, which plays an

essential role in quantile regression. Let �i,j (x) ≥ 0 be nonrandom weights that may depend
on x. Consider the weighted empirical process

Fn(x, y) =
n∑

i=1

mi∑
j=1

�i,j (x)1Yi,j ≤y. (3.4)

To study Fn(x, y), recall Ỹi,j in (3.2) and define the coupling empirical process

F̃n(x, y) =
n∑

i=1

mi∑
j=1

�i,j (x)1
Ỹi,j ≤y

. (3.5)

Under mild regularity conditions, Theorem 3.2 below states that Fn(x, y) can be uniformly ap-
proximated by F̃n(x, y) with proper choice of the coupling lag kn.

Condition 3.1. (i) �i,j (x) ≤ c uniformly for some constant c < ∞. (ii) μ(xi,j ) is uniformly
bounded. (iii) s(xi,j ) > 0 is uniformly bounded away from zero and infinity.

Theorem 3.2. Assume that Conditions 2.1 and 3.1 hold. In (3.1), let the coupling lag kn =
�λ logNn� for some λ > (q + 1)/[q log(1/ρ)], where Nn = m1 + · · · + mn. Then

sup
x,y∈R

∣∣Fn(x, y) − F̃n(x, y)
∣∣ = Op

[
(logNn)

2].
To study asymptotic Bahadur representations of quantile regression estimates, a key step is to

study the modulus of continuity of Fn(x, y), defined by

Dn(δ, x, y) = {
Fn(x, y + δ) −E

[
Fn(x, y + δ)

]} − {
Fn(x, y) −E

[
Fn(x, y)

]}
. (3.6)

Intuitively, Dn(δ, x, y) measures the oscillation of the centered empirical process Fn(x, y) −
E[Fn(x, y)] in response to a small perturbation δ in y.

The dependence structure in Section 2 along with the coupling argument provides a convenient
framework to study Dn(δ, x, y). Recall F̃n(x, y) in (3.5). For Dn(δ, x, y) in (3.6), define its
coupling process

D̃n(δ, x, y) = {
F̃n(x, y + δ) −E

[
F̃n(x, y + δ)

]} − {
F̃n(x, y) −E

[
F̃n(x, y)

]}
. (3.7)

Notice that ei,j (kn) and ei,j have the same distribution, so E[Fn(x, y)] = E[F̃n(x, y)]. By Theo-
rem 3.2, it is easy to see that, uniformly over x, y, δ,∣∣Dn(δ, x, y) − D̃n(δ, x, y)

∣∣ ≤ 2 sup
x,y∈R

∣∣Fn(x, y) − F̃n(x, y)
∣∣ = Op

[
(logNn)

2]. (3.8)
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Therefore, the asymptotic properties of Dn(δ, x, y) are similar to that of D̃n(δ, x, y), which can
be studied through Theorem 3.1.

Condition 3.2. (i) �i,j (·) = 0 outside a common bounded interval for all i, j . (ii) There exist τn

and φn such that

sup
x �=x′

|�i,j (x) − �i,j (x
′)|

|x − x′| ≤ τn and sup
x

n∑
i=1

mi∑
j=1

� 2
i,j (x) ≤ φn. (3.9)

Theorem 3.3. Assume that Conditions 2.1 and 3.1–3.2 hold. Further assume δn → 0,
supn logNn/(δnφn) < ∞, and that 1/δn + τn grows no faster than a polynomial of Nn. Then

sup
|δ|≤δn,x,y∈R

∣∣Dn(δ, x, y)
∣∣ = Op

{[
δnφn(logNn)

3]1/2}
. (3.10)

4. Quantile regression and Bahadur representations

For a random variable Z, denote by Q(Z) = inf{z ∈ R,P(Z ≤ z) ≥ 1/2} the median of Z, and
similarly denote by Q(·|·) the conditional median operator. To ensure identifiability of μ and s

in (1.1), without loss of generality we assume Q(ei,j ) = 0 and Q(|ei,j |) = 1.
Note that Q(Yi,j |xi,j = x) = μ(x). Applying a kernel localization technique, we propose the

following least-absolute-deviation or median quantile estimate of μ(x):

μ̂(x) = argmin
θ

n∑
i=1

mi∑
j=1

|Yi,j − θ |Kbn(xi,j − x), where Kbn(u) = K(u/bn) (4.1)

for a nonnegative kernel function K satisfying
∫
R

K(u) = 1, and bn > 0 is a bandwidth. The
estimate μ̂bn(x) pools together information across all subjects, an appealing property especially
when some subjects have sparse observations. By the Bahadur representation in Theorem 4.1
below, the bias term of μ̂(x) − μ(x) is of order O(b2

n). Following Wu and Zhao [34], we adopt
a jackknife bias-correction technique. In (4.1), denote by μ̂(x|bn) and μ̂(x|√2bn) the estimates
of μ(x) using bandwidth bn and

√
2bn, respectively. The bias-corrected jackknife estimator is

μ̃(x) = 2μ̂(x|bn) − μ̂(x|√2bn), (4.2)

which can remove the second-order bias term O(b2
n) in μ̂(x).

After estimating μ(·), we estimate s(·) based on residuals. Notice that Q(|ei,j |) = 1 implies
Q(|Yi,j − μ(x)||xi,j = x) = s(x). Therefore, we propose

ŝ(x) = argmin
θ

n∑
i=1

mi∑
j=1

∣∣∣∣Yi,j − μ̃(x)
∣∣ − θ

∣∣Khn(xi,j − x), (4.3)
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where hn > 0 is another bandwidth, and μ̃(x) is the bias-corrected jackknife estimator in (4.2).
As in (4.2), we adopt the following bias-corrected jackknife estimator

s̃(x) = 2ŝ(x|hn) − ŝ(x|√2hn). (4.4)

Remark 4.1. By Q(|Yi,j − μ(xi,j )||xi,j = x) = s(x), an alternative estimator of s(x) is

s̄(x) = argmin
θ

n∑
i=1

mi∑
j=1

∣∣∣∣Yi,j − μ̃(xi,j )
∣∣ − θ

∣∣Khn(xi,j − x). (4.5)

The difference between (4.3) and (4.5) is that (4.3) uses μ̃(x) whereas (4.5) uses μ̃(xi,j ). Since K

has bounded support, only those xi,j ’s with |xi,j − x| = O(hn) contribute to the summation
in (4.5). Thus, as hn → 0 so that xi,j → x and μ̃(xi,j ) ≈ μ̃(x), the two estimators in (4.3)
and (4.5) are expected to be asymptotically close. Our use of (4.3) has some technical and com-
putational advantages. First, the estimation error μ̃(xi,j ) − μ(xi,j ) varies with (i, j), and thus it
is technically more challenging to study (4.5). Second, to implement (4.5), we need to compute
μ̃(·) at each point xi,j , which requires solving a large number of optimization problems in (4.1)
for a large data set. By contrast, (4.3) only requires estimation of μ̃(·) at those grid points x at
which we wish to estimate s(·).

To study asymptotic properties, we need to introduce some regularity conditions. Throughout
we write Sε([a, b]) = [a+ε, b−ε] for an arbitrarily fixed small ε > 0. Denote by Fe and fe = F ′

e

the distribution and density functions of e0 in (2.1), respectively. The assumption Q(e0) = 0 and
Q(|e0|) = 1 implies Fe(0) = 1/2 and Fe(1) − Fe(−1) = 1/2.

Condition 4.1. Suppose that all measurement locations xi,j are within an interval [a, b], and
order them as a = x̃0 < x̃1 < · · · < x̃Nn < x̃Nn+1 = b. Assume that

max
0≤k≤Nn

∣∣∣∣x̃k+1 − x̃k − b − a

Nn

∣∣∣∣ = O
(
N−2

n

)
, where Nn = m1 + · · · + mn. (4.6)

Condition 4.1 requires that the pooled covariates xi,j should be approximately uniformly dense
on [a, b], which is a natural condition since otherwise it would be impossible to draw inferences
for regions with very scarce observations. Pooling all subjects together is an appealing proce-
dure to ensure this uniform denseness even though each single subject may only contain sparse
measurements.

In nonparametric regression problems, there are two typical settings on the design points:
fixed-design and random-design points. For fixed-design case, it is often assumed that the de-
sign points are equally spaced on some interval. For example, for the vertical density profile
data of Walker and Wright [27], the density was measured at equispaced points along a des-
ignated vertical line of wood boards. Condition 4.1 can be viewed as a generalization of the
fixed-design points to allow for approximately fixed-design points. For random-design case, the
design points are sampled from a distribution. For example, assumption (a) in Appendix A of
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Fan and Zhang [10] imposed the random-design condition. In practice, both settings have differ-
ent range of applicability. For example, for daily or monthly temperature series, the fixed-design
setting may be appropriate; for children’s growth curve studies, it may be more reasonable to use
the random-design setting since the measurements are usually taken at irregular time points.

Remark 4.2 (Asymptotic results under the random-design case). All our subsequent theoretical
results are derived under the approximate fixed-design setting in Condition 4.1, but the same ar-
gument also applies to the random-design case. Specifically, assume that the design-points {xi,j }
are random samples from a density fX(·) with support [a, b] and that x is an interior point. Then,
for the design-adaptive local linear median quantile regression estimates, the subsequent Theo-
rems 4.1–4.2 and Corollaries 4.1–4.2 still hold with (b − a) therein replaced by 1/fX(x). In fact,
given the i.i.d. structure of {xi,j }, the technical argument becomes much easier. For example, to
establish Lemma 7.1 (again, with (b − a) therein replaced by 1/fX(x)), elementary calculations
can easily find the mean and variance for the right-hand side of (7.11). All other proofs can be
similarly modified and we omit the details.

Conditions 4.2–4.3 below are standard assumptions in nonparametric estimation.

Condition 4.2. K is symmetric and has bounded support and bounded derivative. Write

ϕK =
∫
R

K2(u)du and ψK = 1

2

∫
R

u2K(u)du.

Condition 4.3. μ, s ∈ C4([a, b]), infx∈[a,b] s(x) > 0, fe ∈ C4(R), fe(0) > 0, fe(1) + fe(−1) >

0.

4.1. Uniform Bahadur representation for μ̂(x)

Theorem 4.1 below provides an asymptotic uniform Bahadur representation for μ̂(x) in (4.1),
and its proof in Section 7.4 relies on the arguments and results in Section 3.

Theorem 4.1. Let μ̂(x) be as in (4.1). Assume that Conditions 2.1 and 4.1–4.3 hold. Further
assume bn → 0 and (logNn)

3/(Nnbn) → 0. Then

(i) We have the uniform consistency:

sup
x∈Sε ([a,b])

∣∣μ̂(x) − μ(x)
∣∣ = Op

{
b2
n + (logNn)

3/2

(Nnbn)1/2

}
. (4.7)

(ii) Moreover, the Bahadur representation

μ̂(x) − μ(x) = ψKρμ(x)b2
n + (b − a)s(x)

fe(0)

Qbn(x)

Nnbn

+ Op(rn) (4.8)
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holds uniformly over x ∈ Sε([a, b]), where

ρμ(x) = μ′′(x) −
[
μ′(x)f ′

e(0)

fe(0)
+ 2s′(x)

]
μ′(x)

s(x)
,

Qbn(x) = −
n∑

i=1

mi∑
j=1

{
1Yi,j ≤μ(x) −E[1Yi,j ≤μ(x)]

}
Kbn(xi,j − x),

rn = b4
n + b

1/2
n (logNn)

3/2

N
1/2
n

+ (logNn)
9/4

(Nnbn)3/4
.

In the Bahadur representation (4.8), ψKρμ(x)b2
n is the bias term, Qbn(x) determines the

asymptotic distribution of μ̂(x) − μ(x), and rn is the negligible error term. Such a Bahadur
representation provides a powerful tool in studying the asymptotic behavior of μ̂(x). Based on
Theorem 4.1, we obtain a Central Limit theorem (CLT) for μ̂ in Corollary 4.1. Clearly, the vari-
ance of Qbn(x) is a linear combination of Kbn(xi,j1 − x)Kbn(xi,j2 − x). The following regularity
condition is needed to ensure the negligibility of the cross-term Kbn(xi,j1 − x)Kbn(xi,j2 − x) for
j1 �= j2.

Condition 4.4. Assume that, for all given x ∈ Sε([a, b]) and kn = O(logNn), there exits ιn such
that knιn → 0 and∑
(i,j1,j2)∈I

Kbn(xi,j1 − x)Kbn(xi,j2 − x) = O
[
min(h,Mn)nbnknιn

]
, Mn = max

1≤i≤n
mi (4.9)

for all h ≥ (kn ∨ a), where I = {(i, j1, j2): 1 ≤ i ≤ n,a ≤ j1 < j2 ≤ min(a + h − 1,mi), |j1 −
j2| ≤ kn}. Further assume that maxj

∑n
i=1 Kr

bn
(xi,j − x) = O(nbn), r = 2,4.

Condition 4.4 is very mild. Intuitively, we consider xi,j , j ∈ Z, being random locations, then
E[Kbn(xi,j1 −x)Kbn(xi,j2 −x)] = O(b2

n) for j1 �= j2. Thus, under the mild condition bn logNn →
0, (4.9) holds with ιn = bn.

Corollary 4.1. Let the conditions in Theorem 4.1 be fulfilled and Condition 4.4 hold. Further
assume that (logNn)

9/(Nnbn) + Nnb
9
n → 0 and nMn = O(Nn), nbn → ∞, logNn = O(

√
Mn),

where Mn is defined as in (4.9). Then, for any x ∈ Sε([a, b]), we have

(Nnbn)
1/2[μ̂(x) − μ(x) − ψKρμ(x)b2

n

] ⇒ N

(
0,

ϕK(b − a)s2(x)

4f 2
e (0)

)
. (4.10)

The proof of Corollary 4.1, given in Section 7.5, uses the coupling argument in Section 3.
The condition nMn = O(Nn) is in line with the classical CLT Lindeberg condition that none
of the subjects dominates the others. If bn is of the order N

−β
n , then the bandwidth condition

in Corollary 4.1 holds if β ∈ (1/9,1). By Corollary 4.1, the optimal bandwidth minimizing the
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asymptotic mean squared error is

bn =
[

ϕK(b − a)s2(x)

4ψ2
Kρ2

μ(x)f 2
e (0)

]1/5

N
−1/5
n . (4.11)

For this optimal bandwidth, the bias term is of order O(N
−2/5
n ) and contains the derivatives

s′,μ′,μ′′ and f ′
e that can be difficult to estimate. Based on the Bahadur representation (4.8), we

can correct the bias term ψKρμ(x)b2
n via the jackknife estimator μ̃(x) in (4.2). Then the bias

term for μ̃(x) becomes 2ψKρμ(x)b2
n − ψKρμ(x)(

√
2bn)

2 = 0. By (4.8), following the proof of
Corollary 4.1, we have

(Nnbn)
1/2[μ̃(x) − μ(x)

] ⇒ N

(
0,

ϕK∗(b − a)s2(x)

4f 2
e (0)

)
, (4.12)

where K∗(u) = 2K(u) − 2−1/2K(u/
√

2).

4.2. Uniform Bahadur representation for ŝ(x)

Theorem 4.2 below provides a uniform Bahadur representation for ŝ(x) in (4.3).

Theorem 4.2. Let ŝ(x) be as in (4.3). Assume that the conditions in Theorem 4.1 hold. Further
assume hn + (logNn)

3/(Nnhn) → 0. Then

(i) We have the uniform consistency:

sup
x∈Sε ([a,b])

∣∣ŝ(x) − s(x)
∣∣ = Op

{
b2
n + h2

n + (logNn)
3/2

(Nnbn)1/2
+ (logNn)

3/2

(Nnhn)1/2

}
. (4.13)

(ii) Moreover, the Bahadur representation

ŝ(x) − s(x) = ψKρs(x)h2
n + (b − a)s(x)

[
Whn(x)

Nnhnκ+
− κTbn(x)

Nnbnfe(0)

]
+ Op(r̃n), (4.14)

holds uniformly over x ∈ Sε([a, b]), where κ+ = fe(−1) + fe(1), κ = [fe(1) − fe(−1)]/κ+,
Qbn(x) is defined as in Theorem 4.1,

Tbn(x) = 2Qbn(x) − 2−1/2Q√
2bn

(x),

ρs(x) = s′′(x) − 2s′(x)2

s(x)
+ κ

[
μ′′(x) − 2μ′(x)s′(x)

s(x)

]

− f ′
e(1)[s′(x) + μ′(x)]2 − f ′

e(−1)[s′(x) − μ′(x)]2

κ+s(x)
,

Whn(x) = −
n∑

i=1

mi∑
j=1

{
1|Yi,j −μ(x)|≤s(x) −E[1|Yi,j −μ(x)|≤s(x)]

}
Khn(xi,j − x),



1544 Z. Zhao, Y. Wei and D.K.J. Lin

r̃n = b4
n + h4

n + h
1/2
n (logNn)

3/2

N
1/2
n

+ (logNn)
9/4

(Nnhn)3/4

+ (logNn)
9/4

N
3/4
n b

1/4
n h

1/2
n

+ bn(logNn)
3/2

(Nnhn)1/2
.

As in Corollary 4.1, we can use the Bahadur representation (4.14) to obtain a CLT for ŝ(x) −
s(x). However, the convergence rate depends on the ratio hn/bn. If hn/bn → ∞, then the term
Tbn(x)/(Nnbn) dominates and we have (Nnbn)

1/2-convergence; if hn/bn → 0, then the term
Whn(x)/(Nnhn) dominates and we have (Nnhn)

1/2-convergence; if hn/bn → c for a constant
c ∈ (0,∞), then both terms contribute.

Corollary 4.2. Let the conditions in Theorem 4.2 be fulfilled and Condition 4.4 and its counter-
part version with bn being replaced by hn hold. Further assume that

Nn(bn ∨ hn)
9 + (logNn)

9

Nn(bn ∧ hn)
→ 0,

and nMn = O(Nn),n(bn ∧hn) → ∞, logNn = O(
√

Mn), where Mn is defined as in (4.9). Recall
K∗(u) = 2K(u) − 2−1/2K(u/

√
2) in (4.12) and κ, κ+ in Theorem 4.2. Let x ∈ Sε([a, b]) be a

fixed point. Suppose hn/bn → c.

(i) If κ �= 0 and c = ∞, then

(Nnbn)
1/2[ŝ(x) − s(x) − ψKρs(x)h2

n

] ⇒ N

(
0,

ϕK∗κ2(b − a)s2(x)

4f 2
e (0)

)
.

(ii) If κ �= 0 and c ∈ [0,∞), then

(Nnhn)
1/2[ŝ(x) − s(x) − ψKρs(x)h2

n

] ⇒ N
(
0, σ 2

c

)
, (4.15)

where

σ 2
c = (b − a)s2(x)

4

{
ϕK

κ2+
+ c2κ2ϕK∗

f 2
e (0)

− 2cκ[1 − 4Fe(−1)]
κ+fe(0)

∫
R

K(u)K∗(cu)du

}
.

(iii) If κ = 0, then for all c ∈ [0,∞], (4.15) holds with σ 2
c = ϕK(b − a)s2(x)/(4κ2+).

One can similarly establish CLT results for s̃(x) in (4.4). We omit the details.

5. An illustration using real data

5.1. Bandwidth selection

For least-squares based estimation of longitudinal data, Rice and Silverman [21] suggested the
subject-based cross-validation method. The basic idea is to use all but one subject to do model fit-
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ting, validate the fitted model using the left-out subject, and finally choose the optimal bandwidth
by minimizing the overall prediction error:

b∗
LS = argmin

b

n∑
i=1

mi∑
j=1

{
Yi,j − μ̃(−i)(xi,j )

}2
, (5.1)

where μ̃(−i)(x) represents the estimator of μ(x) based on data from all but ith subject. As in
Wei, Zhao and Lin [30], we replace the square loss by absolute deviation:

b∗
LAD = argmin

b

n∑
i=1

mi∑
j=1

∣∣Yi,j − μ̃(−i)(xi,j )
∣∣. (5.2)

5.2. An illustration using progesterone data

Urinary metabolite progesterone levels are measured daily, around the ovulation day, over 22
conceptive and 69 nonconceptive women’s menstrual cycles so that each curve has about 24
design points; see the left panel of Figure 1 for a plot of the trajectories of the 22 conceptive
women. Previous studies based on least-squares (LS) methods include Brumback and Rice [5],
Fan and Zhang [10], and Wu and Zhang [31]. Here we reanalyze the conceptive group using our
least-absolute-deviation (LAD) estimates.

From the left plot in Figure 1, subject 14 (dashed curve) has two sharp drops in progesterone
levels at days −3 and 9. Similarly, subject 13 (dotted curve) has unusually low levels on days
−1,0,1. While such sharp drops or “outliers” may be caused by incorrect measurements or other
unknown reasons, we investigate the impact of such “outliers” on the LS and LAD estimates. In
the right plot of Figure 1, the thick solid and thin solid curves are the LAD and LS estimates
of μ(·). The two estimates are reasonably close except during the periods [−4,1] and [8,15].
Notice that the latter periods contain the “outliers” from subjects 13, 14.

To understand the impact of such possible “outliers”, we consider two scenarios of perturbing
the data below.

(i) Scenario I: remove subjects 13 and 14 and estimate μ(·) using the remaining subjects.
The thick dotted and thin dotted curves are the corresponding LAD and LS estimates. Clearly,
the discrepancy is largely diminished.

(ii) Scenario II: make the two outlier subjects 13 and 14 even more extreme by shifting their
curves three units down. We see that the discrepancy between the LAD (thick dashed) and LS
(thin dashed) estimates becomes even more remarkable.

Compared with the estimate based on the original data, the LS estimates under the two perturba-
tion scenarios differ significantly. By contrast, the LAD estimates under the three cases are sim-
ilar, indicating the robustness in the presence of outliers. We conclude that, for the progesterone
data with several possible outliers, the proposed LAD estimate offers an attractive alternative
over the well-studied LS estimates. In practice, we recommend the LAD estimate if the data has
suspicious, unusual observations or extreme outliers.
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Figure 1. Left: Trajectories of the measurements from 22 conceptive women. Right: Estimates of μ(·)
using both the original data and perturbed data. Thin solid, dotted, and dashed curves are the least-squares
estimates of μ(·) based on the original data, perturbation scenario I (remove subjects 13 and 14), and
perturbation scenario II (shift subjects 13 and 14 down by three units), respectively. Similarly, thick solid,
dotted, and dashed curves are least-absolute-deviation estimates.

6. Conclusion and extension to spatial setting

This paper studies robust estimations of the location and scale functions in a nonparametric
regression model with serially dependent data from multiple subjects. Under a general error
dependence structure that allows for many linear and nonlinear processes, we study uniform
Bahadur representations and asymptotic normality for least-absolute-deviation estimations of a
location-scale longitudinal model. In the large literature on nonparametric estimation of lon-
gitudinal models, most existing works use least-squares based methods, which are sensitive to
extreme observations and may perform poorly in such circumstances. Despite the popularity of
quantile regression methods in linear models and nonparametric regression models, little research
has been done in quantile regression based estimations for nonparametric longitudinal models,
partly due to difficulties in dealing with the dependence. Therefore, our work provides a solid
theoretical foundation for quantile regression estimations in longitudinal models.

The study of asymptotic Bahadur representations is a difficult area and has focused mainly
on the i.i.d. setting or stationary time series setting. For longitudinal data, deriving Bahadur
representations is more challenging due to the nonstationarity and dependence. To obtain our
Bahadur representations, we develop substantial theory for kernel weighted empirical processes
via a coupling argument.

The proposed error dependence structure and coupling argument provide a flexible and pow-
erful framework for asymptotics from dependent data, such as time series data, longitudinal
data and spatial data, whereas similar problems have been previously studied mainly for either
independent data or stationary time series. In (2.1), ej depends on the innovations or shocks
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εj , εj±1, . . . , indexed by integers on a line. A natural extension is the function of innovations
indexed by bivariate integers on a square:

ej = G(εj,j , εj,j±1, εj±1,j , εj±1,j±1, . . .), j ∈ Z.

The coupling argument still holds by replacing the innovations εj±r,j±s , r, s ≥ k + 1, outside the
k nearest squares with i.i.d. copies. As in Condition 2.1, we can assume that the impact of per-
turbing the distant innovations decays exponentially fast (or polynomially fast with slight modi-
fications of the proof). More generally, the coupling argument holds for function of innovations
indexed by multivariate spatial lattice, and such setting may be useful in studying asymptotics
for spatial data.

7. Technical proofs

Throughout c, c1, c2, . . . , are generic constants. First, we give an inequality for the indicator
function. Let Z,Z′ be two random variables and y ∈R. For α > 0, we have

1Z≤y<Z′ = 1Z≤y<Z′,|Z−Z′|≥α + 1Z≤y<Z′,|Z−Z′|<α ≤ 1|Z−Z′|≥α + 1y<Z′<y+α,

similarly, 1Z′≤y<Z ≤ 1|Z−Z′|≥α + 1y−α<Z′≤y . Therefore,

|1Z≤y − 1Z′≤y | = 1Z≤y<Z′ + 1Z′≤y<Z ≤ 21|Z−Z′|≥α + 1y−α<Z′<y+α. (7.1)

7.1. Proof of Propositions 2.1–2.2

Proof of Proposition 2.1. Let q∗ = q/(ς + υ),p1 = υ/ς + 1, and p2 = ς/υ + 1 so that
ςq∗p1 = q,υq∗p2 = q , and 1/p1 + 1/p2 = 1. For convenience, write e′

0 = e0(k). By assump-
tion, ‖e0 − e′

0‖q = O(ρk). By (2.3) and the Hölder inequality E|Z1Z2| ≤ ‖Z1‖p1‖Z2‖p2 ,

∥∥h
(
e′

0

) − h(e0)
∥∥q∗

q∗ ≤ O(1)E
[∣∣e′

0 − e0
∣∣ςq∗(

1 + |e0|+
∣∣e′

0

∣∣)υq∗]
≤ O(1)

{
E

[∣∣e0 − e′
0

∣∣ςq∗·p1
]}1/p1

{
E

[(
1 + |e0| +

∣∣e′
0

∣∣)υq∗·p2
]}1/p2

= O(1)
∥∥e0 − e′

0

∥∥q/p1
q

‖e0‖q/p2
q = O

(
ρkq/p1

)
.

The above expression gives ‖h(e′
0) − h(e0)‖q∗ ≤ O(1)[ρq/(p1q

∗)]k = O(ρkς ). �

Proof of Proposition 2.2. Let α = ρkq/(1+q). By (7.1) and the triangle inequality,

‖1e0≤x − 1e0(k)≤x‖q ≤ 2‖1|e0−e0(k)|≥α‖q + ‖1x−α≤e0≤x+α‖q

= 2
[
P
{∣∣e0 − e0(k)

∣∣ ≥ α
}]1/q + [

P{x − α ≤ e0 ≤ x + α}]1/q
.

By the Markov inequality, P{|e0 − e0(k)| ≥ α} ≤ E[|e0 − e0(k)|q ]/αq = O(ρkq/αq). Since e0
has a bounded density, P{x − α ≤ e0 ≤ x + α} = O(α). The result then follows. �
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7.2. Proof of Theorems 3.1–3.3

Proof of Theorem 3.1. For r = 1,2, . . . ,2kn + 1, let

Ir = {
(i, j): 1 ≤ i ≤ n,1 ≤ j ≤ ⌊

(mi − r)/(2kn + 1)
⌋ + 1

}
. (7.2)

Using the identity
∑m

j=1 aj = ∑k
r=1

∑�(m−r)/k�+1
j=1 a(j−1)k+r for all k,m ∈ N, a1, . . . , am ∈ R,

we can rewrite Hn(v) as

Hn(v) =
2kn+1∑
r=1

∑
(i,j)∈Ir

gi,(j−1)(2kn+1)+r (Ỹi,(j−1)(2kn+1)+r , v) :=
2kn+1∑
r=1

Hn(v, r). (7.3)

Now we consider Hn(v, r). By the discussion in Section 3, the summands in Hn(v, r) are inde-
pendent. By (3.3),

Var
[
Hn(v, r)

] =
∑

(i,j)∈Ir

E
[
g2

i,(j−1)(2kn+1)+r (Ỹi,(j−1)(2kn+1)+r , v)
]

(7.4)

≤
n∑

i=1

mi∑
j=1

E
[
g2

i,j (Ỹi,j , v)
] ≤ χn,

uniformly over v, r .
(i) Consider the case χn = O(1). Recall the condition |gi,j (y, v)| ≤ c. By Berstein’s exponen-

tial inequality (Bennett [3]) for bounded and independent random variables, for any given c1 > 0,
when Nn is sufficiently large,

P
{∣∣Hn(v, r)

∣∣ ≥ c1 logNn

} ≤ 2 exp

{
− (c1 logNn)

2

2 Var[�n(r,h)] + cc1 logNn

}
≤ 2N

−c1/(3c)
n , (7.5)

uniformly over r and h. Here the second inequality follows from Var[Hn(v, r)] ≤ χn = O(1) ≤
cc1 logNn for large enough Nn. Thus,

P

{
max

v∈Vn,1≤r≤2kn+1

∣∣Hn(v, r)
∣∣ ≥ c1 logNn

}
≤

∑
v∈Vn,1≤r≤2kn+1

P
{∣∣Hn(v, r)

∣∣ ≥ c1 logNn

}

≤ 2|Vn|knN
−c1/(3c)
n .

By the assumption that both |Vn| and kn grow no faster than a polynomial of Nn, we
can make the above probability go to zero by choosing a large enough c1. Therefore,
maxv∈Vn,1≤r≤2kn+1 |Hn(v, r)| = Op(logNn). By (7.3), the desired result follows from

max
v∈Vn

∣∣Hn(v)
∣∣ ≤ (2kn + 1) max

v∈Vn,1≤r≤2kn+1

∣∣Hn(v, r)
∣∣.
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(ii) Consider the case supn logNn/χn < ∞. As in (7.5),

P
{∣∣Hn(v, r)

∣∣ ≥ c1
√

χn logNn

} ≤ 2 exp

{
− (c1

√
χn logNn)

2

2χn + cc1
√

χn logNn

}
= O

[
N

−c2
1/(2+cc1c2)

n

]
,

uniformly over r and h, where c2 = supn[logNn/χn]1/2 < ∞. The rest of the proof follows from
the same argument as in the case (i) by choosing a sufficiently large c1. �

Proof of Theorem 3.2. Let α = 1/Nn. Since �i,j (x) ≤ c, applying (7.1), we obtain

∣∣Fn(x, y) − F̃n(x, y)
∣∣ ≤

n∑
i=1

mi∑
j=1

�i,j (x)|1Yi,j ≤y − 1
Ỹi,j ≤y

|

≤ 2c

[
n∑

i=1

mi∑
j=1

1|Yi,j −Ỹi,j |≥α
+

n∑
i=1

mi∑
j=1

1
y−α<Ỹi,j <y+α

]
(7.6)

:= 2c
[
�n + �n(y)

]
.

Notice that, |Yi,j − Ỹi,j | = O(1)|ei,j − ei,j (kn)|. By (2.2) and the Markov inequality,

E(1|Yi,j −Ỹi,j |≥α
) ≤ ‖Yi,j − Ỹi,j‖q

q

αq
= O(1)

‖ei,j − ei,j (kn)‖q
q

αq
= O

(
N

q
n ρqkn

)
.

Thus, �n = Op(N
1+q
n ρqkn) = Op[N1+q

n ρqλ log(Nn)] = op(1) for λ > (q + 1)/[q log(1/ρ)].
For �n(y) over y ∈ R, consider two cases: |y| > N

1/q
n and |y| ≤ N

1/q
n . For |y| > N

1/q
n , since

α = 1/Nn → 0, μ(xi,j ) and s(xi,j ) are bounded, {y −α < Ỹi,j < y +α} ⊂ {|ei,j (kn)| ≥ c1N
1/q
n }

for some constant c1 > 0. Therefore, by ei,j (kn) ∈ Lq and the Markov inequality,

E

[
sup

|y|>N
1/q
n

�n(y)
]

≤ E

[
n∑

i=1

mi∑
j=1

1|ei,j (kn)|>c1N
1/q
n

]

(7.7)

≤
n∑

i=1

mi∑
j=1

‖ei,j (kn)‖q
q

(c1N
1/q
n )q

= O(1).

We conclude that sup|y|>N
1/q
n

�n(y) = Op(1).

In what follows, we use a chain argument to prove sup
y∈[−N

1/q
n ,N

1/q
n ] �n(y) = Op[(logn)2].

Without loss of generality, consider y ∈ [0,N
1/q
n ]. Write �n = �N1+1/q

n � and let Vn = {yv =
vN

1/q
n /�n, v = 0,1, . . . , �n} be the set of �n + 1 grid points uniformly spaced over [0,N

1/q
n ].

Partition [0,N
1/q
n ] into intervals Iv = [yv−1, yv], v = 1, . . . , �n. For any y ∈ Iv , we have

1
y−α<Ỹi,j <y+α

≤ 1
yv−1−α<Ỹi,j <yv+α

. Since s(xi,j ) is bounded away from zero, supu fe(u) < ∞,
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and |yv − yv−1| = O(1/Nn), we have E(1
yv−1−α<Ỹi,j <yv+α

) ≤ c2/Nn uniformly for some con-
stant c2 < ∞. Consequently, for any y ∈ Iv , we have

�n(y) ≤
n∑

i=1

mi∑
j=1

[{
1
yv−1−α<Ỹi,j <yv+α

−E(1
yv−1−α<Ỹi,j <yv+α

)
} + c2/Nn

] = �∗
n(v) + c2.

We apply Theorem 3.1 to �∗
n(v). For χn in (3.3), using E(1

yv−1−α<Ỹi,j <yv+α
) ≤ c2/Nn, we have

χn = O(1) and thus maxv∈Vn
|�∗

n(v)| = Op[(logNn)
2], completing the proof. �

Proof of Theorem 3.3. Recall the coupling process D̃n(δ, x, y) in (3.7). Under the assumption
supn logNn/(δnφn) < ∞, (logNn)

2 = O{[δnφn(logNn)
3]1/2}. Thus, by (3.8), it suffices to show

sup|δ|≤δn,x,y∈R |D̃n(δ, x, y)| = Op{[δnφn(logNn)
3]1/2}.

Without loss of generality, assume δ ∈ [0, δn]. Recall Ỹi,j in (3.5). Rewrite

D̃n(δ, x, y) =
n∑

i=1

mi∑
j=1

�i,j (x)
{
ξ̃i,j (δ, y) −E

[
ξ̃i,j (δ, y)

]}
, ξ̃i,j (δ, y) = 1

y<Ỹi,j ≤y+δ
.

As in the proof of Theorem 3.2, consider |y| > N
1/q
n and |y| ≤ N

1/q
n .

For |y| > N
1/q
n , since μ(xi,j ) and s(xi,j ) are bounded and |δ| ≤ δn → 0, {y < Ỹi,j ≤ y +

δ} ⊂ {|ei,j (kn)| ≥ c1N
1/q
n } for some c1 > 0. Therefore, by the boundedness of �i,j (·), the same

argument in (7.7) shows D̃n(δ, x, y) = Op(1) uniformly over x ∈ R, |y| > N
1/q
n , |δ| ≤ δn.

Next, we consider |y| ≤ N
1/q
n . Since �i,j (x) vanishes for x outside a bounded interval, with-

out loss of generality we only consider x ∈ [0, b] for some b > 0, y ∈ [0,N
1/q
n ], and δ ∈ [0, δn].

As in the proof of Theorem 3.2, we use the chain argument. Let �n = �N1/q
n /δn + Nnτn +

N
1+1/q
n �, and

Vn =
{
(xv1, yv2 , tv3), xv1 = v1b

�n

, yv2 = v2N
1/q
n

�n

, tv3 = v3δn

�n

, v1, v2, v3 = 0,1, . . . , �n

}

be uniformly spaced grid points. Partition [0, b] × [0,N
1/q
n ] × [0, δn] into intervals Iv1,v2,v3 =

[xv1−1, xv1] × [yv2−1, yv2] × [tv3−1, tv3], v1, v2, v3 = 1, . . . , �n. Let

ξ
i,j

(v2, v3) = 1
yv2<Ỹi,j ≤yv2−1+tv3−1

and ξ i,j (v2, v3) = 1
yv2−1<Ỹi,j ≤yv2 +tv3

.

Clearly, for any (x, y, δ) ∈ Iv1,v2,v3 , we have ξ
i,j

(v2, v3) ≤ ξ̃i,j (δ, y) ≤ ξ i,j (v2, v3). Since Nn →
∞ and δn → 0, there exists a constant c2 < ∞ such that 0 ≤ E[ξ i,j (v2, v3)] − E[ξ

i,j
(v2, v3)] ≤

c2N
1/q
n /�n. Additionally, for x ∈ [xv1−1, xv1], by Condition 3.2, |�i,j (x) − �i,j (xv1)| ≤ τn|x −
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xv1 | ≤ τnb/�n. Thus, there exists a constant c3 < ∞ such that

�i,j (x)
{
ξ̃i,j (δ, y) −E

[
ξ̃i,j (δ, y)

]}
≤ �i,j (xv1)

{
ξ i,j (v2, v3) −E

[
ξ

i,j
(v2, v3)

]} + τnb/�n (7.8)

≤ �i,j (xv1)
{
ξ i,j (v2, v3) −E

[
ξ i,j (v2, v3)

]} + c3
(
τn + N

1/q
n

)
/�n,

uniformly over i, j , and (x, y, δ) ∈ Iv1,v2,v3 . Similarly,

�i,j (x)
{
ξ̃i,j (δ, y) −E

[
ξ̃i,j (δ, y)

]}
(7.9)

≥ �i,j (xv1)
{
ξ

i,j
(v2, v3) −E

[
ξ

i,j
(v2, v3)

]} − c3
(
τn + N

1/q
n

)
/�n.

Combining (7.8) and (7.9) and using Nn(τn + N
1/q
n )/�n = O(1), we have

sup
x,y,δ

∣∣D̃n(δ, x, y)
∣∣ ≤ max

v∈Vn

{∣∣�n(v)
∣∣ + ∣∣�n(v)

∣∣} + O(1), (7.10)

where v = (v1, v2, v3),

�n(v) =
n∑

i=1

mi∑
j=1

�i,j (xv1)
{
ξ

i,j
(v2, v3) −E

[
ξ

i,j
(v2, v3)

]}
,

�n(v) =
n∑

i=1

mi∑
j=1

�i,j (xv1)
{
ξ i,j (v2, v3) −E

[
ξ i,j (v2, v3)

]}
.

We now apply Theorem 3.1 to �n(v) and �n(v). For χn in (3.3), with φn in (3.9) and

E[ξ i,j (h2, h3)] = O(δn + N
1/q
n /�n) = O(δn), we can take χn = O(δnφn). By Theorem 3.1(ii),

maxv∈Vn
|�n(v)| = Op{[δnφn(logNn)

3]1/2}. The latter bound also holds for maxv∈Vn
|�n(v)|.

The desired result then follows from (7.10). �

7.3. Asymptotic expansions

Throughout the proofs, we use the following notation:

Lμ(δ1, x) =
n∑

i=1

mi∑
j=1

Kbn(xi,j − x)1Yi,j ≤μ(x)+δ1,

Lμ(x) =
n∑

i=1

mi∑
j=1

Kbn(xi,j − x),

Jμ(δ1, x) = E
[
Lμ(δ1, x)

]
,
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Ls(δ1, δ2, x) =
n∑

i=1

mi∑
j=1

Khn(xi,j − x)1|Yi,j −μ(x)−δ1|≤s(x)+δ2 ,

Ls(x) =
n∑

i=1

mi∑
j=1

Khn(xi,j − x),

Js(δ1, δ2, x) = E
[
Ls(δ1, δ2, x)

]
.

Lemma 7.1. Assume that Conditions 4.1–4.2 hold. Then, we have

(i) Uniformly over x ∈ Sε[a, b],
n∑

i=1

mi∑
j=1

(
xi,j − x

bn

)r

K

(
xi,j − x

bn

)
= Nnbn

b − a

∫
R

urK(u)du + O(1). (7.11)

(ii) Let g(x, v) be a measurable bivariate function on [a, b]2. Define

Gg(x) =
n∑

i=1

ni∑
j=1

g(x, xi,j )Kbn(xi,j − x). (7.12)

Further assume that supx∈[a,b] |∂s(x, v)/∂vs | < ∞, s = 0,1, . . . , r for some r ∈ N. Then uni-
formly over x ∈ Sε[a, b],

Gg(x) =
r−1∑
s=0

∂sg(x, v)

∂vs

∣∣∣
v=x

Nnb
s+1
n

(b − a)s!
∫
R

usK(u)du + O
(
1 + Nnb

r+1
n

)
. (7.13)

Proof. (i) Recall the ordered locations x̃k in Condition 4.1. Define

Sn(x) =
Nn∑
k=1

(
x̃k − x

bn

)r

K

(
x̃k − x

bn

)
, (7.14)

In(x) =
Nn∑
k=0

(x̃k+1 − x̃k)

(
x̃k − x

bn

)r

K

(
x̃k − x

bn

)
, (7.15)

�n = max
0≤k≤Nn

∣∣x̃k+1 − x̃k − (b − a)/Nn

∣∣ = O
(
N−2

n

)
, (7.16)

I(x) = {
1 ≤ k ≤ Nn: x̃k − x ∈ [−bn − (b − a)/Nn − �n, bn

]}
. (7.17)

Assume without loss of generality that K has support [−1,1]. Condition (4.6) implies that
supx∈[a,b] |I(x)| = O(Nnbn), where and hereafter |I| is the cardinality of a set I . Because K

has support [−1,1], Kbn(x̃k − x) = 0 for k /∈ I(x). Additionally, for k ∈ I(x), the summands in
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Sn(x) are uniformly bounded. Thus,

Sn(x) =
∑

k∈I(x)

(
x̃k − x

bn

)r

K

(
x̃k − x

bn

)
= O

[∣∣I(x)
∣∣] = O(Nnbn), (7.18)

uniformly over x ∈ [a, b].
By (4.6), elementary calculation shows that, uniformly over x ∈ Sε[a, b],

b − a

Nn

Sn(x) − In(x) = −
Nn∑
k=1

(
x̃k+1 − x̃k − b − a

Nn

)(
x̃k − x

bn

)r

K

(
x̃k − x

bn

)
(7.19)

= O(�n) sup
x∈[a,b]

∣∣Sn(x)
∣∣ = O(bn/Nn).

Write uk = (x̃k − x)/bn. Observe that In(x) = ∑Nn

k=0

∫ x̃k+1
x̃k

ur
kK(uk)dv. Thus, by the triangle

inequality, we have

∣∣∣∣In(x) −
∫ x̃Nn+1

x̃0

(
v − x

bn

)r

K

(
v − x

bn

)
dv

∣∣∣∣ ≤
Nn∑
k=0

Vk,

(7.20)

where Vk =
∫ x̃k+1

x̃k

∣∣∣∣ur
kK(uk) −

(
v − x

bn

)r

K

(
v − x

bn

)∣∣∣∣dv.

Since K has bounded derivative, |yrK(y)− zrK(z)| = O(|y − z|) for y, z ∈ [−1,1]. Also, |uk −
(v − x)/bn| = |v − x̃k|/bn. Thus, under Condition 4.1,

|Vk| = O(1)

∫ x̃k+1

x̃k

v − x̃k

bn

dv = O[(x̃k+1 − x̃k)
2]

bn

= O(1)

N2
nbn

. (7.21)

Furthermore, it is easily seen that, for k /∈ I(x), min(|x̃k − x|, |x̃k+1 − x|) > bn, which implies
K(uk) = 0,K{(v − x)/bn} = 0 for v ∈ [x̃k, x̃k+1], and consequently Vk = 0. Thus, by (7.20)
and (7.21), ∣∣∣∣In(x) −

∫ x̃Nn+1

x̃0

(
v − x

bn

)r

K

(
v − x

bn

)
dv

∣∣∣∣ ≤
∑

k∈I(x)

Vk = O(1/Nn), (7.22)

uniformly over x ∈ Sε[a, b],
Notice that

∑n
i=1

∑mi

j=1[(xi,j −x)/bn]rKbn(xi,j −x) = Sn(x). Recall that x̃0 = a and x̃Nn+1 =
b. The desired result then follows from (7.19) and (7.22) in view of

∫ x̃Nn+1

x̃0

(
v − x

bn

)r

K

(
v − x

bn

)
dv = bn

∫ (b−x)/bn

(a−x)/bn

urK(u)du = bn

∫ 1

−1
urK(u)du

for all x ∈ Sε[a, b] and large enough n.
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(ii) The expression (7.13) easily follows from (i) in view of the Taylor expansion g(x, xi,j ) =∑r−1
s=0 ∂sg(x, v)/∂vs |v=x(xi,j − x)s/s! + O(br

n) for |xi,j − x| ≤ bn. �

Lemma 7.2. Assume that Conditions 4.1–4.2 hold. Let ρμ(x), ρs(x), κ, κ+ be as in Theo-
rems 4.1–4.2. Then, for δ1 → 0, δ2 → 0, we have uniformly over x ∈ Sε[a, b],

Jμ(0, x) = Lμ(x)/2 − Nnb
3
nρμ(x)fe(0)ψK/

[
(b − a)s(x)

] + O
(
1 + Nnb

5
n

)
,

Jμ(δ1, x) = Jμ(0, x) + Nnbnδ1
{
fe(0)/

[
(b − a)s(x)

] + O
[
(Nnbn)

−1 + b2
n + δ1

]}
,

Js(δ1,0, x) = Ls(x)/2 − Nnhnκ+
{[

h2
nψKρs(x) − δ1κ

]
/
[
(b − a)s(x)

] + O
(
h4

n + δ2
1

)}
,

Js(δ1, δ2, x) = Js(δ1,0, x) + Nnhnδ2
{
κ+/

[
(b − a)s(x)

] + O
(
h2

n + δ1 + δ2
)}

.

Proof. Recall that Fe and fe are the distribution and density functions of ei,j . The assumption
Q(ei,j ) = 0 implies that Fe(0) = 1/2. Notice that

Jμ(0, x) − Lμ(x)/2 =
n∑

i=1

mi∑
j=1

Kbn(xi,j − x)
[
P
{
Yi,j ≤ μ(x)

} − 1/2
]

=
n∑

i=1

mi∑
j=1

Kbn(xi,j − x)g(x, xi,j ),

where g(x, v) = Fe{[μ(x) − μ(v)]/s(v)} − Fe(0). The symmetry of K entails
∫

usK(u)du =
0, s = 1,3. The first expression then follows from Lemma 7.1(ii) with r = 4.

Similarly, we can show J ′
μ(0, x) := ∂Jμ(δ1, x)/∂δ1|δ1=0 = Nnbnfe(0)/[(b − a)s(x)]+ O(1 +

Nnb
3
n) and J ′′

μ(δ1, x) := ∂2Jμ(δ1, x)/∂δ2
1 = O(Nbn) uniformly over δ1, x. So, the second ex-

pression follows from the Taylor expansion Jμ(δ1, x)− Jμ(0, x) = δ1J
′
μ(0, x)+ O(Nbnδ

2
1). The

other two expressions can be similarly treated. We omit the details. �

7.4. Proof of Theorems 4.1–4.2

Let Lμ(x),Lμ(δ1, x), Jμ(δ1, x),Ls(x),Ls(δ1, δ2, x) and Js(δ1, δ2, x) be as in Section 7.3.

Proof of Theorem 4.1. Let δn = [(logNn)
3/(Nnbn)]1/2 + b2

n → 0. Let ln ↑ ∞ be a positive
sequence satisfying δnln → 0. First, we show �̂μ(x) := μ̂(x)−μ(x) = Op(lnδn) uniformly over
x ∈ Sε([a, b]). Since μ̂(x) is a solution to (4.1), by Koenker ([18], pages 32–33),∣∣Lμ

(
�̂μ(x), x

) − Lμ(x)/2
∣∣ ≤

∑
i,j

Kbn(xi,j − x)1Yi,j =μ̂(x) = Op(1), (7.23)

uniformly over x. Let

�n(x) = [
Lμ(lnδn, x) − Jμ(lnδn, x)

] − [
Lμ(0, x) − Jμ(0, x)

]
.
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We can apply Theorem 3.3 with �i,j (x) = Kbn(xi,j − x) to �n(x). For τn and φn in
Condition 3.2, τn = O(1/bn) and φn = O(Nnbn) (see Lemma 7.1). By Theorem 3.3,
supx∈[a,b] |�n(x)| = Op{[Nnbnlnδn(logNn)

3]1/2}. By the same argument, we can show

sup
x∈[a,b]

∣∣Lμ(0, x) − Jμ(0, x)
∣∣ = Op

{[
Nnbn(logNn)

3]1/2}
. (7.24)

Hence, by (7.24) and Lemma 7.2, uniformly over x ∈ Sε([a, b]),
Lμ(lnδn, x) − Lμ(x)/2 = [

Jμ(lnδn, x) − Jμ(0, x)
] + [

Jμ(0, x) − Lμ(x)/2
]

+ [
Lμ(0, x) − Jμ(0, x)

] + �n(x) (7.25)

= Nnbnlnδnfe(0)/
[
(b − a)s(x)

][
1 + o(1)

] + Op(νn),

where νn = Nnb
3
n + 1 + [Nnbn(logNn)

3]1/2 + [Nnbnlnδn(logNn)
3]1/2. Because ln → ∞

and lnδn → 0, it is easy to see that νn = o(Nnbnlnδn) and Nnbnlnδn → ∞, which implies
Lμ(lnδn, x) − Lμ(x)/2 → ∞ uniformly over x ∈ Sε[a, b] in view of supx s(x) < ∞. Since
Lμ(δ1, x) is nondecreasing in δ1, (7.23) and (7.25) entail P{supx �̂μ(x) ≤ lnδn} → 1. Similarly,
P{infx �̂μ(x) ≥ −lnδn} → 1. So, supx |�̂μ(x)| = Op(lnδn). Since the rate of ln → ∞ can be
arbitrarily slow, supx |�̂μ(x)| = Op(δn).

Again, by (7.23) and Lemma 7.2, uniformly over x ∈ Sε([a, b]),

Lμ(0, x) − Jμ(0, x) = Lμ

(
�̂μ(x), x

) − Jμ

(
�̂μ(x), x

) + Op
[√

Nnbnδn(logNn)3
]

= [
Lμ

(
�̂μ(x), x

) − Lμ(x)/2
] + [

Lμ(x)/2 − Jμ(0, x)
]

− [
Jμ

(
�̂μ(x), x

) − Jμ(0, x)
] + Op

[√
Nnbnδn(logNn)3

]
= Op(1) + Nnb

3
nρμ(x)fe(0)ψK/

[
(b − a)s(x)

] + O
(
1 + Nnb

5
n

)
− Nnbn�̂μ(x)

{
fe(0)/

[
(b − a)s(x)

] + O(δn)
}

+ Op
[√

Nnbnδn(logNn)3
]
.

The representation (4.8) then follows by solving �̂μ(x) from the above equation. �

Proof of Theorem 4.2. We use the argument in Theorem 4.1 and only sketch the outline. Let

Ds(δ1, δ2, x) = [
Ls(δ1, δ2, x) − Js(δ1, δ2, x)

] − [
Ls(0,0, x) − Js(0,0, x)

]
.

Using Theorem 3.3, we can show that

sup
x∈[a,b]

∣∣Ls(0,0, x) − Js(0,0, x)
∣∣ = Op

{[
Nnhn(logNn)

3]1/2}
, (7.26)

sup
|δ1|+|δ2|≤δn,x∈[a,b]

∣∣Ds(δ1, δ2, x)
∣∣ = Op

{[
Nnhn(logNn)

3]1/2}
, (7.27)
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hold for all bn → 0, hn → 0 and δn → 0 satisfying supn logNn/[Nn min(bn,hn)δn] < ∞.
Let δn = b2

n + h2
n + [(logNn)

3/(Nnbn)]1/2 + [(logNn)
3/(Nnhn)]1/2 and ln → ∞ be a se-

quence such that lnδn → 0. By Theorem 4.1, �̃μ(x) := μ̃(x)−μ(x) = Op(δn). Using (7.27) and
Lemma 7.2, we can derive the following counterpart of (7.25)

Ls

(
�̃μ(x), lnδn, x

) − Ls(x)/2 = [
Js

(
�̃μ(x), lnδn, x

) − Js

(
�̃μ(x),0, x

)]
+ [

Js

(
�̃μ(x),0, x

) − Ls(x)/2
] + Ls(0,0, x) − Js(0,0, x)

+ Op
{[

Nnhnlnδn(logNn)
3]1/2}

= Nnhnlnδnκ+/
[
(b − a)s(x)

][
1 + op(1)

] → ∞.

Let �̂s(x) = ŝ(x) − s(x). By the same argument in (7.23), supx |Ls(�̃μ(x), �̂s(x), x) −
Ls(x)/2| = Op(1). Notice that Ls(�̃μ(x), δ2, x) is nondecreasing in x. Thus, P{supx �̂s(x) ≤
lnkn} → 1. Similarly, P{infx �̂s(x) ≥ −lnkn} → 1. Then supx |�̂s(x)| = Op(δn).

Write �n = [Nnhnδn(logNn)
3]1/2. To derive the Bahadur representation (4.14), we use (7.27)

and Lemma 7.2 to obtain

Ls(0,0, x) − Js(0,0, x)

= [
Ls

(
�̃μ(x), �̂s(x), x

) − Ls(x)/2
] + [

Ls(x)/2 − Js

(
�̂μ(x),0, x

)]
− [

Js

(
�̃μ(x), �̂s(x), x

) − Js

(
�̃μ(x),0, x

)] + Op(�n)

= Op(1) + Nnhnκ+
{[

h2
nψKρs(x) − κ�̃u(x)

]
/
[
(b − a)s(x)

] + O
(
h4

n + δ2
n

)}
− Nnhn�̂s(x)

{
κ+/

[
(b − a)s(x)

] + O(δn)
} + Op(�n).

Solving �̂s(x) from the above equation, we obtain the Bahadur representation (4.14). �

7.5. Proof of Corollaries 4.1–4.2

Again we use the coupling argument to convert the dependent data to m-dependent case. Theo-
rem 7.1 below presented a CLT for m-dependent sequence with unbounded m.

Theorem 7.1 (Romano and Wolf [22]). Let Zn,j ,1 ≤ j ≤ dn, be a triangular array of mean
zero kn-dependent random variables. Define

Sn =
dn∑

j=1

Zn,j , B2
n = Var(Sn), Sn,h,a =

a+h−1∑
j=a

Zn,j , B2
n,h,a = Var(Sn,h,a).

Assume that there exist some δ > 0,−1 ≤ γ < 1,Cn,1,Cn,2,Cn,3 > 0 such that

(a) E
(|Zn,j |2+δ

) = O(Cn,1); (b) B2
n,h,a/h1+γ = O(Cn,2) for all h ≥ kn, a;

(c) B2
n/

(
dnC

γ

n,2

) ≥ Cn,3; (d) Cn,2/Cn,3 = O(1);
(e) Cn,1/C

(2+δ)/2
n,3 = O(1); (f) k

1+(1−γ )(1+2/δ)
n /dn → 0.
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Then Sn/Bn ⇒ N(0,1).

Proof of Corollaries 4.1–4.2. We only prove Corollary 4.1 since Corollary 4.2 can be similarly
treated. By the Bahadur representation (4.8), under the specified condition, rn

√
Nnbn → 0. Thus,

it suffices to show (Nnbn)
−1/2Qbn(x) ⇒ N(0, ϕK/[4(b − a)]). Recall ei,j (kn) and Ỹi,j in (3.1)

and (3.5). Define the coupling process

Q̃bn(x) = −
n∑

i=1

mi∑
j=1

{
1
Ỹi,j ≤μ(x)

−E[1
Ỹi,j ≤μ(x)

]}Kbn(xi,j − x).

Let the coupling lag kn = �c logNn� be chosen as in Theorem 3.2. By Theorem 3.2, Qbn(x) −
Q̃bn(x) = Op[(logNn)

2] = op[(Nnbn)
1/2]. It remains to show (Nnbn)

−1/2Q̃bn(x) ⇒
N(0, ϕK/[4(b − a)]). Recall Mn = max1≤i≤n mi . Set Ỹi,j = 0 for mi < j ≤ Mn. Define

Zn,j =
n∑

i=1

ζi,j , where ζi,j = (Nnbn)
−1/2{1

Ỹi,j ≤μ(x)
−E[1

Ỹi,j ≤μ(x)
]}Kbn(xi,j − x).

Then we can write −(Nnbn)
−1/2Q̃bn(x) = ∑Mn

j=1 Zn,j . Notice that Zn,j , j = 1,2, . . . , are (2kn +
1)-dependent, and ζi,j , i = 1,2, . . . , are independent for each fixed j .

Let Sn,B
2
n, Sn,h,a and B2

n,h,a be defined in Theorem 7.1. We shall verify the conditions in
Theorem 7.1. By the independence of the summands ζi,j in Zn,j ,

E
(|Zn,j |4

) =
n∑

i=1

E
(|ζi,j |4

) + 6
∑
i1 �=i2

E
(|ζi1,j |2

)
E

(|ζi2,j |2
)

= O(1)

(Nnbn)2

{
n∑

i=1

K4
bn

(xi,j − x) +
[

n∑
i=1

K2
bn

(xi,j − x)

]2}
= O

(
1/M2

n

)
,

in view of nMn = O(Nn). Since Ỹi,j and Yi,j have same distribution, we have g(x, xi,j ) :=
Var(1Ỹi,j ≤μ(x)

) = Fe{[μ(x) − μ(xi,j )]/s(xi,j )} − F 2
e {[μ(x) − μ(xi,j )]/s(xi,j )}. Recall Fe(0) =

1/2. Then g(x, x) = 1/4. Thus, by (4.9) and the (2kn + 1)-dependence of Ỹi,j , j ∈ Z, applying
Lemma 7.2(ii) with r = 1 produces

B2
n = 1

Nnbn

n∑
i=1

ni∑
j=1

Var(1
Ỹi,j ≤μ(x)

)K2
bn

(xi,j − x)

+ O(1)

Nnbn

n∑
i=1

∑
1≤j1<j2≤ni ,|j1−j2|≤2kn

Kbn(xi,j1 − x)Kbn(xi,j2 − x)

= 1

Nnbn

[
NnbnϕK

4(b − a)
+ O

(
Nnb

2
n

)] + O(nMnknbnιn)

Nnbn

→ ϕK

4(b − a)
,



1558 Z. Zhao, Y. Wei and D.K.J. Lin

in view of nMn = O(Nn) and knιn → 0. Similarly, we can show B2
n,h,a = O(nh/Nn) =

O(h/Mn). Therefore, it is easy to see that the conditions in Theorem 7.1 hold with δ = 2, γ = 0,
and straightforward choices of Cn,1,Cn,2,Cn,3, completing the proof. �
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