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We study the problem of the efficient estimation of the jumps for stochastic processes. We assume that the
stochastic jump process (Xt )t∈[0,1] is observed discretely, with a sampling step of size 1/n. In the spirit of
Hajek’s convolution theorem, we show some lower bounds for the estimation error of the sequence of the
jumps (�XTk

)k . As an intermediate result, we prove a LAMN property, with rate
√

n, when the marks of
the underlying jump component are deterministic. We deduce then a convolution theorem, with an explicit
asymptotic minimal variance, in the case where the marks of the jump component are random. To prove that
this lower bound is optimal, we show that a threshold estimator of the sequence of jumps (�XTk

)k based
on the discrete observations, reaches the minimal variance of the previous convolution theorem.

Keywords: convolution theorem; Itô process; LAMN property

1. Introduction

The statistical study of stochastic processes with jumps, from high frequency data, has been
the subject of many recent works. A major issue is to determine if the jump part is relevant
to model the observed phenomenon. Especially, for modelling of asset prices, the assessment
of the part due to the jumps in the price is an important question. This has been addressed in
several works, either by considering multi-power variations [6,7,11] or by truncation methods
(see [19,20]). Another issue is to test statistically if the stochastic process has continuous paths.
The question has been addressed in many works (see [1,2,4]) and is crucial to the hedging of
options. A clearly related question is to determine the degree of activity of the jump component
of the process. Estimators of the Blumenthal–Getoor index of the Lévy measure of the process
are proposed in several papers [3,8,23].

In that context, the main statistical difficulty comes from the fact that one observes a discrete
sampling of the process, and consequently, the exact values of the jumps are unobserved. As a
matter of fact, a lot of statistical procedures rely on the estimation of a functional of the jumps.
In [13], Jacod considers the estimation, from a high frequency sampling, of the functional of the
jumps ∑

0≤s≤1,�Xs �=0

f (�Xs) =
∑

k

f (�XTk
)
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for a smooth function f vanishing at zero (see Theorems 2.11 and 2.12 in [13] for pre-
cise assumptions). In particular, he studies the difference between the unobserved quantity∑

0≤s≤1 f (�Xs) and the observed one
∑n−1

i=0 f (X(i+1)/n −Xi/n). When X is a semi-martingale,
it is shown that the difference between the two quantities goes to zero with rate

√
n. Rescaled by

this rate, the difference is asymptotically distributed as∑
k

f ′(�XTk
)
[
σTk−

√
UkN

−
k + σTk

√
1 − UkN

+
k

]
, (1.1)

where the variables Uk are uniform variables on [0,1] and N−
k , N+

k are standard Gaussian vari-
ables. The quantity σTk− (resp., σTk

) is the local volatility of the semi martingale X before (resp.,
after) the jump at time Tk . This result serves as the basis for studying the statistical procedures
developed in [4,15].

However, the problem of the efficiency of these methods seems to have never been addressed.
Motivated by these facts, we discuss, in this paper, the notion of efficiency to estimate the jumps
from the discrete sampling (Xi/n)0≤i≤n.

Let us stress, that the meaning of efficiency is not straightforward here. Indeed, we are not
dealing with a standard parametric statistical problem, and it is not clear which quantity can
stand for the Fisher’s information. In this paper, we restrict ourself to processes X solutions of

Xt = x0 +
∫ t

0
b(s,Xs)ds +

∫ t

0
a(s,Xs)dWs +

∑
Tk≤t

c(XTk−,�k),

where we assume that the number of jumps on [0,1], denoted by K , is finite. We note J =
(�XT1 , . . . ,�XTK

) the vector of jumps, and � = (�1, . . . ,�K) the random marks. The notion
of efficiency will be stated in this context as a convolution result in Theorem 2.1. More precisely,
we prove that for any estimator J̃ n such that the error

√
n(J̃ n − J ) converges in law to some

variable Z, the law of Z is a convolution between the law of the vector[
a(Tk,XTk−)

√
UkN

−
k + a(Tk,XTk

)
√

1 − UkN
+
k

]
k=1,...,K

and some other law. Contrarily to the standard convolution theorem, we do not need the usual
regularity assumption on the estimator. The explanation is that we are not estimating a determin-
istic (unknown) parameter, but we estimate some random (unobserved) variable J .

The proof of this convolution result relies on the study of a preliminary parametric model: we
consider the parametric model where the values of the marks � are considered as an unknown
deterministic parameter λ ∈ R

K . The resulting model is a stochastic differential equation with
jumps, whose coefficients depend on this parameter λ. We establish then in Theorem 3.1, that
this statistical experiment satisfies the LAMN property, with rate

√
n and some explicit Fisher’s

information matrix I (λ).
By Hajek’s theorem, it is well known that the LAMN property implies a convolution theorem

for any regular estimator of the parameter λ (see [17,22]). However, our context differs from the
usual Hajek’s convolution theorem on at least two points. First, the parameter λ is randomized
and second the target of the estimator J = (c(XTk−,�k))k depends both on the randomized
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parameter and on some unobserved quantities XTk−. As a result, the connection between the
minimal law of the convolution theorem and the Fisher’s information of the parametric model is
not straightforward. The proof of the convolution theorem, when c(XTk−,�k) = c(�k) does not
depend on XTk−, is simpler and is given in Theorem 5.1.

Remark that it is certainly possible to state a general result about the connection between the
LAMN property and convolution theorems for the estimation of unobserved random quantities.
The proof of the Proposition 5.2 is a step in this direction. However, giving such general results
is beyond the scope of the paper.

The outline of the paper is as follows. In Section 2, we state a convolution theorem, which
establishes an asymptotic lower bound for the asymptotic error of any estimator of the jumps.
The LAMN property is enounced in Section 3. In Section 4, we show that the threshold estimator,
introduced by Mancini (see [19,20]), reaches the lower bound of Theorem 2.1. This proves that
this lower bound is optimal. The proofs of these results are postponed to the Section 5.

2. Convolution theorem

2.1. Notation

Consider (Xt )t∈[0,1] an adapted c.à.d.l.à.g., one dimensional, stochastic process defined on some
filtered probability space (�, F , (Ft )t∈[0,1],P). We assume that the sample paths of X almost
surely admit a finite number of jumps. We denote by K the random number of jumps on [0,1]
and 0 < T1 < · · · < TK < 1 the instants of these jumps. We assume that the process X is a
solution of the stochastic differential equation with jumps

Xt = x0 +
∫ t

0
b(s,Xs)ds +

∫ t

0
a(s,Xs)dWs +

∑
Tk≤t

c(XTk−,�k), (2.1)

where W is a standard (Ft )t Brownian motion. The vector of marks (�k)k is random. The Brow-
nian motion, the jump times and the marks are independent.

We will note J = (Jk)k≥1 the sequence of the jumps of the process, defined by Jk =
c(XTk−,�k) = �XTk

, for 1 ≤ k ≤ K and Jk = 0, for k > K .
Remark that if Tk − Tk−1 is exponentially distributed, the jumps times are arrival times of a

Poisson process. Then, if the marks (�k)k are i.i.d. variables, the process
∑

Tk≤t �k is a com-
pound Poisson process. In this particular case, the equation (2.1) becomes a standard SDE with
jumps based on a random Poisson measure with finite intensity.

It is convenient to assume that the process is realized on the canonical product space of
the Brownian part and the jumps parts � = �1 × �2, P = P

1 ⊗ P
2. More precisely, we note

(�1, F 1,P
1) = (C([0,1]), B,W), the space of continuous functions endowed with the Wiener

measure on the Borelian sigma-field and (F 1
t )t∈[0,1] the filtration generated by the canonical pro-

cess. We introduce (�2, F 2,P
2) = (RN × R

N, B(R)⊗N ⊗ B(R)⊗N,P
2), where P

2 is the law of
two independent sequences of random variables (Tk)k≥1, (�k)k≥1. We assume that, P

2-almost
surely, the sequence (Tk)k≥1 is nondecreasing and such K = Card{k,Tk ≤ 1} is finite. Then,
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((Wt )t∈[0,1], (Tk)k≥1, (�k)k≥1) are the canonical variables on �. We assume that (Ft )t is the
right continuous, completed, filtration based on (F 1

t × F 2)t and F = F1.
In order to describe the asymptotic law of any estimator of the jumps, we need some additional

notation. Following [13], we introduce an extension of our initial probability space. We consider
an auxiliary probability space (�′, F ′,P′) which contains U = (Uk)k≥1 a sequence of indepen-
dent variables with uniform law on [0,1], and N− = (N−

k )k≥1, N+ = (N+
k )k≥1 two sequences

of independent variables with standard Gaussian law. All these variables are mutually indepen-
dent. We extend the initial probability space by setting �̃ = � × �′, F̃ = F ⊗ F ′, P̃ = P ⊗ P

′,
F̃t = Ft ⊗ F ′.

2.2. Main result

We need some more assumptions on the process. Especially, to avoid cumbersome notation we
will first assume in the next subsection that the number of jumps is deterministic. We will show in
Section 2.2.2 that this is not a real restriction, since we can reformulate our result by conditioning
on the number of jumps K .

2.2.1. Deterministic number of jumps

Since the number of jumps K is deterministic, the probability space � introduced in Section 2.1
is simplified accordingly: � = �1 × �2, �1 = C([0,1]) and �2 = R

K × R
K . The space �̃ =

� × �′ with �′ = R
3K extends the initial space with the sequences N− = (N−

k )1≤k≤K , N+ =
(N+

k )1≤k≤K , U = (Uk)1≤k≤K .

H0 (Law of the jump times). The number of jumps K is deterministic and the law of T =
(T1, . . . , TK) is absolutely continuous with respect to the Lebesgue measure. We note fT its
density.

H1 (Smoothness assumption). The functions (t, x) 	→ a(t, x) and (t, x) 	→ b(t, x) are C 1,2 on
[0,1] × R. We note a′ and b′ their derivatives with respect to x and we assume that a′ and b′ are
C 1,2 on [0,1] × R. Moreover, the functions a, b, and their derivatives are uniformly bounded.

The function (x, θ) 	→ c(x, θ) is C 2,1 on R × R, with bounded derivatives. We note c′ its
derivative with respect to x and ċ its derivative with respect to θ . We assume moreover that ċ is
C 1,1 with bounded derivatives.

H2 (Non-degeneracy assumption). We assume that there exist two constants a and a such that

∀(t, x) ∈ [0,1] × R 0 < a ≤ a(t, x) ≤ a;
∀(x, θ) ∈ R × R

∣∣1 + c′(x, θ)
∣∣≥ a.

H3 (“Randomness” of the jump sizes). The law of � = (�1, . . . ,�K) is absolutely continuous
with respect to the Lebesgue measure and we note f� its density. We assume also

∀(x, θ) ∈ R × R ċ(x, θ) �= 0.

Let us comment on these assumptions. First, the assumption that the vector of jump times
admits a density, hypothesis H0, is crucial to prove the convergence in law of the fractional part
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of (nTk)k to the vector of uniform laws (Uk)k . In order to find a lower bound, we need to deal
with a kind of regular model, this explains the assumption H1. Moreover, it is clear that if the
diffusion coefficient a is equal to zero, one will expect a rate of convergence for the estimation
of the jumps faster than

√
n. In that case, the LAMN property will not be satisfied with rate

√
n.

This clarifies why we assume a strictly positive lower bound on a.
Remark that the non-degeneracy of |1 + c′(x, θ)| is a standard assumption which implies that

the equation (2.1) admits a flow. The assumption H3 is more specifically related to our statistical
problem. We want to prove a lower bound for the estimation of the random jump sizes. Indeed,
if these quantities do not exhibit enough randomness, it could be possible to estimate them with
a rate faster than

√
n. For instance, the condition H3 excludes that the jump sizes do not depend

on the underlying random marks.
We can now state our main result. We recall that

J = (Jk)1≤k≤K = (c(XTk−,�k)
)

1≤k≤K
= (�XTk

)1≤k≤K ∈ R
K

is the sequence of the jumps of the process.
We will call (J̃ n)n≥1 a sequence of estimators if for each n, J̃ n ∈ R

K is a measurable function
of the observations (Xi/n)i=0,...,n.

Theorem 2.1. Assume H0–H3. Let J̃ n be any sequence of estimators such that

√
n
(
J̃ n − J

) n→∞−−−−→
law

Z̃ (2.2)

for some variable Z̃. Then, the law of Z̃ is necessarily a convolution:

Z̃
law= (√Uka(Tk,XTk−)N−

k +√1 − Uka(Tk,XTk
)N+

k

)
k
+ R̃, (2.3)

where conditionally on (T ,�, (Wt)t∈[0,1], (Uk)k), the random vector R̃ is independent of
(N−

k ,N+
k )k .

We will say that an estimator J̃ n of the jumps is efficient if the asymptotic distribution of√
n(J̃ n − J ) is equal in law to (

√
Uka(Tk,XTk−)N−

k + √
1 − Uka(Tk,XTk

)N+
k )k (which corre-

sponds to R̃ = 0).
It is well known that in parametric models, the Hajek’s convolution theorem usually requires

a regularity assumption on the estimator (see [12,22]). Here, our theorem does not require any
assumption on the estimator, apart its convergence with rate

√
n. This comes from the fact that the

target J of the estimator is random, yielding to some additional regularity properties, compared
with the usual parametric setting (see a related situation in Jeganathan [16]).

Remark 2.1. We can observe that

(√
Uka(Tk,XTk−)N−

k +√1 − Uka(Tk,XTk
)N+

k

)
k

law= (I opt)−1/2
N,
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where I opt is the diagonal random matrix of size K × K , defined on the extended probability
space �̃, with diagonal entries:

I
opt
k = [Uka(Tk,XTk−)2 + (1 − Uk)a(Tk,XTk

)2]−1 for k = 1, . . . ,K. (2.4)

Conditionally on (T ,�, (Wt)t∈[0,1], (Uk)k), the vector N is a standard Gaussian vector on R
K

and consequently N is independent of I opt.

Remark 2.2. The Theorem 2.1 states, in particular, that any estimator of the jumps with rate
√

n

must have an asymptotic conditional variance greater than (I opt)−1.
Let us stress that if the rate of convergence is faster than

√
n, then (2.2) is still true with Z̃ = 0

and consequently the Theorem 2.1 proves that a convergence faster than
√

n is impossible.

Now if instead estimating J , we estimate a function of the vector of jumps, we can prove
in a similar way the following result. For the sake of shortness, we will omit the proof of the
following proposition.

Proposition 2.1. Assume H0–H3. Let F be a C 1 function from R
K to R and let F̃ n be any

sequence of estimators of F(J ) such that

√
n
(
F̃ n − F(J )

) n→∞−−−−→
law

Z̃F (2.5)

for some variable Z̃F . Then, the law of Z̃F is necessarily a convolution:

Z̃F
law=

K∑
k=1

∂F

∂xk

(J )
(√

Uka(Tk,XTk−)N−
k +√1 − Uka(Tk,XTk

)N+
k

)+ R̃F , (2.6)

where, conditionally on (T ,�, (Wt)t∈[0,1], (Uk)k), the real random variable R̃F is independent
of (N−

k ,N+
k )k .

Remark 2.3. From the results of Jacod (Theorems 2.11 and 2.12 in [13]), we deduce that the
lower bound of Proposition 2.1 is optimal, and that the estimators of [13] are efficient.

2.2.2. Random number of jumps

If the number of jumps is random, we need to modify some assumptions accordingly.

H̃0. We note K = card{k|Tk ∈ [0,1]}. Conditionally on K the law of the vector of jump times
T = (T1, . . . , TK) admits a density.

H̃3. Conditionally on K , the law of (�1, . . . ,�K) is absolutely continuous with respect to the
Lebesgue measure. We assume also ∀(x, θ) ∈ R × R ċ(x, θ) �= 0.

We can extend Theorem 2.1.
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Corollary 2.1. Assume H̃0, H1, H2 and H̃3. Let J̃ n be any sequence of estimators with values
in R

N such that
√

n
(
J̃ n − J

) n→∞−−−−→
law

Z̃

for some variable Z̃. Then, the law of Z̃ admits the decomposition:

Z̃
law= ([√Uka(Tk,XTk−)N−

k +√1 − Uka(Tk,XTk
)N+

k

]
1{1≤k≤K}

)
k
+ R̃,

where conditionally on (K, (Tk)1≤k≤K, (�k)1≤k≤K, (Wt)t∈[0,1], (Uk)1≤k≤K) the random vector
of the K first components of R̃ is independent of (N−

k ,N+
k )1≤k≤K .

In Section 3, we consider a parametric model related to the process (2.1), and enounce the
associated LAMN property. This is the key step before proving Theorem 2.1 and Corollary 2.1.
Remark that, directly considering the values of the jumps size as the parameter, is not the right
choice. The reason is that the jump sizes are not independent of the Brownian motion (Wt )t .
Instead, we prefer to consider the values of the marks � as the statistical parameter.

3. LAMN property in an associated parametric model

We focus on the parametric model where the values of the marks � are considered as the un-
known (deterministic) parameters, and K is deterministic. This is the crucial step before proving
our convolution theorem.

More precisely, our aim is to obtain the LAMN property for the parametric model

Xλ
t = x0 +

∫ t

0
b
(
s,Xλ

s

)
ds +

∫ t

0
a
(
s,Xλ

s

)
dWs +

K∑
k=1

c
(
Xλ

Tk−, λk

)
1t≥Tk

, (3.1)

where the parameter λ = (λ1, . . . , λK) ∈ R
K . We note T = (T1, . . . , TK) the vector of jump times

such that 0 < T1 < · · · < TK < 1. Let us remark that, under the assumption H0, the solutions of
(3.1) might be defined on the probability space �1 ×R

K endowed with the product of the Wiener
measure and the law of the jumps times. But, to avoid new notation, we can assume that, for all
λ ∈ RK , the process (Xλ

t )t∈[0,1] is defined on the space (�, F ,P) of Section 2.
In this model, we assume that we observe both the regular discretization (Xλ

i/n)1≤i≤n of the
process solution of (3.1) on the time interval [0,1] and the jump times vector T . The observation
of T leads to a more tractable computation of the likelihood. This is not restrictive to add some
observations to the statistical experiment, since our aim is to derive an asymptotic lower bound.
Under H0 and H1, the law of the observations (T , (Xλ

i/n)1≤i≤n) admits a density pn,λ. We note

pn,λ,T the density of (Xλ
i/n)1≤i≤n conditionally on T . For h = (h1, . . . , hK) ∈ R

K we introduce
the log-likelihood ratio:

Zn(λ,λ + h/
√

n,T , x1, . . . , xn) = log
pn,λ+h/

√
n

pn,λ
(T , x1, . . . , xn). (3.2)
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Theorem 3.1. Assume H0, H1 and H2. Then, the statistical experiment (pn,λ)λ∈RK satisfies a
LAMN property. For λ ∈ R

K , h ∈ R
K we have:

Zn

(
λ,λ + h/

√
n,T ,Xλ

1/n, . . . ,X
λ
1

)
(3.3)

=
K∑

k=1

hkIn(λ)
1/2
k Nn(λ)k − 1

2

K∑
k=1

h2
kIn(λ)k + opn,λ(1),

where In(λ) is a diagonal random matrix and Nn(λ) are random vectors in R
K such that

(
In(λ),Nn(λ)

) n→∞−−−−→
law

(
I (λ),N

)
with:

I (λ)k = ċ(Xλ
Tk−, λk)

2

a2(Tk,X
λ
Tk−)[1 + c′(Xλ

Tk−, λk)]2Uk + a2(Tk,X
λ
Tk− + c(Xλ

Tk−, λk))(1 − Uk)
, (3.4)

where U = (U1, . . . ,UK) is a vector of independent uniform laws on [0,1] such that U , T and
(Wt )t∈[0,1] are independent, and conditionally on (U,T , (Wt )t∈[0,1]), N is a standard Gaussian
vector in R

K .

Actually, we can complete the statement of the theorem by giving explicit expressions for
In(λ) and Nn(λ):

In(λ)k = ċ(Xλ
ik/n, λk)

2

nDn,λk,k(Xλ
ik/n)

,

Nn(λ)k =
√

n(Xλ
(ik+1)/n − Xλ

ik/n − c(Xλ
ik/n, λk))√

nDn,λk,k(Xλ
ik/n)

,

Dn,λk,k
(
Xλ

ik/n

) = a2
(

ik

n
,Xλ

ik/n

)(
1 + c′(Xλ

ik/n, λk

))2(
Tk − ik

n

)

+ a2
(

ik

n
,Xλ

ik/n + c
(
Xλ

ik/n, λk

))( ik + 1

n
− Tk

)
,

where ik is the integer part of nTk .

Remark 3.1. We remark that from a direct application of Hajek’s theorem (see Van der
Vaart [22], Corollary 9.9, page 132), any regular estimator of λ has an asymptotic condi-
tional variance greater than I (λ)−1. Here, an estimator of λ is a measurable function of
(T , (Xλ

i/n)1≤i≤n), and so we deduce that, a fortiori, any measurable function of (Xλ
i/n)1≤i≤n

satisfies the same asymptotic lower bound.
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4. Efficient estimator of the jumps

We use the notation of Section 2.1 and since we just propose an estimator of the jumps, we can
weaken the assumptions of the previous sections.

A1 (Smoothness assumption). The functions a : [0,1] × R → R, b : [0,1] × R → R and
c : R2 → R are continuous.

A2 (Identifiability of the jumps). We have almost surely: c(XTk−,�k) �= 0,∀k ∈ {1, . . . ,K}.
This last condition ensures that the jump times of X are exactly the times Tk .
Recall that J = (Jk)k≥1 is the sequence of jumps of X (on [0,1]): we set Jk = �XTk

=
XTk

− XTk− for k ≤ K and we define Jk = 0 for k > K .
We construct an estimator of J following the threshold estimation method proposed by

Mancini [19,20].
Let (un)n be a sequence of positive numbers tending to 0. We set în1 = inf{0 ≤ i ≤ n − 1:

|X(i+1)/n − Xi/n| ≥ un} with the convention inf ∅ = +∞. We recursively define for k ≥ 2,

înk = inf
{
înk−1 < i ≤ n − 1: |X(i+1)/n − Xi/n| ≥ un

}
. (4.1)

We set K̂n = sup{k ≥ 1: înk < ∞} the number of increments of the jump diffusion exceeding the
threshold un. We then define for k ≥ 1,

Ĵ n
k =
{

X
înk +1/n

− X
înk /n

, if k ≤ K̂n,

0, if k > K̂n.
(4.2)

The sequence (Ĵ n)n is an estimator of the vector of jumps J , and (K̂n)n estimates the number of
jumps.

Proposition 4.1. Let us assume H̃0, A1, A2 and un ∼ n−	 with 	 ∈ (0,1/2). Then, we have
almost surely,

K̂n = K for n large enough

if k ≤ K Ĵn
k

n→∞−−−−→Jk = �XTk
,

if k > K Ĵ n
k = 0 for n large enough.

The consistency result concerning the estimator K̂n is a special case of Mancini ([20], The-
orem 1) and the jump sizes (Jk)k were consistently estimated in Mancini [19] with exactly the
same estimator but when the observation time goes to infinity.

We now describe the asymptotic law of the error between Ĵ n and J . Note that Theorem 3 in
[20] gives the asymptotic distribution of the estimator of the sum of the jumps assuming that the
diffusion coefficient a is independent of the Brownian process W and the jump part, this is the
reason why the uniform laws do not appear in the asymptotic law. The situation is completely
different here, since the diffusion coefficient a depends on the process X, and is more related to
Jacod’s results (see [13]).
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Theorem 4.1. Let us assume H̃0, A1, A2 and un ∼ n−	 with 	 ∈ (0,1/2). Then
√

n(Ĵ n − J )

converges in law to Z = (Zk)k≥1 where the limit can be described on the extended space �̃ by:

Zk =√Uka(Tk,XTk−)N−
k +√1 − Uka(Tk,XTk

)N+
k for k ≤ K,

Zk = 0 for k > K.

Moreover the convergence is stable with respect to the sigma-field F . Let us precise that, here,
the convergence in law of the infinite dimensional vector

√
n(Ĵ n − J ) means the convergence of

any finite dimensional marginals.

Remark 4.1. The Theorem 4.1 shows that the error for the estimation of the jump �XTk
is

asymptotically conditionally Gaussian and that the estimator Ĵ n is efficient. In particular, the
conditional variance on (T ,�,K, (Wt)t∈[0,1], (Uk)k) of the error is equal to the lower bound
(I opt)−1 = Uka(Tk,XTk−)2 + (1 − Uk)a(Tk,XTk

)2, and consequently this lower bound is opti-
mal.

5. Proof section

We divide the proofs into three sections.
We first prove the LAMN property of the parametric model in Section 5.1. Then, the convo-

lution result is established in Section 5.2. Finally, the Section 5.3 is devoted to the proof of the
convergence and normality of the estimator Ĵ n.

We first state a lemma which will be useful in the next sections.

Lemma 5.1. Let K0 ∈ N \ {0} and consider T = (T1, . . . , TK0) a random variable on [0,1]K0

with density fT . For k = 1, . . . ,K0, we note ik = [nTk] the integer part of nTk . Let (Wt )t∈[0,1] be
a standard Brownian motion independent of T .

Then, we have the convergence in law of the variables(
T ,

(
n

(
Tk − ik

n

))
k

,
(√

n(WTk
− Wik/n)

)
k
,
(√

n(W(ik+1)/n − WTk
)
)
k
, (Wt )t∈[0,1]

)

to (
T , (Uk)k,

(√
UkN

−
k

)
k
,
(√

1 − UkN
+
k

)
k
, (Wt )t∈[0,1]

)
,

where U = (U1, . . . ,UK0) is a vector of independent uniform laws on [0,1], N− = (N−
1 , . . . ,

N−
K0

) and N+ = (N+
1 , . . . ,N+

K0
) are independent standard Gaussian vectors such that T , U ,

N−, N+ and (Wt)t are independent.

Proof. The convergence of the vector(
T ,
(√

n(WTk
− Wik/n)

)
k
,
(√

n(W(ik+1)/n − WTk
)
)
k
, (Wt )t∈[0,1]

)
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is a direct consequence of Lemma 6.2 in [14] (see also Lemma 5.8 in [13]) and following this
proof (which is simpler in our case), there is no difficulty to add the variables (n(Tk − ik

n
))k in

the vector. �

5.1. LAMN property: Proof of Theorem 3.1

We use the framework of Section 3 and we introduce some more notation. For k = 1, . . . ,K , we
note ik = [nTk] the integer part of nTk and for t ∈ [ik/n, (ik + 1)/n], we note (X

θ,k
t ) the process

solution of the following jump-diffusion equation with only one jump at time Tk :

X
θ,k
t = X0 +

∫ t

0
b
(
s,Xθ,k

s

)
ds +

∫ t

0
a
(
s,Xθ,k

s

)
dWs + c

(
X

θ,k
Tk−, θ

)
1t≥Tk

. (5.1)

Under H1 and H2 and conditionally on T , this process admits a strictly positive conditional
density, which is C 1 with respect to θ . We will note pθ,T (

ik
n
,

ik+1
n

, x, y) the density of X
θ,k
(ik+1)/n

conditionally on T and X
θ,k
ik/n = x and ṗθ,T (

ik
n
,

ik+1
n

, x, y) its derivative with respect to θ .

We observe that the log-likelihood ratio Zn only involves the transition densities of Xλ on a
time interval where a jump occurs. This transition is pθ,T (

ik
n
,

ik+1
n

, x, y) if there is exactly one
jump in the corresponding interval. Then, one can easily see that the following decomposition
holds for Zn:

Zn

(
λ,λ + h√

n
,T , x1, . . . , xn

)
1Tn

(T )

=
K∑

k=1

ln
pλk+hk/

√
n,T

pλk,T

(
ik

n
,
ik + 1

n
,xik , xik+1

)
1Tn

(T ) (5.2)

=
K∑

k=1

∫ λk+hk/
√

n

λk

ṗθ,T

pθ,T

(
ik

n
,
ik + 1

n
,xik , xik+1

)
dθ1Tn

(T ),

where 1Tn
(T ) is the indicator function that there is at most one jump in each time interval

[i/n, (i + 1)/n) for i = 0, . . . , n − 1.
We have now to study the asymptotic behaviour of (5.2). This is divided into several lemmas.

The Lemmas 5.2–5.4 give an expansion for the score function, with an uniform control in θ . We

deduce then an explicit expansion for
∫ λk+hk/

√
n

λk

ṗθ,T

pθ,T (
ik
n
,

ik+1
n

, xik , xik+1)dθ in Lemma 5.5, and
conclude by passing through the limit in Lemma 5.6.

We begin with a representation of ṗθ,T

pθ,T (
ik
n
,

ik+1
n

, x, y) as a conditional expectation, using
Malliavin calculus. We refer to Nualart [21] for a detailed presentation of Malliavin calculus.
The Malliavin calculus techniques to derive LAMN properties have been introduced by Gobet
[10] in the case of multi-dimensional diffusion processes and then used by Gloter and Gobet [9]
for integrated diffusions.

In all what follows, we will denote by Cp a constant (independent on n, k and θ ) which value
may change from line to line.
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Lemma 5.2. Assuming H1 and H2, we have ∀(x, y) ∈ R
2:

ṗθ,T

pθ,T

(
ik

n
,
ik + 1

n
,x, y

)
= Ex,T ,k

(
δ
(
P n,θ,k

)|Xθ,k
(ik+1)/n = y

)
,

where Ex,T ,k is the conditional expectation on T and X
θ,k
ik/n = x, δ is the Malliavin divergence

operator and P n,θ,k is the process given on [ ik
n
,

ik+1
n

] by

P n,θ,k
s = (Y

θ,k
Tk

Y
θ,k
s )−1(1 + c′(Xθ,k

Tk−, θ)1s≤Tk
)a(s,X

θ,k
s )ċ(X

θ,k
Tk−, θ)∫ (ik+1)/n

ik/n
(Y

θ,k
u )−2a2(u,X

θ,k
u )(1 + c′(Xθ,k

Tk−, θ)1u≤Tk
)2 du

,

where (Y
θ,k
t )t is the process solution of

Y
θ,k
t = 1 +

∫ t

0
b′(s,Xθ,k

s

)
Y θ,k

s ds +
∫ t

0
a′(s,Xθ,k

s

)
Y θ,k

s dWs. (5.3)

We remark that under H1, the process (Y
θ,k
t )t and its inverse satisfy ∀p ≥ 1,

(
E
(

sup
0≤t≤1

∣∣Y θ,k
t

∣∣p))1/p ≤ Cp,
(
E
(

sup
0≤t≤1

∣∣Y θ,k
t

∣∣−p
))1/p ≤ Cp. (5.4)

Proof. The proof of Lemma 5.2 is based on Malliavin calculus on the time interval [ik/n, (ik +
1)/n], conditionally on T and (Wt)t≤ik/n. We first observe that under H1 and H2, the process
(X

θ,k
t ) solution of (5.1) admits a derivative with respect to θ that we will denote by (Ẋ

θ,k
t )

(see, e.g., Kunita [18] since this problem is similar to the derivative with respect to the initial
condition). Moreover (X

θ,k
t ) and (Ẋ

θ,k
t ) belong, respectively, to the Malliavin spaces D

2,p and
D

1,p , ∀p ≥ 1. Now, let ϕ be a smooth function with compact support, we have:

∂

∂θ
Ex,T ,kϕ

(
X

θ,k
(ik+1)/n

)= Ex,T ,kϕ′(Xθ,k
(ik+1)/n

)
Ẋ

θ,k
(ik+1)/n.

Using the integration by part formula (see Nualart [21], Proposition 2.1.4, page 100), we can
write

Ex,T ,kϕ′(Xθ,k
(ik+1)/n

)
Ẋ

θ,k
(ik+1)/n = Ex,T ,kϕ

(
X

θ,k
(ik+1)/n

)
H
(
X

θ,k
(ik+1)/n, Ẋ

θ,k
(ik+1)/n

)
,

where the weight H can be expressed in terms of the Malliavin derivative of X
θ,k
(ik+1)/n, the inverse

of its Malliavin variance–covariance matrix and the divergence operator as follows:

H
(
X

θ,k
(ik+1)/n, Ẋ

θ,k
(ik+1)/n

)= δ
(
Ẋ

θ,k
(ik+1)/nγ

θ,kDX
θ,k
(ik+1)/n

)
,

where

γ θ,k =
(∫ (ik+1)/n

ik/n

(
DuX

θ,k
(ik+1)/n

)2 du

)−1

. (5.5)
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On the other hand, from Lebesgue derivative theorem, we have:

∂

∂θ
Ex,T ,kϕ

(
X

θ,k
(ik+1)/n

)= ∫ ϕ(y)ṗθ,T

(
ik

n
,
ik + 1

n
,x, y

)
dy,

this leads to the following representation

ṗθ,T

(
ik

n
,
ik + 1

n
,x, y

)

= Ex,T ,k
(
δ
(
Ẋ

θ,k
(ik+1)/nγ

θ,kDX
θ,k
(ik+1)/n

)|Xθ,k
(ik+1)/n = y

)
pθ,T

(
ik

n
,
ik + 1

n
,x, y

)
.

It remains to give a more tractable expression of Ẋ
θ,k
(ik+1)/nγ

θ,kDX
θ,k
(ik+1)/n. We first observe that:

Ẋ
θ,k
(ik+1)/n = ċ

(
X

θ,k
Tk−, θ

)+ ∫ (ik+1)/n

Tk

b′(u,Xθ,k
u

)
Ẋθ,k

u du

+
∫ (ik+1)/n

Tk

a′(u,Xθ,k
u

)
Ẋθ,k

u dWu

and consequently

Ẋ
θ,k
(ik+1)/n = Y

θ,k
(ik+1)/n

(
Y

θ,k
Tk

)−1
ċ
(
X

θ,k
Tk−, θ

)
, (5.6)

where (Y
θ,k
t ) is solution of (5.3). Turning to the Malliavin derivative of X

θ,k
(ik+1)/n

, we first observe

that DX
θ,k
(ik+1)/n ∈ L2([ik/n, (ik + 1)/n]) and so we just have to explicit DsX

θ,k
(ik+1)/n for s �= Tk .

Assuming first that Tk < s ≤ (ik + 1)/n, we have for u ∈ [s, (ik + 1)/n]:

DsX
θ,k
u = a

(
s,Xθ,k

s

)+ ∫ u

s

b′(v,Xθ,k
v

)
DsX

θ,k
v dv +

∫ u

s

a′(v,Xθ,k
v

)
DsX

θ,k
v dWv

and then DsX
θ,k
u = Y

θ,k
u (Y

θ,k
s )−1a(s,X

θ,k
s ).

Now, if ik/n ≤ s < Tk , we have for u ≥ s

DsX
θ,k
u = a

(
s,Xθ,k

s

)+ c′(Xθ,k
Tk−, θ

)
DsX

θ,k
Tk−1u≥Tk

+
∫ u

s

b′(v,Xθ,k
v

)
DsX

θ,k
v dv +

∫ u

s

a′(v,Xθ,k
v

)
DsX

θ,k
v dWv,

and we deduce that DsX
θ,k
u = Y

θ,k
u (1 + c′(Xθ,k

Tk−, θ)1u≥Tk
)(Y

θ,k
s )−1a(s,X

θ,k
s ).

It follows that:

DsX
θ,k
(ik+1)/n = Y

θ,k
(ik+1)/n

(
1 + c′(Xθ,k

Tk−, θ
)
1s≤Tk

)(
Y θ,k

s

)−1
a
(
s,Xθ,k

s

)
. (5.7)
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From (5.6) and (5.7), we obtain

Ẋ
θ,k
(ik+1)/nγ

θ,kDsX
θ,k
(ik+1)/n = (Y

θ,k
Tk

Y
θ,k
s )−1(1 + c′(Xθ,k

Tk−, θ)1s≤Tk
)a(s,X

θ,k
s )ċ(X

θ,k
Tk−, θ)∫ (ik+1)/n

ik/n
(Y

θ,k
u )−2a2(u,X

θ,k
u )(1 + c′(Xθ,k

Tk−, θ)1u≤Tk
)2 du

(5.8)
= P n,θ,k

s ,

and the Lemma 5.2 is proved. �

In the next lemma, we explicit the conditional expectation appearing in the decomposition of
ṗθ,T

pθ,T (
ik
n
,

ik+1
n

, x, y).

Lemma 5.3. Assuming H1 and H2, we have

Ex,T ,k
(
δ
(
P n,θ,k

)|Xθ,k
(ik+1)/n = y

) = (y − x − c(x, θ))ċ(x, θ)

Dn,θ,k(x)
(5.9)

+ Ex,T ,k
(
Qn,θ,k|Xθ,k

(ik+1)/n
= y
)

with

Dn,θ,k(x) = a2
(

ik

n
, x

)(
1 + c′(x, θ)

)2(
Tk − ik

n

)
(5.10)

+ a2
(

ik

n
, x + c(x, θ)

)(
ik + 1

n
− Tk

)

and where Qn,θ,k satisfies

∀p ≥ 1
(
Ex,T ,k

∣∣Qn,θ,k
∣∣p)1/p ≤ Cp

for a constant Cp independent of x,n and θ .

The first term in the right-hand side of (5.9) is the main term and we will prove later that the
contribution of the conditional expectation of Qn,θ,k is negligible.

Proof. We first give an approximation of the process P n,θ,k which depends on the position of s

with respect to the jump time Tk . We have:

P n,θ,k
s =

((
1 + c′(Xθ,k

ik/n, θ
))

a

(
ik

n
,X

θ,k
ik/n

)
1[ik/n,Tk](s)

+ a

(
ik

n
,X

θ,k
ik/n + c

(
X

θ,k
ik/n, θ

))
1(Tk,(ik+1)/n](s)

)
ċ
(
X

θ,k
ik/n, θ

)
(5.11)

/Dn,θ,k
(
X

θ,k
ik/n

)
+ Un,θ,k

s ,



Asymptotic lower bounds in estimating jumps 1073

where Dn,θ,k(X
θ,k
ik/n) is defined by (5.10) and U

n,θ,k
s is a remainder term. We deduce then that

δ
(
P n,θ,k

) = ((1 + c′(Xθ,k
ik/n, θ

))
a

(
ik

n
,X

θ,k
ik/n

)
(WTk

− Wik/n)

+ a

(
ik

n
,X

θ,k
ik/n + c

(
X

θ,k
ik/n, θ

))
(W(ik+1)/n − WTk

)

)
ċ
(
X

θ,k
ik/n, θ

)
(5.12)

/Dn,θ,k
(
X

θ,k
ik/n

)
+ δ
(
Un,θ,k

)
.

Now, we can approximate X
θ,k
(ik+1)/n in the following way:

X
θ,k
(ik+1)/n

= X
θ,k
ik/n + c

(
X

θ,k
Tk−, θ

)+ a

(
ik

n
,X

θ,k
ik/n

)
(WTk

− Wik/n)

+ a

(
ik

n
,X

θ,k
ik/n + c

(
X

θ,k
ik/n, θ

))
(W(ik+1)/n − WTk

) + R
n,θ,k
1 ,

but observing that

c
(
X

θ,k
Tk−, θ

)= c
(
X

θ,k
ik/n, θ

)+ c′(Xθ,k
ik/n, θ

)
a

(
ik

n
,X

θ,k
ik/n

)
(WTk

− Wik/n) + R
n,θ,k
2 ,

we finally obtain

X
θ,k
(ik+1)/n = X

θ,k
ik/n + c

(
X

θ,k
ik/n, θ

)+ (1 + c′(Xθ,k
ik/n, θ

))
a

(
ik

n
,X

θ,k
ik/n

)
(WTk

− Wik/n)

(5.13)

+ a

(
ik

n
,X

θ,k
ik/n + c

(
X

θ,k
ik/n, θ

))
(W(ik+1)/n − WTk

) + Rn,θ,k

with Rn,θ,k = R
n,θ,k
1 + R

n,θ,k
2 .

Putting together (5.12) and (5.13), this yields

δ
(
P n,θ,k

) = (X
θ,k
(ik+1)/n − X

θ,k
ik/n − c(X

θ,k
ik/n, θ))ċ(X

θ,k
ik/n, θ)

Dn,θ,k(X
θ,k
ik/n)

(5.14)

− Rn,θ,k
ċ(X

θ,k
ik/n, θ)

Dn,θ,k(X
θ,k
ik/n)

+ δ
(
Un,θ,k

)
.

Letting Qn,θ,k be the random variable defined by

Qn,θ,k = δ
(
Un,θ,k

)− Rn,θ,k
ċ(X

θ,k
ik/n, θ)

Dn,θ,k(X
θ,k
ik/n)

, (5.15)
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where Un,θ,k and Rn,θ,k are, respectively, defined by (5.11) and (5.13), we deduce easily the first
part of Lemma 5.3. It remains to bound Ex,T ,k|Qn,θ,k|p , ∀p ≥ 1.

We remark that from H1 and H2

0 ≤ |ċ(Xθ,k
ik/n, θ)|

Dn,θ,k(X
θ,k
ik/n)

≤ nC (5.16)

for a constant C independent on n, k and θ . Moreover, we have(
E sup

ik/n≤s≤Tk−
∣∣Xθ,k

s − X
θ,k
ik/n

∣∣p)1/p ≤ Cp√
n

and

(5.17)(
E sup

Tk≤s≤(ik+1)/n

∣∣Xθ,k
s − X

θ,k
Tk

∣∣p)1/p ≤ Cp√
n

.

So, one can easily deduce that, assuming H1,(
Ex,T ,k

∣∣Rn,θ,k
∣∣p)1/p ≤ Cp/n,

and combining this with (5.16), we derive

Ex,T ,k

(∣∣Rn,θ,k
∣∣ |ċ(Xθ,k

ik/n, θ)|
Dn,θ,k(X

θ,k
ik/n)

)p

≤ Cp.

Turning to δ(Un,θ,k), we first recall that, from the continuity property of the divergence operator
(see Nualart [21], Proposition 1.5.8, page 80), we have(

Ex,T ,k
∣∣δ(Un,θ,k

)∣∣p)1/p ≤ Cp

(∥∥Un,θ,k
∥∥

p
+ ∥∥DUn,θ,k

∥∥
p

)
, (5.18)

where

∥∥Un,θ,k
∥∥p

p
= Ex,T ,k

(∫ (ik+1)/n

ik/n

∣∣Un,θ,k
s

∣∣2 ds

)p/2

, (5.19)

∥∥DUn,θ,k
∥∥p

p
= Ex,T ,k

(∫ (ik+1)/n

ik/n

∫ (ik+1)/n

ik/n

∣∣DvU
n,θ,k
s

∣∣2 ds dv

)p/2

. (5.20)

To bound Un,θ,k , we first observe that from (5.19)

∥∥Un,θ,k
∥∥p

p
≤
(

1

n

)p/2

Ex,T ,k sup
ik/n≤s≤(ik+1)/n

∣∣Un,θ,k
s

∣∣p,

so we just have to prove (
Ex,T ,k sup

ik/n≤s≤(ik+1)/n

∣∣Un,θ,k
s

∣∣p)1/p ≤ Cp

√
n. (5.21)
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The error term Un,θ,k is defined by (5.11) as the difference between P
θ,n,k
s , given in (5.8), and

an explicit ratio:

Un,θ,k
s = (1 + c′(Xθ,k

Tk−, θ)1s≤Tk
)a(s,X

θ,k
s )ċ(X

θ,k
Tk−, θ)

Y
θ,k
Tk

Y
θ,k
s

∫ (ik+1)/n

ik/n
(Y

θ,k
u )−2a2(u,X

θ,k
u )(1 + c′(Xθ,k

Tk−, θ)1u≤Tk
)2 du

−
((

1 + c′(Xθ,k
ik/n, θ

))
a

(
ik

n
,X

θ,k
ik/n

)
1[ik/n,Tk](s)

+ a

(
ik

n
,X

θ,k
ik/n + c

(
X

θ,k
ik/n, θ

))
1(Tk,(ik+1)/n](s)

)
ċ
(
X

θ,k
ik/n, θ

)
/Dn,θ,k

(
X

θ,k
ik/n

)
.

Since ċ and c′ are bounded, we see easily from (5.17) that the difference between the numerators
is of order 1/

√
n. Now, we remark that

(
E sup

ik/n≤s,u≤(ik+1)/n

∣∣Y θ,k
Tk

Y θ,k
s

(
Y θ,k

u

)−2 − 1
∣∣p)1/p ≤ Cp√

n
, (5.22)

and that, using the non-degeneracy assumption H2∫ (ik+1)/n

ik/n

(
Y θ,k

u

)−2
a2(u,Xθ,k

u

)(
1 + c′(Xθ,k

Tk−, θ
)
1u≤Tk

)2 du

(5.23)

≥ a2 min(1, a2)

n supik/n≤u≤(ik+1)/n(Y
θ,k
u )2

.

So, combining (5.4), (5.16), (5.22) and (5.23), we obtain(
E sup

s

∣∣∣∣ 1

Y
θ,k
Tk

Y
θ,k
s

∫ (ik+1)/n

ik/n
(Y

θ,k
u )−2a2(u,X

θ,k
u )(1 + c′(Xθ,k

Tk−, θ)1u≤Tk
)2 du

− 1

Dn,θ,k(X
θ,k
ik/n)

∣∣∣∣p
)1/p

≤ Cp

√
n.

This proves (5.21) and consequently ∥∥Un,θ,k
∥∥

p
≤ Cp. (5.24)

It remains to bound the Malliavin derivative of Un,θ,k . From (5.11) and (5.8), we have for v ∈
[ik/n, (ik + 1)/n]

DvU
n,θ,k
s = DvP

n,θ,k
s = Dv

(
Ẋ

θ,k
(ik+1)/nγ

θ,kDsX
θ,k
(ik+1)/n

)
.
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Under H1, the Malliavin derivatives of Ẋ
θ,k
(ik+1)/n and DsX

θ,k
(ik+1)/n are bounded in Lp . Turning

to the inverse of the Malliavin variance–covariance matrix γ θ,k , given by (5.5), we have

γ θ,k = 1∫ (ik+1)/n

ik/n
(Y

θ,k
(ik+1)/n)

2(Y
θ,k
u )−2a2(u,X

θ,k
u )(1 + c′(Xθ,k

Tk−, θ)1u≤Tk
)2 du

and from (5.4) and (5.23), it is easy to see that

(
Ex,T ,k

∣∣γ θ,k
∣∣p)1/p ≤ nCp and

(5.25)(
Ex,T ,k sup

ik/n≤v≤(ik+1)/n

∣∣Dvγ
θ,k
∣∣p)1/p ≤ nCp.

Putting this together, we obtain

(
Ex,T ,k sup

ik/n≤s,v≤(ik+1)/n

∣∣DvU
n,θ,k
s

∣∣p)1/p ≤ nCp

and then ∥∥DUn,θ,k
∥∥

p
≤ Cp. (5.26)

From (5.18), (5.24) and (5.26), we deduce

(
Ex,T ,k

∣∣δ(Un,θ,k
)∣∣p)1/p ≤ Cp,

and the Lemma 5.3 is proved. �

The bound on Qn,θ,k given in Lemma 5.3 is not sufficient, since to obtain the LAMN prop-
erty, we have to compute the conditional expectation with x = Xλ

ik/n and y = Xλ
(ik+1)/n. So we

complete the Lemma 5.3 with the following bound.

Lemma 5.4. With the assumptions and notations of Lemma 5.3, we have for θ such that |θ −
λk| ≤ C/

√
n

Ex,T ,k
∣∣Ex,T ,k

(
Qn,θ,k|Xθ,k

(ik+1)/n = Xλ
(ik+1)/n

)∣∣≤ C′,

where the constant C′ is independent of x,n and θ .

Proof. We first remark that

Ex,T ,k
∣∣Ex,T ,k

(
Qn,θ,k|Xθ,k

(ik+1)/n = Xλ
(ik+1)/n

)∣∣
(5.27)

≤ Ex,T ,k
∣∣Qn,θ,k

∣∣pλk,T

pθ,T

(
ik

n
,
ik + 1

n
,x,X

θ,k
(ik+1)/n

)
.
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From Hölder’s inequality and Lemma 5.3, we obtain for p > 1, q > 1 such that 1/p + 1/q = 1,

Ex,T ,k
∣∣Ex,T ,k

(
Qn,θ,k|Xθ,k

(ik+1)/n
= Xλ

(ik+1)/n

)∣∣
(5.28)

≤ Cp

(
Ex,T ,k

(
pλk,T

pθ,T

(
ik

n
,
ik + 1

n
,x,X

θ,k
(ik+1)/n

))q)1/q

,

and the result of Lemma 5.4 reduces to prove that there exists q0 > 1 such that

Ex,T ,k

(
pλk,T

pθ,T

(
ik

n
,
ik + 1

n
,x,X

θ,k
(ik+1)/n

))q0

≤ C, (5.29)

where C is independent of n, x and θ . We can write:

Ex,T ,k

(
pλk,T

pθ,T

(
ik

n
,
ik + 1

n
,x,X

θ,k
(ik+1)/n

))q0

(5.30)

=
∫

pλk,T

(
ik

n
,
ik + 1

n
,x, y

)q0

pθ,T

(
ik

n
,
ik + 1

n
,x, y

)1−q0

dy,

and we can express the transition pθ,T (
ik
n
,

ik+1
n

, x, y) by decomposing it in terms on the transi-

tions of a diffusion without jump on the time intervals (
ik
n
, Tk) and (Tk,

ik+1
n

)

pθ,T

(
ik

n
,
ik + 1

n
,x, y

)
=
∫

pθ,T

(
ik

n
, Tk, x, z

)
pθ,T

(
Tk,

ik + 1

n
, z + c(z, θ), y

)
dz. (5.31)

Now, assuming H1 and H2, we have the following classical estimates of the transition probabili-
ties of a diffusion process (see Azencott [5], page 478), for some constants C1, C2:

C1G

(
x, a2

(
Tk − ik

n

)
, z

)
≤ pθ,T

(
ik

n
, Tk, x, z

)
≤ C2G

(
x, a2

(
Tk − ik

n

)
, z

)
,

C1G

(
z + c(z, θ), a2

(
ik + 1

n
− Tk

)
, y

)
≤ pθ,T

(
Tk,

ik + 1

n
, z + c(z, θ), y

)

≤ C2G

(
z + c(z, θ), a2

(
ik + 1

n
− Tk

)
, y

)
,

where G(m,σ 2, y) denotes the density of the Gaussian law with mean m and variance σ 2. To
simplify the notation, we note σ−

k,n = Tk − ik
n

and σ+
k,n = ik+1

n
− Tk . Plugging this in (5.31), we

obtain

pθ,T

(
ik

n
,
ik + 1

n
,x, y

)
≥ C1

∫
G
(
x, a2σ−

k,n, z
)
G
(
z + c(z, θ), a2σ+

k,n, y
)

dz := I1. (5.32)

We get analogously,

pλk,T

(
ik

n
,
ik + 1

n
,x, y

)
≤ C2

∫
G
(
x, a2σ−

k,n, z
)
G
(
z + c(z,λk), a

2σ+
k,n, y

)
dz := I2. (5.33)
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Observe that, in order to bound (5.30), we have to compute an upper bound for pλk,T and a lower
bound for pθ,T , since 1 − q0 < 0.

Our aim now is to give more tractable bounds for the transition density pθ,T . For this, we
make the following change of variables in the integrals I1 and I2 defined in (5.33) and (5.32).
We put u = ϕ(z) = z + c(z, θ) − x − c(x, θ). We observe that ϕ(x) = 0. Moreover, from H1 and
H2, ϕ is invertible and its derivative satisfies, for some constant c0:

0 < a ≤ ∣∣ϕ′(z)
∣∣≤ c0

and consequently

1

c0
|z| ≤ ∣∣ϕ−1(z) − ϕ−1(0)

∣∣≤ 1

a
|z|.

So we obtain, for some constant C1

I1 ≥ C1

∫
G
(
0, a2σ−

k,n, ϕ
−1(u) − ϕ−1(0)

)
G
(
u + x + c(x, θ), a2σ+

k,n, y
)

du

≥ C1

∫
G
(
0, a4σ−

k,n, u
)
G
(
x + c(x, θ), a2σ+

k,n, y − u
)

du (5.34)

= C1G
(
x + c(x, θ), a4σ−

k,n + a2σ+
k,n, y

)
.

Proceeding similarly,

I2 ≤ C2G
(
x + c(x,λk), c

2
0a

2σ−
k,n + a2σ+

k,n, y
)
. (5.35)

Turning back to (5.30), it follows that

Ex,T ,k

(
pλk,T

pθ,T

(
ik

n
,
ik + 1

n
,x,X

θ,k
(ik+1)/n

))q0

(5.36)

≤ C

∫
Gq0
(
x + c(x,λk), σ

1
k,n, y

)
G1−q0

(
x + c(x, θ), σ 2

k,n, y
)

dy,

where σ 1
k,n = c2

0a
2σ−

k,n + a2σ+
k,n and σ 2

k,n = a4σ−
k,n + a2σ+

k,n. Since σ−
k,n + σ+

k,n = 1/n, we check

that σ 1
k,n and σ 2

k,n are both lower and upper bound by some constants over n. Moreover, we have

σ 1
k,n − σ 2

k,n = (c2
0a

2 − a4)σ−
k,n + (a2 − a2)σ+

k,n

with c2
0 > a2 and a2 > a2, so 0 < σ 2

k,n/σ
1
k,n < 1.

Turning back to the right-hand side term of (5.36), we have to bound

∫
e−q0(y−x−c(x,λk))

2/(2σ 1
k,n)

(2πσ 1
k,n)

q0/2

e−(1−q0)(y−x−c(x,θ))2/(2σ 2
k,n)

(2πσ 2
k,n)

(1−q0)/2
dy



Asymptotic lower bounds in estimating jumps 1079

with 1 < q0. First we observe that this integral is finite if q0/σ
1
k,n + (1 − q0)/σ

2
k,n > 0, that is

1 < q0 < σ 1
k,n/(σ

1
k,n − σ 2

k,n). This choice of q0 is possible since 0 < σ 2
k,n/σ

1
k,n < 1. After some

calculus, we get

∫
e−q0(y−x−c(x,λk))

2/(2σ 1
k,n)

(2πσ 1
k,n)

q0/2

e−(1−q0)(y−x−c(x,θ))2/(2σ 2
k,n)

(2πσ 2
k,n)

(1−q0)/2
dy

=
√

2π/(q0/σ
1
k,n + (1 − q0)/σ

2
k,n)

(2πσ 1
k,n)

q0/2(2πσ 2
k,n)

(1−q0)/2
e+cn(c(x,θ)−c(x,λk))

2/2

with

cn =
(

q0(q0 − 1)

σ 1
k,nσ

2
k,n

)/(
q0

σ 1
k,n

+ (1 − q0)

σ 2
k,n

)
> 0.

Recalling that σ 1
k,n and σ 2

k,n are of order 1/n, we observe that cn is bounded by some constant
times n and assuming that |θ − λk| ≤ C/

√
n, we finally obtain

Ex,T ,k

(
pλk,T

pθ,T

(
ik

n
,
ik + 1

n
,x,X

θ,k
(ik+1)/n

))q0

≤ C′

for a constant C′ independent on x, n and θ and the Lemma 5.4 is proved. �

Lemma 5.5. Assuming H1 and H2, we have:

∫ λk+hk/
√

n

λk

ṗθ,T

pθ,T

(
ik

n
,
ik + 1

n
,Xλ

ik/n,X
λ
(ik+1)/n

)
dθ

= hk

√
n(Xλ

(ik+1)/n
− Xλ

ik/n − c(Xλ
ik/n, λk))ċ(X

λ
ik/n, λk)

nDn,λk,k(Xλ
ik/n)

− h2
k

2

ċ(Xλ
ik/n, λk)

2

nDn,λk,k(Xλ
ik/n)

+ opn,λ(1).

Proof. We deduce easily from Lemmas 5.2 and 5.3 that

∫ λk+hk/
√

n

λk

ṗθ,T

pθ,T

(
ik

n
,
ik + 1

n
,x, y

)
dθ

=
∫ λk+hk/

√
n

λk

(y − x − c(x, θ))ċ(x, θ)

Dn,θ,k(x)
dθ

+
∫ λk+hk/

√
n

λk

Ex,T ,k
(
Qn,θ,k|Xθ,k

(ik+1)/n
= y
)

dθ

with (x, y) = (Xλ
(ik+1)/n,X

λ
ik/n). From Lemma 5.4, the second term on the right-hand side of the

preceding equation tends to zero in probability. Now, from a Taylor expansion of c, we have the
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approximation for θ ∈ [λk,λk + hk/
√

n]
(y − x − c(x, θ))ċ(x, θ)

Dn,θ,k(x)
= (y − x − c(x,λk) − (θ − λk)ċ(x,λk))ċ(x, λk)

Dn,λk,k(x)
(5.37)

+ εn,θ,λk (x, y).

From H1, and using (5.16), we have ∀θ ∈ [λk,λk + hk/
√

n]∣∣∣∣ ċ(x, θ)

Dn,θ,k(x)
− ċ(x, λk)

Dn,λk,k(x)

∣∣∣∣≤ C
√

n, (5.38)

where C does not depend on x. So we deduce that ∀θ ∈ [λk,λk + hk/
√

n]∣∣εn,θ,λk (x, y)
∣∣≤ C

(
1 + √

n
∣∣y − x − c(x,λk)

∣∣)
for a constant C independent on x and y. Consequently, it follows that

∫ λk+hk/
√

n

λk

εn,θ,λk
(
Xλ

ik/n,X
λ
(ik+1)/n

)
dθ

goes to zero in probability as n goes to infinity, and the thesis follows. �

Lemma 5.6. Let us assume H0–H2. Let In(λ) be the diagonal matrix of size K × K , and Nn(λ)

be the random vector of size K , defined by the entries,

In(λ)k = ċ(Xλ
ik/n, λk)

2

nDn,λk,k(Xλ
ik/n)

, Nn(λ)k =
√

n(Xλ
(ik+1)/n − Xλ

ik/n − c(Xλ
ik/n, λk))√

nDn,λk,k(Xλ
ik/n)

. (5.39)

Then, we have, (
In(λ),Nn(λ)

) n→∞−−−−→
law

(
I (λ),N

)
with I (λ) the diagonal matrix,

I (λ)k = ċ(Xλ
Tk−, λk)

2

a2(Tk,X
λ
Tk−)[1 + c′(Xλ

Tk−, λk)]2Uk + a2(Tk,X
λ
Tk− + c(Xλ

Tk−, λk))(1 − Uk)
,

and U = (U1, . . . ,UK) is a vector of independent uniform laws on [0,1] such that U , T and
(Wt )t∈[0,1] are independent, and conditionally on (U,T , (Wt )t∈[0,1]), N is a standard Gaussian
vector in RK .

Proof. We just have to prove the convergence in law of the couple(
nDn,λk,k

(
Xλ

ik/n

)
,
√

n
(
Xλ

(ik+1)/n − Xλ
ik/n − c

(
Xλ

ik/n, λk

)))
.
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We have from (5.10)

Dn,λk,k
(
Xλ

ik/n

) = a2
(

ik

n
,Xλ

ik/n

)(
1 + c′(Xλ

ik/n, λk

))2(
Tk − ik

n

)

+ a2
(

ik

n
, x + c

(
Xλ

ik/n, λk

))( ik + 1

n
− Tk

)

and from (5.13)

Xλ
(ik+1)/n = Xλ

ik/n + c
(
Xλ

ik/n, λk

)+ (1 + c′(Xλ
ik/n, λk

))
a

(
ik

n
,Xλ

ik/n

)
(WTk

− Wik/n)

+ a

(
ik

n
,Xλ

ik/n + c
(
Xλ

ik/n, λk

))
(W(ik+1)/n − WTk

) + Rn,λ,k,

where Rn,λ,k is bounded in Lp by C/n (see the proof of Lemma 5.3). So as a straightforward con-
sequence of Lemma 5.1, we obtain that (nDn,λk,k(Xλ

ik/n),
√

n(Xλ
(ik+1)/n −Xλ

ik/n −c(Xλ
ik/n, λk)))

converges in law to (
Dλk,k

(
Xλ

Tk−
)
,(

1 + c′(Xλ
Tk−, λk

))
a
(
Tk,X

λ
Tk−
)√

UkN
−
k

+ a
(
Tk,X

λ
Tk− + c

(
Xλ

Tk−, λk

))√
1 − UkN

+
k

)
with

Dλk,k
(
Xλ

Tk−
)= a2(Tk,X

λ
Tk−
)[

1 + c′(Xλ
Tk−, λk

)]2
Uk + a2(Tk,X

λ
Tk− + c

(
Xλ

Tk−, λk

))
(1 − Uk).

This gives the result of Lemma 5.6. �

As noticed earlier, the proof of Theorem 3.1 follows from the decomposition (5.2) with P(T ∈
Tn)

n→∞−−−−→ 1, and Lemmas 5.5 and 5.6.

5.2. Proof of the convolution theorem

In this section, we prove the Theorem 2.1 and some related results.
We recall the framework described in Section 2.
(�, F ,P) is the canonical product space, on which are defined the independent variables

(Wt)t∈[0,1], T = (T1, . . . , TK), � = (�1, . . . ,�K). The probability P is the simple product of
the corresponding probabilities. From this simple disintegration of the measure P as a product,
we can introduce P

λ the probability P conditional on � = λ ∈ R
K . The process X is solution of

(2.1), and we may assume that for any λ ∈ R
K the law of X under P

λ is equal to the law of Xλ

solution of (3.1). We recall that �̃ is the extension of � which contains the uniform variables
U1, . . . ,UK , and the Gaussian variables, N−

1 , . . . ,N−
K , N+

1 , . . . ,N+
K .
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With these notations, the LAMN expansion of Theorem 3.1 writes,

Zn(λ,λ + h/
√

n,T ,X1/n, . . . ,X1)
(5.40)

=
K∑

k=1

hkIn(λ)
1/2
k Nn(λ)k − 1

2

K∑
k=1

h2
kIn(λ)k + oPλ(1)

with

In(λ)k = ċ(Xik/n, λk)
2

nDn,λk,k(Xik/n)
,

(5.41)

Nn(λ)k =
√

n(X(ik+1)/n − Xik/n − c(Xik/n, λk))√
nDn,λk,k(Xik/n)

,

Dn,λk,k(Xik/n) = a2
(

ik

n
,Xik/n

)(
1 + c′(Xik/n, λk)

)2(
Tk − ik

n

)

+ a2
(

ik

n
,Xik/n + c(Xik/n, λk)

)(
ik + 1

n
− Tk

)
.

The Theorem 3.1 states the convergence in law of (In(λ),Nn(λ)) to (I (λ),N) under P
λ. Actu-

ally, from the proof of Lemma 5.6, we get the following convergence result under P.

Proposition 5.1. Assuming H0–H2, we have the convergence(
(nTk − ik)k,

(√
n(WTk

− Wik/n)
)
k
,
(√

n(W(ik+1)/n − WTk
)
)
k
, In(�),Nn(�)

)
(5.42)

n→∞−−−−→
law

(
(Uk)k,

(√
UkN

−
k

)
k
,
(√

1 − UkN
+
k

)
k
, I (�),N(�)

)
,

where N(�) is distributed as a standard Gaussian variable in R
K . Moreover this convergence

is stable with respect to F , and the last two limit variables can be represented on the extended
space �̃ as,

I (�)k = ċ(XTk−,�k)
2

a2(Tk,XTk−)(1 + c′(XTk−,�k))2Uk + a2(Tk,XTk
)(1 − Uk)

, (5.43)

N(�)k = a(Tk,XTk−)(1 + c′(XTk−,�k))
√

UkN
−
k + a(Tk,XTk

)
√

1 − UkN
+
k

[a2(Tk,XTk−)(1 + c′(XTk−,�k))2Uk + a2(Tk,XTk
)(1 − Uk)]1/2

. (5.44)

Remark that the matrix I (�) is not equal to the matrix I opt appearing in the statement of the
convolution Theorem 2.1. Comparing the expression (2.4) of I opt with the expression (3.4) of
I (λ), we see that in the parametric case, the information is proportional to (ċ(XTk−, λk))

2. This
is quite natural. If instead of estimating the “mark” λk we estimate the jump, equal to c(XTk−, λk)

in the parametric model, we can expect that the effect of (ċ(XTk−, λk))
2 vanishes (by a simple
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first order expansion of the error of estimation). This gives some insight on why ċ(XTk−,�k)
2

disappears in the expression of I opt.
On the other hand, it is not immediate why the expression of the parametric information in-

volves the quantity c′(XTk−, λk), which is not present in the expression of I opt. We will see that
it is due to the fact that the value of the jump c(XTk−, λk) depends on the unobserved quantity
XTk− and thus is not a simple functional of the parameter λk .

If c does not depend on X, the situation is simpler and the proof of Theorem 2.1 is much easier.
For this reason, in the next section we prove the convolution theorem in this easier setting. The
general proof is given in Section 5.2.3 and some intermediate results are stated in Section 5.2.2.

5.2.1. Proof of Theorem 2.1 when c(x, θ) = c(θ)

We start with a simple lemma.

Lemma 5.7. Assume H0–H2 then for all λ,h ∈ R
K ,

In

(
λ + h√

n

)
− In(λ)

n→∞−−−−→ 0 in P
λ probability,

Nn

(
λ + h√

n

)
− Nn(λ) + In(λ)1/2h

n→∞−−−−→ 0 in P
λ probability.

Proof. This follows easily from the expressions (5.41). �

Assume that J̃ n is a sequence of estimators (based on (Xi/n)i=0,...,n) such that

√
n
(
J̃ n − J

) n→∞−−−−→ Z̃

in law under P.
Then, the Theorem 2.1 is an immediate consequence of the following result.

Theorem 5.1. Assume H0–H3 and that c(x, θ) = c(θ). Denote Ċ(�) the diagonal matrix of size
K × K such that Ċ(�)k = ċ(�k).

Then, we have the decomposition for all n,

√
n
(
J̃ n − J

)= Ċ(�)In(�)−1/2Nn(�) + Rn (5.45)

for (Rn)n a sequence of random variables with values in R
K .

Along a subsequence (n) we have the convergence in law,

(
Ċ(�)In(�)−1/2Nn(�),Rn

) (n)→∞−−−−→ (Ċ(�)I (�)−1/2N(�),R
)= ((I opt)−1/2

N,R
)
, (5.46)

where N = N(�) is Gaussian, and R is independent of N conditionally on I opt.
In particular, we have Z̃ = lim(n)

√
n(J̃ n − J ) = (I opt)−1/2N + R.
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Proof. We set Rn = √
n(J̃ n − J ) − Ċ(�)In(�)−1/2Nn(�) and define,

Rn(λ) = √
n
(
J̃ n − c(λk)k

)− Ċ(λ)In(λ)−1/2Nn(λ), (5.47)

so that Rn = Rn(�). Since J̃ n is a measurable function of the (Xi/n)i , J = (c(�k))k and Ċ(�)

are measurable functions of the marks, and from the expression (5.41), we deduce that Rn =
fn((Xi/n)i , T ,�) for some Borelian function fn.

Using Lemma 5.7 and the expression (5.47), we easily get:

Rn

(
λ + h√

n

)
− Rn(λ)

n→∞−−−−→0 in P
λ probability for any λ,h ∈ R

K.

Remark now that by Proposition 5.1 and the convergence of
√

n(J̃ n − J ), we get that (Rn)n
is a tight sequence of variables.

Hence, we can apply Proposition 5.2 below. We deduce that

(
In(�),Nn(�),Rn

) n→∞−−−−→
law

(
I (�),N(�),R

)
,

where the limit can be represented on an extension �̃ × RK of the space �̃, and the convergence
is stable with respect to (T ,�, (Wt)t∈[0,1]). On this extension, the variable R is independent of
N(�) conditionally on (T ,�, (Wt)t∈[0,1], (Uk)k). This implies (5.46), and thus the theorem. �

Proposition 5.2. Assume H0–H3. Let Rn = fn((Xi/n)i , T ,�)) ∈ R
K where (fn)n is a sequence

of Borelian functions. Set Rn(λ) = fn((Xi/n)i , T ,λ), and assume:

• Rn(λ + h√
n
) − Rn(λ)

n→∞−−−−→ 0, in P
λ probability for any λ,h ∈ R

K ,

• the sequence (Rn)n is tight.

Then, one has the convergence in law, along a subsequence,(
(nTk − ik)k,

(√
n(WTk

− Wik/n)
)
k
,
(√

n(W(ik+1)/n − WTk
)
)
k
, In(�),Nn(�),Rn

)
(5.48)

(n)→∞−−−−→
law

(
(Uk)k,

(√
UkN

−
k

)
k
,
(√

1 − UkN
+
k

)
k
, I (�),N(�),R

)
.

The limit can be represented on a extension �̃ × R
K of the space �̃. On this space, the variable

R is independent of N(�) conditionally on (T ,�, (Wt)t∈[0,1], (Uk)k). Moreover the convergence
(5.48) is stable with respect to (T ,�, (Wt)t∈[0,1]).

Proof. Consider the joint law of the random variables,(
T ,�, (Wt)t∈[0,1], (nTk − ik)k=1,...,K,

(
(WTk

− Wik/n)√
Tk − ik/n

)
k=1,...,K

,

(5.49)(
(W(ik+1)/n − WTk

)√
(ik + 1)/n − Tk

)
k=1,...,K

, In(�),Nn(�),Rn

)
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defined on the corresponding canonical product space, endowed with the usual product topology.
From the assumption, all the components of this vector are tight, and thus the joint law is tight.
Along some subsequence, it converges in law to some limit, and thus (5.48) holds true. The
stability of the convergence with respect to T ,�, (Wt)t∈[0,1] is immediate. Remark that from
Proposition 5.1, the law of the limit(

T ,�, (Wt)t∈[0,1], (Uk)k=1,...,K,
(
N−

k

)
k=1,...,K

,
(
N+

k

)
k=1,...,K

, I (�),N(�),R
)

is known, apart for the last component R. It can be clearly represented on an extension �̃ × R
K

of �̃.
To determine some information on the law of R, we use techniques inspired from the proof of

convolution theorems in [17].
Consider the following set of random variables defined on the space �,⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

G = g(Xs1, . . . ,Xsr ) with r ≥ 1 and (s1, . . . , sr ) ∈ [0,1]r ,
Gn = g(X[ns1]/n, . . . ,X[nsr ]/n),

κ = k(T1, . . . , TK),

Ln = l(nT1 − i1, . . . , nTK − iK),

M = m(�1, . . . ,�K),

(5.50)

where g, k, l, m are bounded continuous functions.
For (μ1,μ2) ∈ R

2K we set

ϕn(μ1,μ2) = E
[
eiμ1·Rneiμ2·Nn(�)GnκLnM

]
.

Clearly Gn → G in probability, and from the convergence, along a subsequence, of (5.49), it is
simple to show

ϕn(μ1,μ2)
(n)→∞−−−−→E

[
eiμ1·Reiμ2·N(�)Gκl(U1, . . . ,UK)M

]
. (5.51)

By conditioning on the variable �, whose law admits a density, we have

ϕn(μ1,μ2) =
∫

RK

E
λ
[
eiμ1·Rn(λ)eiμ2·Nn(λ)GnκLnm(λ)

]
f�(λ)dλ.

For h ∈ R
K , we make a simple change of variable in the integral,

ϕn(μ1,μ2)

=
∫

RK

E
λ+h/

√
n
[
eiμ1·Rn(λ+h/

√
n)eiμ2·Nn(λ+h/

√
n)GnκLn

]
m(λ + h/

√
n)f�(λ + h/

√
n)dλ.

Now the translation is a continuous operator in L1(R) and by assumption λ 	→ m(λ)f�(λ) is
integrable. Thus, we easily deduce,

ϕn(μ1,μ2) =
∫

RK

E
λ+h/

√
n
[
eiμ1·Rn(λ+h/

√
n)eiμ2·Nn(λ+h/

√
n)GnκLn

]
m(λ)f�(λ)dλ + o(1).
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From the assumptions, we know the expansion Rn(λ + h/
√

n) = Rn(λ) + oPλ(1), and from
Lemma 5.7, we have the expansion Nn(λ + h√

n
) = Nn(λ) − In(λ)1/2h + oPλ(1). In these ex-

pansions, all the random variables are only depending on ((Xi/n)i , T ). But, from the LAMN
property, we know that the measures P

λ and P
λ+h/

√
n, restricted to ((Xi/n)i , T ), are contiguous.

Hence, in these expansions, one can replace oPλ(1) with o
Pλ+h/

√
n(1). Then, using dominated

convergence theorem, one can get

ϕn(μ1,μ2) =
∫

RK

E
λ+h/

√
n
[
eiμ1·Rn(λ)eiμ2·(Nn(λ)−In(λ)1/2h)GnκLn

]
m(λ)f�(λ)dλ + o(1).

Remark that the random variables appearing in the inner expectation only depend on the ob-

servations ((Xi/n)i , T ), and thus the likelihood ratio pn,λ+h/
√

n

pn,λ (T , (Xi/n)i) = exp(Zn(λ,λ +
h/

√
n,T , (Xi/n)i) might be used to change the measure,

ϕn(μ1,μ2) =
∫

RK

E
λ
[
eiμ1·Rn(λ)eiμ2·(Nn(λ)−In(λ)1/2h)eZn(λ,λ+h/

√
n,T ,(Xi/n)i )GnκLn

]
(5.52)

× m(λ)f�(λ)dλ + o(1).

We deduce,

ϕn(μ1,μ2) = E
[
eiμ1·Rneiμ2·(Nn(�)−In(�)1/2h)eZn(�,�+h/

√
n,T ,(Xi/n)i )GnκLnM

]+ o(1).

But from the LAMN expansion (5.40), one can easily get

Zn

(
�,� + h/

√
n,T , (Xi/n)i

)= h∗In(�)1/2Nn(�) − 1
2h∗In(�)h + oP(1),

where h∗ is the transpose of the vector h. Hence, using the convergence in law of (5.49), and
uniform integrability of the sequence Zn(�,� + h/

√
n,T , (Xi/n)i), it can be seen that

ϕn(μ1,μ2)
(5.53)

(n)→∞−−−−→E
[
eiμ1·Reiμ2·(N(�)−I (�)1/2h)eh∗I (�)1/2N(�)−h∗I (�)h/2Gκl(U1, . . . ,UK)M

]
.

Comparing the expressions (5.51) and (5.53), it comes ∀μ1,μ2, h,

E
[
eiμ1·Reiμ2·N(�)Gκl(U1, . . . ,UK)M

]
= E
[
eiμ1·Reiμ2·(N(�)−I (�)1/2h)eh∗I (�)1/2N(�)−h∗I (�)h/2Gκl(U1, . . . ,UK)M

]
.

We deduce that ∀μ1,μ2, h, the two following conditional expectations are almost surely equal,

E
[
eiμ1·Reiμ2·N(�)|X,T , (Uk)k,�

]
= E
[
eiμ1·Reiμ2·(N(�)−I (�)1/2h)eh∗I (�)1/2N(�)−h∗I (�)h/2|X,T , (Uk)k,�

]
.



Asymptotic lower bounds in estimating jumps 1087

But from continuity and analyticity arguments, it can be seen that this equality holds, almost
surely, for any μ1 ∈ R

K,μ2 ∈ R
K,h ∈ C

K .
Hence, we can set h = −iI (�)−1/2μ2 in the above relation, and find

E
[
eiμ1·Reiμ2·N(�)|X,T , (Uk)k,�

]= E
[
eiμ1·R|X,T , (Uk)k,�

]
e−μ∗

2μ2/2.

This precisely states that, conditionally on (X,T , (Uk)k,�), the random variables R and N(�)

are independent. The proposition is proved after remarking that the Brownian motion (Wt )t can
be recovered as a measurable functional of X,T ,�. �

5.2.2. Intermediate results

The assumption c(x, θ) = c(θ) is crucial for the proof of Theorem 5.1. Indeed if c depends on
the jump-diffusion, then Jk = c(XTk−, λk), and instead of (5.47), we have

Rn(λ) = √
n
(
J̃ n − c(XTk−, λk)k

)− Ċ(X,λ)In(λ)−1/2Nn(λ),

where Ċ(X,λ) = diag(ċ(XTk−, λk)k). This quantity depends on XTk− which is unobserved.
However, the assumption that Rn(λ) is only function of ((Xi/n)i , T ) is essential in the Proposi-
tion 5.2 (at the step just before equation (5.52)).

But if instead of Rn(λ) we consider

Robs
n (λ) = √

n
(
J̃ n − c(Xik/n, λk)k

)− Ċobs
n (λ)In(λ)−1/2Nn(λ),

where Ċobs
n (λ) = diag(ċ(Xik/n, λk)k), then, the Proposition 5.2 can be applied, and we can prove

the following modification of Theorem 5.1.

Theorem 5.2. Let J̃ n be any sequence of estimators such that

√
n
(
J̃ n − (c(Xik/n,�k)

)
k

) (n)→∞−−−−→
law

Z

for some variable Z. Then, the law of Z is necessarily a convolution,

Z
law= Ċ(X,�)I (�)−1/2N(�) + R,

where N(�) is a standard Gaussian vector independent of Ċ(X,�)−2I (�), and R is some
random variable independent of N(�) conditionally on Ċ(X,�)−2I (�). A simple expression
for the entries of the diagonal matrix Ċ(X,�)−2I (�) is

Ik = [Uka(Tk,XTk−)2(1 + c′(Tk,XTk−)
)2

(5.54)
+ (1 − Uk)a(Tk,XTk

)2]−1
for k = 1, . . . ,K.

Actually, to prove the convolution theorem when the coefficient c(x, θ) depends on x, we
need a strengthened version of the Proposition 5.2. Indeed, we will show that the variable R, in
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the statement of Proposition 5.2, is independent of N conditionally on any variable that can be
obtained as a limit of the observations. This yields some additional knowledge on the dependence
between the variable R and the other variables.

Proposition 5.3. Let us make the same assumptions as in Proposition 5.2. Assume furthermore
that there exist a continuous function � with values in R

K and (An)n a sequence of random
variables depending on the observations (T , (Xi/n)i), such that

An − �
(
(nTk − ik)k,

(√
n(WTk

− Wik/n)
)
k
,
(√

n(W(ik+1)/n − WTk
)
)
k

)
n→∞−−−−→0 in P probability.

Then, in the description of the limit (5.48), the variable R is independent of N(�) conditionally
on (T ,�, (Wt)t∈[0,1], (Uk)k) and �((Uk)k, (

√
UkN

−
k )k, ((

√
1 − UkN

+
k )k).

Proof. The proof is a slight modification of the proof of Proposition 5.2. We simply add to the
list of random variables (5.50), the new one Sn = s(An), with s being any continuous bounded
function. Accordingly, we set ϕn(μ1,μ2) = E[eiμ1·Rneiμ2·Nn(�)SnGnKLnM]. Then, the proof
follows the same lines as the proof of Proposition 5.2. �

5.2.3. Proof of Theorem 2.1. The general case

We prove the Theorem 2.1 in the general situation where c(x, θ) depends on x.
As seen in the previous section, a difficulty comes from the fact that the target of the estimator

J = (�XTk
)k = (c(XTk−,�k))k depends on the unobserved value XTk−. We introduce Jn =

(c(Xik/n,�k))k , and with simple computations, one can write the following expansion, for any
sequence of estimators J̃ n,

√
n
(
J̃ n

k − Jk

)= √
n
(
J̃ n

k − J n
k

)− c′(Xik/n,�k)
√

n(XTk− − Xik/n) + oP(1).

If
√

n(J̃ n
k − Jn

k) is tight we can use Theorem 5.2 and deduce, lim(n)

√
n(J̃ n

k − Jk) = Z̃k =
Ċ(X,�)I (�)

−1/2
k N(�)k −c′(XTk−,�k)a(Tk,XTk−)

√
UkN

−
k +Rk . After a few algebra, involv-

ing the expressions (5.43)–(5.44), it could be seen that this reduces to the algebric relation (2.3),
with N being some standard normal variable. However by this method, we cannot deduce the
conditional independence of R with N . Indeed, only the conditional independence of R with
N(�) is known, and we have no information about the joint law of R and N−.

To solve this problem, we consider two new statistical experiments where we add the observa-
tion of the jump-diffusion just before (or just after) the jump. We first state the LAMN properties
for these new experiments. We omit the proof, which is similar to the proof of Theorem 3.1.

Proposition 5.4 (LAMN property adding the observations before the jumps). Assume H0,
H1 and H2. Denote (pn,λ,aug−

) the density on R
n+2K of the augmented vector of observations

Oaug− = ((Xi/n)i , (Tk)k, (XTk−)k) under P
λ. For λ ∈ R

K , h ∈ R
K , define the log-likelihood ratio

Z
aug−
n (λ,λ + h/

√
n, Oaug−

) = ln pn,λ+h/
√

n,aug−
(Oaug−

)

pn,λ,aug−
(Oaug−

)
.
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We have the expansion:

Zn

(
λ,λ + h/

√
n, Oaug−) = K∑

k=1

hkI
aug−
n (λ)

1/2
k N

aug−
n (λ)k

(5.55)

− 1

2

K∑
k=1

h2
kI

aug−
n (λ)k + oPλ(1),

where

I
aug−
n (λ)k = ċ(XTk−, λk)

2

nDn,λk,k,aug−
(XTk−)

,

N
aug−
n (λ)k =

√
n(X(ik+1)/n − XTk− − c(XTk−, λk))√

nDn,λk,k,aug−
(XTk−)

, (5.56)

Dn,λk,k,aug−
(XTk−) = a2(Tk,XTk− + c(XTk−, λk)

)( ik + 1

n
− Tk

)
.

Moreover, (
I

aug−
n (λ),N

aug−
n (λ)

) n→∞−−−−→
law

(
I aug−

(λ),Naug−)
,

where I aug−
(λ) is the diagonal information matrix whose entries are

I aug−
(λ)k = ċ(XTk−, λk)

2

a2(Tk,XTk
)(1 − Uk)

and Naug−
is a standard Gaussian vector in R

K .

Proposition 5.5 (LAMN property adding the observations after the jumps). Assume H0,
H1 and H2. Denote (pn,λ,aug+

) the density on R
n+2K of the augmented vector of observations

Oaug+ = ((Xi/n)i , (Tk)k, (XTk
)k) under P

λ. For λ ∈ R
K , h ∈ R

K , define the log-likelihood ratio

Z
aug+
n (λ,λ + h/

√
n, Oaug+

) = ln pn,λ+h/
√

n,aug+
(Oaug+

)

pn,λ,aug+
(Oaug+

)
.

We have the expansion:

Zn

(
λ,λ + h/

√
n, Oaug+) = K∑

k=1

hkI
aug+
n (λ)

1/2
k N

aug+
n (λ)k

(5.57)

− 1

2

K∑
k=1

h2
kI

aug+
n (λ)k + oPλ(1),
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where

I
aug+
n (λ)k = ċ(Xik/n, λk)

2

nDn,λk,k,aug+
(Xik/n)

,

N
aug+
n (λ)k =

√
n(XTk

− Xik/n − c(Xik/n, λk))√
nDn,λk,k,aug+

(Xik/n)

, (5.58)

Dn,λk,k,aug+
(Xik/n) = a2

(
ik

n
,Xik/n

)(
1 + c′(Xik/n, λk)

)2(
Tk − ik

n

)
.

Moreover, (
I

aug+
n (λ),N

aug+
n (λ)

) n→∞−−−−→
law

(
I aug+

(λ),Naug+)
,

where I aug+
(λ) is the diagonal information matrix whose entries are

I aug+
(λ)k = ċ(XTk−, λk)

2

a2(Tk,XTk−)(1 + c′(XTk−, λk))2Uk

and Naug+
is a standard Gaussian vector in R

K .

We now deduce convolution results from these LAMN properties.

Proposition 5.6. Let J̃ n be a sequence of estimator based on the observations of (Xi/n)i and

denote Jn = (c(Xik/n,�))k . Suppose that the sequence
√

n(J̃ n − Jn) is tight and define R
aug−
n

and R
aug+
n by the following expansions

√
n
(
J̃ n − Jn

) = Ċobs
n (�)I

aug−
n (�)−1/2N

aug−
n (�) + R

aug−
n , (5.59)

√
n
(
J̃ n − Jn

) = Ċobs
n (�)I

aug+
n (�)−1/2N

aug+
n (�) + R

aug+
n , (5.60)

where I
aug−
n (�) (resp., I

aug+
n (�)) is the diagonal matrix with entries (I

aug−
n (�)k) (resp.,

(I
aug+
n (�)k)) and Ċobs

n (�) is diagonal with entries ċ(Xik/n,�k).
Then, we have the convergence in law[√

n
(
X(ik+1)/n − XTk− − c(XTk−,�k)

)
k
,

√
n
(
XTk

− Xik/n − c(Xik/n,�k)
)
k
,R

aug−
n ,R

aug+
n

]
(5.61)

(n)→∞−−−−→ [(a(Tk,XTk
)
√

1 − UkN
+
k

)
k
,

(
a(Tk,XTk−)

(
1 + c′(XTk−,�k)

)√
UkN

−
k

)
k
,Raug−

,Raug+]
.
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This convergence holds jointly with (5.42) and the limit variables can be represented on an
extension of �̃. On this space, one has, ∀k ∈ {1, . . . ,K},

R
aug+
k = R

aug−
k − a(Tk,XTk−)

(
1 + c′(XTk−,�k)

)√
UkN

−
k

(5.62)
+ a(Tk,XTk

)
√

1 − UkN
+
k .

Moreover, conditionally on (T ,�, (Wt)t∈[0,1], (Uk)k, (N
−
k )k), the variable Raug−

is independent
of (N+

k )k . In a symmetric way, conditionally on (T ,�, (Wt)t∈[0,1], (Uk)k, (N
+
k )k), the variable

Raug+
is independent of (N−

k )k .

Proof. From the definition of the variables R
aug−
n and R

aug+
n given by equations (5.59) and

(5.60), we deduce immediately the relations

√
n
(
J̃ n − Jn

) = [√n
(
X(ik+1)/n − XTk− − c(XTk−,�k)

)]
k
+ R

aug−
n + oP(1), (5.63)

√
n
(
J̃ n − Jn

) = [√n
(
XTk

− Xik/n − c(Xik/n,�k)
)]

k
+ R

aug+
n . (5.64)

By a tightness argument the joint convergence, along a subsequence, of (5.42) and (5.61) is
clear. The relation (5.62) is a consequence of the equality between the quantities (5.63) and
(5.64).

Now, we can deduce, from the LAMN property (Proposition 5.4), a result analogous to

Proposition 5.2. Hence Raug−
is independent of the limit of N

aug−
n (�), conditionally on

(T ,�, (Wt)t∈[0,1], (Uk)k). Moreover, remark that in the experiment Oaug−
, the sequence of vari-

ables

An =
√

n(XTk− − Xik/n)

a(Tk,Xik/n)

is observed. But An − √
n(WTk− − Wik/n) converges to zero in P-probability. Showing a result

analogous to Proposition 5.3, we deduce that Raug−
is independent of the limit of N

aug−
n (�),

conditionally on (T ,�, (Wt)t∈[0,1], (Uk)k, (
√

UkN
−
k )k). This shows immediately that Raug−

is
independent of (N+

k ) conditionally on (T ,�, (Wt)t∈[0,1], (Uk)k, (N
−
k )k), since the sigma-fields

generated by the two vectors are the same.
The conditional independence between Raug+

and (N−
k )k is obtained in a symmetric way: one

uses the LAMN property of Proposition 5.5, and the fact that the sequence

A′
n =

√
n(X(ik+1)/n − XTk

)

a(Tk,XTk
)

is observed in the experiment based on Oaug+
. �

Finally, we are able to prove Theorem 2.1.
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Proof of Theorem 2.1. First, we write
√

n
(
J̃ n

k − Jk

) = √
n
(
J̃ n

k − Jn
k

)− √
n
(
Jk − J n

k

)
(5.65)

= √
n
(
J̃ n

k − Jn
k

)− c′(Xik/n,�k)
√

n(XTk− − Xik/n) + oP(1).

But the sequence
√

n(J̃ n − Jn) is tight, and we can apply Proposition 5.6. Using (5.63), (5.61),
and (5.65) we deduce

√
n
(
J̃ n

k − Jk

) n→∞−−−−→
law

− a(Tk,XTk−)c′(XTk−,�k)
√

UkN
−
k + a(Tk,XTk

)
√

1 − UkN
+
k + R

aug−
k .

We write the last equation as

√
n
(
J̃ n

k − Jk

) n→∞−−−−→
law

a(Tk,XTk−)
√

UkN
−
k + a(Tk,XTk

)
√

1 − UkN
+
k + R̃k,

where R̃k = R
aug−
k − (a(Tk,XTk−)(1 + c′(XTk−,�k))

√
UkN

−
k ). Using Proposition 5.6, we de-

duce that R̃ is independent of N+ conditionally on (T ,�, (Wt)t∈[0,1], (Uk)k, (N
−
k )k).

From (5.62), we have R̃k = R
aug+
k − (a(Tk,XTk

)
√

1 − UkN
+
k )k and we deduce that R̃ is inde-

pendent of N− conditionally on (T ,�, (Wt)t∈[0,1], (Uk)k, (N
+
k )k).

Remarking that N− and N+ are independent conditionally on (T ,�, (Wt)t∈[0,1], (Uk)k), we
deduce that R̃ is independent of (N−,N+) conditionally on (T ,�, (Wt)t∈[0,1], (Uk)k).

The theorem is proved. �

Proof of Corollary 2.1. We introduce the conditional probability P̂
K0 = 1{K=K0}

P(K=K0)
P for any K0 ∈

N such that P(K = K0) > 0. For any K0 ≥ 0, the sequence
√

n(J̃ n − J ) is tight (for the product
topology on R

N) under P̂
K0 . So, on a subsequence, one has the convergence in law

√
n(J̃ n −

J )
P̂

K0−−−−→
law

Z̃K0 , moreover the subsequence may be chosen independent of K0 from a diagonal

extraction argument.
Fix K0 ≥ 1, under the probability P̂K0 , the assumptions H0–H3 are satisfied and we can ap-

ply Theorem 2.1 to the K0 first components of the vector Z̃K0 . The corollary follows from the

decomposition of the law of Z̃
law= ∑K0≥0 1{K=K0}Z̃K0 . �

5.3. Study of the estimator ̂Jn: Proofs of Proposition 4.1 and Theorem 4.1

Proof of Proposition 4.1. For k ∈ {1, . . . ,K}, let us note ik the integer such that ik/n ≤ Tk <

(ik + 1)/n. We set I = {i1, . . . , iK } and consider a variable which counts the number of false
discovery of a jump by the estimator,

En =
n−1∑
i=0

1|X(i+1)/n−Xi/n|≥un1i /∈I . (5.66)
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For M > 0, we define �M as the event �M = {sups∈[0,1][|b(s,Xs)| + |a(s,Xs)|] ≤ M}.
We have

P
({En ≥ 1} ∩ �M

)
≤ E[En1�M

]

=
n−1∑
i=0

E[1|X(i+1)/n−Xi/n|≥un1i /∈I 1�M
] (5.67)

≤
n−1∑
i=0

P

[{∣∣∣∣
∫ (i+1)/n

i/n

a(s,Xs)dWs +
∫ (i+1)/n

i/n

b(s,Xs)ds

∣∣∣∣≥ un

}
∩ �M

]

≤
n−1∑
i=0

P

[{∣∣∣∣
∫ (i+1)/n

i/n

a(s,Xs)dWs

∣∣∣∣≥ un − M

n

}
∩ �M

]
.

With aM = (a ∧M)∨ (−M) one has, using Markov and Burkholder–Davis–Gundy inequalities:

P

[{∣∣∣∣
∫ (i+1)/n

i/n

a(s,Xs)dWs

∣∣∣∣≥ un − M

n

}
∩ �M

]

≤ P

[∣∣∣∣
∫ (i+1)/n

i/n

aM(s,Xs)dWs

∣∣∣∣≥ un − M

n

]
(5.68)

≤ Cp

(
un − M

n

)−p

n−p/2 ∀p > 0

= Cpnp(	−1/2) ∀p > 0.

Since 	 < 1/2, we get, from (5.67) and (5.68) by choosing p large enough,
∑

n≥1 P({En ≥ 1}∩
�M) < ∞, and by Borel Cantelli’s lemma we deduce that P(

⋂
n≥1
⋃

p≥n({Ep ≥ 1}∩�M)) = 0.
It immediately implies P((

⋂
n≥1
⋃

p≥n{Ep ≥ 1})∩ �M) = 0 and since
⋃

M≥1 �M = �, we eas-
ily deduce that almost surely, there exists n, such that ∀p ≥ n, Ep = 0. Recalling the definitions
(4.1) and (5.66), we conclude that almost surely, if n is large enough, {în1 , . . . , în

K̂n
} ⊂ I and, as a

consequence, K̂n ≤ K .
Now, remark that we have almost surely the convergence, for all k ≤ K ,

X(ik+1)/n − Xik/n
n→∞−−−−→XTk

− XTk− = c(XTk−,�k). (5.69)

From the assumption A2, we have c(XTk−,�k) �= 0 and using that un → 0, we deduce that for n

large enough, I ⊂ {în1 , . . . , în
K̂n

}.
As a consequence, we have shown that,

almost surely, for n large enough K̂n = K and înk = ik ∀k ≤ K. (5.70)
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Eventually, the proposition follows from (4.2), (5.69) and (5.70). �

Proof of Theorem 4.1. We use the notation introduced in the proof of Proposition 4.1: for
k ∈ {1, . . . ,K}, we have ik/n ≤ Tk < (ik + 1)/n. Let us define for 1 ≤ k ≤ K , Gn

k = X(ik+1)/n −
Xik/n − �XTk

and Gn
k = 0 for k > K . Using (4.2) and (5.70), we see that, almost surely, for n

large enough, we have Ĵ n − J = Gn. Hence, it is sufficient to study the limit in law of
√

nGn.

Consider any K0 ∈ N such that P(K = K0) > 0 and define P̂K0 = 1{K=K0}
P(K=K0)

P, the conditional

probability. Actually, we will prove the convergence of
√

nGn conditionally on the event {K =
K0}, to the law of Z conditional on {K = K0}, which is sufficient to prove the theorem.

For k > K0 we have Gn
k = 0, hence we focus only on the components Gn

k with k ≤ K0.
Define �̂n = {X has at most one jump on each interval of size 1/n}. We have

lim
n→∞ P̂

K0
(
�̂n
)= 1.

On �̂n, the following decomposition holds true P̂
K0 almost surely, for any k ≤ K0,

√
nGn

k = a(ik/n,Xik/n)α
−
k,n + a(Tk,XTk

)α+
k,n + en,k,

where

α−
k,n = √

n(WTk
− Wik/n), α+

k,n = √
n(W(ik+1)/n − WTk

),

en,k = √
n

∫ Tk

ik/n

(
a(s,Xs) − a(ik/n,Xik/n)

)
dWs (5.71)

+ √
n

∫ (ik+1)/n

Tk

(
a(s,Xs) − a(Tk,XTk

)
)

dWs + √
n

∫ (ik+1)/n

ik/n

b(s,Xs)ds.

First, we show that en,k converges to zero in P̂
K0 probability as n → ∞. Using A1, the ordi-

nary integral converges almost surely to zero. It remains to see that the two stochastic integrals
converge to zero.

Using that the jumps times are F0-measurable, we can write the stochastic integral

√
n

∫ Tk

ik/n

(
a(s,Xs) − a(ik/n,Xik/n)

)
dWs

as a local martingale increment∫ 1

0

√
n1[ik/n,Tk](s)

(
a(s,Xs) − a(ik/n,Xik/n)

)
dWs.

The bracket of this local martingale is∫ Tk

ik/n

n
(
a(s,Xs) − a(ik/n,Xik/n)

)2 ds,
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which converges to zero almost surely, using the right continuity of the process X. We deduce
that

√
n
∫ Tk

ik/n
(a(s,Xs) − a(ik/n,Xik/n))dWs converge to zero in probability. We proceed in the

same way to prove that
√

n
∫ (ik+1)/n

Tk
(a(s,Xs) − a(Tk,XTk

))dWs
n→∞−−−−→ 0 in probability. This

yields to the relation,
√

nGn
k = a(ik/n,Xik/n)α

−
k,n + a(Tk,XTk

)α+
k,n + o

P̂
K0 (1) for k ≤ K0.

Using H̃0, and the independence between (Wt)t∈[0,1] and T under P̂
K0 , we can apply Lemma 5.1.

We get the convergence in law, under P̂
K0 ,(

(Tk)k=1,...,K0,
(
α−

k,n

)
k=1,...,K0

,
(
α+

k,n

)
k=1,...,K0

, (Wt )t∈[0,1]
)

n→∞−−−−→ ((Tk)k=1,...,K0,
(√

UkN
−
k

)
k=1,...,K0

,
(√

1 − UkN
+
k

)
k=1,...,K0

, (Wt )t∈[0,1]
)
.

Since the marks (�k)k , the Brownian motion, and the jump times are independent, we have
that, under P̂

K0 , (α−
k,n, α

+
k,n)k≤K0 converges in law to (

√
UkN

−
k ,

√
1 − UkN

+
k )k≤K0 stably with

respect to the sigma-field generated by (Wt )t∈[0,1], (Tk)k and (�k)k . The limit can be represented
on the extended space �̃ endowed with the probability P̃ conditional on K = K0.

But the process X is measurable with respect to F1, and we deduce the stable convergence,
√

nGn
k = a(ik/n,Xik/n)α

−
k,n + a(Tk,XTk

)α+
k,n

n→∞−−−−→ a(Tk,XTk−)
√

UkN
−
k + a(Tk,XTk

)
√

1 − UkN
+
k

for k = 1, . . . ,K0, under P̂
K0 .

By simple computations, this implies the convergence of (
√

nGn
k)k under P, and the theorem

is proved. �
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