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In this paper, we study the problem of high-dimensional covariance matrix estimation with missing observa-
tions. We propose a simple procedure computationally tractable in high-dimension and that does not require
imputation of the missing data. We establish non-asymptotic sparsity oracle inequalities for the estimation
of the covariance matrix involving the Frobenius and the spectral norms which are valid for any setting of
the sample size, probability of a missing observation and the dimensionality of the covariance matrix. We
further establish minimax lower bounds showing that our rates are minimax optimal up to a logarithmic
factor.
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1. Introduction

Let X,X1, . . . ,Xn ∈ R
p be i.i.d. zero mean vectors with unknown covariance matrix � = E[X⊗

X]. Our objective is to estimate the unknown covariance matrix � when the vectors X1, . . . ,Xn

are partially observed, that is, when some of their components are not observed. More precisely,
we consider the following framework. Denote by X

(j)
i the j th component of the vector Xi .

We assume that each component X
(j)
i is observed independently of the others with probability

δ ∈ (0,1]. Note that δ can be easily estimated by the proportion of observed entries. Therefore, we
assume from now on that δ is known. Note also that the case δ = 1 corresponds to the standard
case of fully observed vectors. Let (δi,j )1≤i≤n,1≤j≤p be a sequence of i.i.d. Bernoulli random
variables with parameter δ and independent from X1, . . . ,Xn. We observe n i.i.d. random vectors
Y1, . . . , Yn ∈ R

p whose components satisfy

Y
(j)
i = δi,jX

(j)
i , 1 ≤ i ≤ n,1 ≤ j ≤ p. (1.1)

We can think of the δi,j as masked variables. If δi,j = 0, then we cannot observe the j th compo-

nent of Xi and the default value 0 is assigned to Y
(j)
i . Our goal is then to estimate � given the

partial observations Y1, . . . , Yn.
The statistical problem of covariance estimation with missing observations is fundamental in

multivariate statistics since it is often used as the first step to retrieve information in numerous
applications where datasets with missing observations are common, for example:
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1. Climate studies: n is the number of time points and p the number of observations stations,
which may sometimes fail to produce an observation due to instrument malfunction. As a
consequence, the generated datasets usually contain missing values.

2. Gene expression micro-arrays: n is the number of measurements and p the number of tested
genes. Despite the improvement of gene expression techniques, the generated datasets fre-
quently contain missing values with up to 90% of genes affected.

3. Cosmology: n is the number of images produced by a telescope and p is the number of
pixels per image. With the development of very large telescopes and wide sky surveys,
the generated datasets are huge but usually contain missing observations due to partial sky
coverage or defective pixels.

One simple strategy to deal with missing data is to exclude from the analysis any variable
for which observations are missing, thus restricting the analysis to a subset of fully observed
variables. In gene expression data where 90% of the genes are affected by missing values, we
would be left with too few variables to perform a legitimate statistical analysis. Also, discard-
ing variables with very few missing observations is a waste of available information. Existing
procedures involve complex imputation techniques to fill in the missing values through com-
putationally intensive implementation of the EM algorithm (see [30] and the references cited
therein for more details). In this paper, we propose a simple procedure computationally tractable
in high-dimension that does not require imputing missing observations or discarding any avail-
able observation to recover the covariance matrix �.

Contemporary datasets are often huge with both large sample size n and dimension p and typ-
ically p � n. Consequently, a question of considerable practical interest is to perform dimension
reduction, that is finding a good low-dimensional approximation for these huge datasets. This
recent paradigm where high-dimensional objects of interest admit in fact a small intrinsic di-
mension has produced spectacular results in several fields. For instance, in compressed sensing,
it is possible to recover s-sparse vectors of dimension p with only n = O(s log(ep/s)) mea-
surements provided these measurements are carried out properly (see [4,9,12,20,22,24] and the
references cited therein for more details). An analogous result holds in matrix completion where
approximate or exact recovery of a low-rank matrix A ∈ R

p×p via nuclear norm minimization
is possible with as few as O(pr log2 p) observed entries where r is the rank of A, under various
sets of conditions on the sampling operator and the matrix of interest A. See [10,11,15,18,21,23,
26,27] for more details. See also [5,19] for rank minimization approach.

A popular dimension reduction technique for covariance matrices is Principal Component
Analysis (PCA), which exploits the spectrum of the sample covariance matrix. In the high-
dimensional setting, [16] showed that the standard PCA procedure is bound to fail since the
sample covariance spectrum is too spread out. Several alternatives have been studied in the liter-
ature to provide better estimates of the covariance matrix in the high-dimensional setting. A pop-
ular approach in Gaussian graphical models consists in estimating the inverse of the covariance
matrix (called concentration matrix) since it admits a naturally sparse (or approximately sparse)
structure if the dependence graph is itself sparse. See [2,7,25,35] and the references cited therein
for more details. A limitation of this approach is that it does not apply to low rank matrices �

since the concentration matrix does not exist in this case. Another popular approach assumes
that the unknown covariance matrix is sparse in the sense that most of the entries are exactly or
approximately zero and then proposes to perform either entrywise thresholding or tapering of the
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sample covariance matrix [3,6,8,13,28,29]. Note that the sparsity notion adopted in this approach
is not adapted to strongly correlated datasets with dense covariance matrix.

In random matrix theory, [14,16,17] and the references cited therein investigate the asymptotic
distribution of the sample covariance matrix eigenvalues for different settings of n and p. See
also [33] for a very nice survey of existing non-asymptotic results on the spectral norm deviation
of the sample covariance matrix from its population counterpart. In this paper, we adopt this
approach and we will provide further details as we present our results.

Note that the results derived in the works cited above do not cover datasets with missing ob-
servations. For instance, when the data contains no missing observation (δ = 1), [33] established
a non-asymptotic control on the stochastic deviation ‖�n − �‖∞ of the empirical covariance
matrix �n = 1

n

∑n
i=1 Xi ⊗ Xi provided some tail conditions are satisfied by the common distri-

bution of X1, . . . ,Xn. Exploiting these results, it is possible to establish oracle inequalities for
the covariance version of the matrix Lasso estimator

�̂L = argmin
S∈Sp

‖�n − S‖2
2 + λ‖S‖1, (1.2)

where Sp is the set of p×p positive-semidefinite symmetric matrices, ‖S‖2 and ‖S‖1 are respec-
tively the Frobenius and nuclear norm of S and λ > 0 is a regularization parameter that should be
chosen of the order of magnitude of ‖�n − �‖∞ (note here that ‖S‖1 = tr(S) for any S ∈ Sp).
This estimator is the covariance version of the matrix Lasso estimator initially introduced in the
matrix regression framework, see [23,27] and the references cited therein. To the best of our
knowledge, the procedure (1.2) has not been studied in the covariance estimation problem.

When the data contains missing observations (δ < 1), we no longer have access to �n. Given
the observations Y1, . . . , Yn, we can build the following empirical covariance matrix

�(δ)
n = 1

n

n∑
i=1

Yi ⊗ Yi.

In this case, a naive approach to derive oracle inequalities consists in computing the matrix
Lasso estimator (1.2) with �n replaced by �

(δ)
n . Unfortunately this approach is bound to fail

since �
(δ)
n is not a good estimator of � when δ < 1. Indeed, some elementary algebra gives that

E(�
(δ)
n ) = �(δ) with

�(δ) = (
δ − δ2)diag(�) + δ2�,

where diag(�) is the p × p diagonal matrix obtained by putting all the non-diagonal entries of
� to zero (see Section 5.8 below for the details of the computation). When δ = 1, we see that
�(1) = � and �

(1)
n = �n. However, when observations are missing (δ < 1), �(δ) can be very far

from �. Hence, �
(δ)
n will be a poor estimator of � since it concentrates around its mean �(δ)

under suitable tail conditions on the distribution of X. Consequently, the stochastic deviation
‖�(δ)

n − �‖∞ will be too large and the matrix Lasso estimator (1.2) with �n replaced by �
(δ)
n ,

which requires λ to be of the order of magnitude of ‖�(δ)
n − �‖∞, will perform poorly since its

rate of estimation grows with λ.
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We present now our reconstruction procedure based on the following simple observation

� = (
δ−1 − δ−2)diag

(
�(δ)

)+ δ−2�(δ) ∀0 < δ ≤ 1. (1.3)

Therefore, we can define the following unbiased estimator of � when the data set contains miss-
ing observations

�̃n = (
δ−1 − δ−2)diag

(
�(δ)

n

)+ δ−2�(δ)
n . (1.4)

Our estimator is then solution of the following penalized empirical risk minimization problem:

�̂λ = argmin
S∈Sp

‖�̃n − S‖2
2 + λ‖S‖1, (1.5)

where λ > 0 is a regularization parameter to be tuned properly. We note that this simple proce-
dure can be computed efficiently in high-dimension since �̂λ is solution of a convex minimiza-
tion problem. The optimal choice of the tuning parameter λ is of the order of magnitude of the
stochastic deviation ‖�̃n − �‖∞. Therefore, in order to order to establish sharp oracle inequali-
ties for (1.5), we need to first study the deviations of ‖�̃n − �‖∞. This analysis is more difficult
as compared to the study of ‖�n −�‖∞ since we need to derive the sharp scaling of ‖�̃n −�‖∞
with δ.

The rest of the paper is organized as follows. In Section 2, we recall some tools and definitions.
In Section 3, we establish oracle inequalities for the Frobenius and spectral norms for our pro-
cedure (1.5) and also propose a data-driven choice of the regularization parameter. In Section 4,
we establish minimax lower bounds for data with missing observations δ ∈ (0,1], thus showing
that our procedures are minimax optimal up to a logarithmic factor. Finally, Section 5 contains
all the proofs of the paper.

We emphasize that the results of this paper are non-asymptotic in nature, hold true for any set-
ting of n,p, δ, are minimax optimal (up to a logarithmic factor) and do not require the unknown
covariance matrix � to be low-rank. We note also that to the best of our knowledge, there exists
in the literature no minimax lower bound result for statistical estimation problems with missing
observations.

2. Tools and definitions

2.1. Sub-exponential random vectors

We recall now the definition and some basic properties of sub-exponential random vectors.

Definition 1. The ψα-norms of a real-valued random variable V are defined by

‖V ‖ψα = inf
{
u > 0 : E exp

(|V |α/uα
)≤ 2

}
, α ≥ 1.

We say that a random variable V with values in R is sub-exponential if ‖V ‖ψα < ∞ for some
α ≥ 1. If α = 2, we say that V is sub-Gaussian.
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We recall some well-known properties of sub-exponential random variables:

1. For any real-valued random variable V such that ‖V ‖α < ∞ for some α ≥ 1, we have

E
[|V |m]≤ 2

m

α
�

(
m

α

)
‖V ‖m

ψα
∀m ≥ 1, (2.1)

where �(·) is the Gamma function.
2. If a real-valued random variable V is sub-Gaussian, then V 2 is sub-exponential. Indeed,

we have ∥∥V 2
∥∥

ψ1
≤ 2‖V ‖2

ψ2
. (2.2)

Definition 2. A random vector X ∈ R
p is sub-exponential if 〈X,x〉 are sub-exponential random

variables for all x ∈ R
p . The ψα-norms of a random vector X are defined by

‖X‖ψα = sup
x∈Rp :|x|2=1

∥∥〈X,x〉∥∥
ψα

, α ≥ 1.

We recall the Bernstein inequality for sub-exponential real-valued random variables (see, e.g.,
Corollary 5.17 in [33]).

Proposition 1. Let Y1, . . . , Yn be independent centered sub-exponential random variables, and
K = maxi ‖Yi‖ψ1 . Then for every t ≥ 0, we have with probability at least 1 − e−t

∣∣∣∣∣1

n

n∑
i=1

Yi

∣∣∣∣∣≤ CK

(√
t

n
∨ t

n

)
,

where C > 0 is an absolute constant.

2.2. Some elements of matrix theory

Denote by Sp the set of p × p symmetric positive-semidefinite matrices. Any matrix A ∈ Sp

admits the following spectral representation

A =
r∑

j=1

σj (A)uj (A) ⊗ uj (A),

where r = rank(A) is the rank of A, σ1(A) ≥ σ2(A) ≥ · · · ≥ σr(A) > 0 are the non-zero eigen-
values of A and u1(A), . . . , ur (A) ∈ R

p are the associated orthonormal eigenvectors (we also set
σr+1(A) = · · · = σp(A) = 0). The linear vector space L is the linear span of {u1(A), . . . , ur (A)}
and is called support of A. We will denote respectively by PL and P ⊥

L the orthogonal projections
onto L and L⊥.
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The Schatten q-norm of A ∈ Sp is defined by

‖A‖q =
(

p∑
j=1

∣∣σj (A)
∣∣q)1/q

for 1 ≤ q < ∞, and ‖A‖∞ = σ1(A).

Note that the trace of any S ∈ Sp satisfies tr(S) = ‖S‖1.
Recall the trace duality property:∣∣tr(A�B

)∣∣≤ ‖A‖1‖B‖∞ ∀A,B ∈ R
p×p.

We will also use the fact that the subdifferential of the convex function A �→ ‖A‖1 is the
following set of matrices:

∂‖A‖1 =
{

r∑
j=1

uj (A) ⊗ uj (A) + P ⊥
L WP ⊥

L :‖W‖∞ ≤ 1

}
(2.3)

(cf. [34]).
We introduce now the notion of intrinsic dimension of a symmetric matrix. The intrinsic di-

mension of the matrix � can be measured through the effective rank

r(�) := tr(�)

‖�‖∞
, (2.4)

see Section 5.4.3 in [33]. Note that we always have r(�) ≤ rank(�). In addition, we can possibly
have r(�) � rank(�) for approximately low-rank matrices �, that is matrices � with large
rank but concentrated around a low-dimensional subspace. Consider for instance the covariance
matrix � with eigenvalues σ1 = 1 and σ2 = · · · = σp = 1/p, then r(�) = 2p−1

p
� p = rank(�).

The following proposition is the matrix version of Bernstein’s inequality for bounded random
matrices [1] (see also Corollary 9.1 in [31]).

Proposition 2. Let Z1, . . . ,Zn be symmetric independent random matrices in R
p×p that satisfy

E[Zi] = 0 and ‖Zi‖∞ ≤ U almost surely for some constant U and all i = 1, . . . , n. Define

σZ =
∥∥∥∥∥1

n

n∑
i=1

E
[
Z2

i

]∥∥∥∥∥∞
.

Then, for all t > 0, with probability at least 1 − e−t we have∥∥∥∥Z1 + · · · + Zn

n

∥∥∥∥∞
≤ 2 max

{
σZ

√
t + log(2p)

n
,U

t + log(2p)

n

}
.

We also recall now that the lq -norms of a vector x = (x(1), . . . , x(p))� ∈ R
p is given by

|x|q =
(

p∑
j=1

∣∣x(j)
∣∣q)1/q

for 1 ≤ q < ∞, and |x|∞ = max
1≤j≤p

∣∣x(j)
∣∣.
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3. Oracle inequalities

We can now state the main result for the procedure (1.5).

Theorem 1. Let X1, . . . ,Xn be i.i.d. vectors in R
p with covariance matrix �. For any p ≥ 2, n ≥

1, we have on the event λ ≥ 2‖�̃n − �‖∞

∥∥�̂λ − �
∥∥2

2 ≤ inf
S∈Sp

{
‖S − �‖2

2 + min

{
2λ‖S‖1,

(1 + √
2)2

8
λ2 rank(S)

}}
, (3.1)

and

∥∥�̂λ − �
∥∥∞ ≤ λ. (3.2)

As we see in Theorem 1, the regularization parameter λ should be chosen sufficiently large
such that the condition λ ≥ 2‖�̃n − �‖∞ holds with probability close to 1. The optimal choice
of λ depends on the unknown distribution of the observations. We consider now the case of
sub-Gaussian random vector X ∈ R

p .

Assumption 1 (Sub-Gaussian observations). The random vector X ∈ R
p is sub-Gaussian, that

is ‖X‖ψ2 < ∞. In addition, there exist a numerical constant c1 > 0 such that

E
[〈X,u〉2]≥ c1

∥∥〈X,u〉∥∥2
ψ2

∀u ∈ R
p. (3.3)

Note that Gaussian distributions satisfy Assumption 1. Under the above condition, we can
study the stochastic quantity ‖�̃n − �‖∞ and thus properly tune the regularization parameter λ.

We have the following result, which requires no condition on the covariance matrix �.

Proposition 3. Let X1, . . . ,Xn ∈ R
p be i.i.d. random vectors satisfying Assumption 1. Let

Y1, . . . , Yn be defined in (1.1) with δ ∈ (0,1]. Then, for any t > 1 ∨ logn, we have with prob-
ability at least 1 − e−t

‖�̃n − �‖∞ ≤ C
‖�‖∞

c1
(3.4)

× max

{√
r(�)(t + log(2p))

δ2n
,

r(�)(t + log(2p))

δ2n
(c1δ + t + logn)

}
,

and

∣∣tr(�̃n) − tr(�)
∣∣≤ C

tr(�)

c1δ
max

{√
t

n
,

t

n

}
, (3.5)

where C > 0 is an absolute constant.
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1. The natural choice for t is of the order of magnitude log(2p). Then the conclusions of
Proposition 3 hold true with probability at least 1 − 1

2p
. In addition, if the number of mea-

surements n is sufficiently large

n ≥ c
r(�)

δ2
log2((2p) ∨ n

)
, (3.6)

where c > 0 is a sufficiently large numerical constant, then an acceptable choice for the
regularization parameter λ is

λ = C
‖�‖∞

c1

√
r(�) log(2p)

δ2n
, (3.7)

where the absolute constant C > 0 is sufficiently large.
2. Proposition 3 and Equation (3.7) give some insight on the tuning of the regularization

parameter:

λ = C

√
tr(�)‖�‖∞

c1δ

√
log(2p)

n
,

where C > 0 is a sufficiently large absolute constant. We see that this choice of λ depends
on tr(�) and ‖�‖∞ which are typically unknown. Therefore, we propose to use instead

λ = C

√
tr(�̃n)‖�̃n‖∞

δ

√
log 2p

n
, (3.8)

where C > 0 is a large enough constant. Note that the above choice of λ does not depend
on the unknown quantities ‖�‖∞ or tr(�) and constitutes thus an interesting choice in
practice. We prove in the next lemma that 2‖�̃n −�‖∞ ≤ λ with probability at least 1− 1

2p
.

3. As we claimed in the introduction, Proposition 3 requires no condition on � whatsoever.
However, for the result to be of any practical interest, we need the bound in (3.4) to be
small, which is the case if the condition (3.6) is satisfied. This condition is interesting
since it shows that the number of measurements sufficient to guarantee a precise enough
estimation of the spectrum of � grows with the effective rank r(�). In particular, when no
observation is missing (δ = 1), if � is approximately low-rank so that r(�) � p, then only
n = O(r(�) log2(2p)) measurements are sufficient to estimate precisely the spectrum of
the p × p covariance matrix �.

4. Note that if we assume that ‖Y ⊗ Y‖∞ = |Y |22 ≤ U a.s. for some constant U > 0, then
we can eliminate the (c1δ + t + logn) factor in (3.4). Consequently, we can replace the
condition (3.6) on the number of measurements by the following less restrictive one

n ≥ c
r(�)

δ2
log(2p)

for some absolute constant c > 0 sufficiently large. When there is no missing observation
(δ = 1), we obtain the standard condition on the number of measurements (see Remark 5.53
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in [33]). When some observations are missing (δ < 1), we have the additional quantity δ2 in
the denominators of (3.4) and (3.6). The bound (3.4) is degraded in the case δ < 1 since we
observe less entries per measurement. Consequently, as we can see it in (3.6), if we denote
by N(ε) the number of necessary measurements to estimate � with a precision ε when no
observation is missing (δ = 1), then we will need at least O(N(ε)/δ2) measurements in
order to estimate � with the same precision ε when some observations are missing (δ < 1).
In Theorem 2, we prove in particular that the dependence of the bound (3.4) on δ is sharp
by establishing a minimax lower bound.

5. In the full observations case (δ = 1) and for sub-Gaussian distributions with low rank
covariance matrix �, a simple modification of the ε-net argument used in [33] to prove
Theorem 5.39 yields an inequality similar to (3.4) with an upper bound of the order

‖�‖∞
√

rank(�)+t
n

without logarithmic factor log 2p. Note however that this bound is sub-

optimal when r(�) log2((2p) ∨ n) � rank(�) (see the discussion on the intrinsic dimen-
sion of a matrix in Section 2.2). In addition, in the missing observations framework δ < 1,
the matrix �(δ) can have full rank even if the matrix � is low rank. Therefore, the ε-net

argument will yield an upper bound of the order ‖�‖∞
√

p+t

δ2n
which is much larger than

the bound derived in (3.4).

Lemma 1. Let the assumptions of Proposition 3 be satisfied. Assume in addition that (3.6) holds
true. Take λ as in (3.8) with C > 0 a large enough constant that can depend only on c1. Then, we
have with probability at least 1 − 1

2p
that

2‖�̃n − �‖∞ ≤ λ ≤ C′‖�‖∞
√

r(�) log(2p)

δ2n
,

where C′ > 0 can depend only on c1.

We obtain the following corollary of Theorem 1.

Corollary 1. Let Assumption 1 and condition (3.6) be satisfied. Consider the estimator (1.5) with
the regularization parameter λ satisfying (3.8). Then we have, with probability at least 1 − 1

2p

that ∥∥�̂λ − �
∥∥2

2 ≤ inf
S∈Sp

{
‖� − S‖2

2 + C1‖�‖2∞
r(�) log 2p

δ2n
rank(S)

}
, (3.9)

and

∥∥�̂λ − �
∥∥∞ ≤ C2‖�‖∞

√
r(�) log 2p

δ2n
, (3.10)

where C1,C2 > 0 can depend only on c1.

The proof of this corollary is immediate by combining Theorem 1 with Proposition 3 and
Lemma 1 and up to a rescaling of the constants.
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4. Lower bounds

For any integer 1 ≤ r ≤ p, define

Cr = {
S ∈ Sp : r(S) ≤ r

}
.

We also introduce Pr the class of probability distributions on R
p with covariance matrix � ∈ Cr .

We now establish a minimax lower bound that guarantees the rates we obtained in Corollary 1
are optimal up to a logarithmic factor on the probability distribution class Pr . In particular, the
dependence of our rates on δ, ‖�‖∞ and r(�) is sharp.

Theorem 2. Fix δ ∈ (0,1]. Let n, r ≥ 1 be integers such that n ≥ δ−2r2. Let X1, . . . ,Xn be
i.i.d. random vectors in R

p with covariance matrix � ∈ Cr . We observe n i.i.d. random vectors
Y1, . . . , Yn ∈ R

p such that

Y
j
i = δijX

(j)
i , 1 ≤ i ≤ n,1 ≤ j ≤ p,

where (δij )1≤i≤n,1≤j≤p is an i.i.d. sequence of Bernoulli B(δ) random variables independent of
X1, . . . ,Xn.

Then, there exist absolute constants β ∈ (0,1) and c > 0 such that

inf
�̂

sup
P�∈Pr

P�

(
‖�̂ − �‖2

2 > c‖�‖2∞
r(�)

δ2n
rank(�)

)
≥ β, below Assumption 1 (4.1)

and

inf
�̂

sup
P�∈Pr

P�

(
‖�̂ − �‖∞ > c‖�‖∞

√
r(�)

δ2n

)
≥ β, (4.2)

where inf
�̂

denotes the infimum over all possible estimators �̂ of � based on Y1, . . . , Yn.

5. Proofs

5.1. Proof of Theorem 1

The proof of the first inequality adapts to covariance matrix estimation the arguments used in the
trace regression problem to prove Theorems 1 and 11 in [23].

Proof of Theorem 1. By definition of �̂λ, we have for any S ∈ Sp∥∥�̂λ − �
∥∥2

2 ≤ ‖S − �‖2
2 + λ‖S‖1 + 2

〈
� − �̃n, S − �̂λ

〉− λ
∥∥�̂λ

∥∥
1.

If λ ≥ 2‖�̃n − �‖∞, we deduce from the previous display that∥∥�̂λ − �
∥∥2

2 ≤ ‖S − �‖2
2 + 2λ‖S‖1 ∀S ∈ Sp.
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Next, a necessary and sufficient condition of minimum for problem (1.5) implies that there exists
V̂ ∈ ∂‖�̂λ‖1 such that for all S ∈ Sp

−2
〈
�̃n − �̂λ, �̂λ − S

〉+ λ
〈
V̂ , �̂λ − S

〉≤ 0. (5.1)

For any S ∈ Sp of rank r with spectral representation S = ∑r
j=1 σjuj ⊗ uj and support L. It

follows from (5.1) that

2
〈
�̂λ − �,�̂λ − S

〉+ λ
〈
V̂ − V, �̂λ − S

〉≤ −λ
〈
V, �̂λ − S

〉+ 2
〈
�̃n − �,�̂λ − S

〉
(5.2)

for an arbitrary V ∈ ∂‖S‖1. Note that 〈V̂ − V, �̂λ − S〉 ≥ 0 by monotonicity of subdifferentials
of convex functions and that the following representation holds

V =
r∑

j=1

uj ⊗ uj + P ⊥
L WP ⊥

L ,

where W is an arbitrary matrix with ‖W‖∞ ≤ 1. In particular, there exists W with ‖W‖∞ ≤ 1
such that 〈

P ⊥
L WP ⊥

L , �̂λ − S
〉= ∥∥P ⊥

L �̂λP ⊥
L

∥∥
1.

For this choice of W , we get from (5.2) that∥∥�̂λ − �
∥∥2

2 + ∥∥�̂λ − S
∥∥2

2 + λ
∥∥P ⊥

L �̂λP ⊥
L

∥∥
1

(5.3)
≤ ‖S − �‖2

2 + λ
∥∥PL

(
�̂λ − S

)
PL

∥∥
1 + 2

〈
�̃n − �,�̂λ − S

〉
,

where we have used the following facts

2
〈
�̂λ − �,�̂λ − S

〉= ∥∥�̂λ − �
∥∥2

2 + ∥∥�̂λ − S
∥∥2

2 − ‖S − �‖2
2,

and ∥∥∥∥∥
r∑

j=1

uj ⊗ uj

∥∥∥∥∥∞
= 1,

〈
r∑

j=1

uj ⊗ uj , �̂
λ − S

〉
=
〈

r∑
j=1

uj ⊗ uj ,PL

(
�̂λ − S

)
PL

〉
.

For any A ∈ R
p×p define PL(A) = A − P ⊥

L AP ⊥
L . Set �1 = �̃n − �. We have

〈
�1, �̂

λ − S
〉= 〈

�1, PL

(
�̂λ − S

)〉+ 〈
�1,P

⊥
L

(
�̂λ − S

)
P ⊥

L

〉
.

Using Cauchy–Schwarz’s inequality and trace duality, we get∣∣〈�1, PL

(
�̂λ − S

)〉∣∣ ≤ √
2 rank(S)‖�1‖∞

∥∥�̂λ − S
∥∥

2,∥∥PL

(
�̂λ − S

)
PL

∥∥
1 ≤ √

rank(S)
∥∥�̂λ − S

∥∥
2,∣∣〈�1,P

⊥
L

(
�̂λ − S

)
P ⊥

L

〉∣∣ ≤ ‖�1‖∞
∥∥P ⊥

L �̂λP ⊥
L

∥∥
1.
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The above display combined with (5.3) give∥∥�̂λ − �
∥∥2

2 + ∥∥�̂λ − S
∥∥2

2 + (
λ − 2‖�1‖∞

)∥∥P ⊥
L �̂λP ⊥

L

∥∥
1

≤ ‖S − �‖2
2 + (√

2‖�1‖∞ + λ
)√

r
∥∥�̂λ − S

∥∥
2.

A decoupling argument gives∥∥�̂λ − �
∥∥2

2 + ∥∥�̂λ − S
∥∥2

2 + (
λ − 2‖�1‖∞

)∥∥P ⊥
L �̂λP ⊥

L

∥∥
1

≤ ‖S − �‖2
2 +

(
1√
2
‖�1‖∞ + λ

2

)2

r + ∥∥�̂λ − S
∥∥2

2.

Finally, we get on the event λ ≥ 2‖�1‖∞ that

∥∥�̂λ − �
∥∥2

2 ≤ ‖S − �‖2
2 + (1 + √

2)2

8
λ2 rank(S) ∀S ∈ Sp.

We now prove the spectral norm bound. Note first that the solution of (1.5) is given by

�̂λ =
∑
j

(
σj (�̃n) − λ

2

)
+
uj (�̃n) ⊗ uj (�̃n), (5.4)

where x+ = max{0, x} and �̃n admits the spectral representation

�̃n =
∑
j

σj (�̃n)uj (�̃n) ⊗ uj (�̃n),

with positive eigenvalues σj (�̃n) ≥ 0 and orthonormal eigenvectors uj (�̃n). Indeed, the solu-
tion of (1.5) is unique since the functional S → F(S) = ‖�̃n − S‖2

2 + λ‖S‖1 is strictly convex.
A sufficient condition of minimum is 0 ∈ ∂F (�̂λ) = −2(�̃n − �̂λ) + λV̂ with V̂ ∈ ∂‖�̂λ‖1. We
consider the following choice of V̂ =∑

j :σj (�̃n)≥λ/2 uj (�̃n) ⊗ uj (�̃n) + W ∈ ∂‖�̂λ‖1 with

W =
∑

j :σj (�̃n)<λ/2

2σj (�̃n)

λ
uj (�̃n) ⊗ uj (�̃n).

It is easy to check that ∂F (�̂λ) = −2(�̃n − �̂λ) + λV̂ = 0.
Next, we have on the event λ ≥ 2‖�1‖∞∥∥�̂λ − �

∥∥∞ ≤ ∥∥�̂λ − �̃n

∥∥∞ + ‖�1‖∞ ≤ λ. �

5.2. Proof of Proposition 3

The delicate part of this proof is to obtain the sharp dependence on δ. As a consequence, the proof
is significantly more technical as compared to the case of full observations δ = 1. To simplify the
understanding of this proof, we decomposed it into three lemmas that we prove below.
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Proof of Proposition 3. We start with (3.5). For any t > 0, Lemma 2 gives, with probability at
least 1 − e−t that

∣∣tr(�(δ)
n

)− δ tr(�)
∣∣≤ Cc−1

1 tr(�)max

{√
t

n
,

t

n

}
(5.5)

for some numerical constant C > 0. Noting that tr(�̃n) = δ−1 tr(�(δ)
n ), we can deduce (3.5)

immediately from (5.5).
We now treat (3.4). For any t ≥ 0, Lemma 3 gives with probability at least 1 − e−t that∥∥diag

(
�(δ)

n − �(δ)
)∥∥∞ ≤ t1, (5.6)

with

t1 = Cc−1
1 max

1≤j≤p
(�jj )max

{√
t

n
,

t

n

}
,

where C > 0 is some absolute constant.
Define

A(δ)
n = �(δ)

n − diag
(
�(δ)

n

)
, A(δ) = �(δ) − diag

(
�(δ)

)
.

For any t ≥ 1 ∨ logn, Lemma 4 gives with probability at least 1 − e−t that∥∥A(δ)
n − A(δ)

∥∥∞ ≤ t2, (5.7)

with

t2 = C

c1
δ‖�‖∞ max

{√
r(�)(t + log(2p))

n
, r(�)(c1δ + t + logn)

t + log(2p)

δn

}
,

where C > 0 is a large enough absolute constant.
Set now

t̄ = C′

c1
‖�‖∞ max

{√
r(�)(t + log(2p))

δ2n
, r(�)(c1δ + t + logn)

t + log(2p)

δ2n

}
,

where C′ > 0 is a large enough numerical constant such that t̄ ≥ t1
δ

+ t2
δ2 , where we have used

that max1≤j≤p(�jj ) ≤ √
tr(�)‖�‖∞ ≤ tr(�).

Combining (5.6) and (5.7) with a union bound argument, we get for any t ≥ 1 ∨ logn, with
probability at least 1 − 2e−t that

‖�̃n − �‖∞ ≤ δ−1
∥∥diag

(
�(δ)

n − �(δ)
)∥∥∞ + δ−2

∥∥A(δ)
n − A(δ)

∥∥∞
(5.8)

≤ t1

δ
+ t2

δ2
≤ t̄ .

A union bound argument again gives that (5.5) and (5.8) hold valid simultaneously with prob-
ability at least 1 − 3e−t for any t ≥ 1 ∨ logn. Up to a rescaling of the constants, we can assume
that (5.5) and (5.8) hold valid with probability at least 1 − e−t . �
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Lemma 2. Under the assumptions of Proposition 3, we have with probability at least 1 − e−t

that ∣∣tr(�(δ)
n

)− δ tr(�)
∣∣≤ Cc−1

1 tr(�)max

{√
t

n
,

t

n

}
, (5.9)

where C > 0 is an absolute constant.

Proof. In view of Assumption 1, we have for any 1 ≤ j ≤ p that ‖(Y (j))2‖ψ1 ≤ ‖(X(j))2‖ψ1 ≤
2‖X(j)‖2

ψ2
≤ 2c−1

1 �jj and

∥∥|Y |22
∥∥

ψ1
≤

p∑
j=1

∥∥(Y (j)
)2∥∥

ψ1
≤ ∥∥(X(j)

)2∥∥
ψ1

≤ 2
p∑

j=1

∥∥X(j)
∥∥2

ψ2
≤ 2c−1

1 tr(�).

Next, we have

tr
(
�(δ)

n

)− δ tr(�) = tr
(
�(δ)

n − �(δ)
)

= tr

(
1

n

n∑
i=1

Yi ⊗ Yi − E[Y ⊗ Y ]
)

= 1

n

n∑
i=1

tr(Yi ⊗ Yi) − E
[
tr(Y ⊗ Y)

]

= 1

n

n∑
i=1

|Yi |22 − E
[|Y |22

]
.

Next, we have ∥∥|Yi |22 − E
[|Y |22

]∥∥
ψ1

≤ c
∥∥|Yi |22

∥∥
ψ1

≤ 2
c

c1
tr(�)

for some numerical constant c > 0. Then, we can apply Proposition 1 to get the result. �

Lemma 3. Under the assumptions of Proposition 3, we have with probability at least 1 − e−t

that

∥∥diag
(
�(δ)

n − �(δ)
)∥∥∞ ≤ Cc−1

1 max
1≤j≤p

(�jj )max

{√
t + logp

n
,
t + logp

n

}
, (5.10)

where C > 0 is an absolute constant.

Proof. We have

∥∥diag
(
�(δ)

n − �(δ)
)∥∥∞ = max

1≤j≤p

∣∣∣∣∣1

n

n∑
i=1

δ2
i,j

(
X

(j)
i

)2 − δ�jj

∣∣∣∣∣.
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Next, since the random variables X
(j)
i are sub-Gaussian for any i, j , we have

∥∥(δi,jX
(j)
i

)2∥∥
ψ1

≤ 2
∥∥δi,jX

(j)
i

∥∥2
ψ2

≤ 2
∥∥X(j)

i

∥∥2
ψ2

≤ 2c−1
1 �jj ,

where we have used Assumption 1 in the last inequality. We can apply Proposition 1 to get for
any 1 ≤ j ≤ p with probability at least 1 − e−t ′ that∣∣∣∣∣1

n

n∑
i=1

δ2
i,j

(
X

(j)
i

)2 − δ�jj

∣∣∣∣∣≤ Cc−1
1 �jj max

{√
t ′
n

,
t ′

n

}
,

where C > 0 is an absolute constant. Next, taking t ′ = t + logp combined with a union bound
argument we get the result. �

Lemma 4. Under the assumptions of Proposition 3, we have for any t ≥ 1 ∨ logn with proba-
bility at least 1 − e−t that∥∥A(δ)

n − A(δ)
∥∥∞

(5.11)

≤ C

c1
δ‖�‖∞ max

{√
r(�)(t + log(2p))

n
, r(�)(c1δ + t + logn)

t + log(2p)

δn

}
,

where C > 0 is a large enough absolute constant.

Proof. We have

A(δ)
n − A(δ) = 1

n

n∑
i=1

Zi − E[Zi],

where

Zi = Yi ⊗ Yi − diag(Yi ⊗ Yi), 1 ≤ i ≤ n.

Define Y = (δ1X
(1), . . . , δpX(p))� where δ1, . . . , δp are i.i.d. Bernoulli random variables with

parameter δ independent from X and Z = Y ⊗ Y − diag(Y ⊗ Y).

Fact 1. We have that

P

(
n⋂

i=1

{|Yi |22 ≤ U
})≥ 1 − e−t ∀t ≥ 1, (5.12)

where U = C
c1

tr(�)(c1δ + t + logn) and C > 0 is some numerical constant.

The proof of Fact 1 can be found in Section 5.3 below. Define now the truncated random
matrices

Z̃i = Zi1|Yi |22≤U , 1 ≤ i ≤ n,



1044 K. Lounici

where U > 0 is given in Fact 1. We have, on the event
⋂n

i=1{|Yi |22 ≤ U}, that

A(δ)
n − A(δ) = 1

n

n∑
i=1

Z̃i − E[Zi]

= 1

n

n∑
i=1

(
Z̃i − E[Z̃i]

)+ 1

n

n∑
i=1

E[Zi1|Yi |22>U ]

= 1

n

n∑
i=1

(
Z̃i − E[Z̃i]

)+ E[Z1|Y |22>U ].

Thus we get, on the event
⋂n

i=1{|Yi |22 ≤ U}, that

∥∥A(δ)
n − A(δ)

∥∥∞ ≤
∥∥∥∥∥1

n

n∑
i=1

(
Z̃i − E[Z̃i]

)∥∥∥∥∥∞
+ ∥∥E[Z1|Y |22>U ]∥∥∞. (5.13)

We study now ‖E[Z1|Y |22>U ]‖∞. Set Sp−1 = {θ ∈ R
p : |θ |2 = 1}. We have

∥∥E[Z1|Y |22>U ]∥∥∞ = max
θ∈Sp−1

{
E
[
θ�Zθ1|Y |22>U

]}

≤
√

max
θ∈Sp−1

E
[(

θ�Zθ
)2]√

P
(|Y |22 > U

)
.

Fact 2. We have

max
θ∈Sp−1

E
[(

θ�Zθ
)2]≤ 16

c2
1

δ2‖�‖2∞.

The proof of Fact 2 can be found in Section 5.4 below. Next, we note that as a by product of
the proof of Fact 1, we also have that

P
(|Y |22 > U

)≤ e−t .

Combining the last three displays, we get that

∥∥E[Z1|Y |22>U ]∥∥∞ ≤ 4

c1
δ‖�‖∞e−t/2. (5.14)

We now want to apply the non-commutative Bernstein inequality to ‖ 1
n

∑n
i=1(Z̃i − E[Z̃i])‖∞.

To this end, we need to study the quantities ‖E(Z̃ − E[Z̃])2‖∞ and ‖Z̃ − E[Z̃]‖∞.
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Fact 3. We have

∥∥E
(
Z̃ − E[Z̃])2∥∥∞ ≤ C

c2
1

δ2 tr(�)‖�‖∞, and
∥∥Z̃ − E[Z̃]∥∥∞ ≤ 2U, (5.15)

where C > 0 is an absolute constant.

The proof of Fact 3 can be found in Section 5.5 below. Combining (5.15) with Proposition 2,
we get for any t > 0

P

(∥∥∥∥∥1

n

n∑
i=1

(
Z̃i − E[Z̃i]

)∥∥∥∥∥∞
≥ t1

)
≤ e−t , (5.16)

where

t1 = C

c1
max

{
δ
√‖�‖∞ tr(�)

√
t + log(2p)

n
, tr(�)(c1δ + t + logn)

t + log(2p)

n

}

= C

c1
δ‖�‖∞ max

{√
r(�)

t + log(2p)

n
, r(�)(c1δ + t + logn)

t + log(2p)

δn

}

for some numerical constant C > 0.
For any t > 1, we set

η = 4

c1
δ‖�‖∞e−t/2, and t2 = t1 + η.

We have for any t > 0 that

P
(∥∥A(δ)

n − A(δ)
∥∥∞ ≥ t2

)
≤ P

({∥∥A(δ)
n − A(δ)

∥∥∞ ≥ t2
}∩

n⋂
i=1

{|Yi |22 ≤ U
})+ P

(
n⋃

i=1

{|Yi |22 > U
})

≤ P

(∥∥∥∥∥1

n

n∑
i=1

(
Z̃i − E[Z̃i]

)∥∥∥∥∥∞
≥ t1 + (

η − ∥∥E[Z1|Y |22>U ]∥∥∞
) ∣∣∣∣

n⋂
i=1

{|Yi |22 ≤ U
})

+ P

(
n⋃

i=1

{|Yi |22 > U
})

≤ P

(∥∥∥∥∥1

n

n∑
i=1

(
Z̃i − E[Z̃i]

)∥∥∥∥∥∞
≥ t1

)
+ P

(
n⋃

i=1

{|Yi |22 > U
})

≤ 2e−t ,

where we have used (5.14), Fact 1 and (5.16).
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Next, we have for any t ≥ logn that

η = 4

c1
δ‖�‖∞e−t/2 ≤ 4

c1
δ‖�‖∞

1√
n

≤ 4

c1
δ‖�‖∞

√
r(�)

(t + log(2p))

n
,

since r(�) = tr(�)/‖�‖∞ ≥ 1. Thus, we have for any t ≥ 1 ∨ logn that t2 ≤ t3 with

t3 = C′

c1
δ‖�‖∞ max

{√
r(�)

t + log(2p)

n
, r(�)(c1δ + t + logn)

t + log(2p)

δn

}

for some sufficiently large numerical constant C′ > 0. Up to a rescaling of the constants, we get
the result with probability at least 1 − e−t . �

5.3. Proof of Fact 1

In view of Assumption 1, we have

∥∥|Y |22
∥∥

ψ1
≤

p∑
j=1

∥∥δj

(
X(j)

)2∥∥
ψ1

≤ 2
p∑

j=1

∥∥X(j)
∥∥2

ψ2
≤ 2c−1

1 tr(�).

Note also that E[|Y |22] = δ tr(�). We apply Proposition 1 to get for any 1 ≤ i ≤ n and t ′ > 0 that

P

(
|Yi |22 > tr(�)

(
δ + C

c1
max

(√
t ′, t ′

)))≤ e−t ′ ,

where C > 0 is a numerical constant. Next, combining the above display with a union bound
argument, we get for any t ′ ≥ 1

P

(
max

1≤i≤n
|Yi |22 > tr(�)

(
δ + C

c1
t ′
))

≤ ne−t ′ .

Replacing now t ′ = t + logn, we get for any t ≥ 1

P

(
max

1≤i≤n
|Yi |22 ≤ tr(�)

(
δ + C

c1
(t + logn)

))
≥ 1 − e−t ,

where C > 0 is an absolute constant. �

5.4. Bounding of the moment E[(θ�Zθ)2]
Set Z̄ = XX� − diag(XX�). For any θ = (θ(1), . . . , θ (p))� ∈ R

p and δ1, . . . , δp ∈ {0,1}p , we
set θδ = (δ1θ

(1), . . . , δpθ(p))�. Note that

θ�Zθ = θ�[YY� − diag
(
YY�)]θ = θ�

δ Z̄θδ.
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Recall that Sp−1 = {θ ∈ R
p : |θ |2 = 1}. We have for any θ ∈ Sp−1 that

(
θ�
δ Z̄θδ

)2 =
(∑

j �=k

δj δkθ
(j)θ (k)X(j)X(k)

)2

=
∑

j1,j2:j1 �=j2

δj1δj2

(
θ(j1)

)2(
θ(j2)

)2(
X(j1)

)2(
X(j2)

)2

+
∑

j1,j2,j3 distinct

δj1δj2δj3

(
θ(j1)

)2
θ(j2)θ (j3)

(
X(j1)

)2
X(j2)X(j3)

+
∑

j1,j2,j3,j4 distinct

δj1δj2δj3δj4θ
(j1)θ (j2)θ (j3)θ (j4)X(j1)X(j2)X(j3)X(j4).

Taking the expectation w.r.t. to δ1, . . . , δp , we get

Eδ

[(
θ�
δ Z̄θδ

)2] = δ2
∑

j1,j2:j1 �=j2

(
θ(j1)

)2(
θ(j2)

)2(
X(j1)

)2(
X(j2)

)2

+ δ3
∑

j1,j2,j3 distinct

(
θ(j1)

)2
θ(j2)θ (j3)

(
X(j1)

)2
X(j2)X(j3)

+ δ4
∑

j1,j2,j3,j4 distinct

θ(j1)θ (j2)θ (j3)θ (j4)X(j1)X(j2)X(j3)X(j4).

Set

A =
∑

j1,j2:j1 �=j2

(
θ(j1)

)2(
θ(j2)

)2(
X(j1)

)2(
X(j2)

)2
,

B =
∑

j1,j2,j3 distinct

(
θ(j1)

)2
θ(j2)θ (j3)

(
X(j1)

)2
X(j2)X(j3),

C =
∑

j1,j2,j3,j4 distinct

θ(j1)θ (j2)θ (j3)θ (j4)X(j1)X(j2)X(j3)X(j4).

We have

Eδ

[(
θ�
δ Z̄θδ

)2] = δ2A + δ3B + δ4C

= (
δ2 − δ4)A + (

δ3 − δ4)B + δ4(A + B + C)
(5.17)

= [
(δ2 − δ4 − (

δ3 − δ4)]A + (
δ3 − δ4)(A + B) + δ4(A + B + C)

= δ2(1 − δ)A + δ3(1 − δ)(A + B) + δ4(A + B + C).
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Next, we note that

A + B + C = (
θ�Z̄θ

)2 =
((

θ�X
)2 −

∑
j

(
θ(j)X(j)

)2
)2

≤ 2
(
θ�X

)4 + 2

(∑
j

(
θ(j)

)2(
X(j)

)2
)2

≤ 2
(
θ�X

)4 + 2
∑
j

(
θ(j)

)2(
X(j)

)4
,

where the last inequality comes from convexity of x → x2.
Taking now the expectation w.r.t. X, we get for any θ ∈ Sp−1 that

EX[A + B + C] ≤ 2EX

[(
θ�X

)4]+ 2
∑
j

(
θ(j)

)2
EX

[(
X(j)

)4]

≤ 8
∥∥θ�X

∥∥4
ψ2

+ 8
∑
j

(
θ(j)

)2∥∥X(j)
∥∥4

ψ2

(5.18)

≤ 8

c2
1

(
EX

[(
θ�X

)2])2 + 8

c2
1

∑
j

(
θ(j)

)2(
EX

[(
X(j)

)2])2

≤ 16

c2
1

‖�‖2∞,

where we have used (2.1) and Assumption 1.
We now treat A + B similarly. We have

A + B =
∑
j1

(
θ(j1)

)2(
X(j1)

)2
( ∑

j2,j3:j2 �=j1,j3 �=j1

θ(j2)θ (j3)X(j2)X(j3)

)

=
∑
j1

(
θ(j1)

)2(
X(j1)

)2(
θ�X − θ(j1)X(j1)

)2

≤ 2
∑
j1

(
θ(j1)

)2(
X(j1)

)2(
θ�X

)2 + 2
∑
j1

(
θ(j1)

)4(
X(j1)

)4
.

Next, we note that

EX

[(
X(j1)

)2(
θ�X

)2]≤
√

EX

[(
X(j1)

)4]√
EX

[(
θ�X

)4]≤ 4

c2
1

‖�‖2∞.

Combining the last two displays, we get

EX[A + B] ≤ 16

c2
1

‖�‖2∞. (5.19)
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We now deal with A. We have

A ≤
(∑

j1

(
θ(j1)

)2(
X(j1)

)2
)2

−∑
j1

(
θ(j1)

)4(
X(j1)

)4 ≤∑
j1

(
θ(j1)

)2(
X(j1)

)4
.

Taking the expectation w.r.t. X, we get

EX[A] ≤ EX

(∑
j1

(
θ(j1)

)2(
X(j1)

)4
)

≤ 4

c2
1

‖�‖2∞, (5.20)

by convexity of x → x2.
Combining (5.17)–(5.20), we get

max
θ∈Sp−1

E
[(

θ�
δ Z̄θδ

)2]≤ 16

c2
1

δ2‖�‖2∞
(
1 − δ + δ(1 − δ) + δ2)= 16

c2
1

δ2‖�‖2∞.

5.5. Proof of Fact 3

We note first that∥∥E
(
Z̃ − E[Z̃])2∥∥∞ = ∥∥E

[
Z̃2]− (

E[Z̃])2∥∥∞ ≤ max
{∥∥E

[
Z̃2]∥∥∞,

∥∥E[Z̃]∥∥2
∞
}
. (5.21)

Next, we have ∥∥E[Z̃]∥∥2
∞ = ∥∥E[Z1|Y |22≤U ]∥∥2

∞

= max
θ∈Sp−1

{
E
[
θ�Zθ1|Y |22≤U

]}2

(5.22)
≤ max

θ∈Sp−1
E
[(

θ�Zθ
)2]

P
(|Y |22 ≤ U

)

≤ max
θ∈Sp−1

E
[(

θ�Zθ
)2]≤ 16

c2
1

δ2‖�‖2∞,

in view of Fact 2.
We now treat ‖E[Z̃2]‖∞. Note first that ‖E[Z̃2]‖∞ = maxθ∈Sp−1 E[θ�Z2θ1|Y |22≤U ] ≤

‖E[Z2]‖∞. Next, we set V = Z + δ diag(X ⊗ X) and W = δ diag(X ⊗ X). Some easy alge-
bra yields that ∥∥E

[
Z2]∥∥∞ = ∥∥E

[
V 2]+ E

[
W 2]− E[V W ] − E[WV ]∥∥∞

= max
θ∈Sp−1

{
E
[
θ�V 2θ

]+ E
[
θ�W 2θ

]+ 2E
[
θ�V Wθ

]}
.

Next, we have for any θ ∈ Sp−1 that

E
[
θ�V Wθ

]≤ E
[√

θ�V 2θ
√

θ�W 2θ
]≤

√
E
[
θ�V 2θ

]√
E
[
θ�W 2θ

]
,
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where we have used Cauchy–Schwarz’s inequality twice w.r.t. to the scalar product in R
p first

and then w.r.t. E. Combining the last two displays, we get that

∥∥E
[
Z2]∥∥∞ ≤ max

θ∈Sp−1

{
E
[
θ�V 2θ

]+ E
[
θ�W 2θ

]+ 2
√

E
[
θ�V 2θ

]√
E
[
θ�W 2θ

]}
≤ max

θ∈Sp−1

(√
E
[
θ�V 2θ

]+
√

E
[
θ�W 2θ

])2

(5.23)

≤
(√

max
θ∈Sp−1

E
[
θ�V 2θ

]+
√

max
θ∈Sp−1

E
[
θ�W 2θ

])2

≤
(√∥∥EV 2

∥∥∞ +
√∥∥EW 2

∥∥∞
)2

.

We now treat ‖E[V 2]‖∞ and ‖E[W 2]‖∞ separately. Denote by Eδ and EX the expectations
w.r.t. (δ1, . . . , δp) and X respectively. We have E[V 2] = EXEδ[V 2].

For any 1 ≤ k ≤ p, we have

(
V 2)

k,k
= δ2(X(k)

)4 +
p∑

i=1:i �=k

δiδk

(
X(i)

)2(
X(k)

)2
.

Taking the expectation w.r.t. Eδ , we get

Eδ

[(
V 2)

k,k

] = δ2(X(k)
)4 + δ2

p∑
i=1:i �=k

(
X(i)

)2(
X(k)

)2

= δ2(X(k)
)2|X|22.

Now for any 1 ≤ k, l ≤ p with k �= l, we have

(
V 2)

k,l
= δδkδl

(
X(k)

)3
X(l) + δδkδlX

(k)
(
X(l)

)3 +
p∑

j=1:j �=k,j �=l

δj δkδl

(
X(j)

)2
X(k)X(l).

Taking the expectation w.r.t. Eδ , we get

Eδ

[(
V 2)

k,l

] = δ3[(X(k)
)3

X(l) + X(k)
(
X(l)

)3]+ δ3
p∑

j=1:j �=k,j �=l

(
X(j)

)2
X(k)X(l)

= δ3X(k)X(l)|X|22.
Thus, we get

(
EδV

2)
k,l

=
{

δ2
(
X(k)

)2|X|22 if k = l,
δ3X(k)X(l)|X|22 otherwise.
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Consequently, we get for any θ = (θ(1), . . . , θ (p))� ∈ Sp−1 that

E
[
θ�V 2θ

] = δ2
EX

[
p∑

k=1

(
θ(k)

)2(
X(k)

)2|X|22 + δ

p∑
k,l=1:k �=l

θ (k)θ (l)X(k)X(l)|X|22
]

= δ2
EX

[
(1 − δ)

p∑
k=1

(
θ(k)

)2(
X(k)

)2|X|22 + δ

p∑
k,l=1

θ(k)θ (l)X(k)X(l)|X|22
]

(5.24)

= δ2

(
(1 − δ)

p∑
k=1

(
θ(k)

)2
EX

[|X|22
(
X(k)

)2]+ δEX

[|X|22
(
X�θ

)2])

≤ δ2
√

EX|X|42
(

(1 − δ)

p∑
k=1

(
θ(k)

)2
√

EX

[(
X(k)

)4]+ δ

√
EX

[(
X�θ

)4])
,

where we have applied Cauchy–Schwarz’s inequality.
We have again by Cauchy–Schwarz’s inequality and Assumption 1 that

EX

[|X|42
] =

p∑
j=1

E
[(

X(j)
)4]+

p∑
j,k=1:j �=k

E
[(

X(j)
)2(

X(k)
)2]

≤
p∑

j=1

E
[(

X(j)
)4]+

p∑
j,k=1:j �=k

√
E
[(

X(j)
)4]√

E
[(

X(k)
)4]

≤
(

p∑
j=1

√
E
[(

X(j)
)4])2

≤ 4

(
p∑

j=1

∥∥X(j)
∥∥2

ψ2

)2

≤ 4c−2
1

(
tr(�)

)2
,

where we have used (2.1).
The same argument gives

√
EX

[(
X�θ

)4]≤ 2
∥∥〈X,θ〉∥∥2

ψ2
≤ 2c−1

1 ‖�‖∞ ∀θ ∈ Sp−1,

and √
EX

[(
X(k)

)4]≤ 2
∥∥X(k)

∥∥2
ψ2

≤ 2c−1
1 �k,k, 1 ≤ k ≤ p.
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Combining the three above displays with (5.24), we get

∥∥E
[
V 2]∥∥∞ ≤ Cc−1

1 δ2 tr(�)
[
(1 − δ) max

1≤k≤p
(�k,k) + δ‖�‖∞

]
(5.25)

≤ 4c−2
1 δ2 tr(�)‖�‖∞,

and ∥∥E
[
W 2]∥∥∞ = δ2 max

1≤k≤p
EX

[(
X(k)

)4]≤ 4c−2
1 δ2 max

1≤k≤p

(
�2

k,k

)≤ 4c−2
1 δ2 tr(�)‖�‖∞.

Combining the two above displays with (5.23), we get∥∥E
[
Z2]∥∥∞ ≤ 16c−2

1 δ2 tr(�)‖�‖∞.

Combining the above display with (5.21) and (5.22), we get that

E
[(

Z̃ − E[Z̃])2]≤ 16

c2
1

δ2‖�‖∞ tr(�).

Next, we treat ‖Z̃ − E[Z̃]‖∞. We have∥∥Z̃ − E[Z̃]∥∥∞ ≤ ‖Z̃‖∞ + ∥∥E[Z̃]∥∥∞ ≤ ‖Z̃‖∞ + E
[‖Z̃‖∞

]
≤ |Y |221|Y |22≤U + E

[|Y |221|Y |22≤U

]≤ 2U,

where we have used that ‖Z‖∞ ≤ max{‖Y ⊗ Y‖∞,‖diag(Y ⊗ Y)‖∞} ≤ |Y |22. �

5.6. Proof of Lemma 1

In view of Proposition 3, we have on an event A of probability at least 1 − 1
2p

that

‖�̃n − �‖∞ ≤ C
‖�‖∞

c1

√
r(�) log 2p

δ2n
. (5.26)

We assume further that (3.6) is satisfied with a sufficiently large constant c so that we have, in
view of (3.4) and (3.5), on the same event A that

‖�̃n − �‖∞ ≤ ‖�‖∞
2

and ∣∣tr(�̃n) − tr(�)
∣∣≤ tr(�)

2
.

We immediately get on the event A that

1
2‖�‖∞ ≤ ‖�̃n‖∞ ≤ 3

2‖�‖∞,
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and

1
2 tr(�) ≤ tr(�̃n) ≤ 3

2 tr(�).

Combining these simple facts with (5.26), we get the result.

5.7. Proof of Theorem 2

This proof uses standard tools of the minimax theory (cf., e.g., [32]). However, as for Proposi-
tion 3, the proof with missing observations (δ < 1) is significantly more technical as compared
to case of full observations (δ = 1). In particular, the control of the Kullback–Leibler divergence
requires a precise description of the conditional distributions of the random variables Y1, . . . , Yn

given the masked variables δ1, . . . , δn. To our knowledge, there exists no minimax lower bound
result for statistical problem with missing observations in the literature.

Proof of Theorem 2. Set γ = a/
√

δ2n where a > 0 is a sufficiently small absolute constant.
Define also the set of p × p matrices {Ek,l = ek ⊗ el,1 ≤ k, l ≤ p} where e1, . . . , ep is the
canonical basis of R

p .
We consider first the case r ≥ 2. Define

N = {Ek,l + El,k,1 ≤ k ≤ r − 1, k + 1 ≤ l ≤ r}.
Set Bk,l = Ek,l + El,k for any 1 ≤ k ≤ r − 1, k + 1 ≤ l ≤ r . Consider the associated set of
symmetric matrices

B(N ) =

⎧⎪⎨
⎪⎩�ε =

⎛
⎜⎝Ir + γ

r−1∑
k=1

r∑
l=k+1

εk,lBk,l O

O O

⎞
⎟⎠ , ε = (εk,l)k,l ∈ {0,1}r(r−1)/2

⎫⎪⎬
⎪⎭ .

Note that any matrix �ε ∈ B(N ) is positive-semidefinite if 0 < a < 1 since we have by assump-
tion ∥∥∥∥∥γ

r−1∑
k=1

r∑
l=k+1

εk,lBk,l

∥∥∥∥∥∞
≤ γ r = a

√
r2

δ2n
≤ a.

By construction, any element of B(N ) as well as the difference of any two elements of B(N )

is of rank exactly r . Consequently, B(N ) ⊂ Cr since r(�ε) ≤ rank(�ε) ≤ r for any �ε ∈ B(N ).
Note also that for any �ε ∈ B(N ), we have tr(�ε) = r and 0 < 1−a ≤ ‖�ε‖∞ ≤ 1+a provided
that 0 < a < 1 and consequently r/(1 + a) ≤ r(�ε) ≤ r/(1 − a). Indeed, we have

‖�ε‖∞ ≤ 1 + γ

∥∥∥∥∥
r−1∑
k=1

r∑
l=k+1

εk,lBk,l

∥∥∥∥∥∞
≤ 1 + γ r ≤ 1 + a,

in view of the condition n ≥ δ−2r2. A similar reasoning gives the lower bound.
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Denote by A0 the p × p block matrix with first block equal to Ir . Varshamov–Gilbert’s
bound (cf. Lemma 2.9 in [32]) guarantees the existence of a subset A0 ⊂ B(N ) with cardi-
nality Card(A0) ≥ 2r(r−1)/16 + 1 containing A0 and such that, for any two distinct elements �ε

and �ε′ of A0, we have

‖�ε − �ε′ ‖2
2 ≥ γ 2 r(r − 1)

8
≥ γ 2 r2

16
= a2

16

r2

δ2n
(5.27)

≥ (1 − a)a2

16(1 + a)2
‖�ε̃‖2∞

r(�ε̃)

δ2n
rank(�ε̃) ∀�ε̃ ∈ A0.

Let X1, . . . ,Xn ∈ R
p be i.i.d. N(0,�ε) with �ε ∈ A0. For the sake of brevity, we set � = �ε .

Recall that δ1, . . . , δn are random vectors in R
p whose entries δi,j are i.i.d. Bernoulli entries with

parameter δ independent from (X1, . . . ,Xn) and that the observations Y1, . . . , Yn satisfy Y
(j)
i =

δijX
(j)
i . Denote by P� the distribution of (Y1, . . . , Yn) and by P

(δ)
� the conditional distribution

of (Y1, . . . , Yn) given (δ1, . . . , δn). Next, we note that, for any 1 ≤ i ≤ n, the conditional random
variables Yi | δi are independent Gaussian vectors N(0,�(δi )) where

(
�(δi)

)
j,k

=
{

δi,j δi,k�j,k if j �= k,
δi,j�j,j otherwise. (5.28)

Thus, we have P
(δ)
� =⊗n

i=1 P�(δi ) . Denote respectively by Pδ and Eδ the probability distribu-
tion of (δ1, . . . , δn) and the associated expectation, and by Eδi

the expectation w.r.t. δi for any

1 ≤ i ≤ n. We also denote by E� and E
(δ)
� the expectation and conditional expectation associated

respectively, with P� and P
(δ)
� .

Next, the Kullback–Leibler divergences K(PA0 ,P�) between PA0 and P� satisfies

K(PA0 ,P�) = EA0 log

(
dPA0

dP�

)
= EA0 log

(d(Pδ ⊗ P
(δ)
A0

)

d(Pδ ⊗ P
(δ)
� )

)
= EδE

(δ)
A0

log

(dP
(δ)
A0

dP
(δ)
�

)
(5.29)

= EδK
(
P

(δ)
A0

,P
(δ)
�

)=
n∑

i=1

Eδi
K(P

A
(δi )

0
,P�(δi ) ).

Using that Yi | δi ∼ N(0,�(δi )) with �(δi) defined in (5.28), we get for any 1 ≤ i ≤ n, any
� ∈ A0 and any realization δi(ω) ∈ {0,1}p that

1. P�(δi (ω)) � P
A

(δi (ω))

0
and hence K(P

A
(δi (ω))

0
,P�(δi (ω)) ) < ∞.

2. P�(δi (ω)) and P
A

(δi (ω))

0
are supported on a di(ω)-dimensional subspace of R

p where di =∑r
j=1 δi,j ∼ Bin(r, δ).

Define Ji = {j : δi,j = 1,1 ≤ j ≤ r}. Define the mapping Pi : Rp → R
di as follows Pi(x) = xJi

where for any x = (x(1), . . . , x(p))� ∈ R
p , xJi

∈ R
di is obtained by keeping only the components

x(k) with their index k ∈ Ji . We denote by P ∗
i : Rdi → R

p the right inverse of Pi .
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We note that PiA
(δi )
0 P ∗

i = Idi
and

Pi�
(δi)P ∗

i = Idi
+ γ

r−1∑
k=1

r∑
l=k+1

εk,lPiBk,lP
∗
i 1k∈Ji

1l∈Ji

= Idi
+ Wi.

Thus, we get that

K(P
A

(δi )

0
,P�(δi ) ) = K(PIdi

,PIdi
+Wi

)

= 1

2
tr(Idi

+ Wi) − 1

2
log

(
det(Idi

+ Wi)
)− di

2
.

Denote by λ1, . . . , λdi
the eigenvalues of Wi . Note that

∑di

j=1 λj = tr(Wi) = 0. We get, using the

inequality log(1 + x) ≥ x − x2/2 for any x > 0, that

K(P
A

(δi )

0
,P�(δi ) ) ≤ 1

4

di∑
j=1

λ2
j

≤ 1

4
‖Wi‖2

2
(5.30)

≤ 1

4
γ 2

r−1∑
k=1

r∑
l=k+1

‖Bk,l‖2
21k∈Ji

1l∈Ji

≤ 1

2
γ 2(d2

i − di

)
.

Taking the expectation w.r.t. to δi in the above display, we get for any 1 ≤ i ≤ n that

Eδi
K(P

A
(δi )

0
,P�(δi ) ) ≤ 1

2γ 2
Eδi

(
d2
i − di

)≤ 1
2γ 2δ2r(r − 1),

since di ∼ Bin(r, δ). Combining the above display with (5.29), we get

K(PA0 ,P�) ≤ n

2
γ 2δ2r(r − 1) = n

2
a2 1

δ2n
δ2r(r − 1) ≤ a2

2
r(r − 1).

Thus, we deduce from the above display that the condition

1

Card(A0) − 1

∑
�∈A0\{A0}

K(PA0 ,P�) ≤ α log
(
Card

(
A0)− 1

)
(5.31)

is satisfied for any α > 0 if a > 0 is chosen as a sufficiently small numerical constant depending
on α. In view of (5.27) and (5.31), (4.1) now follows by application of Theorem 2.5 in [32].
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The lower bound (4.2) follows from (4.1) by the following simple argument. Consider the set
of matrices A0. For any two distinct matrices �1,�2 of A0, we have

‖�1 − �2‖∞ ≥
√

(1 − a)a2

16(1 + a)2
‖�ε̃‖∞

√
r(�ε̃)

δ2n
∀�ε̃ ∈ A0. (5.32)

Indeed, if (5.32) does not hold, we get

‖�1 − �2‖2
2 <

(1 − a)a2

16(1 + a)2
‖�ε̃‖2∞

r(�ε̃)

δ2n
rank(�ε̃) ∀�ε̃ ∈ A0,

since rank(�1 − �2) ≤ r by construction of A0. This contradicts (5.27).
Next, (5.31) is satisfied for any α > 0 if a > 0 is chosen as a sufficiently small numerical

constant depending on α.
Combining (5.32) with (5.31) and Theorem 2.5 in [32] gives the result.
The case r = 1 can be treated similarly and is actually easier. Indeed if r(�) = 1, then we

have tr(�) = ‖�‖∞ and rank(�) = 1. Consequently, we can derive the lower bound by testing
between the two hypothesis

�0 =
(

1 O

O O

)
and �1 =

(
1 + γ O

O O

)
,

where �0 and �1 are p × p covariance matrices with only one non-zero component on the
first diagonal entry. For these covariance matrices, we have tr(�0) = ‖�0‖∞ = 1 and tr(�1) =
‖�1‖∞ = 1 + γ ≤ 2. Thus, we have

‖�0 − �1‖2∞ = ‖�0 − �1‖2
2 ≥ a2

δ2n
≥ c‖�i‖2∞

r(�i)

δ2n
, i = 0,1

for some absolute constant c > 0. The rest of the proof is identical to the case r ≥ 2. �

5.8. Computation of E[�(δ)
n ] and (1.3)

Recall that Y = (δ1X
(1), . . . , δpX(p))�. We have

(Y ⊗ Y)j,k =
{

δj

(
X(j)

)2 if j = k,
δj δkX

(j)X(k) otherwise.

Set �(δ) = E[�(δ)
n ] = E[Y ⊗ Y ]. We have

�
(δ)
j,k =

{
δ�j,j if j = k,
δ2�j,k otherwise.
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Next, we have

1

δ
diag

(
�(δ)

)+ 1

δ2

(
�(δ) − diag

(
�(δ)

)) = 1

δ
δ diag(�) + 1

δ2
δ2(� − diag(�)

)
= diag(�) + (

� − diag(�)
)= �.
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