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The paper suggests a simple method of deriving minimax lower bounds to the accuracy of statistical
inference on heavy tails. A well-known result by Hall and Welsh (Ann. Statist. 12 (1984) 1079–1084)
states that if α̂n is an estimator of the tail index αP and {zn} is a sequence of positive numbers such that
supP∈Dr

P(|α̂n −αP | ≥ zn) → 0, where Dr is a certain class of heavy-tailed distributions, then zn � n−r .
The paper presents a non-asymptotic lower bound to the probabilities P(|α̂n −αP | ≥ zn). We also establish
non-uniform lower bounds to the accuracy of tail constant and extreme quantiles estimation. The results
reveal that normalising sequences of robust estimators should depend in a specific way on the tail index and
the tail constant.
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1. Introduction

A growing number of publications is devoted to the problem of statistical inference on heavy-
tailed distributions. Such distributions naturally appear in finance, meteorology, hydrology, tele-
traffic engineering, etc. [4,13]. In particular, it is widely accepted that frequent financial data
(e.g., daily and hourly log-returns of share prices, stock indexes and currency exchange rates)
often exhibits heavy tails [4,5,10,11], while less frequent financial data is typically light-tailed.
The heaviness of a tail of the distribution appears to be responsible for extreme movements of
stock indexes and share prices. The tail index indicates how heavy the tail is; extreme quantiles
are used as measures of financial risk [4,11]. The need to evaluate the tail index and extreme
quantiles stimulated research on methods of statistical inference on heavy-tailed data.

The distribution of a random variable (r.v.) X is said to have a heavy right tail if

P(X ≥ x) = L(x)x−α (α > 0), (1)

where the (unknown) function L is slowly varying at infinity:

lim
x→∞L(xt)/L(x) = 1 (∀t > 0).

We denote by H the non-parametric class of distributions obeying (1).
The tail index α is the main characteristic describing the tail of a distribution. If L(x) =

c + o(1), then c is called the tail constant.
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Let F(·) = P(X < ·) denote the distribution function (d.f.). Obviously, the tail index is a func-
tional of the distribution function:

αF ≡ αP = − lim
x→∞

ln P(X ≥ x)

lnx
. (2)

If L(x) tends to a constant (say, cF ) as x → ∞, then the tail constant is also a functional of F :

cF ≡ cP = lim
x→∞xαF P(X ≥ x).

The statistical inference on a heavy-tailed distribution is straightforward if the class of un-
known distributions is assumed to be a regular parametric family. The drawback of the paramet-
ric approach is that one usually cannot reliably check whether the unknown distribution belongs
to a chosen parametric family.

A lot of attention during the past three decades has been given to the problem of reliable
inference on heavy tails without parametric assumptions. The advantage of the non-parametric
approach is that a class of unknown distributions, P , is so large that the problem of testing the
hypothesis that the unknown distribution belongs to P does not arise. The disadvantage of the
non-parametric approach is that virtually no question concerning inference on heavy tails can be
given a simple answer. In particular, the problem of establishing a lower bound to the accuracy
of tail index estimation remained open for decades.

A lower bound to the accuracy of statistical inference sets a benchmark against which the
accuracy of any particular estimator can be compared. When looking for an estimator ân of a
quantity of interest, aP , where P ∈ P is the unknown distribution, P is the class of distributions
and aP is a functional of P, one often would like to choose an estimator that minimises a loss
function uniformly in P (e.g., supP∈P EP �(|ân − aP |), where � is a particular loss function).
A lower bound to supP∈P EP �(|ân − aP |) follows if one can establish a lower bound to

sup
P∈P

P
(|ân − aP | ≥ u

)
(u > 0).

The first step towards establishing a lower bound to the accuracy of tail index estimation was
made by Hall and Welsh [7], who proved the following result. Note that the class H of heavy-
tailed distributions is too “rich” for meaningful inference, and one usually deals with a subclass
of H, imposing certain restrictions on the asymptotics of L(·). Hall and Welsh dealt with the
class Db,A ≡ Db,A(α0, c0, ε) of distributions on (0;∞) with densities

f (x) = cαx−α−1(1 + u(x)
)
, (3)

where supx>0 |u(x)|xbα ≤ A, |α − α0| ≤ ε, |c − c0| ≤ ε. Note that the range of possible values
of the tail index is restricted to interval [α0 − ε;α0 + ε]. Let

α̂n ≡ α̂n(X1, . . . ,Xn)

be an arbitrary tail index estimator, where X1, . . . ,Xn are independent and identically distributed
(i.i.d.) random variables, and let {zn} be a sequence of positive numbers. If

lim
n→∞ sup

F∈Db,A

PF

(|α̂n − αF | ≥ zn

) = 0 (∀A > 0), (4)
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then

zn � n−b/(2b+1) (n → ∞)

(to be precise, Hall and Welsh [7] dealt with the random variables Yi = 1/Xi, where Xi are
distributed according to (3)).

Beirlant et al. [1] have a similar result for a larger class P of distributions but require the
estimators are uniformly consistent in P . Pfanzagl [12] has established a lower bound in terms
of a modulus of continuity related to the total variation distance dTV. Let D+

b be the class of
distributions with densities (3) such that supx>0 |u(x)|xαb < ∞, α > 0, and set

sn(ε,P0) = sup
P∈Pn,ε

|αP − αP0 |,

where αP is the tail index of distribution P and Pn,ε = {P ∈ D+
b : dTV(P n

0 ;P n) ≤ ε} is a neigh-
borhood of P0 ∈ D+

b . Pfanzagl has showed that neither estimator can converge to α uniformly in
Pn,ε with the rate better than sn(ε,P0), and

inf
0<ε<1

ε−2b/(1+2b) lim inf
n→∞ nb/(1+2b)sn(ε,P0) > 0.

Donoho and Liu [2] present a lower bound to the accuracy of tail index estimation in terms of
a modulus of continuity �A(n, ε). However, they do not calculate �A(n, ε). The claim that a
particular heavy-tailed distribution is stochastically dominant over all heavy-tailed distributions
with the same tail index appears without proof. Assuming that the range of possible values of the
tail index is restricted to an interval of fixed length, Drees [3] derives the asymptotic minimax
risk for affine estimators of the tail index and indicates an approach to numerical computation of
the asymptotic minimax risk for non-affine ones.

The paper presents a simple method of deriving minimax lower bounds to the accuracy of non-
parametric inference on heavy-tailed distributions. The results are non-asymptotic, the constants
in the bounds are shown explicitly, the range of possible values of the tail index is not restricted
to an interval of fixed length. The information functional seems to be found for the first time, as
well as the lower bound to the accuracy of extreme quantiles estimation.

The results indicate that the traditional minimax approach may require revising. The classical
approach suggests looking for an estimator ân that minimises, say,

sup
P∈P

EP |ân − aP |

(cf. [8,9,14]), while our results suggest looking for an estimator â∗
n that minimises

sup
P∈P

gP EP

∣∣â∗
n − aP

∣∣,

where gP is the “information functional” (an analogue of Fisher’s information). Theorems 1–4
reveal the information functionals and indicate that the normalising sequence of a robust estima-
tor should depend in a specific way on the characteristics of the unknown distribution.
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2. Results

In the sequel, we deal with the non-parametric class

H(b) =
{
P ∈ H: sup

x>K∗(P )

∣∣c−1
F xαF P (X ≥ x) − 1

∣∣xbαF < ∞
}

(5)

of distributions on (0;∞), where b > 0 and K∗(P ) is the left end-point of the distribution. If
L(X) ∈ H(b), then

P(X ≥ x) = cF x−αF
(
1 + O

(
x−bαF

))
(x → ∞).

The class H(b) is larger than D+
b ; the range of possible values of the tail index is not restricted

to an interval of fixed length. Below, given a distribution function (d.f.) Fi , we put

aFi
= 1/αFi

, r = b/(1 + 2b),

Ei means the mathematical expectation with respect to Fi and Pi is the corresponding distribu-
tion. We set K ≡ Kα,b,c = α−2r c−αre−1(cαb ∧ e−2b).

Theorem 1. For any α > 0, c > 0, any tail index estimator α̂n and any estimator ân of index
a = 1/α there exist d.f.s F0,F1 ∈ H(b) such that αF0 = α, cF0 = c−α, and

max
i∈{0;1}

Pi

(|α̂n/αFi
− 1|αr/b

Fi
cr
Fi

nr ≥ v/2
) ≥ (

1 − v1/r/8n
)2n

/4, (6)

max
i∈{0;1}

Pi

(|ân/aFi
− 1|a−r/b

Fi
cr
Fi

nr ≥ v/2
) ≥ (

1 − v1/r/8n
)2n

/4 (7)

as n > 4 max{α2c−2αb; c2αα−2/b} and v ∈ [0;Knr ].

Note that if maxi∈{0;1} Pi (|α̂n/αFi
−1| ≥ zn) → 0 as n → ∞, then for any C > 0 we have zn ≥

Cn−r for all large enough n, yielding zn � n−r . Thus, the Hall–Welsh result follows from (6).
Theorem 1 shows that the natural normalising sequence for α̂n/αF − 1 is n−rα

−r/b
F c−r

F . The

information functional gF = α
r/b
F cr

F plays here the same role as Fisher’s information function in
the Fréchet–Rao–Cramér inequality.

Theorem 1 yields also minimax lower bounds to the moments of |α̂n/αFi
− 1|. In particular,

there holds

Corollary 2. For any α > 0, c > 0 there exist distribution functions F0,F1 ∈ H(b) such that
αF0 = α, cF0 = c−α, and for any tail index estimator α̂n

max
i∈{0;1}

α
r/b
Fi

cr
Fi

EFi
|α̂n/αFi

− 1|nr ≥ 4r r�(r)/8 + o(1). (8)

The result holds if α
r/b
Fi

cr
Fi

EFi
|α̂n/αFi

− 1| in (8) is replaced with a
−r/b
Fi

cr
Fi

EFi
|ân/aFi

− 1|.
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Let Hn(b) ⊂ H(b) be a class of d.f.s such that infF∈Hn(b) KαF ,b,cF
nr → ∞ as n → ∞. Then

for any estimator α̂n

sup
F∈Hn(b)

α
r/b
F cr

F EF |α̂n/αF − 1|nr ≥ 4r r�(r)/8 + o(1). (8∗)

A lower bound to EF |α̂n/αF − 1| seems to be established for the first time.
The presence of the information functional makes the bound non-uniform. Note that a uniform

lower bound would be meaningless: as the range of possible values of αF is not restricted to an
interval of fixed length, it follows from (8∗) that

sup
F∈Hn(b)

EF |α̂n/αF − 1| → ∞ (n → ∞).

More generally, supF∈Hn(b) g̃F EF |α̂n/αF − 1| may tend to ∞ as n → ∞ if g̃F /gF 
= const.
Let ĉn be an arbitrary tail constant estimator. The next theorem presents a lower bound to the

probabilities PF (|ĉn − cF | ≥ x).

Theorem 3. Let ĉn be an arbitrary tail constant estimator. For any α ≥ n−r/2 and c > 0 there
exist distribution functions F0,F1 ∈ H(b) such that αF0 = α, cF0 = c−α, and for all large enough
n, as v ∈ [0;α−2c−α lnn],

max
i∈{0;1}

Pi

(|ĉn/cFi
− 1|αr/b

Fi
cr
Fi

≥ rvrn−r ln(n/ lnn)tn/2b
) ≥ (1 − v/8n)2n/4, (9)

where tn = exp(−r(1 − r)n−r/2(ln(n/ lnn))r+1/b).

Similarly to (8) Theorem 3 yields lower bounds to the moments of |ĉn/cFi
− 1|. In particular,

(9) entails

max
i∈{0;1}

α
r/b
Fi

cr
Fi

EFi
|ĉn/cFi

− 1| ≥ (lnn)n−r r24r−1�(r)/
(
2b + o(1)

)
. (9∗)

According to Hall and Welsh [7],

zn � (lnn)n−b/(2b+1)

if limn→∞ supF∈Db,A
PF (|ĉn − cF | ≥ zn) = 0 (∀A > 0). This fact can be obtained as a conse-

quence to Theorem 3: if maxi∈{0;1} Pi (|ĉn − cFi
| ≥ zn) → 0 as n → ∞, then for any C > 0 we

have zn ≥ Cn−r lnn for all large enough n, hence zn � n−r lnn.
We now present a lower bound to the accuracy of estimating extreme upper quantiles. We call

an upper quantile of level q “extreme” if q ≡ qn tends to 0 as n grows. In financial applications
(see, e.g., [4,11]), an upper quantile of the level as high as 0.05 can be considered extreme as the
empirical quantile estimator appears unreliable. Of course, there is an infinite variety of possible
rates of decay of qn. Theorem 4 presents lower bounds in the case qn = sn−1/(1+2b), where s is
bounded away from 0 and ∞.
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Set F̄ = 1 − F. We denote the upper quantile of level qn by

xF,n = F̄−1(qn).

Let x̂n be an arbitrary estimator of xF,n. Denote wFi
≡ wFi

(αFi
, cFi

, b, s, u) = | ln(uα2r
Fi

c2br
Fi

/sb)|.

Theorem 4. For any α > 0, c > 0 there exist distribution functions F0,F1 ∈ H(b) such that
αF0 = α, cF0 = c−α, and for all large enough n and u ∈ (sbα−2rc2αbr ;Knr),

max
i∈{0;1}

Pi

(|x̂n/xFi,n − 1|α2(1−r)
Fi

cr
Fi

/wFi
t�i,n ≥ un−r/2b

) ≥ (
1 − u1/r/8n

)2n
/4, (10)

max
i∈{0;1}

Pi

(|xFi,n/x̂n − 1|α2(1−r)
Fi

cr
Fi

/wFi
t�i,n ≥ un−r/2b

) ≥ (
1 − u1/r/8n

)2n
/4, (11)

where maxi∈{0;1} |t�i,n − 1| → 0 as n → ∞.

3. Proofs

Our approach to establishing lower bounds requires constructing two distribution functions F0

and F1, where F0 is a Pareto d.f. and F1 ≡ F1,n is a “disturbed” version of F0. We then ap-
ply Lemma 5 that provides a non-asymptotic lower bound to the accuracy of estimation when
choosing between two close alternatives.

The problem of estimating the tail index, the tail constant and xF,n from X1, . . . ,Xn is equiva-
lent to the problem of estimating αF , cF and quantiles from a sample Y1, . . . , Yn of i.i.d. positive
r.v.s with the distribution

F(y) ≡ P(Y ≤ y) = yα�(y) (y > 0), (12)

where function � slowly varies at the origin.
We denote by F the class of distributions obeying (12). Note that L(Y ) ∈ F if and only if

L(1/Y ) ∈ H. Obviously, a tail index estimator αn(X1, . . . ,Xn) can be considered an estimator
αn(1/Y1, . . . ,1/Yn) of index α from the sample Y1 = 1/X1, . . . , Yn = 1/Xn, and vice versa. The
tradition of dealing with this equivalent problem stems from [6]. We proceed with this equivalent
formulation.

A counterpart to H(b) is the following non-parametric class of d.f.s on (0;∞):

F (b) =
{
F ∈ F : sup

y<K∗(F )

∣∣c−1
F y−αF F (y) − 1

∣∣y−bαF < ∞
}
, (13)

where b > 0 and K∗(F ) is the right end-point of F . A d.f. F ∈ F (b) obeys

F(y) = cF yαF
(
1 + O

(
ybαF

))
(y → 0),

where αF = limy↓0(lnF(y))/ lny and cF = limy↓0 y−αF F (y).
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Proof of Theorem 1. Let h ∈ (0; c), and denote

α0 = α, α1 = α + γ, γ = hαb.

We will employ the distribution functions F0 and F1, where

F0(y) = (y/c)α1{0 < y ≤ c},
F1(y) = (h/c)−γ (y/c)α11{0 < y ≤ h} + (y/c)α1{h < y ≤ c}.

The counterparts to these distributions are

P0(X > x) = (cx)−α1{x ≥ 1/c},
P1(X > x) = (cx)−α1{1/c ≤ x < 1/h} + c−αh−γ x−α11{x ≥ 1/h}.

It is easy to see that F1 ≤ F0 and

αF0 = α, αF1 = α1, cF0 = c−α, cF1 = c−αh−γ . (14)

Obviously, F0 ∈ F (b). We now check that F1 ∈ F (b).

Since

c−1
F1

y−α1F1(y) = y−γ hγ (h < y ≤ c),

we have

sup
0<y≤c

∣∣1 − c−1
F1

y−α1F1(y)
∣∣y−bα1 = sup

h<y≤c

(
1 − y−γ hγ

)
y−bα1 . (15)

The right-hand side of (15) takes on its maximum at y0 = h(1 + γ /bα1)
1/γ ; the supremum is

bounded by A := e1/eα/bα. Note that {F0,F1} ⊂ Db,A.

Let d2
H
(P0;P1) denote the Hellinger distance. It is easy to check that

d2
H
(F0;F1) ≤ γ 1/r/8α2cα. (16)

According to Lemma 5 below,

max
i∈{0;1}

Pi

(|α̂n − αFi
| ≥ γ /2

) ≥ (
1 − γ 1/r/8α2cα

)2n
/4. (17)

Let γ = γn, where

γn ≡ γn(α, c, v) = v
(
α2cα/n

)r
.

Note that h < c as n > α2c−2bαv1/r . From (17),

max
i∈{0;1}

Pi

(|α̂n/αFi
− 1|αr/b

Fi
cr
Fi

nr ≥ vtn,i/2
) ≥ (

1 − v1/r/8n
)2n

/4, (18)

where tn,0 = 1 and tn,1 = 1/f (γ ), f (γ ) = (1+γ /α)2γ γ/αb. Note that f (γ ) ≤ 1 as γ ≤ e−1−2b .
Hence, tn,1 ≥ 1 as v ∈ [0;Knr ] and (6) follows.
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Let ân be an arbitrary estimator of index a = 1/α. Denote a = a0. Since |a0 − a1| = γ aa1,

Lemma 5 yields

max
i∈{0;1}

Pi

(|ân − aFi
| ≥ γ aa1/2

) ≥ (
1 − γ 1/r/8α2cα

)2n
/4.

With γ = γn, the left-hand side of this inequality is

max
i∈{0;1}

Pi

(|ân − aFi
| ≥ vn−ra1−2ra1/2cr

F0

) = max
i∈{0;1}

Pi

(|ân/aFi
− 1|a−r/b

Fi
cr
Fi

nr ≥ vt+n,i/2
)
,

where t+n,0 = (1 + γ a)r ≥ 1 and t+n,1 = (1 + γ a)r/bγ −rγ a/b ≥ 1, leading to (7). �

Proof of Corollary 2. Note that

Eξ =
∫ ∞

0
P(ξ ≥ x)dx (19)

for any non-negative r.v. ξ. Since

∫ zn

0

(
1 − v1/r/8n

)2n dv = 4r r�(r) + o(1) (n → ∞)

as zn → ∞, zn = o(nr), (6) and (19) entail (8). �

Proof of Theorem 3. With F0 and F1 defined as above, we have

cF1 − cF0 = c−α
(
γ −γ /αb − 1

) ≥ c−αγ | lnγ |/αb.

Using this inequality, (17) and Lemma 5, we derive

max
i∈{0;1}

Pi

(|ĉn − cFi
| ≥ c−αγ | lnγ |/2αb

) ≥ (
1 − γ 1/r/8α2cα

)2n
/4.

Let γ ≡ γ (n) = (vα2cα/n)r . Then

max
i∈{0;1}

Pi

(|ĉn − cFi
| ≥ cF0

(
vα2cα/n

)r
r ln(n/ lnn)/2αb

) ≥ (1 − v/8n)2n/4.

Note that α2cα/α2
1c−1

F1
≥ tn as v ∈ [0;α−2c−α lnn]. The result follows. �

Proof of Theorem 4. Denote

xi ≡ xFi,n, yi = 1/xi.

Obviously, yi is the quantile of Li (1/X). We find convenient dealing with the equivalent problem
of estimating quantiles of the distribution of a random variable Y = 1/X.
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With functions F0,F1 defined as above, it is easy to see that

y0 = cq
1/α
n = cκh, y1 = cα/α1q

1/α1
n hγ/α1 = y0(cκ)−γ /α1 , (20)

where we put κ = q
1/α
n /h. Note that y1 = h(cκ)1−γ /α1 . Hence yi < h if cκ < 1 (i ∈ {0,1}).

Denote

γ ≡ γn(α, b, c) = u
(
α2cα/n

)r
. (21)

Then κ = s1/α(α2cα)−r/αbu−1/αb and

cκ = u−1/αbs1/αc2rα−2r/αb < 1 (22)

by the assumption.
Using the facts that ex − 1 ≥ xex/2 and 1 − e−x ≥ xe−x/2 as x ≥ 0, we derive

y1 − y0 = y0
(
(cκ)−γ /α1 − 1

)
≥ γ 1+1/αb(cκ)1−γ /2α1 | ln cκ|/α1.

Hence, (y1 − y0)/y0 ≥ γ | ln cκ|/α1 and (y1 − y0)/y1 = 1 − (cκ)γ/α1 ≥ γ | ln cκ|(cκ)γ/2α1/α1.
By Lemma 5,

max
i∈{0;1}

Pi

(|ŷn − yi | ≥ γ 1+1/αb(cκ)1−γ /2α1 | ln cκ|/2α1
) ≥ (

1 − γ 1/r/8α2cα
)2n

/4

for any estimator ŷn. Thus,

max
i∈{0;1}

Pi

(|ŷn/yi − 1| ≥ γ
∣∣ln(cκ)αb

∣∣t�n,i/2bα2
Fi

) ≥ (
1 − γ 1/r/8α2cα

)2n
/4,

where t�n,0 = 1/(1 + γ /α) = 1/(1 + uα
−r/b
F0

c−r
F0

n−r ) and t�n,1 = (1 + γ /α)(cκ)γ/2α. Taking into
account (21) and (22), we derive

max
i∈{0;1}

Pi

(|ŷn/yi − 1| ≥ uα
2(r−1)
Fi

c−r
Fi

n−r ln
(
uα2r/sbc2rαb

)
t�n,i/2b

) ≥ (
1 − u1/r/8n

)2n
/4.

This leads to (11).
Recall that xi = 1/yi . From (20),

|x1 − x0| = |y1 − y0|/y0y1 ≥ γ 1−1/αb(cκ)−1+γ /2α1 | ln cκ|/α1.

By Lemma 5,

max
i∈{0;1}

Pi

(|x̂n − xi | ≥ γ 1−1/αb(cκ)−1+γ /2α1 | ln cκ|/2α1
) ≥ (

1 − γ 1/r/8α2cα
)2n

/4.

Hence,

max
i∈{0;1}

Pi

(|x̂n/xi − 1| ≥ uα
2(r−1)
Fi

c−r
Fi

n−r
∣∣ln(

sbc2rαb/α2ru
)∣∣t̃n,i/2b

) ≥ (
1 − u1/r/8n

)2n
/4,
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where t̃n,0 = (cκ)γ/2α/(1 + γ /α) = (u−1/αbs1/αc2rα−2r/αb)γ /2α/(1 + uα
−r/b
F0

c−r
F0

n−r ) and
t̃n,1 = 1. The proof is complete. �

The next lemma presents a lower bound to the accuracy of choosing between two “close”
alternatives.

Let P be an arbitrary class of distributions, and assume that the quantity of interest, aP , is an
element of a metric space (X , d). An estimator â of aP is a measurable function of X1, . . . ,Xn

taking values in a subspace {aP : P ∈ P } of the metric space (X , d).
Examples of functionals aP include (a) aPθ = θ, where P = {Pθ , θ ∈ �} is a parametric fam-

ily of distributions (� ⊂ R
m); (b) aP = fP , where fP is the density of P with respect to a

particular measure; (c) aP = P . A minimax lower bound over P follows from a lower bound to
maxi∈{0;1} Pi (d(â;aPi

) ≥ δ), where P0,P1 ∈ P .

Lemma 5. Denote 2δ = d(aP1;aP0). Then

max
i∈{0;1}

Pi

(
d(â;aPi

) ≥ δ
) ≥ (

1 − d2
H

)2n
/4, (23)

where dH ≡ dH (P0;P1) is the Hellinger distance.

There is considerable literature on techniques of deriving minimax lower bounds of this kind
(cf. [8,9,14]). Classical results include Fano’s and Assuad’s lemmas. Inequality (23) is sharper
than Lemma 1 in [8]. Another related result is Theorem 2.2 in [14].

Proof of Lemma 5. Recall that

d2
H (P0;P1) = 1

2

∫ (
f

1/2
0 − f

1/2
1

)2 = 1 −
∫ √

f0f1,

where fi is a density of Pi with respect to a certain measure (e.g., P0 + P1).
Let fi,n denote the density of Li (X1, . . . ,Xn), and put ai = aPi

. By the triangle inequality,
2δ ≤ d(aP0; â) + d(â;aP1). Therefore, 1 ≤ 10 + 11, where

10 = 1
{
d(a0; â) ≥ δ

}
, 11 = 1

{
d(â;a1) ≥ δ

}
.

Using the definition of d
H

and the Bunyakovskiy–Cauchy–Schwarz inequality, we derive

(
1 − d2

H

)n =
∫ √

f0,nf1,n

≤
∫ √

f0,nf1,n10 +
∫ √

f0,nf1,n11

≤ P
1/2
0

(
d(â;a0) ≥ δ

) + P
1/2
1

(
d(â;a1) ≥ δ

)
.

Hence (1 − d2
H
)2n ≤ 2(P0(d(â;a0) ≥ δ) + P1(d(â;a1) ≥ δ)), leading to (23). �
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