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In this article, we develop a new approach to functional quantization, which consists in discretizing only a
finite subset of the Karhunen–Loève coordinates of a continuous Gaussian semimartingale X.

Using filtration enlargement techniques, we prove that the conditional distribution of X knowing its first
Karhunen–Loève coordinates is a Gaussian semimartingale with respect to a larger filtration. This allows
us to define the partial quantization of a solution of a stochastic differential equation with respect to X by
simply plugging the partial functional quantization of X in the SDE.

Then we provide an upper bound of the Lp-partial quantization error for the solution of SDEs involving
the Lp+ε-partial quantization error for X, for ε > 0. The a.s. convergence is also investigated.

Incidentally, we show that the conditional distribution of a Gaussian semimartingale X, knowing that it
stands in some given Voronoi cell of its functional quantization, is a (non-Gaussian) semimartingale. As a
consequence, the functional stratification method developed in Corlay and Pagès [Functional quantization-
based stratified sampling methods (2010) Preprint] amounted, in the case of solutions of SDEs, to using the
Euler scheme of these SDEs in each Voronoi cell.

Keywords: Brownian bridge; Brownian motion; Cameron–Martin space; filtration enlargement; functional
quantization; Gaussian process; Gaussian semimartingale; Karhunen–Loève; Ornstein–Uhlenbeck;
stratification; vector quantization; Wiener integral

0. Introduction

Let (�, A,P) be a probability space, and E a reflexive separable Banach space. The norm on E is
denoted by | · |. The quantization of a E-valued random variable X consists in its approximation
by a random variable Y taking finitely many values. The resulting error of this discretization is
measured by the Lp norm of |X − Y |. If we settle on a fixed maximum cardinal for Y(�), the
minimization of the quantization error amounts to the minimization problem:

min
{∥∥|X − Y |∥∥

p
,Y : � → E measurable, card

(
Y(�)

)≤ N
}
. (0.1)

A solution to (0.1) is an optimal quantizer of X. The corresponding quantization error is de-
noted by EN,p(X) := min{‖|X − Y |‖p,Y : � → E measurable, card(Y (�)) ≤ N}. One usually
drops the p subscript in the quadratic case (p = 2). This problem, initially investigated as a signal
discretization method (Gersho and Gray [10]), has then been introduced in numerical probability
to devise cubature methods (Pagès [23]) or to solve multidimensional stochastic control prob-
lems (Bally, Pagès and Printems [3]). Since the early 2000s, the infinite-dimensional setting has

1350-7265 © 2014 ISI/BS

http://www.bernoulli-society.org/index.php/publications/bernoulli-journal/bernoulli-journal
http://dx.doi.org/10.3150/12-BEJ504
mailto:scorlay@bloomberg.net


Partial functional quantization and generalized bridges 717

been extensively investigated from both constructive numerical and theoretical viewpoints with
a special attention paid to functional quantization, especially in the quadratic case (Luschgy
and Pagès [18]) but also in some other Banach spaces (Wilbertz [28]). Stochastic processes are
viewed as random variables taking values in functional spaces.

We now assume that X is a bi-measurable stochastic process on [0, T ] verifying∫ T

0 E[|Xt |2]dt < +∞, so that this can be viewed as a random variable valued in the separa-
ble Hilbert space L2([0, T ]). We assume that its covariance function �X is continuous. In the
seminal article on Gaussian functional quantization (Luschgy and Pagès [18]), it is shown that
in the centered Gaussian case, linear subspaces U of L2([0, T ]) spanned by L2-optimal quan-
tizers correspond to principal components of X. In other words, they are spanned by the first
eigenvectors of the covariance operator of X. Thus, the quadratic optimal quantization of X in-
volves its Karhunen–Loève eigensystem (eX

n ,λX
n )n≥1. If Y is a quadratic N -optimal quantizer

of X and dX(N) is the dimension of the subspace of L2([0, T ]) spanned by Y(�), the quadratic
quantization error E 2

N(X) verifies

E 2
N(X) =

∑
j≥m+1

λX
j + E 2

N

(
m⊗

j=1

N
(
0, λX

j

))
for m ≥ dX(N), (0.2)

E 2
N(X) <

∑
j≥m+1

λX
j + E 2

N

(
m⊗

j=1

N
(
0, λX

j

))
for 1 ≤ m < dX(N). (0.3)

To perform optimal quantization, the decomposition is first truncated at a fixed order m and
then the R

m-valued Gaussian vector, constituted of the m first coordinates of the process on
its Karhunen–Loève decomposition, is quantized. To reach optimality, we have to determine
the optimal rank of truncation dX(N) (the quantization dimension) and the optimal dX(N)-

dimensional quantizer corresponding to the first coordinates
⊗dX(N)

j=1 N (0, λX
j ). A sharply op-

timized database of quantizers of univariate and multivariate Gaussian distributions is available
on the web site www.quantize.maths-fi.com (Pagès and Printems [25]) for download. Usual ex-
amples of such processes are the standard Brownian motion on [0, T ], the Brownian bridge on
[0, T ], Ornstein–Uhlenbeck processes and the fractional Brownian motion. In Figure 1, we dis-
play the quadratic optimal N -quantizer of the fractional Brownian motion on [0,1] with Hurst
exponent H = 0.25 and N = 20.

From a constructive viewpoint, the numerical computation of the optimal quantization or the
optimal product quantization requires a numerical evaluation of the Karhunen–Loève eigen-
functions and eigenvalues, at least the very first terms. (As seen in Luschgy and Pagès [18,19],
Luschgy, Pagès and Wilbertz [21], under rather general conditions on its eigenvalues, the quan-
tization dimension of a Gaussian process increases asymptotically as the logarithm of the size of
the quantizer. Hence, it is most likely that it is small. For instance, the quantization dimension
of Brownian motion with N = 10,000 is 9.) The Karhunen–Loève decompositions of several
usual Gaussian processes have a closed-form expression. This is the case for standard Brownian
motion, Brownian bridge and Ornstein–Uhlenbeck processes. The case of Ornstein–Uhlenbeck
processes is derived in Corlay and Pagès [6], in the general setting of an arbitrary initial vari-

http://www.quantize.maths-fi.com
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Figure 1. Quadratic N -optimal quantizer of the fractional Brownian motion on [0,1] with Hurst parameter
H = 0.25 and N = 20. The quantization dimension is 3.

ance σ0. Another example of explicit Karhunen–Loève expansion is derived in Deheuvels and
Martynov [8].

In the general case, no closed-form expression is available for the Karhunen–Loève expansion.
For example, the K–L expansion of the fractional Brownian motion is not known. Yet, one can
use numerical schemes to solve the correspnding eigenvalue problem. In Corlay [5], the so-called
“Nyström method” is used to compute the first terms of the K–L decomposition of the fractional
Brownian motion and to perform its optimal quantization.

In this article, we propose a new functional quantization scheme for a bi-measurable Gaus-
sian process X, which consists in discretizing a finite subset of its Karhunen–Loève coordinates,
instead of performing a full quantization. This partial functional quantization approach is moti-
vated by two observations. The first one is that the conditional distribution of X knowing that it
falls into a given L2 Voronoi cell of its optimal quantizer is the crux of the recently developed
functional stratification scheme (Corlay and Pagès [6]). It comes to conditioning the process with
respect to its first Karhunen–Loève coordinates. This work provides a better justification of the
functional stratification scheme of Corlay and Pagès [6]. The second observation is that one of
the main purposes of the (full) functional quantization of X is to perform a quantization of the
solution of a SDE with respect to X, when a stochastic integration with respect to X can be de-
fined (see Pagès and Printems [24], Luschgy and Pagès [19], Pagès and Sellami [26]). As (full)
functional quantizers of X will typically have bounded variations, one needs to add a correction
term to the SDE. Eventually, this comes to plug the functional quantizer of X in the SDE written
in the Stratonovich sense. In contrast, the partial quantization of X can be directly plugged into
the SDE written in the Itô sense. We provide a.s. and Lp convergence results for this method.

The paper is organized as follows: Section 1 provides background on quantization-based cu-
bature formulas which are needed for the following. In Section 2, we develop a notion of gener-
alized bridge of a continuous Gaussian semimartingale which extends the generalized Brownian
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bridge introduced in Alili [1]. We prove that under an additional hypothesis (H), the generalized
bridge of a continuous Gaussian semimartingale remains a Gaussian semimartingale with respect
to a bigger filtration and we derive its canonical decomposition. (Let us mention the thorough
study of the properties of Gaussian semimartingales available in Jain and Monrad [13].) A simi-
lar result is stated when conditioning by a Voronoi quantizer. We pay a particular attention to the
special case of generalized bridges that we call Karhunen–Loève generalized bridges and which
amounts to the conditioning of X by a finite subset of its K–L coordinates. Section 3 is devoted
to the partial functional quantization of continuous Gaussian semimartingales and its application
to the partial quantization of solutions of SDEs. We finally give Lp and a.s. convergence results
for partially quantized SDEs.

1. Quantization-based cubature and related inequalities

The idea of quantization-based cubature method is to approach the probability distribution of the
random variable X by the distribution of a quantizer Y of X. As Y is a discrete random variable,
we can write PY =∑N

i=1 piδyi
. If F :E → R is a Borel functional,

E
[
F(Y )

]=
N∑

i=1

piF (yi). (1.1)

Hence, the weighted discrete distribution (yi,pi)1≤i≤N of Y allows one to compute the
sum (1.1). We review here some error bounds which can be derived when approaching E[F(X)]
by (1.1). See Pagès and Printems [24] for detailed proofs.

1. If X ∈ L2, Y a quantizer of X of size N and F is Lipschitz continuous, then∣∣E[F(X)
]− E

[
F(Y )

]∣∣≤ [F ]Lip‖X − Y‖2, (1.2)

where [F ]Lip is the Lipschitz constant of F . In particular, if (YN)N≥1 is a sequence of

quantizers such that limN→∞ ‖X − YN‖2 = 0, then the distribution
∑N

i=1 pN
i δxN

i
of YN

weakly converges to the distribution PX of X as N → ∞.
This first error bound is a straightforward consequence of |F(X) − F(Y )| ≤ [F ]Lip|X −

Y |.
2. If Y is a stationary quantizer of X, that is, Y = E[X|Y ], and F is differentiable with an

α-Hölder differential DF for α ∈ (0,1], that is, |DF(u) − DF(v)|L(E) ≤ [DF ]α|u − v|α ,
for all (u, v) ∈ E2 where | · |L(E) is the operator norm on L(E), then∣∣E[F(X)

]− E
[
F(Y )

]∣∣≤ [DF ]α‖X − Y‖1+α
2 . (1.3)

In the case where F has a Lipschitz continuous derivative (α = 1), we have [DF ]1 =
[DF ]Lip. For example, if F is twice differentiable and D2F is bounded, then [DF ]Lip =
‖D2F‖∞.

This particular inequality comes from the Taylor expansion of F around X and the sta-
tionarity of Y .
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3. If F is a semi-continuous1 convex functional and Y is a stationary quantizer of X,

E
[
F(Y )

]≤ E
[
F(X)

]
. (1.4)

This inequality is a straightforward consequence of the stationarity property and Jensen’s
inequality.

E
[
F(Y )

]= E
[
F
(
E[X|Y ])]≤ E

[
E
[
F(X)|Y ]]= E

[
F(X)

]
.

2. Functional quantization and generalized bridges

2.1. Generalized bridges

Let (Xt )t∈[0,T ] be a continuous centered Gaussian semimartingale starting from 0 on (�, A,P)

and F X its natural filtration. Fernique’s theorem ensures that
∫ T

0 E[X2
t ]dt < +∞ (see Jan-

son [14]).
We aim here to compute the conditioning with respect to a finite family ZT := (Zi

T )i∈I of
Gaussian random variables, which are measurable with respect to σ(Xt , t ∈ [0, T ]). (I ⊂ N is
a finite subset of N

∗.) As in Alili [1] we settle on the case where (Zi
T )i∈I are the terminal

values of processes of the form Zi
t = ∫ t

0 fi(s)dXs , i ∈ I , for some given finite set f = (fi)i∈I of
L2

loc([0, T ]) functions. The generalized bridge for (Xt )t∈[0,T ] corresponding to f with end-point

z = (zi)i∈I is the process (X
f ,z
t )t∈[0,T ] that has the distribution

Xf ,z L∼ L
(
X|Zi

T = zi, i ∈ I
)
. (2.1)

For example, in the case where X is a standard Brownian motion with |I | = 1, f = {f } and
f ≡ 1, this is the Brownian bridge on [0, T ]. If X is an Ornstein–Uhlenbeck process, this is an
Ornstein–Uhlenbeck bridge.

Let H be the Gaussian Hilbert space spanned by (Xs)s∈[0,T ] and HZT
the closed subspace

of H spanned by (Zi
T )i∈I . We denote by H⊥

ZT
its orthogonal complement in H . Any Gaussian

random variable G of H can be orthogonally decomposed into G = ProjZT
(G)

⊥⊥+ Proj⊥
ZT

(G),

where ProjZT
and Proj⊥

ZT
are the orthogonal projections on HZT

and H⊥
ZT

. (Proj⊥
ZT

= IdH −
ProjZT

). With these notation, E[G|(Zi
T )i∈I ] = ProjZT

(G).
Other definitions of generalized bridges exist in the literature, see, for example, Mansuy and

Yor [22].

1In the infinite-dimensional case, convexity does not imply continuity. In infinite-dimensional Banach spaces, a semi-
continuity hypothesis is required for Jensen’s inequality. See Zapała [31] for more details.
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2.2. The case of the Karhunen–Loève basis

As X is a continuous Gaussian process, it has a continuous covariance function (see Janson [14],
Section VIII.3). We denote by (eX

i , λX
i )i≥1 its Karhunen–Loève eigensystem. Thus, if we define

function f X
i as the antiderivative of −eX

i that vanishes at t = T , that is, f X
i (t) = ∫ T

t
eX
i (s)ds, an

integration by parts yields ∫ T

0
Xse

X
i (s)ds =

∫ T

0
f X

i (s)dXs. (2.2)

In other words, with the notation of Section 2.1, we have Zi
T = ∫ T

0 Xse
X
i (s)ds =: Yi , the ith

Karhunen–Loève coordinate of X.
For some finite subset I ⊂ N

∗, we denote by XI,y and call K–L generalized bridge the gen-
eralized bridge associated with functions (f X

i )i∈I and with end-point y = (yi)i∈I . This process
has the distribution L(X|Yi = yi, i ∈ I ).

In this case, the Karhunen–Loève expansion gives the decomposition

X =
∑
i∈I

Yie
X
i︸ ︷︷ ︸

=ProjZT
(X)

⊥⊥+
∑

i∈N∗\I

√
λX

i ξie
X
i︸ ︷︷ ︸

=Proj⊥
ZT

(X)

, (2.3)

where (ξi)i∈N∗\I are independent standard Gaussian random variables. This gives us the pro-
jections ProjZT

and Proj⊥
ZT

defined in Section 2.1. It follows from (2.3) that a K–L generalized
bridge is centered on E[X|Yi = yi, i ∈ I ] and has the covariance function

�X|Y (s, t) = cov(Xs,Xt ) −
∑
i∈I

λX
i eX

i (s)eX
i (t). (2.4)

We have
∫ T

0 �X|Y (t, t)dt =∑
i∈N∗\I λX

i .

Moreover, thanks to decomposition (2.3), if XI,y is a K–L generalized bridge associated
with X with terminal values y = (yi)i∈I , it has the same probability distribution as the process

∑
i∈I

yie
X
i (t) + Xt −

∑
i∈I

(∫ T

0
Xse

X
i (s)ds

)
eX
i (t).

This process is then the sum of a semimartingale and a non-adapted finite-variation process.
Let us stress the fact that the second term in the left-hand side of (2.3) is the corresponding

K–L generalized bridge with end-point 0, that is, Proj⊥
ZT

= XI,0.
In Corlay and Pagès [6], an algorithm is proposed to exactly simulate marginals of a K–L

generalized bridge with a linear additional cost to a prior simulation of (Xt0 , . . . ,Xtn), for some
subdivision 0 = t0 ≤ t1 ≤ · · · ≤ tn = T of [0, T ]. This was used for variance reduction issues.
Note that the algorithm is easily extended to the case of (non-K–L) generalized bridges.
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2.3. Generalized bridges as semimartingales

For a random variable L, we denote by P[·|L] the conditional probability knowing L. We keep
the notation and assumptions of previous sections. (X is a continuous Gaussian semimartingale
starting from 0.) We consider a finite set I ⊂ {1,2, . . .} and (fi)i∈I a set of bounded measurable
functions. Let Xf ,z be the generalized bridge associated with X with end-point z = (zi)i∈I . For
i ∈ I , Zi

t = ∫ t

0 fi(s)dXs and Zt = (Zi
t )i∈I .

Jirina’s theorem ensures the existence of a transition kernel

νZT |((Xt )t∈[0,s]): B
(
R

I
)× C0([0, s],R

)→ R+,

corresponding to the conditional distribution L(Zt |(Xt )t∈[0,s]).
We now make the additional assumption (H) that, for every s ∈ [0, T ) and for every

(xu)u∈[0,s] ∈ C0([0, s],R), the probability measure νZT |(Xt )t∈[0,s](dz, (xu)u∈[0,s]) is absolutely
continuous with respect to the Lebesgue measure. We denote by �(xu)u∈[0,s],T its density. The
covariance matrix of this Gaussian distribution on R

I writes

Q(s,T ) := E
[(

ZT − E
[
ZT |(Xu)u∈[0,s]

])(
ZT − E

[
ZT |(Xu)u∈[0,s]

])∗|(Xu)u∈[0,s]
]
.

If X is a martingale, we have Q(s,T ) = ((
∫ T

s
fi(u)fj (u)d〈X〉u))(i,j)∈I 2 . We recall that a

continuous centered semimartingale X is Gaussian if and only if 〈X〉 is deterministic (see, e.g.,
Revuz and Yor [27]). Hence, this additional hypothesis is equivalent to assume that

Q(s,T ) is invertible for every s ∈ [0, T ). (H)

The following theorem follows from the same approach as the homologous result in Alili [1]
for the Brownian case. It is extended to the case of a continuous centered Gaussian semimartin-
gale starting from 0.

Theorem 2.1. Under the (H) hypothesis, for any s ∈ [0, T ), and for PZT
-almost every z ∈ R

I ,

P[·|ZT = z] is equivalent to P on F X
s and its Radon–Nikodym density is given by

dP[·|ZT = z]
dP |F X

s

= �(Xu)u∈[0,s],T (z)

�0,T (z)
.

Proof. Consider F a real bounded F X
s -measurable random variable and φ : RI → R a bounded

Borel function.

• On the one hand, preconditioning by ZT yields

E
[
Fφ(ZT )

]= E
[
E[F |ZT ]φ(ZT )

]=
∫

RI

φ(z)E[F |ZT = z]�0,T (z)dz. (2.5)
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• On the other hand, as F is measurable with respect to F X
s , preconditioning with respect to

F X
s yields

E
[
Fφ(ZT )

]= E
[
FE

[
φ(ZT )|F X

s

]]= E

[
F

∫
RI

φ(z)�(Xt )t∈[0,s],T (z)dz

]
.

Now, thanks to Fubini’s theorem

E
[
Fφ(ZT )

]=
∫

RI

φ(z)E
[
F�(Xt )t∈[0,s],T (z)

]
dz. (2.6)

Identifying equations (2.5) and (2.6), we see that for PZT
-almost surely z ∈ R

I and for every real

bounded F X
s -measurable random variable F ,

E[F |ZT = z] = E

[
F

�(Xt )t∈[0,s],T (z)

�0,T (z)

]
. (2.7)

Equation (2.7) characterizes the Radon–Nikodym derivative of P[·|ZT = z] with respect to P

on F X
s . �

We now can use classical filtration enlargement techniques (Jacod [12], Jeulin [15], Yor [29]).

Proposition 2.1 (Generalized bridges as semimartingales). Let us define the filtration GX,f

by GX,f
t := σ(ZT , F X

t ), the enlargement of the filtration F X corresponding to the above con-

ditioning. We consider the stochastic process Dz
s := dP[·|ZT =z]

dP |F X
s

= �(Xt )t∈[0,s],T (z)

�0,T (z)
for s ∈

[0, T ).
Under the (H) hypothesis, and the assumption that Dz is continuous, X is a continuous GX,f -

semimartingale on [0, T ).

Proof. Dz is a strictly positive martingale on [0, T ) which is uniformly integrable on every inter-
val [0, t] ⊂ [0, T ). Hence, as we assumed that it is continuous, we can write Dz as an exponential
martingale Dz

s = exp(Lz
s − 1

2 〈Lz〉s) with Lz
t = ∫ t

0 (Dz
s )

−1 dDz
s (as Dz

0 = 1).
Now, as X is a continuous (F X,P)-semimartingale, we write X = V + M its canonical de-

composition (under the filtration F X).

• Thanks to Girsanov theorem, M̃z := M − 〈M,Lz〉 is a (F X,P[·|ZT = z])-martingale.
− A consequence is that it is a (GX,f ,P[·|ZT = z])-martingale.
− And thus M̃ZT is a (GX,f ,P)-martingale.

For more preciseness on this, we refer to Ankirchner, Dereich and Imkeller [2], The-
orem 3, where the proof is based on the notion of decoupling measure.

• Moreover, conditionally to ZT , V is still a finite-variation process V , and is adapted to GX,f .
�
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Remark (Continuous modification). In Proposition 2.1, if one only assumes that Dz has a con-
tinuous modification Dz, then with each one of its continuous modifications is associated a con-
tinuous GX,f -semimartingale on [0, T ), and all these semimartingales are modifications of each
other.

Proposition 2.2 (Continuity of Dz). If F X is a standard Brownian filtration, then Dz has a
continuous modification.

Proof. Consider s ∈ [0, T ). Under the (H) hypothesis, the density �(Xu)u∈[0,s],T writes

�(Xu)u∈[0,s],T (z)

= (
2πdetQ(s,T )

)−|I |/2 (2.8)

× exp
((

z − E
[
ZT |(Xu)u∈[0,s]

])
Q(s,T )−1(z − E

[
ZT |(Xu)u∈[0,s]

])∗)
.

Let us define the stochastic process H by Hs := E[ZT |(Xu)u∈[0,s]]. The so-defined process
H is a F X local martingale. Thanks the Brownian representation theorem, H has a Brownian
representation and has a continuous modification. The continuity of s �→ detQ(s,T ) and s �→
Q(s,T )−1 follows from the definition of Q(s,T ) and the continuity of H (up to a modification).
Hence, Dz has a continuous modification. �

Remark.

• The measurability assumption with respect to a Brownian filtration is satisfied in the cases
of Brownian bridge and Ornstein–Uhlenbeck processes.

• This hypothesis is not necessary so long as the continuity of the martingale Hs =
E[ZT |(Xu)u∈[0,s]] can be proved by any means.

2.3.1. On the canonical decomposition

With the same notation, and under the (H) hypothesis, we can tackle the canonical decomposition
of Xf ,z. We have

Lz
t =

∫ t

0

d�(Xu)u∈[0,s],T (z)

�(Xu)u∈[0,s],T (z)

and

ln
(
�(Xu)u∈[0,s],T (z)

)
= −|I |

2
ln
(
2πdetQ(s,T )

)
− 1

2

(
z − E

[
ZT |(Xu)u∈[0,s]

])
Q(s,T )−1(z − E

[
ZT |(Xu)u∈[0,s]

])∗
.
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Using that for a positive continuous semimartingale S, d lnS = dS
S

− 1
2 d〈 1

S
· S〉, we obtain

d�(Xu)u∈[0,s],T (z)

�(Xu)u∈[0,s],T (z)

= d ln
(
�(Xu)u∈[0,s],T (z)

)+
(

finite-variation

process

)
= −1

2
d
((

z − E
[
ZT |(Xu)u∈[0,s]

])
Q(s,T )−1(z − E

[
ZT |(Xu)u∈[0,s]

])∗)+ (f.-v. p.)

= (
dE
[
ZT |(Xu)u∈[0,s]

])
Q(s,T )−1(z − E

[
ZT |(Xu)u∈[0,s]

])∗ + (f.-v. p.).

Hence,

d
〈
X,Lz

〉
s
= d

〈
X,E

[
ZT |(Xu)u∈[0,·]

]〉
s
Q(s, T )−1(z − E

[
ZT |(Xu)u∈[0,s]

])∗
.

This expression can be further simplified in the two following cases:

• In the case where X is a martingale, owing to the definition of Zj , we have ∀j ∈ I ,

E[Zj
T |(Xu)u∈[0,s]] = ∫ s

0 fj (u)dXu so that

d
〈
X,Lz

〉
s
= (

f (s)Q(s,T )−1(z − E
[
ZT |(Xu)u∈[0,s]

])∗)d〈X〉s
(2.9)

=
∑
i∈I

fi(s)
∑
j∈I

(
Q(s,T )−1)

ij

(
zj − E

[
Z

j
T |(Xu)u∈[0,s]

])
d〈X〉s .

As a consequence, M − ∫ ·
0

∑
i∈I fi(s)

∑
j∈I (Q(s, T )−1)ij (zj − E[Zj

T |(Xu)u∈[0,s]])d〈X〉s
is a (GX,f ,P[·|ZT = z])-martingale. We have recovered Alili’s result on the generalized
Brownian bridge (Alili [1]).

• In the case where the Gaussian semimartingale X is a Markov process, for every j ∈ I there
exists gj ∈ L2([0, T ]) such that E[Zj

T |(Xu)u∈[0,s]] = ∫ s

0 fj (u)dXu + gj (s)Xs . Indeed,

E
[
Z

j
T |(Xu)u∈[0,s]

]=
∫ s

0
fj (u)dXu + E

[∫ T

s

fj (u)dXu|(Xu)u∈[0,s]
]

︸ ︷︷ ︸
=:gj (s)Xs

.

Hence, if one assumes that (gj )j∈I are finite-variation functions (which is the case
when X is an Ornstein–Uhlenbeck process or a Brownian bridge), we have d〈X,E[ZT |
(Xu)u∈[0,·]]〉s = (f (s) + g(s))d〈X〉s , and thus

d
〈
X,Lz

〉
s
= ((

f (s) + g(s)
)
Q(s,T )−1(z − E

[
Z

j
T |(Xu)u∈[0,s]

])∗)d〈X〉s
=
∑
i∈I

(
fi(s) + gi(s)

)∑
j∈I

(
Q(s,T )−1)

ij

(
zj − E

[
Z

j
T |(Xu)u∈[0,s]

])
d〈X〉s .
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Example (Standard Brownian bridge). In the case where X = W is a standard Brownian motion
with |I | = 1, f = {f } and f ≡ 1, Zt = Wt and Wf ,z is a standard Brownian bridge. We have
Q(s,T )−1 = 1

T −s
and

d
〈
X,Lz

〉
t
= 1

T − t

(
z − E

[
WT |(Wu)u∈[0,t]

])
dt = z − Wt

T − t
dt.

Thus,

dWt = z − Wt

T − t
dt + Wt

T − t
dt + dWt︸ ︷︷ ︸

(GX,f ,P[·|WT =z])−martingale

.

The martingale part happens to be a (GX,f ,P[·|WT = z])-standard Brownian motion, thanks to
Lévy’s characterization of the Brownian motion. Thus, we have retrieved the classical SDE of
the Brownian bridge.

2.3.2. Generalized bridges and functional stratification

With the same notation, we set Ẑ� = Proj�(ZT ) = ∑N
i=1 γi1Ci

(ZT ) a stationary quantizer of
ZT (where � = {γ1, . . . , γN } and C = {C1, . . . ,CN } are, respectively, the associated knots and
Voronoi partition).

Proposition 2.3 (Stratification). Under the (H) hypothesis, for any s ∈ [0, T ), for any k ∈
{1, . . . ,N}, P[Ẑ� = γk] > 0 and the conditional probability P[·|Ẑ� = γk] is equivalent to P

on F X
s .

Proof. Obviously, if A ∈ F X
s is such that P[A] = 0, we have P[A|Ẑ� = γk] = 0. Conversely,

B ∈ F X
s satisfies P[B|Ẑ� = γk] = 0, then pre-conditioning by ZT , we get E[E[1B |ZT ]|Ẑ� =

γk] = 0. Thus,
∫
z∈Ck

P[B|ZT = z]dPZT
(z) = 0. Hence P[B|ZT = z] = 0 for PZT

-almost every
z ∈ Ck .

Since PZT
[Ck] > 0, there exists at least one element z ∈ Ck such that P[B|ZT = z] = 0. Now

thanks to Theorem 2.1, P[B] = 0. �

Proposition 2.4 (Stratification). Let us define the filtration GX,� by GX,�
t := σ(F X

t , Ẑ�), the
enlargement of F X corresponding to the conditioning with respect to Ẑ� . For k ∈ {1, . . . ,N},
we consider the stochastic process D

γk
s := dP[·|Ẑ�=γk]

dP |F X
s

for s ∈ [0, T ).

Under the (H) hypothesis, and the assumption that Dγk is continuous, the conditional distri-
bution L(X|Ẑ�) of X knowing in which Voronoi cell ZT falls, is the probability distribution of a
GX,�-semimartingale on [0, T ).

Proof. Using that P[·|Ẑ� = γk] is equivalent to P on F X
s , thanks to Proposition 2.3, we can

mutatis mutandis use the same arguments as for Proposition 2.1, P[·|ZT = z] being replaced by
P[·|Ẑ� = γk].



Partial functional quantization and generalized bridges 727

Dγk is a strictly positive martingale on [0, T ) uniformly integrable on every [0, t] ⊂ [0, T ).
Hence, as Dγk is continuous by hypothesis, it is an exponential martingale D

γk
s = exp(L

γk
s −

1
2 〈Lγk 〉s), with L

γk
t = ∫ t

0 (D
γk
s )−1 dD

γk
s (as D

γk

0 = 1). Now, as X is a continuous (F X,P)-
semimartingale, we write X = V + M its canonical decomposition (under the filtration F X).

• Thanks to Girsanov theorem, M̃γk := M − 〈M,Lγk 〉 is a (F X,P[·|Ẑ� = γk])-martingale.
As a consequence, it is a (GX,�,P[·|Ẑ� = γk])-martingale and thus M̃Ẑ�

is a (GX,�,P)-
martingale.

• Moreover, conditionally to Ẑ� , V is still a finite-variation process V , and is adapted to GX,� .
�

Proposition 2.5 (Continuity of Dγk ). If F X is a Brownian filtration, then Dγk has a continuous
modification.

Proof. By definition, Dγk is a F X-local martingale on [0, T ]. The conclusion is a straightfor-
ward consequence of the Brownian representation theorem. �

Considering the partition of L2([0, T ]) corresponding to the Voronoi cells of a functional
quantizer of X, the last two propositions show that the conditional distribution of the X in each
Voronoi cell (strata) is a Gaussian semimartingale with respect to its own filtration. This allows
us to define the corresponding functional stratification of the solutions of stochastic differential
equations driven by X.

In Corlay and Pagès [6], an algorithm is proposed to simulate the conditional distribution of
the marginals (Xt0, . . . ,Xtn) of X for a given subdivision 0 = t0 < t1 < · · · < tn = T of [0, T ]
conditionally to a given Voronoi cell (strata) of a functional quantization of X. The simulation
complexity has an additional linear complexity to an unconditioned simulation of (Xt0 , . . . ,Xtn).
We refer to Corlay and Pagès [6] for more details.

To deal with the solution of a SDE, it was proposed in Corlay and Pagès [6] to simply plug
these marginals in the Euler scheme of the SDE. Proposition 2.4 now shows that this amounts to
simulate the Euler scheme of the SDE driven by the corresponding (non-Gaussian) semimartin-
gale.

2.4. About the (H) hypothesis

2.4.1. The martingale case

In the case where X is a continuous Gaussian martingale, the matrix Q(s, t) defined in Sec-
tion 2.3 writes Q(s, t) = ((

∫ t

s
fi(u)fj (u)d〈X〉u))(i,j)∈I 2 .

For 1 ≤ s < t ≤ T , the map (·|·) : (f, g) �→ ∫ t

s
f (u)g(u)d〈X〉u defines a scalar product on

L2([s, t],d〈X〉). Hence, Q(s, t) is the Gram matrix of the vectors of L2([s, t],d〈X〉) defined
by the restrictions to [s, t] of the functions (fi)i∈I . Thus, it is invertible if and only if these
restrictions form a linearly independent family of L2([s, t],d〈X〉). (Another consequence, is that
if Q(s, t) is invertible for some 0 ≤ s < t ≤ T , then for every (u, v) such that [s, t] ⊂ [u,v],
Q(u,v) is invertible.)
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For instance, if X is a standard Brownian motion on [0, T ], the functions (f X
i )i∈I (associ-

ated with the Karhunen–Loève decomposition) are trigonometric functions with strictly different
frequencies. Hence, they form a linearly independent family of continuous functions on every
non-empty interval [s, T ) ⊂ [0, T ). Moreover, the measure d〈X〉 is proportional to the Lebesgue
measure on [0, T ] and thus Q(s,T ) is invertible for any s ∈ [0, T ). Hence, the (H) hypothesis is
fulfilled in the case of K–L generalized bridges of the standard Brownian motion.

2.4.2. Standard Brownian bridge and Ornstein–Uhlenbeck processes

Brownian bridge and the Ornstein–Uhlenbeck process are not martingales. Hence, this criterion
is not sufficient and the invertibility of matrix Q(s,T ) has to be proved by other means.

Following from the definitions of Q(s,T ) and ZT , in the case of the K–L generalized bridge

Q(s,T )ij = E

[(∫ T

s

f X
i (u)dXu − E

[∫ T

s

f X
i (u)dXu|(Xu)u∈[0,s]

])
×
(∫ T

s

f X
j (u)dXu − E

[∫ T

s

f X
j (u)dXu|(Xu)u∈[0,s]

])∗∣∣∣(Xu)u∈[0,s]
]

(2.10)

= cov

(∫ T

s

f X
i (u)dX(s)

u ,

∫ T

s

f X
j (u)dX(s)

u

)
,

where (X
(s)
u )u∈[s,T ] has the conditional distribution of X knowing (Xu)u∈[0,s].

• When X is a standard Brownian bridge on [0, T ], (X
(s)
u )u∈[s,T ] is a Brownian bridge on

[s, T ], starting from Xs and arriving at 0.
It is the sum of an affine function and a standard centered Brownian bridge on [s, T ].

• When X is a centered Ornstein–Uhlenbeck process, (X(s)
u )u∈[s,T ] is an Ornstein–Uhlenbeck

process on [s, T ] starting from Xs , with the same mean reversion parameter as X.
It is also the sum of a deterministic function and an Ornstein–Uhlenbeck process starting

from 0.

As a consequence, in these two cases, the quantity cov(
∫ T

s
f X

i (u)dX
(s)
u ,

∫ T

s
f X

j (u)dX
(s)
u ) can

be computed by plugging either a centered Brownian bridge on [s, T ] or an Ornstein–Uhlenbeck
starting from 0 instead of X(s) in equation (2.10). This means that Q(s,T ) is the Gram matrix
of the random variables (

∫ T

s
f X

i (u)dGu)i∈I , where the centered Gaussian process (Gu)u∈[s,T ]
is either a standard Brownian bridge on [s, T ] or an Ornstein–Uhlenbeck process starting from 0
at s. Thus, it is singular if and only if there exists (αi)i∈I �= 0 in R

I such that∫ T

s

(∑
i∈I

αif
X
i (u)

)
︸ ︷︷ ︸

=:g(u)

dGu = 0 a.s. (2.11)

The case of Brownian bridge. In the case where X is the standard Brownian bridge on [0, T ],
functions (f X

i )i∈I are C∞ functions and G is a standard Brownian bridge on [s, T ]. An inte-

gration by parts gives
∫ T

s
Gsg

′(s)ds = 0 a.s. and thus g′ ≡ 0 on (s, T ) and thus g is constant
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on [s, T ]. The functions (f X
i )i∈I form a linearly independent set of functions and, as they are

trigonometric functions with different frequencies, they clearly do not span constant functions,
so that equation (2.11) yields α1 = · · · = αn = 0. Hence, the (H) hypothesis is fulfilled in the
case of K–L generalized bridges of the standard Brownian bridge.

The case of Ornstein–Uhlenbeck processes. In the case where X is an Ornstein–Uhlenbeck
process on [0, T ], G is an Ornstein–Uhlenbeck process on [s, T ] starting from 0. The injectivity
property of the Wiener integral related to the Ornstein–Uhlenbeck process stated in Proposi-

tion 2.6 below, applied on [s, T ], shows that equation (2.11) amounts to g
L2([s,T ],dt)= 0 and thus∑

i∈I

αif
X
i

L2([s,T ],dt
)

= 0. (2.12)

Again, as (f X
i )i∈I are linearly independent, we have α1 = · · · = αn = 0. Hence, the (H) hy-

pothesis is fulfilled in the case of K–L generalized bridges of the Ornstein–Uhlenbeck processes.

Proposition 2.6 (Injectivity of the Wiener integral related to centered Ornstein–Uhlenbeck
processes). Let G be an Ornstein–Uhlenbeck process defined on [0, T ] by the SDE

dGt = −θGt dt + σ dWt with σ > 0 and θ > 0,

where W is a standard Brownian motion and G0
L∼ N (0, σ 2

0 ) is independent of W .
If g ∈ L2([0, T ]), then we have∫ T

0
g(s)dGs = 0 ⇔ g

L2([0,T ])= 0.

Proof. The solution of the Ornstein–Uhlenbeck SDE is

Gt = G0e−θt︸ ︷︷ ︸
independent of W

⊥⊥+
∫ t

0
σeθ(s−t) dWs︸ ︷︷ ︸

=:G0
t

.

Hence, we have ∫ T

0
g(s)dGs = −θG0

∫ T

0
g(s)e−θs ds

⊥⊥+
∫ T

0
g(s)dG0

s .

Thus, by independence, if
∫ T

0 g(s)dGs = 0 then
∫ T

0 g(s)dG0
s = 0. This means that we only have

to prove the proposition in the case of an Ornstein–Uhlenbeck process starting from 0.
We now assume that σ 2

0 = 0 and we temporarily make the additional assumption that θT < 4
3 .

If g ∈ L2([0, T ]) and
∫ T

0 g(s)dGs = 0, then θ
∫ T

0 g(s)Gs ds = σ
∫ T

0 g(s)dWs , and thus, if �OU

denotes the covariance function of G,

θ2
∫ T

0

∫ T

0
g(s)g(t)�OU(s, t)ds dt = σ 2

∫ T

0
g(s)2 ds. (2.13)



730 S. Corlay

Applying Schwarz’s inequality twice, we get∫ T

0

∫ T

0
g(s)g(t)�OU(s, t)ds dt ≤

∫ T

0
g(s)2 ds

√∫ T

0

∫ T

0

(
�OU(s, t)

)2 ds dt .

Hence, provided that ∫ T

0

∫ T

0

(
�OU(s, t)

)2 ds dt <
σ 4

θ4
, (2.14)

equality (2.13) implies
∫ T

0 g(s)2 ds = 0.
Now, we come to the proof of inequality (2.14). The covariance function of the Ornstein–

Uhlenbeck process starting from 0 writes

�OU(s, t) = σ 2

2θ
e−θ(s+t)

(
e2θ min(s,t) − 1

)
.

For t ∈ [0, T ], we have
∫ T

0 (�OU(s, t))2 ds = σ 4

8θ3 (2 − 4e−2θt θ t − e−2θ(T −t) − 2e−2θt + 2e−2θT −
e−2θ(T +t)), and thus∫ T

0

∫ T

0

(
�OU(s, t)

)2 ds dt = σ 2

16θ4

(−5 + 4θT + 8θT e−2θT + 4e−2θT + e−4θT
)
.

Consequently, the function φ defined by φ(θ) := ∫ T

0

∫ T

0 (�OU(s, t))2 ds dt − σ 4

θ4 writes

φ(θ) = 1

16

σ 4

θ4

(−21 + 4θT + 8θe−2θT T + 4e−2θT + e−4θT
)
.

Thus, φ(θ) < −16 + 12θT which leads to inequality (2.14) thanks to the fact that θT < 4
3 .

We now come back to the general case where we might have θT ≥ 4
3 . If this is the case, let us

consider T̃ := T − 1
θ

, so that θ(T − T̃ ) < 4
3 . For t ∈ [T̃ , T ], we have

Gt = GT̃ e−θ(t−T̃ )︸ ︷︷ ︸
independent of (Ws)s∈[T̃ ,T ]

⊥⊥+
∫ t

T̃

σeθ(s−t) dWs︸ ︷︷ ︸
=:G̃0

t

.

The so-defined process (G̃0
t )t∈[T̃ ,T ] is a centered Ornstein–Uhenbeck process starting from 0

and satisfying the same SDE as G. Hence, by independence, if
∫ T

0 g(s)dGs = 0, then∫ T

T̃
g(s)dG̃0

s = 0.

As θ(T − T̃ ) < 4
3 , we can apply the result to (G̃0

t )t∈[T̃ ,T ] so that g|[T̃ ,T ]
L2([T̃ ,T ])= 0. If T̃ θ < 4

3 ,

we then have g
L2([0,T ])= 0. If it is not the case, we use the same method by using the decompo-

sition of [0, T̃ ] into [0, T̃ − 1
θ
] and [T̃ − 1

θ
, T̃ ] and so on. An easy induction finally shows that

g
L2([0,T ])= 0.
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The converse is obvious. �

The case of a more general Gaussian semimartingale. In the Appendix, we investigate the
problem for more general Gaussian semimartingales. As we have seen in the case of the
Ornstein–Uhlenbeck process, if functions (fi)i∈I are linearly independent in L2([s, T ],d〈X〉)
for s ∈ [0, T ), the (H) hypothesis comes to the injectivity of the Wiener integral with respect
to X on span(fi)i∈I (on interval [s, T ]).

3. K–L generalized bridges and partial functional quantization

We keep the notation and assumptions of Section 2.2. As we have seen, equation (2.3) decom-
poses the process X as the sum of a linear combination of the Karhunen–Loève coordinates
Y := (Yi)i∈I and an independent remainder term. We now consider Ŷ � a stationary Voronoi N -
quantization of Y . Ŷ � can be written as a nearest neighbor projection of Y on a finite codebook
� = (γ1, . . . , γN).

Ŷ � = Proj�(Y ) where Proj� is a nearest neighbor projection on �.

For example, Ŷ � can be a stationary product quantization or an optimal quadratic quantiza-
tion of Y . We now define the stochastic process X̃I,� by replacing Y by Ŷ � in the decomposi-
tion (2.3). We denote X̃I,� = ProjI,�(X).

X̃I,� =
∑
i∈I

Ŷ �
i eX

i

⊥⊥+
∑

i∈N∗\I

√
λX

i ξie
X
i .

The conditional distribution of X̃I,� given that Y falls in the Voronoi cell of γk is the probability
distribution of the K–L generalized bridge with end-point γk . In other words, we have quantized
the Karhunen–Loève coordinates of X corresponding to i ∈ I , and not the other ones.

The so-defined process X̃I,� is called a partial functional quantization of X.

3.1. Partial functional quantization of stochastic differential equations

Let X be a continuous centered Gaussian semimartingale on [0, T ] with X0 = 0. We consider
the SDE

dSt = b(t, St )dt + σ(t, St )dXt, S0 = x ∈ R and t ∈ [0, T ], (3.1)

where b(t, x) and σ(t, x) are Borel functions, Lipschitz continuous with respect to x uniformly
in t , σ and b(·,0) are bounded. This SDE admits a unique strong solution S.

The conditional distribution given that Yi = yi for i ∈ I of S is the strong solution of the
stochastic differential equation dSt = b(t, St )dt + σ(t, St )dX

I,y
t , with S0 = x ∈ R, and for t ∈

[0, T ], where X
I,y
t is the corresponding K–L generalized bridge.
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Under the (H) hypothesis, this suggests to define the partial quantization of S from a partial
quantization X̃I,� of X by replacing X by X̃I,� in the SDE (3.1). We define the partial quan-
tization S̃I,� as the process whose conditional distribution given that Y falls in the Voronoi cell
of γk is the strong solution of the same SDE where X is replaced by the K–L generalized bridge
with end-point γk . We write

dS̃
I,�
t = b

(
t, S̃

I,�
t

)
dt + σ

(
t, S̃

I,�
t

)
dX̃

I,�
t . (3.2)

Remark. The SDE is written in the Itô sense unlike in the previous works on full functional
quantization (Pagès and Sellami [26], Pagès and Printems [24]) where the SDE was written in
the Stratonovich sense.

Here, the set I of quantized Karhunen–Loève coordinates does not depend on the quantiza-
tion level, while in the case of full functional quantization, optimality is reached by adapting
the quantization dimension. The optimal quantization dimension (or critical dimension) has been
thoroughly investigated in Luschgy and Pagès [18,19] and is shown to be asymptotically equiv-
alent to the logarithm of the quantization level when in goes to infinity, in the cases of Brownian
motion, Brownian bridge and Ornstein–Uhlenbeck processes.

3.2. Convergence of partially quantized SDEs

We start by stating some useful inequalities for the sequel. Then we recall the so-called Zador’s
theorem which will be used in the proof of the a.s. convergence of partially quantized SDEs.

Lemma 3.1 (Gronwall inequality for locally finite measures). Consider I an interval of the
form [a, b) or [a, b] with a < b or [a,∞). Let μ be a locally finite measure on the Borel
σ -algebra of I . We consider u a measurable function defined on I such that for all t ∈ I ,∫ t

a
|u(s)|μ(ds) < +∞. We assume that there exists a Borel function ψ on I such that

u(t) ≤ ψ(t) +
∫

[a,t)

u(s)μ(ds) ∀t ∈ I.

If

{
either ψ is non-negative,

or t �→ μ([a, t)) is continuous on I and for all t ∈ I,
∫ t

a
|ψ(s)|μ(ds) < ∞,

then u satisfies the Gronwall inequality

u(t) ≤ ψ(t) +
∫

[a,t)

ψ(s) exp
(
μ
([s, t)))μ(ds).

A proof of this result is available in Ethier and Kurtz [9], Appendix 5.1.

Lemma 3.2 (A Gronwall-like inequality in the non-decreasing case). Consider I an interval
of the form [a, b) or [a, b] with a < b or [a,∞). Let μ be a locally finite measure on the Borel
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σ -algebra of I . We consider u a measurable non-decreasing function defined on I such that for
all t ∈ I ,

∫ t

a
|u(s)|μ(ds) < +∞. We assume that there exists a Borel function ψ on I , and two

non-negative constants (A,B) ∈ R
2+ such that

u(t) ≤ ψ(t) + A

∫
[a,t)

u(s)μ(ds) + B

√∫
[a,t)

u(s)2μ(ds) ∀t ∈ I. (3.3)

If

{
either ψ is non-negative,

or t �→ μ([a, t)) is continuous on I and for all t ∈ I,
∫ t

a
|ψ(s)|μ(ds) < ∞,

then u satisfies the following Gronwall inequality

u(t) ≤ 2ψ(t) + 2
(
2A + B2)∫

[a,t)

ψ(s) exp
((

2A + B2)μ([s, t)))μ(ds).

Proof. Using that for (x, y) ∈ R
2+,

√
xy ≤ 1

2 ( x
B

+ By), we have

(∫
[a,t)

u(s)2μ(ds)

)1/2

≤
(

u(t)

∫
[a,t)

u(s)μ(ds)

)1/2

≤ u(t)

2B
+ B

2

∫
[a,t)

u(s)μ(ds).

Plugging this in inequality (3.3) yields

u(t) ≤ 2ψ(t) + (
2A + B2)∫

[a,t)

u(s)μ(ds).

Applying the regular Gronwall’s inequality (Lemma 3.1) yields the announced result. �

Theorem 3.1 (Zador, Bucklew, Wise, Graf, Luschgy, Pagès). Consider r > 0 and X be a
R

d -valued random variable such that X ∈ Lr+η for some η > 0. We denote by EN,r (X) the Lr

optimal quantization error of level N for X, EN,r (X) := min{‖X − Y‖r , |Y(�)| ≤ N}.
1. (Sharp rate). Let PX(dξ) = φ(ξ)dξ + ν(dξ) be the Radon–Nikodym decomposition of the

probability distribution of X. (ν and the Lebesgue’s measure are singular). Then if φ �≡ 0,

EN,r (X) ∼
N→∞ J̃r,d ×

(∫
Rd

φd/(d+r)(u)du

)1/d+1/r

× N−1/d ,

where J̃r,d ∈ (0,∞).
2. (Non-asymptotic upper bound). There exists Cd,r,η ∈ (0,∞) such that, for every R

d -valued
random vector X,

∀N ≥ 1, EN,r (X) ≤ Cd,r,η‖X‖r+ηN
−1/d .
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The first statement of the theorem was first established for probability distributions with com-
pact support by Zador [30], and extended by Bucklew and Wise to general probability distri-
butions on R

d (Bucklew and Wise [4]). The first mathematically rigorous proof can be found in
Graf and Luschgy [11]. The proof of the second statement is available in Luschgy and Pagès [20].

The real constant J̃r,d corresponds to the case of the uniform probability distribution over

the unit hypercube [0,1]d . We have J̃r,1 = 1
2 (r + 1)−1/r and J̃2,2 =

√
5

18
√

2
(see Graf and

Luschgy [11]).

3.2.1. Lp convergence of partially quantized SDEs

Lemma 3.3 (Generalized Minkowski inequality for locally finite measures). Consider I an
interval of the form [a, b) or [a, b] with a < b or [a,∞). Let μ be a locally finite measure on the
Borel σ -algebra of I . Then for any non-negative bi-measurable process X = (Xt )t∈I and every
p ∈ [1,∞), ∥∥∥∥∫I

Xtμ(dt)

∥∥∥∥
p

≤
∫

I
‖Xt‖pμ(dt).

Proposition 3.1 (Burkholder–Davis–Gundy inequality). For every p ∈ (0,∞), there exist
two positive real constants cBDG

p and CBDG
p such that for every continuous local martingale

(Xt )t∈[0,T ] null at 0,

cBDG
p

∥∥√〈X〉T
∥∥

p
≤
∥∥∥ sup

s∈[0,T ]
|Xs |

∥∥∥
p

≤ CBDG
p

∥∥√〈X〉T
∥∥

p
.

We refer to Revuz and Yor [27] for a detailed proof.

Proposition 3.2 (Lp inequality). Let G be a standard Gaussian random variable valued in R.
There exists a constant Cp > 0 such that for every M > 1√

2

π
Mp−1 exp

(
−M2

2

)
≤ E

[|G|p1|G|>M

]≤ CpMp−1 exp

(
−M2

2

)
.

Consequently (√
2

π

)1/p

M1/q exp

(
−M2

2p

)
≤ ‖G1|G|>M‖p ≤ (Cp)1/pM1/q exp

(
−M2

2p

)
,

where q is the conjugate exponent of p.
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Proposition 3.3 (The non-standard case and Lp reverse inequality). If H := σG has a vari-
ance of σ 2, we obtain

‖H1|H |>M‖p ≤ σ‖G1|G|>M/σ ‖p = σ(Cp)1/p

(
M

σ

)1/q

exp

(
− M2

2pσ 2

)
(3.4)

= σ 1/p(Cp)1/pM1/q exp

(
− M2

2pσ 2

)
︸ ︷︷ ︸

=:ηM

.

Conversely, for some fixed η > 0, and if M > 1, we have

M ≥
√

−σ 2(p − 1)W−1

(
− qη2q

pσ 2(C
2q/p
p σ 2q/p)

)
︸ ︷︷ ︸

=:Mη

⇒ ηM ≤ η, (3.5)

where W−1 is the secondary branch of the Lambert W function. For more details on the Lam-
bert W function, we refer to Corless et al. [7].

Theorem 3.2 (Lp quantization of partially quantized SDEs). Let X be a continuous centered
Gaussian martingale on [0, T ] with X0 = 0. Let S be the strong solution of the SDE

dSt = b(t, St )dt + σ(t, St )dXt, S0 = x,

where b(t, x) and σ(t, x) are Borel functions, Lipschitz continuous with respect to x uniformly
in t , σ and b(·,0) are bounded.

We consider X̃I,� a stationary partial functional quantization of X and S̃I,� the corresponding
partial functional quantization of S, that is, the strong solutions of

dS̃
I,�
t = b

(
t, S̃

I,�
t

)
dt + σ

(
t, S̃

I,�
t

)
dX̃

I,�
t , S̃

I,�
0 = x.

Then, for every p ∈ (0,∞), ε > 0 and t ∈ [0, T ), there exist three positive constants CX,ε,I ,
AX,ε,I and BX,ε,I such that

∥∥∥ sup
v∈[0,t]

∣∣Sv − S̃I,�
v

∣∣∥∥∥
p

≤ CX,ε,I exp

(
AX,ε,I

√√√√−W−1

(
−‖Y − Ŷ �‖2q

p+ε

BX,ε,I

))∥∥Y − Ŷ �
∥∥

p+ε
, (3.6)

where q is the conjugate exponent of p, where Y is defined from X by equation (2.3) and Ŷ � is
the nearest neighbor projection on �.

Remark. Using that W−1(−x) ∼
x→0+

ln(x), we can see that the right-hand term in equation (3.6)

goes to 0 as the quantization error ‖Y − Ŷ �‖p+ε goes to 0.
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Proof. We decompose the process X into Xt = ∑
i∈I Yie

X
i (t) + X

I,0
t and X̃I,� into X̃

I,�
t =∑

i∈I Ŷ �
i eX

i (t) + X
I,0
t , where Ŷ � is the nearest neighbor projection of Y on �. For some k ∈

{1, . . . ,N}, conditionally to Ŷ � = γk , we have

St − S̃
I,�
t =

∫ t

0

(
b(u,Su) − b

(
u, S̃

I,�
t

))
du +

∑
i∈I

∫ t

0

(
σ(u,Su) − σ

(
u, S̃I,�

u

))
Ŷ �

i deX
i (u)

+
∑
i∈I

∫ t

0

(
Yi − Ŷ �

i

)
σ(u,Su)deX

i (u) +
∫ t

0

(
σ(u,Su) − σ

(
u, S̃I,�

u

))
Gu d〈X〉u

+
∫ t

0

(
σ(u,Su) − σ

(
u, S̃I,�

u

))
dM̃u.

This gives (conditionally to Ŷ � = γk)∣∣St − S̃
I,�
t

∣∣
≤ [b]Lip

∫ t

0

∣∣Su − S̃I,�
u

∣∣du + [σ ]Lip|I | max
ı∈I

u∈[0,T ]

∣∣(eX
i

)′
(u)

∣∣(max
i∈I

∣∣Ŷ �
i

∣∣)∫ t

0

∣∣Su − S̃I,�
u

∣∣du

+ [σ ]max|I | max
i∈I

u∈[0,T ]

∣∣(eX
i

)′
(u)

∣∣T ∑
i∈I

∣∣Yi − Ŷ �
i

∣∣+ ∣∣∣∣∫ t

0

(
σ(u,Su) − σ

(
u, S̃I,�

u

))
Gu d〈X〉u

∣∣∣∣
+
∣∣∣∣∫ t

0

(
σ(u,Su) − σ

(
u, S̃I,�

u

))
dM̃u

∣∣∣∣.
As a consequence, conditionally to Ŷ � = γk ,

max
v∈[0,t]

∣∣Sv − S̃I,�
v

∣∣ ≤ [b]Lip

∫ t

0
max

v∈[0,u]
∣∣Sv − S̃I,�

v

∣∣du

+ [σ ]Lip|I | max
i∈I

u∈[0,T ]

∣∣(eX
i

)′
(u)

∣∣(max
i∈I

∣∣Ŷ �
i

∣∣)∫ t

0
max

v∈[0,u]
∣∣Sv − S̃I,�

v

∣∣du

+ [σ ]max|I | max
i∈I

u∈[0,T ]

∣∣(eX
i

)′
(u)

∣∣T ∑
i∈I

∣∣Yi − Ŷ �
i

∣∣
+ max

v∈[0,t]

∣∣∣∣∫ v

0

(
σ(u,Su) − σ

(
u, S̃I,�

u

))
Gu d〈X〉u

∣∣∣∣
+ max

v∈[0,t]

∣∣∣∣∫ v

0

(
σ(u,Su) − σ

(
u, S̃I,�

u

))
dM̃u

∣∣∣∣.
To shorten the notation, we denote, for a random variable V and a non-negligible event A,

‖V ‖p,A := E[V p|A]1/p . Hence, using the Minkowski inequality and the generalized Minkowski
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inequality for locally finite measures (Lemma 3.3), we get∥∥∥ max
v∈[0,t]

∣∣Sv − S̃I,�
v

∣∣∥∥∥
p,{Ŷ �=γk}

≤ [b]Lip

∫ t

0

∥∥∥ max
v∈[0,u]

∣∣Sv − S̃I,�
v

∣∣∥∥∥
p,{Ŷ �=γk}

du

+ [σ ]Lip|I | max
i∈I

u∈[0,T ]

∣∣(eX
i

)′
(u)

∣∣(max
i∈I

∣∣Ŷ �
i

∣∣)∫ t

0

∥∥∥ max
v∈[0,u]

∣∣Sv − S̃I,�
v

∣∣∥∥∥
p,{Ŷ �=γk}

du

+ [σ ]Lip|I | max
i∈I

u∈[0,T ]

∣∣(eX
i

)′
(u)

∣∣T ∥∥∥∥∑
i∈I

∣∣Yi − Ŷ �
i

∣∣∥∥∥∥
p,{Ŷ �=γk}

+
∥∥∥∥ max

v∈[0,t]

∣∣∣∣∫ v

0

(
σ(u,Su) − σ

(
u, S̃I,�

u

))
Gu d〈X〉u

∣∣∣∣∥∥∥∥
p,{Ŷ �=γk}

+
∥∥∥∥ max

v∈[0,t]

∣∣∣∣∫ v

0

(
σ(u,Su) − σ

(
u, S̃I,�

u

))
dM̃u

∣∣∣∣∥∥∥∥
p,{Ŷ �=γk}

.

Now, from the Burkholder–Davis–Gundy inequality,∥∥∥ max
v∈[0,t]

∣∣Sv − S̃I,�
v

∣∣∥∥∥
p,{Ŷ �=γk}

≤ [b]Lip

∫ t

0

∥∥∥ max
v∈[0,u]

∣∣Sv − S̃I,�
v

∣∣∥∥∥
p,{Ŷ �=γk}

du

+ [σ ]Lip|I | max
i∈I

u∈[0,T ]

∣∣(eX
i

)′
(u)

∣∣(max
i∈I

∣∣Ŷ �
i

∣∣)∫ t

0

∥∥∥ max
v∈[0,u]

∣∣Sv − S̃I,�
v

∣∣∥∥∥
p,{Ŷ �=γk}

du

(3.7)

+ [σ ]Lip|I | max
i∈I

u∈[0,T ]

∣∣(eX
i

)′
(u)

∣∣T ∥∥∥∥∑
i∈I

∣∣Yi − Ŷ �
i

∣∣∥∥∥∥
p,{Ŷ �=γk}

+
∥∥∥∥∫ t

0

∣∣σ(u,Su) − σ
(
u, S̃I,�

u

)∣∣|Gu|d〈X〉u
∥∥∥∥

p,{Ŷ �=γk}

+ CBDG
p

∥∥∥∥
√∫ t

0

(
σ(u,Su) − σ

(
u, S̃

I,�
u

))2 d〈X〉u
∥∥∥∥

p,{Ŷ �=γk}
.

Now, from Schwarz’s inequality∥∥∥∥∑
i∈I

∣∣Yi − Ŷ �
i

∣∣∥∥∥∥
p,{Ŷ �=γk}

≤
∥∥∥∥√|I |

√∑
i∈I

∣∣Yi − Ŷ �
i

∣∣2∥∥∥∥
p,{Ŷ �=γk}

=√|I |∥∥Y − Ŷ �
∥∥

p,{Ŷ �=γk}.
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From the generalized Minkowski inequality∥∥∥∥∫ t

0

∣∣σ(u,Su) − σ
(
u, S̃I,�

u

)∣∣|Gu|d〈X〉u
∥∥∥∥

p,{Ŷ �=γk}

≤
∫ t

0

∥∥(σ(u,Su) − σ
(
u, S̃I,�

u

))
Gu

∥∥
p,{Ŷ �=γk} d〈X〉u

=
∫ t

0

∥∥(σ(u,Su) − σ
(
u, S̃I,�

u

))
Gu1|Gu|≥M

+ (
σ(u,Su) − σ

(
u, S̃I,�

u

))
Gu1|Gu|≤M

∥∥
p,{Ŷ �=γk} d〈X〉u

≤
∫ t

0

∥∥(σ(u,Su) − σ
(
u, S̃I,�

u

))
Gu1|Gu|≥M

∥∥
p,{Ŷ �=γk} d〈X〉u

+
∫ t

0

∥∥(σ(u,Su) − σ
(
u, S̃I,�

u

))
Gu1|Gu|≤M

∥∥
p,{Ŷ �=γk} d〈X〉u

≤ 2[σ ]max

∫ t

0
‖Gu1|Gu|≥M‖p,{Ŷ �=γk} d〈X〉u + M[σ ]Lip

∫ t

0

∥∥Su − S̃I,�
u

∥∥
p,{Ŷ �=γk} d〈X〉u.

We obtain, thanks to Proposition 3.3∥∥∥∥∫ t

0

∣∣σ(u,Su) − σ
(
u, S̃I,�

u

)∣∣|Gu|d〈X〉u
∥∥∥∥

p,{Ŷ �=γk}

≤ 2[σ ]max〈X〉t (Cp)1/pv
1/p
t M1/q exp

(
− M2

2pv2
t

)
︸ ︷︷ ︸

=:ηM

+M[σ ]Lip

∫ t

0

∥∥Su − S̃I,�
u

∥∥
p,{Ŷ �=γk} d〈X〉u,

where v2
t = maxu∈[0,t](Var(Gu)). Moreover,∥∥∥∥

√∫ t

0

(
σ(u,Su) − σ

(
u, S̃

I,�
u

))2 d〈X〉u
∥∥∥∥

p,{Ŷ �=γk}
≤
√√√√∫ t

0

∥∥∥ max
i∈I

v∈[0,u]

∣∣Sv − S̃
I,�
v

∣∣∥∥∥2

p,{Ŷ �=γk}
d〈X〉u.

Hence, equation (3.7) becomes∥∥∥ max
v∈[0,t]

∣∣Sv − S̃I,�
v

∣∣∥∥∥
p,{Ŷ �=γk}

≤ [σ ]Lip|I | max
i∈I

u∈[0,T ]

∣∣(eX
i

)′
(u)

∣∣√|I |
︸ ︷︷ ︸

=:AX
i

∥∥Y − Ŷ �
∥∥

p,{Ŷ �=γk} + ηM

+ [b]Lip

∫ t

0

∥∥∥ max
v∈[0,u]

∣∣Sv − S̃I,�
v

∣∣∥∥∥
p,{Ŷ �=γk}

du
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+ [σ ]Lip|I | max
i∈I

u∈[0,T ]

∣∣(eX
i

)′
(u)

∣∣(max
i∈I

∣∣Ŷ �
i

∣∣)∫ t

0

∥∥∥ max
v∈[0,u]

∣∣Sv − S̃I,�
v

∣∣∥∥∥
p,{Ŷ �=γk}

du

+ CBDG
p

(∫ t

0
2
∥∥∥ max

i∈I
v∈[0,u]

∣∣Sv − S̃I,�
v

∣∣∥∥∥2

p,{Ŷ �=γk}
d〈X〉u

)1/2

+ M[σ ]Lip︸ ︷︷ ︸
=:CX,M

∫ t

0

∥∥∥ max
v∈[0,u]

∣∣Sv − S̃I,�
v

∣∣∥∥∥
p,{Ŷ �=γk}

d〈X〉u.

We can then apply the “Gronwall-like” Lemma 3.2 for locally finite measures to the non-
decreasing function∥∥∥ sup

v∈[0,t]
∣∣Sv − S̃I,�

v

∣∣∥∥∥
p,{Ŷ �=γk}

= E

[
sup

v∈[0,t]
∣∣Sv − S̃I,�

v

∣∣p|Ŷ � = γk

]1/p

and with the locally finite measure μ defined by μ(du) = du + d〈X〉u, and we obtain∥∥∥ sup
v∈[0,t]

∣∣Sv − S̃I,�
v

∣∣∥∥∥
p,{Ŷ �=γk}

≤ (
AX

I E
[∣∣Y − Ŷ �

∣∣p|Ŷ � = γk

]1/p + ηM

)
exp

((
E

X,γk

I + CX,M
)
μ
([0, t)

))
≤ (

AX
I E

[∣∣Y − Ŷ �
∣∣p|Ŷ � = γk

]1/p + ηM

)
exp

(
E

X,γk

I μ
([0, t)

))︸ ︷︷ ︸
=:φ(γk)

exp
(
CX,Mμ

([0, t)
))

,

where E
X,γk

I is an affine function of maxi∈I |(γk)i |. This yields∥∥∥ sup
v∈[0,t]

∣∣Sv − S̃I,�
v

∣∣∥∥∥
p

≤ (
AX

I

∥∥E
[∣∣Y − Ŷ �

∣∣p|Ŷ �
]1/p

φ
(
Ŷ �

)∥∥
p

+ ηM

∥∥φ(Ŷ �
)∥∥

p

)
exp

(
CX,Mμ

([0, t)
))

.

Now, for ε > 0 and p̃ = 1 + ε
p

and q̃ = p̃
p̃−1 = 1 + p

ε
the conjugate exponent of p̃, we have,

thanks to Hölder’s inequality

E
[
φ
(
Ŷ �

)p
E
[∣∣Y − Ŷ �

∣∣p|Ŷ �
]] ≤ ∥∥φ(Ŷ �

)p∥∥
q̃

∥∥E
[∣∣Y − Ŷ �

∣∣p|Ŷ �
]∥∥

p̃

≤ ∥∥φ(Ŷ �
)p∥∥

q̃
E
[∣∣Y − Ŷ �

∣∣p+ε]p/(p+ε)
.

Hence, ∥∥E
[∣∣Y − Ŷ �

∣∣p|Ŷ �
]1/p

φ
(
Ŷ �

)∥∥
p

≤ ∥∥φ(Ŷ �
)p∥∥1/p

q̃
E
[∣∣Y − Ŷ �

∣∣p+ε]1/(p+ε)
.

Now, as the so-defined function φ is convex and as Ŷ � is a stationary quantizer of Y , we have
thanks to equation (1.4), ‖φ(Ŷ �)p‖q̃ ≤ ‖φ(Y )p‖q̃ and ‖φ(Ŷ �)‖p ≤ ‖φ(Y )‖p .
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If one sets

M =
√√√√−vt (p − 1)W−1

(
− q‖Y − Ŷ �‖2q

p+ε

pv2
t C

2q/p
p v

2q/p
t

)
,

where q is the conjugate exponent of p and W−1 is the secondary branch of the Lambert W
function, Proposition 3.3 ensures that ηM ≤ η := ‖Y − Ŷ �‖p+ε . We finally have the following
error bound∥∥∥ sup

v∈[0,t]
∣∣Sv − S̃I,�

v

∣∣∥∥∥
p

≤ CX,ε,I exp

(
[σ ]Lip

√√√√−vt (p − 1)W−1

(
− q‖Y − Ŷ �‖2q

p+ε

pv2
t C

2q/p
p v

2q/p
t

))∥∥Y − Ŷ �
∥∥

p+ε
,

which is the desired inequality. �

Remark (Without the stationarity property). The last step of the proof of Theorem 3.2 (the use
of Jensen’s inequality) relies on the stationarity of the quantizer Ŷ . Now, without this stationarity
hypothesis and under the additional assumption that

� ∩ B(0,1) �= ∅, (A)

we have for every i ∈ I

|Ŷi | ≤ |Yi − Ŷi |+|Yi | ≤ |Yi |+
∣∣Yi −γ

k0
i

∣∣≤ 2|Yi |+
∣∣γ k0

i

∣∣≤ 2|Yi |+1 where γ k0 ∈ �∩B(0,1).

Hence,

max
i∈I

|Ŷi | ≤ 2 max
i∈I

|Yi | + 1.

We notice that the function φ(x) defined in the demonstration of Theorem 3.2 writes φ(x) =
ψ(maxi∈I xi) for some non-decreasing function ψ . This implies

φ(Ŷ ) = ψ
(

max
i∈I

Ŷi

)
≤ ψ

(
max
i∈I

(
2|Yi | + 1

))= φ
(
2|Y | + 1

)
.

Hence, we can obtain the same conclusion as in Theorem 3.2.

Corollary 3.1 (Lp convergence). With the same notation and hypothesis as in Theorem 3.2,
consider (X̃I,�n)n∈N a sequence of partial functional quantizers of X and (S̃I,�n)n∈N the corre-
sponding sequence of partial quantizers of S. (For n ∈ N, �n is assumed to have cardinal n.)

If we make the additional assumption that the associated sequence of quantizers (Ŷ �n)n∈N is
rate-optimal for the Lp+ε convergence for some ε > 0, then for every t ∈ [0, T ) we have

E

[
sup

u∈[0,t]
∣∣Su − S̃I,�n

u

∣∣p]1/p = O
(
n−1/|I |).
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Proof. As ‖Y − Ŷ �n‖p+ε →n→∞ 0, we have a.s. d(Ŷ �n, Y ) →n→∞ 0. Hence, there exists N0 ∈
N such that for every n ≥ N0, �n satisfies Hypothesis (A). From this observation, the result is
straightforward consequence of the previous remark and Zador’s theorem 3.1, which defines the
optimal convergence rate of a sequence of quantizers. �

3.2.2. The a.s. convergence of partially quantized SDEs

Theorem 3.3 (Almost sure convergence of partially quantized SDEs). Let X be a continuous
centered Gaussian martingale on [0, T ] with X0 = 0. Let S be the strong solution of the SDE

dSt = b(t, St )dt + σ(t, St )dXt, S0 = x,

where b(t, x) and σ(t, x) are Borel functions, Lipschitz continuous with respect to x uniformly
in t , σ and b(·,0) are bounded.

We consider (X̃I,�k )k∈N a sequence of partial functional quantizers of X and S̃I,�n the corre-
sponding partial functional quantization of S, that is, the strong solutions of

dS̃
I,�n
t = b

(
t, S̃

I,�n
t

)
dt + σ

(
t, S̃

I,�n
t

)
dX̃

I,�n
t , S̃

I,�n

0 = x.

(For n ∈ N, �n is assumed to have cardinal n.) We also assume that the sequence of partial
quantizers of X is rate-optimal for some p > |I |, that is, that there exists a constant C such that

E
[∣∣Y − Ŷ �n

∣∣p]1/p ≤ Cn−1/|I |

for every n ∈ N
∗, where Y is defined from X by equation (2.3) and Ŷ � is the nearest neighbor

projection on �. Then for every t ∈ [0, T ), S̃
I,�n
t converges almost surely to St .

Proof. From Corollary 3.1, if t ∈ [0, T ), there exist r ∈ (|I |,p) and N0 ∈ N such that for n ≥ N0,

E

[
sup

u∈[0,t]

∣∣Su − S̃I,�n
u

∣∣r]1/r = O
(
n−1/|I |).

Hence, as r
|I | > 1, Beppo–Levi’s theorem for series with non-negative terms implies

E

[∑
n≥1

sup
u∈[0,t]

∣∣Su − S̃I,�n
u

∣∣r]< +∞.

Thus
∑

n≥1 supu∈[0,t] |Su − S̃
I,�n
u |r < +∞ P-a.s. so that supu∈[0,t] |Su − S̃

I,�n
u | →n→∞ 0

P-a.s. �

Remark (Extension to semimartingales). In Theorems 3.2 and 3.3, we limited ourselves to the
case where X is a local martingale. The proofs are easily extended to the case of a semimartin-
gale X as soon as there exists a locally finite measure ν on [0, T ] such that for every ω ∈ �

the finite-variation part dV (ω) in the canonical decomposition of X is absolutely continuous
with respect to ν. In particular, this is the case for the Brownian bridge and Ornstein–Uhlenbeck
processes whose finite-variation parts are absolutely continuous with respect to the Lebesgue
measure on [0, T ].
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Appendix: Injectivity properties of the Wiener integral

In this Appendix, we recall some results on the definition of the Wiener integral with respect to
a Gaussian process. We focus on the injectivity properties. Here, we pay special attention to the
special case of the Ornstein–Uhlenbeck processes.

The covariance operator and the Cameron–Martin space
Consider X a bi-measurable centered Gaussian process on [0, T ] such that

∫ T

0 E[X2
t ]dt <

∞ and with a continuous covariance function �X on [0, T ] × [0, T ]. We denote by H :=
span{Xt, t ∈ [0, T ]}L2(P)

the Gaussian Hilbert space spanned by (Xt )t∈[0,T ]. The covariance op-
erator CX of X is defined by

CX :L2([0, T ]) → L2([0, T ]),
y �→ CXy = E

[
(y,X)X

]
.

We have CXy(t) = E[(y,X)X](t) = E[∫ T

0 Xsy(s)dsXt ] = ∫ T

0 �X(t, s)y(s)ds where
�X(t, s) = E[XtXs] is the covariance function of X.

The Cameron–Martin space of X, (or reproducing Hilbert space of CX), which we denote by
KX , is the subspace of L2([0, T ]) defined by KX := {t �→ E[ZXt ],Z ∈ H }. KX is equipped with
the scalar product defined by

〈k1, k2〉X = E[Z1Z2] if ki = E[ZiX·], i = 1,2,

so that (KX, 〈·〉X) is a Hilbert space, isometric with the Hilbert space {(y,X): y ∈ L2([0, T ])}H .
KX is spanned as a Hilbert space by {CX(y): y ∈ L2([0, T ])}.

The Wiener integral
Here, we follow the same steps as in Lebovits and Lévy–Véhel [17] and in Jost [16] for the

definition of a general Wiener integral. The difference here is that we use the quotient topology
in order to define the Wiener integral in a more general setting.

We define the map U :H → KX defined by U(Z)(t) = E[ZXt ]. By definition of H and KX ,
U is a bijection and for any s ∈ [0, T ], we have U(Xs) = �X(s, ·). Consequently, KX is spanned
by (�X(s, ·))s∈[0,T ] as a Hilbert space. Now, we linearly map the set of the piecewise constant
functions E ([0, T ]) to the Cameron–Martin space KX by

J : E
([0, T ]) → KX,

1|s,t | �→ �X(t, ·) − �X(s, ·),
where |a, b| stands either for the interval [a, b], (a, b), (a, b] or [a, b). We equip E ([0, T ]) with
the bilinear form 〈·, ·〉J which is defined by

〈f,g〉J := 〈Jf,Jg〉X.

It is a bilinear symmetric positive-semidefinite form.
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Remark. The so-called reproducing property shows that 〈1|0,t |,1|0,s|〉J = �X(t, s)+�X(0,0)−
�X(0, s) − �X(0, t). When X0 = 0 a.s., this gives 〈1|0,t |,1|0,s|〉J = �X(s, t).

Now, we define the equivalence relation ∼J on E ([0, T ]) by x ∼J y if 〈x −y, x −y〉J = 0. On
the quotient space E([0, T ]) := E ([0, T ])/ ∼J , the bilinear form 〈·, ·〉J is positive-definite and
thus it is a scalar product on E([0, T ]). In this context, J defines an (isometric) linear map from
E([0, T ]) to KX . Then, considering the completion F of E([0, T ]) associated with this scalar
product, J is extended to F and U−1 ◦ J :F → H is an (isometric) injective map that we call
Wiener integral associated to X.

∫ T

0
f (t)dXt := U−1 ◦ J (f ).

Injectivity properties of the Wiener integral
As we have just seen, the Wiener integral is an (isometric) injective map from F to H . Still, for

example, when dealing with a standard Brownian bridge on [0, T ], ‖1[0,T ]‖J = 0, so that there
are functions of E ([0, T ]) which have a non-zero L2 norm and a zero ‖ · ‖J norm. Injectivity
only holds in the quotient space E([0, T ]) = E ([0, T ])/ ∼J and its completion F .

It is classical background that in the special case of a standard Brownian motion, ‖ · ‖J exactly
coincides with the canonical L2 norm so that F = L2([0, T ]).

Study of the case of Ornstein–Uhlenbeck processes
From now, we will assume that X is a centered Ornstein–Uhlenbeck process defined on [0, T ]

by the SDE

dXt = −θXt dt + σ dWt with σ > 0 and θ > 0,

where W is a standard Brownian motion and X0
L∼ N (0, σ 2

0 ) is independent of W . We make the
additional assumption that θT ≤ 4

3 . The covariance function writes

�X(s, t) = σ 2

2θ
e−θ(s+t)

(
e2 min(s,t) − 1

)+ σ 2
0 e−θ(s+t).

Proposition A.1 (Semi-norm equivalence on E ([0, T ])). There exist two positive constants c

and C such that for every f ∈ E ([0, T ]), c‖f ‖2 ≤ ‖f ‖J ≤ C‖f ‖2.

Proof. Let us consider f ∈ E ([0, T ]). We have

‖f ‖2
J = Var

(
−θ

∫ T

0
f (s)Xs ds + σ

∫ T

0
f (s)dWs

)
≤ 2 Var

(
θ

∫ T

0
f (s)Xs ds

)
+ 2 Var

(
σ

∫ T

0
f (s)dWs

)
.
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The solution of the Ornstein–Uhlenbeck SDE is

Xt = X0e−θt
⊥⊥+
∫ t

0
σeθ(s−t) dWs︸ ︷︷ ︸

=:X0
t

.

The so-defined process (X0
t )t∈[0,T ] is a centered Ornstein–Uhlenbeck process starting from 0.

Hence, we have

‖f ‖2
J ≤ 2 Var

(
X0θ

∫ T

0
f (s)e−θs ds

)
+ 2 Var

(
θ

∫ T

0
f (s)X0

s ds

)
+ 2 Var

(
σ

∫ T

0
f (s)dWs

)
≤ 2θ2T Var(X0)

∫ T

0
f (s)2 ds + 2 Var

(
θ

∫ T

0
f (s)X0

s ds

)
+ 2 Var

(
σ

∫ T

0
f (s)dWs

)
.

As in the proof of Proposition 2.6, using that θT < 4/3, we can show that Var(θ
∫ T

0 f (s)X0
s ds) ≤

Var(σ
∫ T

0 f (s)dWs). Hence,

‖f ‖2
J ≤ (

2θ2T σ 2
0 + 4σ 2)︸ ︷︷ ︸

=:C2

∫ T

0
f (s)2 ds,

which is the desired inequality. Now we write∫ t

0
f (s)dXs = −θ

∫ T

0
f (s)X0e−θs ds︸ ︷︷ ︸
=:Gf

0

+
(

−θ

∫ T

0
f (s)X0

s ds

)
︸ ︷︷ ︸

=:Gf
1

+σ

∫ T

0
f (s)dWs︸ ︷︷ ︸

=:Gf
2

,

where (G
f

0 ,G
f

1 ,G
f

2 ) is Gaussian and G
f

0 is independent of G
f

1 and G
f

2 . Hence,

Var

(∫ t

0
f (s)dXs

)
≥ Var

(
G

f

1 + G
f

2

)= Var
(
G

f

1

)+ Var
(
G

f

2

)+ 2 cov
(
G

f

1 ,G
f

2

)
(A.1)

≥ Var
(
G

f

1

)+ Var
(
G

f

2

)− 2
√

Var
(
G

f

1

)
Var

(
G

f

2

)=
(√

Var
(
G

f

2

)−
√

Var
(
G

f

1

))2
.

It has been shown at the beginning of the proof of Proposition 2.6 that there exists a constant
K < 1 independent of f such that Var(Gf

1 ) ≤ K Var(Gf

2 ). K was defined by

K = θ2

σ 2

√∫ T

0

∫ T

0

(
�X0

(s, t)
)2 ds dt,
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where �X0
is the covariance function of the Ornstein–Uhlenbeck process starting from 0. Plug-

ging this into equation (A.1) yields

Var

(∫ t

0
f (s)dXs

)
≥ (1 − √

K)2 Var
(
G

f

2

)= (1 − √
K)2σ 2︸ ︷︷ ︸

=:c2

‖f ‖2
2.

This is the wanted inequality. �

A straightforward consequence of Proposition A.1 is that ‖f ‖J = 0 ⇔ ‖f ‖2 = 0 so that equiv-
alence classes in E ([0, T ]) for the relation ∼J are almost surely equal functions. Another con-
sequence is that the sets of Cauchy sequences and convergent sequences for the two norms on
E([0, T ]) coincide, and thus the corresponding completions of E([0, T ]) are the same. In other
words, in the case of Ornstein–Uhlenbeck processes that satisfy the condition θT ≤ 4

3 , we have
F = L2([0, T ]).

Acknowledgements

The author is grateful to Benjamin Jourdain and Gilles Pagès for their helpful remarks and com-
ments.

References

[1] Alili, L. (2002). Canonical decompositions of certain generalized Brownian bridges. Electron. Com-
mun. Probab. 7 27–36 (electronic). MR1887171

[2] Ankirchner, S., Dereich, S. and Imkeller, P. (2007). Enlargement of filtrations and continuous
Girsanov-type embeddings. In Séminaire de Probabilité XL (C. Donati-Martin, M. Émery, A. Rouault
and C. Stricker, eds.). Lecture Notes in Math. 1899. Berlin: Springer.

[3] Bally, V., Pagès, G. and Printems, J. (2005). A quantization tree method for pricing and hedging
multidimensional American options. Math. Finance 15 119–168. MR2116799

[4] Bucklew, J.A. and Wise, G.L. (1982). Multidimensional asymptotic quantization theory with r th
power distortion measures. IEEE Trans. Inform. Theory 28 239–247. MR0651819

[5] Corlay, S. (2010). The Nyström method for functional quantization with an application to the frac-
tional Brownian motion. Preprint.

[6] Corlay, S. and Pagès, G. (2010). Functional quantization-based stratified sampling methods. Preprint.
[7] Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J. and Knuth, D.E. (1996). On the Lambert W

function. Adv. Comput. Math. 5 329–359. MR1414285
[8] Deheuvels, P. and Martynov, G.V. (2008). A Karhunen–Loève decomposition of a Gaussian process

generated by independent pairs of exponential random variables. J. Funct. Anal. 255 2363–2394.
MR2473261

[9] Ethier, S.N. and Kurtz, T.G. (1986). Markov Processes: Characterization and Convergence. Wiley
Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. New York:
Wiley. MR0838085

[10] Gersho, A. and Gray, R.M. (1991). Vector Quantization and Signal Compression. Norwell: Kluwer
Academic.

http://www.ams.org/mathscinet-getitem?mr=1887171
http://www.ams.org/mathscinet-getitem?mr=2116799
http://www.ams.org/mathscinet-getitem?mr=0651819
http://www.ams.org/mathscinet-getitem?mr=1414285
http://www.ams.org/mathscinet-getitem?mr=2473261
http://www.ams.org/mathscinet-getitem?mr=0838085


746 S. Corlay

[11] Graf, S. and Luschgy, H. (2000). Foundations of Quantization for Probability Distributions. Lecture
Notes in Math. 1730. Berlin: Springer. MR1764176

[12] Jacod, J. (1985). Grossissement initial, hypothese (H′) et theoreme de Girsanov. In Grossissements de
filtrations : Exemples et applications. Lecture Notes in Math. 1118 15–35. Berlin: Springer.

[13] Jain, N.C. and Monrad, D. (1982). Gaussian quasimartingales. Z. Wahrsch. Verw. Gebiete 59 139–159.
MR0650607

[14] Janson, S. (1997). Gaussian Hilbert Spaces. Cambridge Tracts in Mathematics 129. Cambridge: Cam-
bridge Univ. Press. MR1474726

[15] Jeulin, T. (1980). Semi-martingales et Grossissement d’une Filtration. Lecture Notes in Math. 833.
Berlin Heidelberg: Springer.

[16] Jost, C. (2007). Measure-preserving transformations of Volterra Gaussian processes and related
bridges. Preprint.

[17] Lebovits, J. and Lévy-Véhel, J. (2011). White noise-based stochastic calculus with respect to multi-
fractional Brownian motion. Preprint.

[18] Luschgy, H. and Pagès, G. (2002). Functional quantization of Gaussian processes. J. Funct. Anal. 196
486–531. MR1943099

[19] Luschgy, H. and Pagès, G. (2004). Sharp asymptotics of the functional quantization problem for Gaus-
sian processes. Ann. Probab. 32 1574–1599. MR2060310

[20] Luschgy, H. and Pagès, G. (2008). Functional quantization rate and mean regularity of processes with
an application to Lévy processes. Ann. Appl. Probab. 18 427–469. MR2398762

[21] Luschgy, H., Pagès, G. and Wilbertz, B. (2010). Asymptotically optimal quantization schemes for
Gaussian processes on Hilbert spaces. ESAIM Probab. Stat. 14 93–116. MR2654549

[22] Mansuy, R. and Yor, M. (2006). Random Times and Enlargements of Filtrations in a Brownian Setting.
Lecture Notes in Math. 1873. Berlin: Springer. MR2200733

[23] Pagès, G. (1998). A space quantization method for numerical integration. J. Comput. Appl. Math. 89
1–38. MR1625987

[24] Pagès, G. and Printems, J. (2005). Functional quantization for numerics with an application to option
pricing. Monte Carlo Methods Appl. 11 407–446. MR2186817

[25] Pagès, G. and Printems, J. (2005). “Web site devoted to optimal quantization.” Available at
http://www.quantize.maths-fi.com.

[26] Pagès, G. and Sellami, A. (2010). Convergence of multi-dimensional quantized SDE’s. In Séminaire
de Probabilités XLIII (C. Donati-Martin, A. Lejay and A. Rouault, eds.) 269–308. Berlin: Springer.

[27] Revuz, D. and Yor, M. (2005). Continuous Martingales and Brownian Motion, 3rd ed. Berlin:
Springer.

[28] Wilbertz, B. (2008). Construction of optimal quantizers for Gaussian measures on Banach spaces.
Ph.D. thesis, Universität Trier.

[29] Yor, M. (1978). Grossissement d’une filtration et semi-martingales: Théoremes généraux. In Sémi-
naire de Probabilités XII. Lecture Notes in Math. 649 61–69. Berlin Heidelberg: Springer.

[30] Zador, P.L. (1982). Asymptotic quantization error of continuous signals and the quantization dimen-
sion. IEEE Trans. Inform. Theory 28 139–149. MR0651809

[31] Zapała, A.M. (2000). Jensen’s inequality for conditional expectations in Banach spaces. Real Anal.
Exchange 26 541–552. MR1844134

Received March 2011 and revised September 2012

http://www.ams.org/mathscinet-getitem?mr=1764176
http://www.ams.org/mathscinet-getitem?mr=0650607
http://www.ams.org/mathscinet-getitem?mr=1474726
http://www.ams.org/mathscinet-getitem?mr=1943099
http://www.ams.org/mathscinet-getitem?mr=2060310
http://www.ams.org/mathscinet-getitem?mr=2398762
http://www.ams.org/mathscinet-getitem?mr=2654549
http://www.ams.org/mathscinet-getitem?mr=2200733
http://www.ams.org/mathscinet-getitem?mr=1625987
http://www.ams.org/mathscinet-getitem?mr=2186817
http://www.quantize.maths-fi.com
http://www.ams.org/mathscinet-getitem?mr=0651809
http://www.ams.org/mathscinet-getitem?mr=1844134

	Introduction
	Quantization-based cubature and related inequalities
	Functional quantization and generalized bridges
	Generalized bridges
	The case of the Karhunen-Loève basis
	Generalized bridges as semimartingales
	On the canonical decomposition
	Generalized bridges and functional stratification

	About the (H) hypothesis
	The martingale case
	Standard Brownian bridge and Ornstein-Uhlenbeck processes


	K-L generalized bridges and partial functional quantization
	Partial functional quantization of stochastic differential equations
	Convergence of partially quantized SDEs
	Lp convergence of partially quantized SDEs
	The a.s. convergence of partially quantized SDEs


	Appendix: Injectivity properties of the Wiener integral
	Acknowledgements
	References

