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This paper provides optimal testing procedures for the m-sample null hypothesis of Common Principal
Components (CPC) under possibly non-Gaussian and heterogeneous elliptical densities. We first establish,
under very mild assumptions that do not require finite moments of order four, the local asymptotic normality
(LAN) of the model. Based on that result, we show that the pseudo-Gaussian test proposed in Hallin et al.
(J. Nonparametr. Stat. 22 (2010) 879–895) is locally and asymptotically optimal under Gaussian densities,
and show how to compute its local powers. A numerical evaluation of those powers, however, reveals that,
while remaining valid, this test is poorly efficient away from the Gaussian. Moreover, it still requires finite
moments of order four. We therefore propose rank-based procedures that remain valid under any possibly
heterogeneous m-tuple of elliptical densities, irrespective of the existence of any moments. In elliptical fam-
ilies, indeed, principal components naturally can be based on the scatter matrices characterizing the density
contours, hence do not require finite variances. Those rank-based tests, as usual, involve score functions,
which may or may not be associated with a reference density at which they achieve optimality. A major
advantage of our rank tests is that they are not only validity-robust, in the sense of surviving arbitrary ellip-
tical population densities: unlike their pseudo-Gaussian counterparts, they also are efficiency-robust, in the
sense that their local powers do not deteriorate away from the reference density at which they are optimal.
We show, in particular, that in the homokurtic case, their normal-score version uniformly dominates, in the
Pitman sense, the aforementioned pseudo-Gaussian generalization of Flury’s test. Theoretical results are ob-
tained via a nonstandard application of Le Cam’s methodology in the context of curved LAN experiments.
The finite-sample properties of the proposed tests are investigated via simulations.
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1. Introduction

Principal components – arguably, the oldest and most popular tool of multivariate analysis – were
originally introduced by Pearson [31], then rediscovered by Hotelling [24], in a one-sample con-
text. Multisample principal component problems only came much later, when Flury [13] intro-
duced the Common Principal Components (CPC) model. CPC models since then have been used
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in a number of applications, mainly in a biometric context (see, e.g., Airoldi and Hoffmann [1],
Flury and Riedwyl [11]). Under such a model, m ≥ 2 populations of dimension k, with covari-
ance matrices �Cov

i , i = 1, . . . ,m, are assumed to share, with possibly different eigenvalues, the
same principal components: namely, these covariance matrices factorize into �Cov

i = β�Cov
i β ′

for some m-tuple of positive diagonal matrices �Cov
i , i = 1, . . . ,m, and some orthogonal matrix

β – the matrix of common eigenvectors, which does not depend on i and characterizes the com-
mon principal components. CPC models later on have been generalized (Flury [12]) into partial
CPC models, in which only a subset of q < k principal components are common to the m popu-
lations. More recently, a broader class of models, which includes CPC and partial CPC, but also
possible common eigenspaces, has been investigated by Boik [8].

Before considering a statistical analysis based on such model, however, it is natural to check
whether the CPC assumption is compatible with the data under study. Flury [13] therefore devel-
oped a Gaussian likelihood ratio test (LRT) φ

(n)

N for the null hypothesis H0 of common principal
components. This test is based on the asymptotically chi-square null distribution of −2 log�

where, denoting by S(n)
i , i = 1, . . . ,m the empirical covariance matrices computed from m mutu-

ally independent samples of k-dimensional independent observations and by β̂ the (constrained)
maximum likelihood estimator of β ,

� :=
m∏

i=1

(
det(β̂

′
S(n)

i β̂)

det(diag(β̂
′
S(n)

i β̂))

)ni/2

(1.1)

(we write diag(A) for the diagonal matrix having the same diagonal elements as the square ma-

trix A). Under H0, β̂
′
S(n)

i β̂ should be nearly diagonal, hence det(β̂
′
S(n)

i β̂) and det(diag(β̂
′
S(n)

i ×
β̂)) approximately equal for all i, in which case � is close to one; under the alternative, �

is closer to zero (hence, −2 log� is large), leading to the rejection of the CPC hypothesis. The
asymptotically chi-square distribution of −2 log� follows from the classical asymptotic result of
Wilks [36], a result which, however, applies to the Gaussian likelihood ratio (1.1) under Gaussian
assumptions only.

It is well known that Gaussian likelihood ratio tests (LRT) for hypotheses involving covari-
ance matrices, are quite sensitive to violations of Gaussian assumptions and to the presence of
outliers (see, e.g., Boente and Orellana [4,5]). The test based on (1.1) is no exception to that rule:
−2 log� under non-Gaussian densities is no longer asymptotically chi-square, but converges in
distribution to a weighted sum of independent chi-square variables.

This type of asymptotic behavior is not uncommon, and there exists an extensive literature
on how to preserve the chi-square asymptotics of LRT statistics: Muirhead and Waternaux [28],
Browne [9], Satorra and Bentler [33], Bentler and Dungeon [3], provide adjusted LRTs for var-
ious problems. Shapiro and Browne [34] give a necessary and sufficient condition under which
such adjusted test statistics remain asymptotically chi-square. Using this result by Shapiro and
Browne, Boik [8] constructs a test – φ

(n)
Boik, say – for the null hypothesis of CPC based on a

statistic which remains asymptotically chi-square under families of elliptical distributions with
finite fourth-order moments and common kurtosis parameter. That is, denoting by gi the radial
density in the ith elliptical distribution and by κk(gi) its kurtosis, i = 1, . . . ,m (see Section 6
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for a precise definition), the validity of this test requires the somewhat stringent assumption of
homokurticity κk(g1) = · · · = κk(gm).

In a series of papers, Boente and Orellana [4] and Boente et al. [6,7] generalize Boik’s test by
substituting robust scatter matrices for the regular covariance matrices, which reduces the impact
of possible outliers. In terms of validity robustness, however, the resulting tests do not improve
much on Boik’s, as they merely replace the assumption of homokurticity with an assumption of
the form ς(g1) = · · · = ς(gm), where the parameter ς(g) depends on the chosen concept of scat-
ter – a homogeneity assumption that is hardly more natural or realistic than Boik’s homokurticity
assumption.

Hallin et al. [21] amend this situation by introducing a pseudo-Gaussian test φ
(n)
HPV the valid-

ity of which, unlike that of φ
(n)

N and φ
(n)
Boik, resists heterokurtic violations of Gaussian assump-

tions. Under Gaussian densities, this test is asymptotically equivalent to Flury’s LRT. However,
φ

(n)
HPV still requires finite fourth-order moments, and follows as a robustified version of Flury’s

LRT φ
(n)

N , the exact optimality properties of which have not been investigated so far. These is-
sues (certainly, the fourth-order moment assumption) are not dramatic, and most statisticians
would feel comfortable using such tests. Unfortunately, it appears from the power analysis in
Sections 8.1 and 8.2 below that φ

(n)
HPV exhibits disturbingly low power against non-Gaussian al-

ternatives. In the two-population case with bivariate t5 densities (homokurtic case with finite
fourth-order moments), the asymptotic relative efficiency of φ

(n)
HPV with respect to the locally op-

timal procedure is as low as 0.4286, whereas the normal-score (van der Waerden) test we are
proposing here achieves asymptotic relative efficiency 0.9446 – more than twice as much. Under
t4.2 densities, the figures are 0.1202 and 0.9303, respectively. It seems, thus, that the robustifi-
cation of φ

(n)

N into φ
(n)
HPV is obtained at the expense of efficiency – which, most statisticians will

agree, is quite a prohibitive price.
The objective of this paper is to remedy those validity and efficiency problems by proposing

rank-based tests that outperform the available parametric ones on both counts. These rank tests
enjoy enhanced validity properties; in particular, they allow for heterokurticity and do not require
any moment assumptions at all. In the same time, they exhibit increased efficiency-robustness:
see Tables 1 and 2 below. The asymptotic relative efficiencies of the van der Waerden version of
our tests with respect to φ

(n)
HPV, for instance, are uniformly larger than one – a theoretical finding

(of the Chernoff–Savage [10] type) that is supported by the simulation results of Section 8.2.
Reaching that double objective requires overcoming several technical difficulties. First, the

traditional covariance-based concept of common principal components has to be extended in or-
der to cope with the possible absence of second-order moments. In elliptical families, the scatter
and shape matrices that characterize the elliptical equidensity contours quite naturally qualify as
moment-free substitutes for covariance matrices (with which they coincide, up to a scalar fac-
tor, in case second-order moments do exist). Second, based on a parametrization involving those
scatter and shape matrices, we establish the local asymptotic normality (LAN) of the model in
the vicinity of the CPC hypothesis. This provides us with a clear definition of optimality, and a
way of computing local powers and asymptotic relative efficiencies – with, however, the addi-
tional difficulty that the limiting local experiments associated with the scatter- or shape-matrix
parametrization are not full-rank Gaussian shift experiments but curved ones. Such curved LAN
structures were previously studied in Hallin et al. [20]. As a by-product, we obtain the exact
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optimality properties of Flury’s φ
(n)

N and Hallin et al.’s φ
(n)
HPV. Finally, following the method used

in Hallin et al. [20] for the one-sample case, we construct rank-based versions of the optimal test
statistics associated with various radial densities, and compute the corresponding local powers
and asymptotic relative efficiencies.

2. Outline of the paper

The outline of the paper is as follows. Section 3 states the assumptions to be used in the se-
quel. The parametrization we propose for testing the CPC hypothesis in an elliptical context
is described in Section 4. Section 5 provides the uniform local asymptotic normality (ULAN)
property, on which the construction of optimal tests will be based. Section 6 derives Gaussian
and pseudo-Gaussian tests for the CPC hypothesis, and Section 7 introduces optimal rank-based
tests for the same. In Section 8, the performances of the proposed tests are investigated both
in terms of asymptotic relative efficiencies (Section 8.1) and simulations (Section 8.2). An Ap-
pendix collects technical proofs.

3. Main assumptions

For the sake of convenience, we are collecting here the main assumptions to be used in the sequel.

3.1. Elliptical symmetry

Denote by (Xi1, . . . ,Xini
), i = 1, . . . ,m a collection of m mutually independent samples of i.i.d.

k-dimensional random vectors with elliptically symmetric densities. More precisely, the ni ob-
servations Xij , j = 1, . . . , ni in sample i are independent, with density

fi(x) := ck,fi

(
det(�i )

)−1/2
fi

((
(x − θ i )

′�−1
i (x − θ i )

)1/2) (3.1)

for some k-dimensional location parameter θ i , some symmetric and positive definite scatter
matrix �i and some radial density function fi : R+

0 �→ R
+; ck,fi

is a normalization constant such
that

∫
Rk fi(x)dx = 1. Note that, despite the terminology, the radial density fi is not a probability

density (over the positive real line), since it does not integrate to one; but f̃i := μ−1
k−1;fi

rk−1fi

(for the sake of simplicity, we write f̃i instead of f̃ik), where μ�;f := ∫∞
0 r�f (r)dr , is. Define

F := {
f : f (r) > 0 a.e. and μk−1;f < ∞}

and

F1 :=
{
f ∈ F :

1

μk−1;f

∫ 1

0
rk−1f (r)dr = 1

2

}
;

the family F1 is a class of standardized radial densities, in the sense that, for any radial density
f ∈ F1, the probability density f̃ (r) := μ−1

k−1;f rk−1f (r) is a properly standardized probability
density. By “standardized”, here, we mean that the corresponding median is one; the median, for
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a nonvanishing density over R
+
0 , indeed, is a scale parameter the existence and finiteness which

does not require any moment conditions.
Summarizing this, we throughout assume that the following assumption holds true.

Assumption (A). The observations Xij , j = 1, . . . , ni , i = 1, . . . ,m are mutually independent,
with probability densities fi given in (3.1), for some m-tuple of (possibly distinct) radial densities
f := (f1, . . . , fm) ∈ (Fa)

m, where Fa ⊂ F1 is defined at the end of this section.

Under Assumption (A), the within-group elliptical distances

dij (θ i ,�i ) := ∥∥�−1/2
i (Xij − θ i )

∥∥, j = 1, . . . , ni, i = 1, . . . ,m

have probability density f̃i , with median one, which identifies the scatter matrices �i , i =
1, . . . ,m also in the absence of any moments. Under finite second-order moments, however, �i

is proportional to the covariance matrix �Cov
i of Xij . Classical examples are the k-variate multi-

normal distributions, with standardized radial densities fi(r) = φ(r) := exp(−akr
2/2), the k-

variate Student distributions, with standardized radial densities (for ν ∈ R
+
0 degrees of freedom)

fi(r) = f t
ν (r) := (1+ak,νr

2/ν)−(k+ν)/2, and the k-variate power-exponential distributions, with
standardized radial densities of the form fi(r) = f e

η (r) := exp(−bk,ηr
2η), η ∈ R

+
0 ; the positive

constants ak , ak,ν , and bk,η are such that fi ∈ F1. It should be insisted, however, that Assump-
tion (A) allows for heterogeneity of the m elliptical densities, that is, we may have fi 	= fi′ for
i 	= i′.

The equidensity contours associated with (3.1) are hyper-ellipsoids centered at θ i , the shape
and orientation of which are determined by the scatter matrix �i . The multivariate signs
Uij (θ i ,�i ) := �

−1/2
i (Xij − θ i )/dij (θ i ,�i ) and the standardized radial distances dij (θ i ,�i )

just defined are Xij ’s elliptical coordinates associated with those ellipsoids. The observations

then decompose into Xij = θ i + dij�
1/2
i Uij , where the Uij ’s, j = 1, . . . , ni , i = 1, . . . ,m are

i.i.d. uniform over the unit sphere in R
k , and the dij ’s are i.i.d., independent of the Uij ’s, with

standardized probability density f̃i over R
+ and distribution function F̃i . In the sequel, the nota-

tion g̃i and G̃i will be used for the same functions computed from a standardized radial density
gi (∈ F1).

The derivation of locally and asymptotically optimal tests at a given m-tuple f = (f1, . . . , fm)

of radial densities will be based on the uniform local asymptotic normality (ULAN) of the cor-
responding model in the vicinity of the CPC hypothesis. This ULAN property holds under some
mild regularity conditions on the fi ’s. More precisely, ULAN (see Proposition 5.1 below) re-
quires the fi ’s to belong to the collection Fa of those radial densities f ∈ F1 which are ab-
solutely continuous, with almost everywhere derivative ḟ such that, letting ϕf := −ḟ /f and
denoting by F̃ the distribution function associated with f̃ , the integrals

Ik(f ) :=
∫ 1

0
ϕ2

f

(
F̃

−1
(u)

)
du and Jk(f ) :=

∫ 1

0
ϕ2

f

(
F̃

−1
(u)

)(
F̃

−1
(u)

)2 du

are finite. The quantities Ik(fi) and Jk(fi) play the roles of radial Fisher information for loca-
tion and shape/scale, respectively, in sample i, i = 1, . . . ,m (see Hallin and Paindaveine [16]).
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3.2. Asymptotic behavior of sample sizes

Actually, we throughout consider triangular arrays of observations, of the form(
X(n)

11 , . . . ,X(n)

1n
(n)
1

,X(n)
21 , . . . ,X(n)

2n
(n)
2

, . . . ,X(n)
m1, . . . ,X(n)

mn
(n)
m

)
,

indexed by the total sample size n :=∑m
i=1 n

(n)
i , where the sequences n

(n)
i satisfy the following

assumption.

Assumption (B). For all i = 1, . . . ,m, ni = n
(n)
i → ∞ as n → ∞.

This assumption is weaker than the assumption usually made in (univariate or multivariate)
multisample problems, where it is required that n

(n)
i /n be bounded away from 0 and 1 for all i

as n → ∞. Letting r
(n)
i := n

(n)
i /n, it is easy to check that Assumption (B) is actually equivalent

to the Noether conditions

max

(
1 − r

(n)
i

r
(n)
i

,
r
(n)
i

1 − r
(n)
i

)
= o(n) as n → ∞, for all i.

However, in the derivation of asymptotic distributions under local alternatives, we will require –
mainly, for notational comfort – the following classical reinforcement:

Assumption (B′). For all i = 1, . . . ,m, r
(n)
i → ri ∈ (0,1), as n → ∞.

For notational simplicity, we henceforth omit superfluous (n) superscripts.

3.3. Score functions

The signed-rank tests considered in Section 6 are based on m-tuples K = (K1, . . . ,Km) of score
functions, which we assume to satisfy the following regularity conditions.

Assumption (C). For any i = 1, . . . ,m, the mapping (from (0,1) to R) u �→ Ki(u)

(C1) is continuous and square-integrable;
(C2) can be expressed as the difference of two monotone increasing functions, and
(C3) satisfies

∫ 1
0 Ki(u)du = k.

Assumption (C3) is a normalization constraint that is automatically satisfied by the score func-

tions Ki(u) = Kfi
(u) := ϕfi

(F̃
−1
i (u))F̃

−1
i (u) leading to local and asymptotic optimality at m-

tuples of radial densities f = (f1, . . . , fm) for which ULAN holds; see Section 5.
For score functions K,K1,K2 satisfying Assumption (C), let (throughout, U stands for a ran-

dom variable uniformly distributed over (0,1)), Jk(K1,K2) := E[K1(U)K2(U)]. For simplicity,
we write Jk(K) for Jk(K,K), Jk(K,f ) for E[K(U)Kf (U)], etc.
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The power score functions Ka(u) := k(a + 1)ua (a ≥ 0) provide some traditional score func-
tions satisfying Assumption (C), with Jk(Ka) = k2(a + 1)2/(2a + 1): the Laplace, Wilcoxon
and Spearman scores are obtained for a = 0, 1, and 2, respectively. As for score functions of
the form Kfi

, an important particular case is that of van der Waerden or normal scores, obtained
for fi = φ. Then, denoting by 
k the chi-square distribution function with k degrees of free-
dom, Kφ(u) = 
−1

k (u), and Jk(φ) = k(k + 2). Similarly, writing Gk,ν for the Fisher–Snedecor
distribution function with k and ν degrees of freedom, Student densities fi = f t

ν yield

Kf t
ν
(u) = k(k + ν)G−1

k,ν(u)

ν + kG−1
k,ν(u)

and Jk

(
f t

ν

)= k(k + 2)(k + ν)

k + ν + 2
.

4. Parametrization of m-sample elliptical models

A natural notation for the joint distribution of the n-tuple (X′
11, . . . ,X′

mnm
)′ under Assump-

tion (A), parameter values θ1, . . . , θm, �1, . . . ,�m, and the m-tuple f of radial densities, is
P(n)

θ1,...,θm;�1,...,�m;f. Such parametrization, however, is not well adapted to the present context,
due to the fact that eigenvectors and eigenvalues are complicated functions of the scatter matri-
ces. As in Hallin et al. [20], a parametrization based on eigenvectors and eigenvalues, which we
now describe, will prove much more adequate.

4.1. Scatter, scale and shape

Since the eigenvectors β(1), . . . ,β(m) of �1, . . . ,�m are scale-free functions of the �i ’s, it is
appropriate to first decompose each �i into a product �i = σ 2

i Vi , where σi is a scalar global
scale parameter and Vi a shape matrix (see Hallin and Paindaveine [16,18] for details) for sam-
ple i. Paindaveine [30] has shown the advantages of doing so by defining σ 2

i as (det�i )
1/k . This

definition, which we adopt here, implies that the eigenvalues λV
ij of the shape matrices Vi are

such that
∏k

j=1 λV
ij = 1 for all i = 1, . . . ,m; clearly, Vi and �i share the same eigenvectors.

4.2. Shape eigenvalues and eigenvectors

Shape matrices in turn factorize into Vi = β(i)′�V
i β(i), with �V

i := diag(λV
i1, . . . , λ

V
ik) (through-

out diag(B1,B2, . . . ,Bm) stands for the block-diagonal matrix with diagonal blocks B1,
B2, . . . ,Bm). Even in case the λV

ij ’s are all distinct, this factorization, due to possible permuta-

tions of eigenvalues and the columns of β(i), is not unique, and it is usually imposed, without any
loss of generality, that the diagonal elements of �V

i are ranked in decreasing order of magnitude,

which provides each eigenvalue λV
ij and the corresponding eigenvector β

(i)
j with a well-defined

label j .
That way of labeling eigenvalues and eigenvectors is used in the statement of ULAN in Sec-

tion 5 below. The same labeling however is no longer adequate when describing the null hypothe-
sis H0 of CPC. The existence of a common β indeed induces a matching between the eigenvalues
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of the various populations, and it would be natural to label them so that λV
i1, for i = 1, . . . ,m be

associated with β’s first column β1, λV
i2, i = 1, . . . ,m with β2, etc. Under such labeling, H0

would take the simple form β(1) = · · · = β(m) instead of “there exist (m − 1) permutation ma-
trices M

2 , . . . ,M
m such that β(1) = M

2 β(2) = · · · = M
mβ(m) =: β”. This β-induced labeling,

however, only exists under H0, and, being β-dependent, only holds over a neighborhood of β;
hence, it is local. We therefore adopt the “traditional” labeling in the statement of ULAN, and
switch to the local β-induced labels when optimal tests are to be derived (these tests, typically,
will involve the ordering of eigenvalues induced by some adequate estimator β̂).

Establishing ULAN for a parametrization involving eigenvector matrices β(i) and eigen-
values �V

i requires a differentiable correspondence between the Vi ’s and the corresponding
(β(i),�V

i )’s. Therefore, we need the following assumption.

Assumption (D′). For all i = 1, . . . ,m, the scatter �i (equivalently, the shape Vi ) has k distinct
eigenvalues: λ�

i1 > · · · > λ�
ik .

While ULAN indeed requires Assumption (D′), the tests we will propose, as we will show,
remain (asymptotically) valid under the weaker

Assumption (D). For any 1 ≤ j 	= j ′ ≤ k, there exists i ∈ {1, . . . ,m} such that λ�
ij 	= λ�

ij ′ .

Under the null hypothesis of CPC and Assumption (D), the matrix β := (β1, . . . ,βk) of com-
mon eigenvectors is identified up to an arbitrary permutation of its columns (we still forget about
the irrelevant sign changes of the βj ’s). However, it is easy to fix an ordering, hence to make the
βj ’s – hence also the corresponding λ�

ij ’s – (individually) identifiable.

For instance, one can require that λ�
11 ≥ λ�

12 ≥ · · · ≥ λ�
1k (> 0), and that, for any sequence of

the form λ�
1j = λ�

1,j+1 = · · · = λ�
1,j+�, one has λ�

2j ≥ λ�
2,j+1 ≥ · · · ≥ λ�

2,j+�; the ranking then is

based on population 2. Recursively, if further ties occur among those λ�
2,j ’s, the ranking can be

based on the way the λ�
3,j ’s are ordered, etc. Clearly, Assumption (D) ensures that this correctly

defines a unique ordering of the common principal directions and corresponding eigenvalues.
Note that the largest eigenspace common to �1, . . . ,�m (equivalently, to V1, . . . ,Vm) then has
dimension one.

4.3. Parameter space

The parametrization we are adopting in the sequel is similar to that considered in the one-sample
case by Hallin et al. [20]; it is based on the L := mk(k + 2)-dimensional vector (we denote by
dvec(A) the vector obtained by stacking the diagonal elements of a square matrix A; dv

◦
ec(A)

stands for the same vector deprived of its first element A11, so that dvec(A) = (A11, (dv
◦
ec(A))′))

ϑ := (
ϑ ′

I,ϑ
′
II,ϑ

′
III,ϑ

′
IV

)′
:= (

θ ′
1, . . . , θ

′
m,σ 2

1 , . . . , σ 2
m,
(
dv

◦
ec�V

1

)′
, . . . ,

(
dv

◦
ec�V

m

)′
,
(
vecβ(1)

)′
, . . . ,

(
vecβ(m)

)′)′
,
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where θ i and σ 2
i are the location and scale parameters, �V

i := diag(λV
i1, . . . , λ

V
ik) and β(i) the

shape eigenvalue and eigenvector matrices, respectively, in population i, i = 1, . . . ,m; the reason
why λV

i1 is omitted in the parametrization is that, Vi being a shape matrix, λV
i1 = 1/

∏m
j=2 λV

ij . The

parameter space is thus � := R
mk × (R+

0 )m × (Ck−1)m × (vec(SOk))
m, where Ck−1 is the open

cone of (R+
0 )k−1 with strictly ordered (from largest to smallest) coordinates, and SOk stands for

the class of k × k real orthogonal matrices with determinant one. Note that Assumption (D′) is
explicitly incorporated in the definition of �.

We denote by P(n)
ϑ;f or P(n)

ϑ I,ϑ II,ϑ III,ϑ IV;f the joint distribution of the n observations under param-
eter value ϑ and standardized radial densities f = (f1, . . . , fm).

5. Uniform local asymptotic normality (ULAN)

As mentioned in Section 1, we plan to construct tests that are optimal at correctly specified
densities, in the sense of Le Cam’s asymptotic theory of statistical experiments (see Le Cam
[26], Le Cam and Yang [27] or van der Vaart [35]). In this section, we state the ULAN result
(with respect to ϑ ∈ �, for fixed radial densities f = (f1, . . . , fm)) on which optimality will be
based. Denote by

ϑ (n) := (
ϑ

(n)′
I ,ϑ

(n)′
II ,ϑ

(n)′
III ,ϑ

(n)′
IV

)′
:= (

θ
(n)′
1 , . . . , θ (n)′

m ,σ
2(n)
1 , . . . , σ 2(n)

m ,
(
dv

◦
ec�V(n)

1

)′
, . . . ,

(
dv

◦
ec�V(n)

m

)′
,(

vecβ(1),(n)
)′
, . . . ,

(
vecβ(m),(n)

)′)′
a local sequence such that ϑ (n) ∈ � and ϑ (n) − ϑ = O(n−1/2). Letting

r(n) := diag
((

r
(n)
1

)−1/2
, . . . ,

(
r(n)
m

)−1/2)
(see Section 3.2), define

ς (n) := diag
(
ς

(n)
I ,ς

(n)
II ,ς

(n)
III ,ς

(n)
IV

) := diag
(
r(n) ⊗ Ik, r(n), r(n) ⊗ Ik−1, r(n) ⊗ Ik2

)
(5.1)

and consider further sequences of the form ϑ (n) + n−1/2ς (n)τ (n), where

τ (n) = (
τ

(n)′
I ,τ

(n)′
II ,τ

(n)′
III ,τ

(n)′
IV

)′
= (

t(n)′
1 , . . . , t(n)′

m , s
(n)
1 , . . . , s(n)

m , l(n)′
1 , . . . , l(n)′

m ,
(
vec b(1),(n)

)′
, . . . ,

(
vec b(m),(n)

)′)′
is such that supn τ (n)′τ (n) < ∞ and ϑ (n) + n−1/2ς (n)τ (n) ∈ �. Under Assumption (B′), we also
write ς for limn→∞ ς (n).

Strong restrictions are imposed on τ (n) = (τ
(n)′
I ,τ

(n)′
II ,τ

(n)′
III ,τ

(n)′
IV )′ in order for the perturbed

parameter values ϑ (n) + n−1/2ς (n)τ (n) to belong to �. In particular, the perturbed orthogonal
matrices should remain orthogonal; we refer to Hallin et al. [20] for details.
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The statement of ULAN in Proposition 5.1 below still requires some additional notation. Write
V⊗2 for the Kronecker product V⊗V. Denoting by e� the �th vector of the canonical basis of R

k ,
let Kk :=∑k

i,j=1(eie′
j )⊗ (ej e′

i ) be the classical (k2 × k2) commutation matrix. Define Hk as the

k × k2 matrix such that Hk vec(A) = dvec(A) for any k × k matrix A. For any k × k diagonal

matrix � = diag(λ1, λ2, . . . , λk), write M�
k for the (k−1)×k matrix (−λ1(λ

−1
2 , . . . , λ−1

k )′
...Ik−1)

and L
β(i),�V

i

k for (L
β(i),�V

i

k;12 L
β(i),�V

i

k;13 · · · L
β(i),�V

i

k;(k−1)k
)′, with L

β(i),�V
i

k;jh
:= (λV

ih − λV
ij )(β

(i)
h ⊗ β

(i)
j ).

Finally, let Gβ(i)

k := (Gβ(i)

k;12 Gβ(i)

k;13 · · · Gβ(i)

k;(k−1)k
), with Gβ(i)

k;jh
:= ej ⊗β

(i)
h −eh⊗β

(i)
j , and ν(i) :=

diag(ν
(i)
12 , ν

(i)
13 , . . . , ν

(i)
(k−1)k) with ν

(i)
jh := λV

ij λ
V
ih/(λ

V
ij − λV

ih)
2. We then have the following ULAN

result.

Proposition 5.1. Let Assumptions (A) (with f = (f1, . . . , fm) ∈ (Fa)
m), (B) and (D′) hold. Then,

the family P (n)
f := {P(n)

ϑ;f|ϑ ∈ �} is ULAN, with central sequence

�ϑ;f = �
(n)
ϑ;f := (

�
I(n)′
ϑ;f ,�

II(n)′
ϑ;f ,�

III(n)′
ϑ;f ,�

IV(n)′
ϑ;f

)′
,

�I
ϑ;f =

⎛⎜⎝�I,1
ϑ;f1
...

�I,m
ϑ;fm

⎞⎟⎠ , �II
ϑ;f =

⎛⎜⎝�
II,1
ϑ;f1
...

�
II,m
ϑ;fm

⎞⎟⎠ , �III
ϑ;f =

⎛⎜⎝�III,1
ϑ;f1
...

�III,m
ϑ;fm

⎞⎟⎠ , �IV
ϑ;f =

⎛⎜⎝�IV,1
ϑ;f1
...

�IV,m
ϑ;fm

⎞⎟⎠ ,

where (with dij = dij (θ i ,Vi ) and Uij = Uij (θ i ,Vi ))

�I,i
ϑ;fi

:= 1√
niσi

ni∑
j=1

ϕfi

(
dij

σi

)
V−1/2

i Uij ,

�
II,i
ϑ;fi

:= 1

2
√

niσ
2
i

ni∑
j=1

(
ϕfi

(
dij

σi

)
dij

σi

− k

)
,

�III,i
ϑ;fi

:= 1

2
√

ni

M
�V

i

k Hk

((
�V

i

)−1/2
β(i)′)⊗2

ni∑
j=1

vec

(
ϕfi

(
dij

σi

)
dij

σi

Uij U′
ij

)
,

�IV,i
ϑ;fi

:= 1

2
√

ni

Gβ(i)

k L
β(i),�V

i

k

(
V⊗2

i

)−1/2
ni∑

j=1

vec

(
ϕfi

(
dij

σi

)
dij

σi

Uij U′
ij

)
,

i = 1, . . . ,m, and with block-diagonal information matrix

�ϑ;f := diag
(
�I

ϑ;f,�
II
ϑ;f,�

III
ϑ;f,�

IV
ϑ;f
)
, (5.2)
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where �I
ϑ;f = diag(�I,1

ϑ;f1
, . . . ,�I,m

ϑ;fm
), �II

ϑ;f = diag(�
II,1
ϑ;f1

, . . . ,�
II,m
ϑ;fm

), �III
ϑ;f = diag(�III,1

ϑ;f1
, . . . ,

�III,m
ϑ;fm

), and �IV
ϑ;f = diag(�IV,1

ϑ;f1
, . . . ,�IV,m

ϑ;fm
), with

�I,i
ϑ;fi

:= Ik(fi)

kσ 2
i

V−1
i , �

II,i
ϑ;fi

:= Jk(fi) − k2

4σ 4
i

,

�III,i
ϑ;fi

:= Jk(fi)

4k(k + 2)
M

�V
i

k Hk

((
�V

i

)−1)⊗2[Ik2 + Kk]H′
k

(
M

�V
i

k

)′
and

�IV,i
ϑ;fi

:= Jk(fi)

4k(k + 2)
Gβ(i)

k

(
ν(i)

)−1(Gβ(i)

k

)′
.

More precisely, for any ϑ (n) = ϑ + O(n−1/2) and any bounded sequence τ (n), we have, under
P(n)

ϑ (n);f,

�
(n)

ϑ(n)+n−1/2ς (n)τ (n)/ϑ(n);f := log
(
dP(n)

ϑ (n)+n−1/2ς (n)τ (n);f/dP(n)

ϑ (n);f
)

= (
τ (n)

)′
�

(n)

ϑ (n);f − 1

2

(
τ (n)

)′
�ϑ;fτ (n) + oP(1)

and �ϑ (n);f
L−→ N (0,�ϑ;f), as n → ∞.

Proposition 5.1, which is the multi-sample version of Proposition 2.1 in Hallin et al. [20], is
the key result for constructing optimal inference procedures for eigenvectors and eigenvalues in
multisample elliptical families. However, the standard methods for defining locally and asymp-
totically optimal tests under ULAN, which are based on the fact that local experiments converge
to Gaussian shift experiments, do not apply here. Indeed, the parameter space � is a nonlinear
manifold of R

L (since (vec(SOk))
m is a nonlinear manifold of R

mk2
). Just as in the one-sample

situation, local limiting experiments therefore are curved Gaussian experiments. The problem
of constructing optimal tests for diferentiable hypotheses in curved experiments has been con-
sidered in Hallin et al. [20], where general results are provided, which we apply in the present
situation.

Consider a parameter value ϑ0 satisfying H0 for some common eigenvector matrix β . As
explained in Section 4.2, β ′Viβ =: �

V;β
i , in general, is a reordered version of �V

i , since the
eigenvalues in �V

i are ranked in decreasing order of magnitude but not necessarily so in the

locally β-reordered (we also call it ϑ0-reordered) �
V;β
i . At ϑ0, the locally reordered �

V;β
i is

a much more natural parameter than the original �V
i . In that local reparametrization, the null

hypothesis H0 of CPC actually consists of the intersection of the nonlinear manifold � and the
linear one C := R

mk × (R+
0 )m × (Ck−1)

m × M(1m ⊗ Ik2), where M(A) stands for the vector
space spanned by the columns of A.

Proposition 3.2 in Hallin et al. [20] on locally and asympotically optimal tests for differentiable
hypotheses in curved ULAN experiments implies that, in the present context, a most stringent (at
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ϑ0 = (ϑ ′
I,ϑ

′
II,ϑ

′
III,1′

m ⊗ (vec(β))′)′) test for H0 can be based on the quadratic form provided by
the “classical” most stringent test for the (linear) null hypothesis consisting of the intersection of
C and the tangent space to � at ϑ0. That intersection, still in the vicinity of ϑ0, reduces to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϑ I + n−1/2ς
(n)
I τ

(n)
I

ϑ II + n−1/2ς
(n)
II τ

(n)
II

ϑ III + n−1/2ς
(n)
III τ

(n)
III

vec
(
β + n−1/2

(
r
(n)
1

)−1/2b(1),(n)
)

...

vec
(
β + n−1/2

(
r
(n)
m

)−1/2b(m),(n)
)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

such that β ′b(i),(n) + (
b(i),(n)

)′
β = 0, i = 1, . . . ,m

and
(
r
(n)
1

)−1/2b(1),(n) = · · · = (
r
(n)
m

)−1/2b(m),(n)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

Solving this system leads to

ς
(n)
IV τ

(n)
IV = ((

r
(n)
1

)−1/2(vec b(1),(n)
)′
, . . . ,

(
r(n)
m

)−1/2(vec b(m),(n)
)′)′ ∈ M(),

with

 := 1m ⊗

⎛⎜⎜⎜⎜⎝
Ik − β1β

′
1 −β2β

′
1 · · · −βkβ

′
1

−β1β
′
2 Ik − β2β

′
2

. . .
...

...
. . . −βkβ

′
k−1

−β1β
′
k · · · −βk−1β

′
k Ik − βkβ

′
k

⎞⎟⎟⎟⎟⎠ ,

where β� denotes β’s �th column. Hence, the null hypothesis of CPC, locally at ϑ0, takes the
form ς (n)τ (n) ∈ M(ϒ), where

ϒ := diag
(
ϒI,ϒII,ϒIII,ϒIV) := diag(Imk, Im, Im(k−1),).

It then follows from Hallin et al. ([20], Section 4.1) that, for given f, a locally and asymptotically
most stringent test φ

(n)
f , say, rejects H0 for large values of Q

(n)

ϑ̂,f
, where (throughout, we denote

by A− the Moore–Penrose inverse of A)

Q
(n)
ϑ,f := (�ϑ,f)

′(�−
ϑ,f − (

ς (n)
)−1

ϒ
[
ϒ ′(ς (n)

)−1
�ϑ,f

(
ς (n)

)−1
ϒ
]−

ϒ ′(ς (n)
)−1)

�ϑ,f

= (
�IV

ϑ,f

)′((
�IV

ϑ,f

)− (5.3)

− (
ς

(n)
IV

)−1
ϒIV[(ϒIV)′(ς (n)

IV

)−1
�IV

ϑ,f

(
ς

(n)
IV

)−1
ϒIV]−(ϒIV)′(ς (n)

IV

)−1)
�IV

ϑ,f,
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and ϑ̂ := ϑ̂ (n) denotes a sequence of estimators satisfying the following Assumption (E) with K
reducing to {f}.

Assumption (E). We say that a sequence of estimators ϑ (n) of ϑ , n ∈ N, satisfies Assumption (E)
for some given collection K of m-tuples of standardized radial densities if, as n → ∞ as in
Assumption (B), ϑ (n) is

(E1) constrained: P(n)
ϑ0;g[ϑ (n) ∈ H0] = 1 for all n, ϑ0 ∈ H0, and g ∈ K;

(E2) n1/2(ς (n))−1-consistent: for all ϑ0 ∈ H0, n1/2(ς (n))−1(ϑ (n) − ϑ0) = OP(1), as n → ∞,
under P(n)

ϑ0;g, for all g ∈ K;
(E3) locally asymptotically discrete: for all ϑ0 ∈ H0 and all c > 0, there exists M =

M(c) > 0 such that the number of possible values of ϑ (n) in balls of the form {t ∈
R

L: n1/2‖(ς (n))−1(t − ϑ0)‖ ≤ c} is bounded by M , uniformly in n.

Assumption (E3) is a theoretical assumption that has no impact in practice (see pages 125 or
188 of Le Cam and Yang [27] for a discussion). Any estimator satisfying (E1) and (E2) can be
turned into an estimator also satisfying (E3) by discretization (see, e.g., Hallin et al. [17]), a fact
we will no further emphasize in the notation by tacitly assuming, in the statement of asymptotic
results, that any ϑ (n), when necessary, has been adequately discretized.

The sequences of tests φ
(n)
f associated with the m-tuple f achieve local asymptotic optimality

at f. Moreover, they are of a purely parametric nature since, in general, they are valid at f only
– that is, they achieve the correct nominal asymptotic level under correctly specified f only,
even when based on an estimator ϑ (n) satisfying Assumption (E) under a broad collection K of
densities. An exception is the Gaussian test φ

(n)

N associated with an m-tuple of Gaussian radial
densities which, with a Gaussian MLE ϑ (n), remains valid under any m-tuple g = (g1, . . . , gm)

such that gi has Gaussian kurtosis (that is, in the notation of Section 6 below, κk(gi) = 0) for
all i = 1, . . . ,m (this, of course, requires finite fourth-order moments). Clearly, this is somewhat
unsatisfactory in practice, and there is a need to define alternative optimal tests, that remain valid
under much broader conditions. The next two sections are devoted to the construction of such
tests.

6. Gaussian and pseudo-Gaussian tests

In this section, we construct a pseudo-Gaussian version φ
(n)†

N of the Gaussian test φ
(n)

N , that

is, a test that shares the optimality properties of φ
(n)

N in the multinormal case, while remaining
valid under a much broader class of densities – namely, the class of all (possibly heterokurtic)
m-tuples of elliptic densities with finite fourth-order moments. Our construction is based on a
general method proposed by Hallin and Paindaveine [19], which exploits the ULAN structure of
the experiment. Finally, we show that this pseudo-Gaussian test φ

(n)†
N asymptotically coincides

with the test φ
(n)
HPV proposed, on heuristic grounds, in Hallin et al. [21], the optimality properties

of which thus follow.
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Let (F 4
1 )m denote the collection of m-tuples of standardized radial densities yielding finite

fourth-order moments in each population:

(
F 4

1

)m :=
{

g = (g1, . . . , gm) ∈ (F1)
m: Ek(gi) :=

∫ 1

0

(
G̃−1

ik (u)
)4 du < ∞, i = 1, . . . ,m

}
,

where r �→ G̃ik(r) := (μk−1;gi
)−1

∫ r

0 sk−1gi(s)ds stands for the distribution function, under

P(n)
ϑ;g, of the dij (ϑ)’s, j = 1, . . . , ni . Then, writing Dk(gi) := ∫ 1

0 (G̃−1
ik (u))2 du,

κk(gi) := k

k + 2
× Ek(gi)

D2
k (gi)

− 1

for any g ∈ (F 4
1 )m, is a measure of kurtosis in the ith elliptic population under P(n)

ϑ;g; see, for

example, page 54 of Anderson [2]. If gi is Gaussian, Ek(gi) = k(k + 2)/a2
k and Dk(gi) = k/ak ,

so that κk(gi) = 0.
Since the optimal Gaussian test φ

(n)

N of Section 5 is based on a quadratic form in the eigen-

vector part �IV
ϑ;φ of the Gaussian central sequence, defining a pseudo-Gaussian version of φ

(n)

N
clearly requires controlling the asymptotic behavior of �IV

ϑ;φ also away from the Gaussian case.
This is made possible by the following result.

Lemma 6.1. Assume that (A), (B), and (D) hold. Fix any ϑ0 ∈ H0 (the eigenvalues are the
ϑ0-ordered eigenvalues) and g ∈ (F 4

1 )m. Then,

(i) under P(n)
ϑ0;g, �IV

ϑ0;φ is asymptotically normal, with mean zero and covariance matrix

�
g,IV
ϑ0;φ := diag(�

g,IV,1
ϑ0;φ , . . . ,�

g,IV,m

ϑ0;φ ), where �
g,IV,i

ϑ0;φ := a2
kEk(gi )

4k(k+2)
Gβ

k (ν(i))−1(Gβ
k )′;

(ii) reinforcing (D) into (D′) and defining �
g,IV
ϑ0;φ,g := diag(�

g,IV,1
ϑ0;φ,g, . . . ,�

g,IV,m

ϑ0;φ,g), with

�
g,IV,i

ϑ0;φ,g := akDk(gi )
4k

Gβ
k (ν(i))−1(Gβ

k )′, we have that

�IV
ϑ0+n−1/2ς (n)τ (n);φ − �IV

ϑ0;φ + �
g,IV
ϑ0;φ,gτ

(n)
IV

is oP(1) as n → ∞, under P(n)
ϑ0;g;

(iii) still with (D) reinforced into (D′), �IV
ϑ0;φ − �

g,IV
ϑ0;φ,gτ

(n)
IV is asymptotically normal, with

mean zero and covariance matrix �
g,IV
ϑ0;φ under P(n)

ϑ0+n−1/2ς (n)τ (n);g for any g ∈ (F 4
a )m :=

(F 4
1 )m ∩ (Fa)

m.

Point (i) of this lemma directly follows from the multivariate central limit theorem. Note that
Assumption (D) is sufficient for asymptotic normality since the common value β of the eigenvec-
tor matrix is well identified under Assumption (D). However, points (ii) and (iii) require ULAN
and therefore Assumption (D′); they directly follow from Lemma 4.2 in Hallin et al. [20]; the
proof is therefore omitted.
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Transposed to the present context (and temporarily assuming that the actual g ∈ (F 4
1 )m is

known), the pseudo-Gaussian test of Hallin and Paindaveine [19] is rejecting the null hypothesis
of CPC for large values of

Q
N (n)
ϑ0,g

:= (
�IV

ϑ0;φ
)′(

�
g,IV
ϑ0;φ

)⊥
�IV

ϑ0;φ, (6.1)

with (
�

g,IV
ϑ;φ

)⊥ := (
�

g,IV
ϑ;φ

)− − (
�

g,IV
ϑ;φ

)−
�

g,IV
ϑ;φ,g

(
ς

(n)
IV

)−1
ϒIV

× [(
ϒIV)′(ς (n)

IV

)−1
�

g,IV
ϑ;φ,g

(
�

g,IV
ϑ;φ

)−
�

g,IV
ϑ;φ,g

(
ς

(n)
IV

)−1
ϒIV]−

× (
ϒIV)′(ς (n)

IV

)−1
�

g,IV
ϑ;φ,g

(
�

g,IV
ϑ;φ

)−
,

where �
g,IV
ϑ;φ and �

g,IV
ϑ;φ,g are defined in Lemma 6.1, and eigenvalues have been ϑ0-reordered as

explained in Sections 3 and 4. Now, using the fact that

(
�

g,IV,i

ϑ;φ
)− = k(k + 2)

a2
kEk(gi)

Gβ(i)

k ν(i)
(
Gβ(i)

k

)′
,

the quadratic form Q
N (n)
ϑ0,g

after some algebra rewrites

Q
N (n)
ϑ0,g

=
m∑

i=1

∑
1≤j<j ′≤k

ni

1 + κk(gi)

(
β ′

j S(n)
φ,iβj ′

)2

−
m∑

i,i′=1

∑
1≤j<j ′≤k

nini′

n

1

(1 + κk(gi))(1 + κk(gi′))

νjj ′(g)

(ν
(i)

jj ′ν
(i′)
jj ′ )1/2

(6.2)

× (
β ′

j S(n)
φ,iβj ′

)(
β ′

j S(n)

φ,i′βj ′
)
,

where

S(n)
φ,i := k

σ 2Dk(gi)
β
(
�

V;β
i

)−1/2
β ′
[

1

ni

ni∑
j=1

(Xij − θ i )(Xij − θ i )
′
]
β
(
�

V;β
i

)−1/2
β ′

and

diag
(
ν12(g), . . . , ν(k−1)k(g)

) :=
(

m∑
i=1

r
(n)
i

1 + κk(gi)

(
ν(i)

)−1

)−1

=: ν(g).

In order to obtain a genuine test statistic (i.e., a random variable that does not depend anymore
on ϑ0 nor g) which nevertheless, under any P(n)

ϑ0;g (with ϑ0 ∈ H0 and g ∈ (F 4
1 )m) and contiguous

alternatives, is asymptotically equivalent to Q
N (n)
ϑ0,g

, it is sufficient to
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(a) replace ϑ0 in (6.2) with some estimator ϑ (n) satisfying Assumption (E) for the class
K = (F 4

1 )m, and

(b) replace the coefficients Dk(gi) and the kurtoses κk(gi) with consistent (still under P(n)
ϑ0;g,

ϑ0 ∈ H0, g ∈ (F 4
1 )m) estimators D̂

(n)
i and κ̂

(n)
i , respectively.

In this pseudo-Gaussian context, a natural estimator for ϑ0 is

ϑ
(n)

N :=
(

X̄′
1, . . . , X̄′

m, σ̂ 2
1 , . . . , σ̂ 2

m,

(6.3)(
dv

◦
ec�̂1

)′/ k∏
j=1

(
λ̂1j

)1/k
, . . . ,

(
dv

◦
ec�̂m

)′/ k∏
j=1

(λ̂mj )
1/k,1′

m ⊗ (vec β̂)′
)′

,

where X̄i := n−1
i

∑ni

j=1 Xij , �̂i = diag(λ̂i1, . . . , λ̂ik), i = 1, . . . ,m, and β̂ are the maximum like-

lihood estimators of the corresponding parameters in the CPC model (see Flury [14]), and σ̂ 2
i

denotes the empirical median of the d2
ij (X̄i , β̂�̂i β̂

′/
∏k

j=1(λ̂ij )
1/k)’s, j = 1, . . . , ni . Note that

the estimators β̂ and �̂i , resulting from the Flury and Gautschi [15] algorithm, do not provide

consistent estimators of β and the ϑ0-reordered eigenvalues matrices �
V;β
i , respectively, because

of the possibly different ordering of eigenvalues (and also because the determinant of �̂i is not
equal to one in general). However, Flury [14] shows that they are root-n consistent for

Nβ = Nβ(1) = NM2
2 β(2) = · · · = NMm

m β(m)

and the corresponding reordered version of the �
V;β
i ’s for some global permutation matrix N.

Now, since both the null hypothesis and the test statistic Q
N (n)
ϑ0,g

are invariant with respect to
such global permutations, no reordering of the eigenvalues is needed here. Note that Dk(gi) is
consistently estimated by k

∏k
j=1(λ̂ij )

1/k/σ̂ 2
i , i = 1, . . . ,m. Finally, an obvious choice for κ̂

(n)
i

is then

κ̂
(n)
i := k

k + 2
× n−1

i

∑ni

j=1 d4
ij (X̄i , β̂�̂i β̂

′)

(n−1
i

∑ni

j=1 d2
ij (X̄i , β̂�̂i β̂

′))2
− 1.

Letting S(n)
i := ni

−1∑ni

j=1(Xij − X̄i )(Xij − X̄i )
′, this leads to the test statistic

Q
(n)†
N :=

m∑
i=1

∑
1≤j<j ′≤k

ni

1 + κ̂
(n)
i

(
λ̂ij λ̂ij ′

)−1(
β̂ ′

j S(n)
i β̂j ′

)2

−
m∑

i,i′=1

∑
1≤j<j ′≤k

nini′

n

(λ̂ij λ̂ij ′)−1/2(λ̂
i′j λ̂i′j ′)−1/2

(1 + κ̂
(n)
i )(1 + κ̂

(n)

i′ )

ν̂jj ′

(ν̂
(i)

jj ′ ν̂
(i′)
jj ′ )1/2

(6.4)

× (
β̂ ′

j S(n)
i β̂j ′

)(
β̂ ′

j S(n)

i′ β̂j ′
)
,
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where we write ν̂
(i)

jj ′ and ν̂jj ′ , respectively, for the ν
(i)

jj ′ and νjj ′(g) values computed from the

λ̂ij and κ̂
(n)
i estimators. The resulting pseudo-Gaussian test φ

(n)†
N rejects the null hypothesis of

CPC, at asymptotic level α, as soon as Q
(n)†
N exceeds the α-upper quantile of the chi-square

distribution with (m − 1)k(k − 1)/2 degrees of freedom.
To investigate the asymptotic behavior of this pseudo-Gaussian test under local alternatives,

we consider perturbations ϑ0 +n−1/2ς (n)τ (n) such that, letting Assumption (B′) hold and putting
ςτ := limn→∞ ς (n)τ (n), with

ς
(n)
IV τ

(n)
IV = ((

r
(n)
1

)−1/2(vec b(1),(n)
)′
, . . . ,

(
r(n)
m

)−1/2(vec b(m),(n)
)′)′

and

ς IVτ IV = (
r
−1/2
1

(
vec b(1)

)′
, . . . , r

−1/2
m

(
vec b(m)

)′)′
,

we still have, for all i = 1, . . . ,m, β ′b(i) + (b(i))′β = 0 (where β is the common value, under ϑ0,
of the m eigenvector matrices). Assume furthermore that the corresponding perturbed value of
ϑ0 does not belong to H0 anymore (does not belong to the linear manifold C ). Letting, for any
such ϑ0 and any g ∈ (F 4

1 )m,

CN
ϑ0;g := diag

(
1

1 + κk(g1)

(
ν(1)

)−1
, . . . ,

1

1 + κk(gm)

(
ν(m)

)−1
)

and

DN (n)
ϑ0;g := CN

ϑ0;g − CN
ϑ0;g

[((
r(n)

)−11m1′
m

(
r(n)

)−1)⊗ ν(g)
]
CN

ϑ0;g,

standard algebra yields

lN
ϑ0,τ ;g := lim

n→∞
{(

τ
(n)
IV

)′(Im ⊗ Gβ
k

)
DN (n)

ϑ0;g
(
Im ⊗ Gβ

k

)′(
τ

(n)
IV

)}
(6.5)

=
m∑

i,i′=1

(
vec b(i)

)′Gβ
k

[
δii′T

N (i,i′)
g − (riri′)

1/2TN (i,i′)
g ν(g)TN (i,i′)

g

](
Gβ

k

)′(vec b(i′)),
where TN (i,i′)

g := ((1 + κk(gi))(1 + κk(gi′)))−1/2(ν(i))−1/2(ν(i′))−1/2; r(n) was defined on

page 2532. The following result then summarizes the asymptotic properties of Q
(n)†
N and φ

(n)†
N .

Proposition 6.1. Assume that (A), (B), and (D) hold. Then,

(i) Q
(n)†
N is asymptotically chi-square with (m − 1)k(k − 1)/2 degrees of freedom un-

der
⋃

ϑ∈H0

⋃
g∈(F 4

1 )m{P(n)
ϑ;g}, and (provided that (D) is reinforced into (D′) and (B)

into (B′)) asymptotically noncentral chi-square, still with (m − 1)k(k − 1)/2 degrees
of freedom, but with noncentrality parameter lN

ϑ,τ ;g under P(n)

ϑ+n−1/2ς (n)τ (n);g, ϑ ∈ H0,

ςτ := limn→∞ ς (n)τ (n) as described above, and g ∈ (F 4
a )m;

(ii) φ
(n)†

N has asymptotic level α under
⋃

ϑ∈H0

⋃
g∈(F 4

1 )m{P(n)
ϑ;g};
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(iii) reinforcing (D) into (D′), φ(n)†
N is locally and asymptotically most stringent, at asymptotic

level α, for
⋃

ϑ∈H0

⋃
g∈(F 4

1 )m{P(n)
ϑ;g} against alternatives of the form

⋃
ϑ /∈H0

{P(n)
ϑ;φ}.

One can easily check that φ
(n)†

N actually coincides with the test φ
(n)
HPV proposed in Hallin et al.

[21]; Theorem 4.1, therefore clarifies the asymptotic optimality properties of the latter.

7. Optimal rank-based tests

7.1. A rank-based central sequence for eigenvectors

Even though the pseudo-Gaussian test φ
(n)†

N of the previous section is valid under a broad class of
densities, it still requires finite fourth-order moments, and may be poorly robust, since it is based
on empirical covariance matrices. In this section, we show how ranks (actually, a multivariate
generalization of signed ranks) allow us to improve on the performances of pseudo-Gaussian
tests both in terms of validity and efficiency.

A general result by Hallin and Werker [22] implies that, in adaptive semiparametric models
for which fixed-f submodels are ULAN and fixed-ϑ submodels are generated by a group Gϑ of
transformations (acting on the observation space), invariant versions of central sequences exist
under very general assumptions. In the present case, the ULAN structure of fixed-f submodels
is established in Section 5. As for the fixed-ϑ submodels, consider the group Gϑ ,◦ of continuous
monotone radial transformations Gh of the form

X �→ Gh(X11, . . . ,Xmnm)

:= (
θ1 + h1

(
d11

(
θ1,β

(1)�V
1 β(1)′))β(1)

(
�V

1

)1/2
β(1)′U11

(
θ1,β

(1)�V
1 β(1)′), . . . ,

θm + hm

(
dmnm

(
θm,β(m)�V

mβ(m)′))β(m)
(
�V

m

)1/2
β(m)′Umnm

(
θm,β(m)�V

mβ(m)′)),
where for all i = 1, . . . ,m, hi : R+ → R

+ is continuous, monotone increasing, and such
that hi(0) = 0 and limr→∞ hi(r) = ∞. Letting σ 2 := (σ 2

1 , . . . , σ 2
m)′, this group is a gen-

erating group for the submodel
⋃

σ 2
⋃

f{P(n)

ϑ I,σ 2,ϑ III,ϑ IV;f} (a nonparametric family). The in-

variance principle suggests basing inference on statistics that are measurable with respect
to the corresponding maximal invariant, namely the vectors (U11, . . . ,Umnm) (a multivari-
ate generalization of signs) along with the vector (R11, . . . ,Rmnm) of ranks, where Uij =
Uij (θ i ,β

(i)�V
i β(i)′), and Rij = Rij (θ i ,β

(i)�V
i β(i)′) denotes the rank of dij (θ i ,β

(i)�V
i β(i)′)

among di1(θ i ,β
(i)�V

i β(i)′), . . . , dini
(θ i ,β

(i)�V
i β(i)′). Such invariant statistics of course are

distribution-free under
⋃

σ 2
⋃

f{P(n)

ϑ I,σ 2,ϑ III,ϑ IV;f}.
The existence of central sequences that are measurable with respect to the multivariate signs

Uij and the ranks Rij (recall that central sequences are always defined up to oP(1) quantities) is
established by the asymptotic representation result of Lemma 7.1(i) below.
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Denoting by K = (K1, . . . ,Km) an m-tuple of score functions satisfying Assumption (C),
consider the random vectors

˜�IV
ϑ;K := ((

˜�IV,1
ϑ;K1

)′
, . . . ,

(
˜�IV,m

ϑ;Km

)′)′
,

with

˜�IV,i
ϑ;Ki

:= 1

2
√

ni

Gβ(i)

k L
β(i),�V

i

k

(
V⊗2

i

)−1/2
ni∑

j=1

Ki

(
Rij

ni + 1

)
vec

(
Uij U′

ij

)
. (7.1)

In order to describe the asymptotic behavior of ˜�IV
ϑ;K , similarly define

�IV
ϑ;K;g := ((

�IV,1
ϑ;K1;g1

)′
, . . . ,

(
�IV,m

ϑ;Km;gm

)′)′
,

with

�IV,i
ϑ;Ki ;gi

:= 1

2
√

ni

Gβ(i)

k L
β(i),�V

i

k

(
V⊗2

i

)−1/2
ni∑

j=1

Ki

(
G̃ik

(
dij

σ

))
vec

(
Uij U′

ij

)
.

We then have the following result.

Lemma 7.1. Assume that (A), (B), (C) and (D) hold. Fix any ϑ0 ∈ H0 (the eigenvalues are the
ϑ0-reordered eigenvalues) and g ∈ (F1)

m. Then,

(i) ˜�IV
ϑ0;K = �IV

ϑ0;K;g + oL2(1), under P(n)
ϑ0;g, as n → ∞ ;

(ii) under P(n)
ϑ0;g, �IV

ϑ0;K;g is asymptotically normal with mean zero and covariance matrix

�IV
ϑ0;K := diag(�IV,1

ϑ0;K1
, . . . ,�IV,m

ϑ0;Km
), with �IV,i

ϑ0;Ki
:= Jk(Ki)

4k(k+2)
Gβ

k (ν(i))−1(Gβ
k )′;

(iii) reinforcing (D) into (D′) and defining �IV
ϑ0;K,g := diag(�IV,1

ϑ0;K1,g1
, . . . ,�IV,m

ϑ0;Km,gm
),

with �IV,i
ϑ0;Ki,gi

:= Jk(Ki ,gi )
4k(k+2)

Gβ
k (ν(i))−1(Gβ

k )′, and assuming moreover that g ∈ (Fa)
m,

�IV
ϑ0;K;g − �IV

ϑ0;K,gτ
(n)
IV is asymptotically normal with mean zero and covariance matrix

�IV
ϑ0;K under P(n)

ϑ0+n−1/2ς (n)τ (n);g.

An immediate corollary of the asymptotic representation result in Part (i) of this lemma is that

˜�IV
ϑ;f := ˜�IV

ϑ;Kf
, with Kf := (Kf1 , . . . ,Kfm), constitutes a signed-rank version of the eigenvector

part �IV
ϑ;f of the f-central sequence; Parts (ii) and (iii) provide the asymptotic distribution of

˜�IV
ϑ;Kf

, under the null and local alternatives.

In order to construct a test statistic based on ˜�IV
ϑ;K , we also need to know how it is affected

(asymptotically, under the null hypothesis and contiguous alternatives) by the substitution, for ϑ ,
of an estimator ϑ (n) satisfying Assumption (E). This important step is taken care of by the asymp-
totic linearity result of Lemma 7.2. This lemma uses the local reordering of eigenvalues described
in the previous sections.
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Lemma 7.2. Assume that (A), (B), (C), and (D) hold, and let ϑ (n) be an estimator satisfying
Assumption (E). Fix ϑ0 ∈ H0 (with common value β of the eigenvector matrices and the corre-
sponding reordering of eigenvalues). Then, for all g ∈ (Fa)

m,

˜�IV
ϑ̃;K − ˜�IV

ϑ0;K + �IV
ϑ0;K,g

(
ς

(n)
IV

)−1
n1/2[1m ⊗ vec(β̂ − β)

]= oP(1)

as n → ∞, under P(n)
ϑ0;g.

See the Appendix for the proof. Finally, the construction of the rank-based tests of Section 7.2
requires consistent estimation of the cross-information quantities Jk(Ki, gi), i = 1, . . . ,m. The
following method, which is inspired by a local maximum likelihood argument, heavily relies
on the asymptotic linearity result of Lemma 7.2, and was first proposed, in a different context,
by Hallin et al. [17]. Fix i ∈ {1, . . . ,m} and g ∈ (Fa)

m, and let ϑ (n) satisfy Assumption (E).
Denote by β̂ the estimator of the common eigenvector matrix in ϑ (n); that is, assume that ϑ (n) =:
(ϑ̂ ′

I, ϑ̂
′
II, ϑ̂

′
III,1′

m ⊗ (vec β̂)′)′. Define, for any ρ ≥ 0,

vec
(
β̃(ρ)

) := vec(β̂) + n
−1/2
i ρk(k + 2)Gβ̂

k ν̂(i)
(
Gβ̂

k

)′ ˜�IV,i

ϑ (n);Ki
. (7.2)

Now, β̃(ρ) is not, in general, an element of SOk , and we construct, via an orthonormalization
technique, a standardized version of β̂(ρ) =: (β̂1(ρ), . . . , β̂k(ρ)). More precisely, let

β̂1(ρ) := β̃1(ρ)/
∥∥β̃1(ρ)

∥∥
and, recursively, for l = 2, . . . , k,

β̂ l (ρ) :=
(

Ik −
l−1∑
j=1

β̂j (ρ)
(
β̂j (ρ)

)′)
β̃ l(ρ)

/∥∥∥∥∥
(

Ik −
l−1∑
j=1

β̂j (ρ)
(
β̂j (ρ)

)′)
β̃ l (ρ)

∥∥∥∥∥.
Then consider the (almost surely) piecewise continuous quadratic form

ρ �→ h
(n)
i (ρ) := (

˜�IV,i

ϑ (n),Ki

)′(
�IV,i

ϑ (n);Ki

)− ˜�IV,i

ϑ (n)(ρ);Ki
,

where ϑ (n)(ρ) is simply obtained from ϑ (n) by replacing β̂ with β̂(ρ), that is, ϑ (n)(ρ) :=
(ϑ̂ ′

I, ϑ̂
′
II, ϑ̂

′
III,1′

m⊗(vec β̂(ρ))′)′. Lemma 7.2, the root-n consistency of ϑ (n)(ρ), the Delta method
applied to the orthonormalization mapping and the definition of β̃(ρ) in (7.2) imply, after some
easy algebra, that

h
(n)
i (ρ) = (

˜�IV,i

ϑ (n);Ki

)′(
�IV,i

ϑ (n);Ki

)−[˜�IV,i

ϑ (n);Ki
− �IV,i

ϑ (n);Ki,gi
n

1/2
i vec

(
β̃(ρ) − β̂

)]+ oP(1)

= (
˜�IV,i

ϑ (n);Ki

)′(
�IV,i

ϑ (n);Ki

)− (7.3)

× [
Ik2 − ρk(k + 2)�IV,i

ϑ (n);Ki,gi
Gβ̂

k ν̂(i)
(
Gβ̂

k

)′] ˜�IV,i

ϑ (n);Ki
+ oP(1)
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as n → ∞, under P(n)
ϑ0;g. Now, note that k(k + 2)Gβ

k ν(i)(Gβ
k )′ is the Moore–Penrose generalized

inverse of 1
4k(k+2)

Gβ
k (ν(i))−1(Gβ

k )′. Hence, recalling that

�IV,i
ϑ0;Ki

:= Jk(Ki)

4k(k + 2)
Gβ

k

(
ν(i)

)−1(Gβ
k

)′ and

�IV,i
ϑ0;K,g := Jk(Ki, gi)

4k(k + 2)
Gβ

k

(
ν(i)

)−1(Gβ
k

)′
,

(7.3) can be rewritten as

h
(n)
i (ρ) = (

1 − Jk(Ki, gi)ρ
)
h

(n)
i (0) + oP(1), (7.4)

still as n → ∞, under P(n)
ϑ0;g. Since h

(n)
i (0) > 0, an intuitively appealing estimator for

(Jk(Ki, gi))
−1 is, in view of (7.4), ρ̂ := inf{ρ > 0: h

(n)
i (ρ) < 0}. Proceeding along the same

lines as in Hallin et al. [17], it is easily shown that Ĵk(Ki, gi) := ρ̂−1 is, after adequate dis-
cretization (which, again, has no impact, and is not required, in fixed-ni practice), a consistent
estimator of Jk(Ki, gi) under P(n)

ϑ0;g.

7.2. Optimal rank-based tests

Motivated by the form of the pseudo-Gaussian statistic in (6.1), consider the signed-rank statistic

˜Q(n)
ϑ0;K,g := (

˜�IV
ϑ0;K

)′(
�IV

ϑ0;K,g

)⊥ ˜�IV
ϑ0;K, (7.5)

with (
�IV

ϑ;K,g

)⊥ := (
�IV

ϑ;K
)−

− (
�IV

ϑ;K
)−

�IV
ϑ;K,g

(
ς

(n)
IV

)−1
ϒIV

× [(
ϒIV)′(ς (n)

IV

)−1
�IV

ϑ;K,g

(
�IV

ϑ;K
)−

�IV
ϑ;K,g

(
ς

(n)
IV

)−1
ϒIV]−

× (
ϒIV)′(ς (n)

IV

)−1
�IV

ϑ;K,g

(
�IV

ϑ;K
)−

,

where �IV
ϑ;K and �IV

ϑ;K,g are defined in Lemma 7.1 (this includes the ϑ0-reordering of eigenval-
ues). Using the fact that

(
Gβ(i)

k

)′Gβ(i)

k = 2Ik(k−1)/2 and(
�IV,i

ϑ0;K
)− = k(k + 2)

Jk(K1)
Gβ(i)

k ν(i)
(
Gβ(i)

k

)′
,
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standard algebra yields

˜Q(n)
ϑ0;K,g = k(k + 2)

{
m∑

i=1

∑
1≤j<j ′≤k

ni

Jk(Ki)

(
β ′

j ˜SK;iβj ′
)2

−
m∑

i,i′=1

∑
1≤j<j ′≤k

nini′

n

Jk(Ki, gi)Jk(Ki′ , gi′)

Jk(Ki)Jk(Ki′)

νjj ′(K,g)

(ν
(i)

jj ′ν
(i′)
jj ′ )1/2

(7.6)

× (
β ′

j ˜SK;iβj ′
)(

β ′
j ˜SK;i′βj ′

)}
,

where

˜SK;i := 1

ni

ni∑
j=1

Ki

(
Rij (ϑ0)

n + 1

)
Uij (ϑ0)U′

ij (ϑ0)

and

diag
(
ν12(K,g), . . . , ν(k−1)k(K,g)

) :=
(

m∑
i=1

r
(n)
i

J 2
k (Ki, gi)

Jk(Ki)

(
ν(i)

)−1

)−1

=: ν(K,g).

For the pseudo-Gaussian tests of Section 6, obtaining a genuine test statistic requires replac-
ing in (7.6) the parameter value ϑ0 with an estimator ϑ (n) satisfying Assumption (E) – here,
with K = (Fa)

m – and replacing the cross-information quantities Jk(Ki, gi) with consistent
(under P(n)

ϑ0;g, g ∈ (Fa)
m) estimates. The estimates Ĵk(Ki, gi) defined at the end of Section 7.1

can be used for that purpose. As for ϑ (n), many choices are possible. Still avoiding moment as-
sumptions, we propose the following one. Let θ

(n)
i and V(n)

i , i = 1, . . . ,m be the location and
shape estimators associated with the affine-equivariant multivariate median of Hettmansperger
and Randles [23], which are implicitly defined by

1

ni

ni∑
j=1

Uij

(
θ

(n)
i ,V(n)

i

) = 0 and

1

ni

ni∑
j=1

Uij

(
θ

(n)
i ,V(n)

i

)
U′

ij

(
θ

(n)
i ,V(n)

i

) = 1

k
Ik,

with det(V(n)
i ) = 1, i = 1, . . . ,m. Under H0, the eigenvalue matrices �V

i = diag(λV
i1, . . . , λ

V
ik),

i = 1, . . . ,m and the matrix β = (β1, . . . ,βk) of common eigenvectors then can be esti-
mated consistently by using the plug-in method as in Boente and Orellana [4]. More precisely,

the resulting estimates �̂
V
i , i = 1, . . . ,m and β̂ are obtained by solving the ML-type equa-
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tions

β ′
j

(
m∑

i=1

ni

λV
ij − λV

il

λV
ij λ

V
il

V(n)
i

)
β l = 0, j 	= l = 1, . . . , k,

β ′
j V(n)

i βj = λV
ij , i = 1, . . . ,m, j = 1, . . . , k, (7.7)

β ′
jβ l = δjl, j, l = 1, . . . , k,

where δjl is the usual Kronecker symbol. As in the pseudo-Gaussian context, the resulting es-
timators are root-n consistent up to a global permutation (see the comments below (6.3)). Now,
the scale parameters σ 2

i , i = 1, . . . ,m do not appear in (7.6), so that the resulting “estimators”
for ϑ can be chosen as if all σi ’s were specified:

ϑ (n) := (
θ̂ ′

1, . . . , θ̂
′
m,σ 2

1 , . . . , σ 2
m,
(
dv

◦
ec
(
�̂V

1

))′
, . . . ,

(
dv

◦
ec
(
�̂V

m

))′
,1′

m ⊗ (vec β̂)′
)′
. (7.8)

It can be checked that, after appropriate discretization, ϑ (n) in (7.8) satisfies Assumption (E)
with K = (F1)

m (hence without requiring any moment condition), so that it can be used
advantageously in our signed-rank tests. Summing up, the signed-rank statistic we propose
is

˜Q(n)
K := k(k + 2)

{
m∑

i=1

∑
1≤j<j ′≤k

ni

J (Ki)

(
β̂ ′

j
ˆ̃SK;i β̂j ′

)2

−
m∑

i,i′=1

∑
1≤j<j ′≤k

nini′

n

Ĵk(Ki, gi)Ĵk(Ki′ , gi′)

J (Ki)J (Ki′)

ν̂jj ′(K,g)

(ν̂
(i)

jj ′ ν̂
(i′)
jj ′ )1/2

× (
β̂ ′

j
ˆ̃SK;i β̂j ′

)(
β̂ ′

j
ˆ̃SK;i′ β̂j ′

)}
,

where

ˆ̃SK;i := 1

ni

ni∑
j=1

Ki

(
Rij (ϑ

(n))

n + 1

)
Uij

(
ϑ (n)

)
U′

ij

(
ϑ (n)

)
and

diag
(
ν̂12(K,g), . . . , ν̂(k−1)k(K,g)

) :=
(

m∑
i=1

r
(n)
i

Ĵ 2
k (Ki, gi)

J (Ki)

(
ν̂(i)

)−1

)−1

=: ν̂(K,g),

all parameters being estimated via the chosen estimator ϑ (n) (given in (7.8), for instance).
The resulting test ˜φ(n)

K rejects the null hypothesis of CPC, at asymptotic level α, as soon

as ˜Q(n)
K exceeds the α-upper quantile of the chi-square distribution with (m − 1)k(k − 1)/2
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degrees of freedom. Consider perturbations τ (n) as described in Proposition 6.1 above. Let-
ting

Cϑ0;K,g := diag

(J 2
k (K1, g1)

Jk(K1)

(
ν(1)

)−1
, . . . ,

J 2
k (Km,gm)

Jk(Km)

(
ν(m)

)−1
)

and

D(n)
ϑ0;K,g := Cϑ0;K,g − Cϑ0;K,g

[((
r(n)

)−11m1′
m

(
r(n)

)−1)⊗ ν(K,g)
]
Cϑ0;K,g,

the quantities characterizing the asymptotic distribution of ˜Q(n)
K under the corresponding local

alternatives (see Part (i) of Theorem 7.1 below) are

lϑ0,τ ;K,g := lim
n→∞

{(
τ

(n)
IV

)′(Im ⊗ Gβ
k

)
D(n)

ϑ0;K,g

(
Im ⊗ Gβ

k

)′(
τ

(n)
IV

)}
=

m∑
i,i′=1

(
vec b(i)

)′Gβ
k

[
δii′T

(i,i′)
K,g − (riri′)

1/2T(i,i′)
K,g ν(K,g)T(i,i′)

K,g

]
(7.9)

× (
Gβ

k

)′(vec b(i′)),
where

T(i,i′)
K,g := Jk(Ki, gi)Jk(Ki′ , gi′)

(J (Ki)J (Ki′))1/2

(
ν(i)

)−1/2(
ν(i′))−1/2

.

We are now ready to state the main result of this paper.

Proposition 7.1. Assume that (A), (B), (C) and (D) hold, and let ϑ (n) be an estimator satisfying
Assumption (E) with K = (Fa)

m. Then,

(i) ˜Q(n)
K is asymptotically chi-square with (m − 1)k(k − 1)/2 degrees of freedom under⋃
ϑ∈H0

⋃
g∈(Fa)m{P(n)

ϑ;g}, and (provided that (B) and (D) are reinforced into (B′) and (D′),
respectively) asymptotically noncentral chi-square, still with (m − 1)k(k − 1)/2 degrees
of freedom, but with noncentrality parameter lϑ,τ ;K,g/k(k + 2) under P(n)

ϑ+n−1/2ς (n)τ (n);g,

ϑ ∈ H0, ςτ := limn→∞ ς (n)τ (n) as in Proposition 6.1 and g ∈ (Fa)
m;

(ii) ˜φ(n)
K has asymptotic level α under

⋃
ϑ∈H0

⋃
g∈(Fa)m{P(n)

ϑ;g};
(iii) reinforcing (D) into (D′), ˜φ(n)

Kf
, Kf := (Kf1 , . . . ,Kfm), is locally and asymptotically most

stringent, at asymptotic level α, for
⋃

ϑ∈H0

⋃
g∈(Fa)m{P(n)

ϑ;g} against alternatives of the

form
⋃

ϑ /∈H0
{P(n)

ϑ;f} with f := (f1, . . . , fm).

The signed-rank test ˜φ(n)
K is asymptotically invariant with respect to continuous monotone

radial transformations in the sense that it is asymptotically equivalent to a random variable which
is invariant under such transformations.
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8. Power comparison and simulations

8.1. Asymptotic relative efficiencies

The asymptotic relative efficiencies (AREs) of the signed-rank test ˜φ(n)
K with respect to the

pseudo-Gaussian test φ
(n)†

N (equivalently, with respect to φ
(n)
HPV) directly follow as ratios of non-

centrality parameters under local alternatives (see Propositions 6.1 and 7.1).

Proposition 8.1. Assume that (A), (B′), (C) and (D′) hold. Then, the asymptotic relative effi-
ciency of ˜φ(n)

K with respect to φ
(n)†

N , when testing P(n)
ϑ;g against P(n)

ϑ+n−1/2ς (n)τ (n);g, with ϑ ∈ H0,

ςτ := limn→∞ ς (n)τ (n) as described in Proposition 6.1, and g ∈ (F 4
a )m, is

AREk,g
(
˜φ(n)

K /φ
(n)†

N
)= lϑ,τ ;K,g/k(k + 2)lN

ϑ,τ ;g, (8.1)

where lN
ϑ,τ ;g and lϑ,τ ;K,g are defined in (6.5) and (7.9), respectively.

Note that, if g = (g1, . . . , g1) (homogeneous elliptical densities) and if the same score function
– namely, K1 – is used for the m rankings, (8.1) simplifies into

AREk,g
(
˜φ(n)

K1
/φ

(n)†
N

)= (
1 + κk(g1)

)
J 2

k (K1, g1)/k(k + 2)Jk(K1); (8.2)

these are the AREs obtained in one-sample shape problems (see Hallin and Paindaveine [16]
and Hallin et al. [17], in hypothesis testing and point estimation contexts, respectively). The
Chernoff–Savage property of Paindaveine [29] therefore holds: denoting by ˜φ(n)

vdW the van der

Waerden rank test (based on the Gaussian scores K1 = · · · = Km := 
−1
k , where 
−1

k stands for
the quantile function of the chi-square distribution with k degrees of freedom), we have that

AREk,g
(
˜φ(n)

vdW/φ
(n)†

N
)≥ 1

for all homogeneous g ∈ (F 4
a )m, with equality in the Gaussian case only.

In the bivariate two-population case (m = k = 2) with b(1) = 0 (no perturbation on the eigen-
vectors of the first population), the ARE under g = (g1, g2) of φ

(n)†
N with respect to the optimal

parametric test φ
(n)
g (recall that, under (B′), ri := limn→∞ ni/n) is

ARE2,g
(
φ

(n)†
N /φ(n)

g

)= k(k + 2)(1 + κ2(g2))
−1(1 − r2(ν

(2)
12 )−1(1 + κ2(g2))

−1ν12(g))

J2(g2)(1 − r2(ν
(2)
12 )−1 J2(g2)ν12(Kg,g))

, (8.3)

where, denoting by Kg1 and Kg2 the score functions associated with g1 and g2, respectively,
Kg = (Kg1 ,Kg2), and ν12(Kg,g) naturally stands for the ν12(K,g) quantity computed from Kg
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Table 1. Asymptotic relative efficiencies (8.3) of the pseudo-Gaussian tests with respect to the optimal
parametric (or the optimal rank-based) ones under various bivariate Student tν and Gaussian population
densities g = (g1, g2), with r2 = 1 − r1 = 120/220

g2

g1 t4.2 t5 t6 t8 t12 N

t4.2 0.1202 0.1773 0.1867 0.1896 0.1889 0.1822
t5 0.1963 0.4286 0.4987 0.5378 0.5538 0.5528
t6 0.2106 0.5159 0.6250 0.6923 0.7241 0.7353
t8 0.2158 0.5679 0.7079 0.8000 0.8468 0.8714
t12 0.2155 0.5905 0.7490 0.8571 0.9143 0.9486
N 0.2068 0.5918 0.7656 0.8889 0.9563 1.000

scores. Under the same setting, the ARE of the van der Waerden test ˜φ(n)
vdW (with score Kφ :=


−1
k ) with respect to φ

(n)
g takes the form

ARE2,g
(
˜φ(n)

vdW/φ(n)
g

) = J 2(Kφ,g2)

J (Kφ)

(
1 − r2

(
ν

(2)
12

)−1 J 2(Kφ,g2)

J (Kφ)
ν12(Kφ,g)

)
(8.4)/(

J2(g2)
(
1 − r2

(
ν

(2)
12

)−1 J2(g2)ν12(Kg,g)
))

.

These AREs do not depend on the value β of the common eigenvectors under the null, nor on the
perturbation b(2). Tables 1 and 2 provide numerical values of (8.3) and (8.4), respectively, with
r2 = 1 − r1 = 120/220 (the sampling scheme considered in the simulations of Section 8.2), for
various choices of bivariate Student tν and Gaussian population densities g = (g1, g2). Note that
the ARE of the pseudo-Gaussian tests with respect to van der Waerden ones can be as low as 0.13
under homokurtic bivariate t4.2 populations, which demonstrates the severe lack of efficiency
robustness of the pseudo-Gaussian tests.

Table 2. Asymptotic relative efficiencies (8.3) of the van der Waerden tests with respect to the optimal
parametric (or the optimal rank-based) ones under various bivariate Student tν and Gaussian population
densities g = (g1, g2), with r2 = 1 − r1 = 120/220

g2

g1 t4.2 t5 t6 t8 t12 N

t4.2 0.9303 0.9367 0.9419 0.9478 0.9526 0.9561
t5 0.9380 0.9446 0.9501 0.9564 0.9616 0.9656
t6 0.9443 0.9513 0.9570 0.9636 0.9691 0.9738
t8 0.9516 0.9589 0.9650 0.9720 0.9779 0.9833
t12 0.9576 0.9652 0.9717 0.9791 0.9854 0.9915
N 0.9622 0.9706 0.9776 0.9858 0.9928 1.000
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8.2. Monte-Carlo study

In this section, we concentrate on comparing Flury’s traditional Gaussian LRT (φ(n)
Flury) for the

null hypothesis of CPC with the pseudo-Gaussian test φ
(n)†

N of Section 6 and the signed-rank tests
of Section 7. First, we generated N = 1000 independent replications of three pairs (m = 2) of mu-
tually independent samples (with respective, and relatively small, sizes n1 = 100 and n2 = 120)
of bivariate (k = 2) random vectors

ε�;1j1 and ε�;2j2, � = 1,2,3,4, ji = 1, . . . , ni, i = 1,2,

with bivariate standard Gaussian densities (ε1;1j1 and ε1;2j2 : Gaussian case), bivariate Gaus-
sian (ε2;1j1 ) and t5 (ε2;2j2 ) (non-Gaussian heterokurtic case with finite fourth-order moments),
bivariate standard t1 densities (ε3;1j1 and ε3;2j2 : non-Gaussian homokurtic case with infinite
fourth-order moments) and bivariate standard t5 (ε4;1j1 ) and t1 (ε4;2j2 ) (non-Gaussian heterokur-
tic case with infinite fourth-order moments), respectively. Each replication of the ε�;1j1 ’s was
transformed into

X�;1j1 = β�
1/2
1 ε�;1j1 , � = 1,2,3,4, j1 = 1, . . . , n1, (8.5)

where

β =
(

cos(π/6) − sin(π/6)

sin(π/6) cos(π/6)

)
and �1 =

(
16 0
0 8

)
,

while each replication of the ε�;2j2 ’s was transformed into

X�;2j2;ξ = βBξ�
1/2
2 ε�;2j2, � = 1,2,3,4, j2 = 1, . . . , n2, ξ = 0,1,2,3 (8.6)

where

Bξ =
(

cos(πξ/15) − sin(πξ/15)

sin(πξ/15) cos(πξ/15)

)
and �2 =

(
4 0
0 2

)
.

Clearly, the scatter matrices of X�;1j1 and X�;2j2;0 have common eigenvectors β , with distinct
eigenvalue matrices �1 and �2, while the eigenvectors of X�;2j2;ξ , ξ = 1,2,3 differ from those
of X�;1j1 , thus characterizing increasingly distant alternatives to the null hypothesis of CPC.

Rejection frequencies (based on the asymptotic chi-square critical values, at nominal 5% level)
are reported in Table 3, the inspection of which reveals several well expected facts:

(i) φ
(n)
Flury and φ

(n)†
N yield similar behaviors under Gaussian densities, but completely blow

up under densities with infinite fourth-order moments. However, it is shown in Hallin et
al. [21] that φ

(n)
HPV = φ

(n)†
N remains valid under heterokurtic elliptical densities with finite

fourth-order moments;
(ii) the signed-rank tests, unlike their Gaussian and pseudo-Gaussian competitors, keep the

right nominal size under the null in all designs considered. They furthermore exhibit quite
good results in terms of efficiency;

(iii) despite the relatively small sample sizes n1 = 100 and n2 = 120, empirical powers and
ARE rankings almost perfectly agree.
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Table 3. Rejection frequencies (out of N = 1000 replications), under the null (ξ = 0) and three alternatives
(ξ = 1,2,3; see Section 8.2 for details), of the Flury test (φFlury), the pseudo-Gaussian tests φ

†
N (= φHPV),

the signed-rank van der Waerden (˜φvdW – Gaussian scores in both samples), homogeneous tν -score (˜φt5,t5

and ˜φt1,t1 – identical Student scores in both samples), heterogeneous tν -score test (˜φt1,t5 – t1-scores in

sample one and t5-scores in sample two) and heterogeneous Gaussian and t5-scores (˜φvdW,t5 – Gaussian

scores in sample one, t5-scores in sample two). Sample sizes are n1 = 100 and n2 = 120. The last column
shows the AREs of each test with respect to the optimal (at the underlying density (g1, g2)) rank-based test

ξ

Underlying densities g Test 0 1 2 3 AREk,g(·/ ˜φg1,g2 )

N , N φFlury 0.039 0.178 0.504 0.780 1.0000

φ
†

N (= φHPV) 0.041 0.177 0.494 0.722 1.0000

˜φvdW 0.031 0.148 0.412 0.633 1.0000

˜φt5,t5 0.035 0.147 0.426 0.626 0.9446

˜φt1,t1 0.036 0.110 0.350 0.517 0.7407

˜φt1,t5 0.043 0.146 0.414 0.595 0.8213

˜φvdW,t5 0.039 0.149 0.433 0.631 0.9740

t1, t1 φFlury 0.698 0.705 0.704 0.716 0.0000

φ
†

N (= φHPV) 0.025 0.045 0.037 0.037 0.0000

˜φvdW 0.036 0.077 0.198 0.335 0.7407

˜φt5,t5 0.041 0.088 0.261 0.416 0.8972

˜φt1,t1 0.035 0.123 0.295 0.460 1.0000

˜φt1,t5 0.043 0.111 0.282 0.436 0.9505

˜φvdW,t5 0.035 0.081 0.235 0.369 0.8045

t1, t5 φFlury 0.478 0.517 0.543 0.519 0.0000

φ
†

N (= φHPV) 0.230 0.274 0.277 0.282 0.0000

˜φvdW 0.034 0.093 0.278 0.414 0.8091

˜φt5,t5 0.041 0.116 0.315 0.481 0.9348

˜φt1,t1 0.051 0.115 0.309 0.487 0.9571

˜φt1,t5 0.059 0.141 0.345 0.528 1.0000

˜φvdW,t5 0.035 0.103 0.291 0.439 0.8243

N , t5 φFlury 0.124 0.236 0.480 0.707 0.0000

φ
†

N (= φHPV) 0.068 0.156 0.374 0.536 0.5918

˜φvdW 0.040 0.139 0.377 0.566 0.9706

˜φt5,t5 0.049 0.146 0.400 0.600 0.9725

˜φt1,t1 0.049 0.141 0.353 0.514 0.8142

˜φt1,t5 0.067 0.156 0.365 0.570 0.8556

˜φvdW,t5 0.039 0.144 0.401 0.595 1.0000
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Table 4. Rejection frequencies (out of N = 1000 replications) for k = 4, k = 5 and k = 6 under the homo-
geneous (t5, t5) and heterogeneous (t1, t5) null hypotheses of CPC, of Flury’s likelihood ratio test φFlury, the

pseudo-Gaussian test φ
(n)†

N and the tν -score rank-based tests ˜φt5,t5 and ˜φt1,t5 . Sample sizes are n1 = 100

and n2 = 120

k

Underlying densities g1, g2 Test 4 5 6

t5, t5 φFlury 0.259 0.286 0.487

φ
(n)†

N 0.066 0.064 0.069

˜φt5,t5 0.061 0.047 0.040

˜φt1,t5 0.068 0.041 0.036

t1, t5 φFlury 0.665 0.756 0.942

φ
(n)†

N 0.101 0.132 0.175

˜φt5,t5 0.048 0.040 0.041

˜φt1,t5 0.053 0.039 0.037

We also investigated the validity of the proposed tests in higher dimension (k = 4, 5, and 6),
with (sticking to m = 2) the same sample sizes n1 = 100 and n2 = 120. Table 4 provides rejection
frequencies under the null of the rank-based tests ˜φt1,t5 and ˜φt5,t5 , the pseudo-Gaussian test φ

(n)†
N

and Flury’s test φFlury using N = 1000 replications of (i) k-dimensional t1 (first sample) and
t5 (second sample) densities and (ii) k-dimensional t5 densities (both samples). The common
eigenvectors were set to diag(β, Ik−2) and the eigenvalues to �1 = diag(k2, (k − 1)2, . . . ,4,1)

and �2 = diag(k, k − 1, . . . ,2,1), respectively. All tests were performed at nominal level 5%.
Inspection of the results reveals that the sizes under the null of the rank-based tests remain

quite stable and close to the asymptotic nominal level as the dimension k increases. In contrast,
the asymptotic level of Flury’s test badly deteriorates, while the pseudo-Gaussian test remains
valid under finite fourth-order moments (the homogeneous t5, t5 case) only.

Appendix

Proofs of Lemma 7.1 and Lemma 7.2. Part(i) of Lemma 7.1 readily follows from classical
asymptotic representation results for signed-rank-based statistics: see, for instance, Proposi-
tion 6.1 in Hallin et al. [20]. Parts (ii) and (iii) are direct consequences of Part (i), the multivariate
central limit theorem, and ULAN.

We therefore concentrate on the proof of Lemma 7.2. For i = 1, . . . , n, let V̂i := β̂�̂
V
i β̂ ′ denote

the root-ni consistent estimator (under H0) of the shape matrix Vi resulting from the estimated
eigenvalues �̂V

i and estimated (common) eigenvectors β̂ . With that estimated shape matrix, we



Optimal rank-based tests for CPC 2553

get

˜�IV,i

ϑ (n);Ki
=

√
ni

2
Gβ̂

k L
β̂,�̂V

i

k

(
V̂⊗2

i

)−1/2 vec( ˆ̃SK;i ),

where ˆ̃SK;i := 1
ni

∑ni

j=1 Ki(
Rij (ϑ (n))

n+1 )Uij (ϑ
(n))U′

ij (ϑ
(n)). Similarly define ˜SK;i :=

1
ni

∑ni

j=1 Ki(
Rij (ϑ)

n+1 )Uij (ϑ)U′
ij (ϑ). Letting J⊥

k := Ik2 − 1
k

Jk , note that, since n
1/2
i J⊥

k
ˆ̃SK;i is OP(1)

as n → ∞ under P(n)
ϑ0;g and L

β,�V
i

k (Vi
−1/2)⊗2Jk = 0, Slutzky’s lemma entails

˜�IV,i

ϑ (n);Ki
:= 1

2

√
niG

β
k L

β,�V
i

k

(
V⊗2

i

)−1/2 vec( ˆ̃SK;i ) + oP(1) (9.1)

as n → ∞ under P(n)
ϑ0;g. From Lemma A1 in Hallin et al. [17] and Lemma 4.4 in Kreiss [25], we

have that, for ϑ (n) satisfying (E),

J⊥
k

√
ni vec( ˆ̃SK;i − ˜SK;i )

(9.2)

+ Jk(K,g1)

4k(k + 2)

[
Ik2 + Kk − 2

k
Jk

](
Vi

−1/2)⊗2
n

1/2
i vec(̂Vi − Vi ) = oP(1)

as n → ∞, still under P(n)
ϑ0;g. It directly follows from (9.1), (9.2) and the fact that L

β,�V
i

k ×
(Vi

−1/2)⊗2Jk = 0 that

˜�IV,i

ϑ (n);Ki
− ˜�IV,i

ϑ;Ki
= Jk(K,g1)

4k(k + 2)
Gβ

k L
β,�V

i

k

(
V⊗2

i

)−1[Ik2 + Kk]n1/2
i vec(̂Vi − Vi ) + oP(1). (9.3)

Next, following the same argument as in the proof of Lemma 4.2 in Hallin et al. [20], we have
that

n
1/2
i vec(̂Vi − Vi ) = (

L
β,�V

i

k

)′(Gβ
k

)′
n

1/2
i vec(β̂ − β)

(9.4)
+ β⊗2H′

kn
1/2
i dvec

(
�̂V

i − �V
i

)+ oP(1)

as n → ∞ under P(n)
ϑ0;g. The result follows by plugging (9.4) into (9.3), then using the fact that

(L
β,�V

i

k )′(V⊗2
i )−1[Ik2 + Kk]β⊗2H′

k = 0. �

Proof of Proposition 7.1. Simple algebra yields, for ϑ0 ∈ H0,

�IV
ϑ0,K,g

(
ς (n)

)−1
ϒIV = 2�IV

ϑ0,K,g

(
ς (n)

)−1
ϒ̃,

with ϒ̃ := 1m ⊗ Ik2 . This implies that

˜Q(n)
ϑ0;K,g = (

˜�IV
ϑ0;K

)′(
�IV

ϑ0,K,g

)⊥ ˜�IV
ϑ0;K,
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where (
�IV

ϑ0,K,g

)⊥ = (
�IV

ϑ0,K

)−
− (

�IV
ϑ0,K

)−
�IV

ϑ0,K,g

(
ς (n)

)−1
ϒ̃

(9.5)
× (

ϒ̃ ′(ς (n)
)−1

�IV
ϑ0,K,g

(
�IV

ϑ0,K

)−
�IV

ϑ0,K,g

(
ς (n)

)−1
ϒ̃
)−

× ϒ̃ ′(ς (n)
)−1

�IV
ϑ0,K,g

(
�IV

ϑ0,K

)−
.

Using Slutzky’s lemma jointly with Lemma 7.2, we obtain that ˜Q(n)
K − ˜Q(n)

ϑ0;K,g is oP(1) under

Pϑ0,g for ϑ0 ∈ H0 and g ∈ (Fa)
m iff (denoting by β the common eigenvector matrix under ϑ0)(

�IV
ϑ0,K,g

)⊥
�IV

ϑ0,K,g

(
ς (n)

)−1
ϒ̃n1/2 vec(β̂ − β) = 0.

In view of (9.5), however, this follows trivially from the fact that A(A′A)−A′A = A, a standard
property of Moore–Penrose inverses.

Now, since �IV
ϑ0;K(�IV

ϑ0;K,g)
⊥ is idempotent with trace (m − 1)k(k − 1)/2, it follows from

Theorem 9.2.1 in Rao and Mitra [32] that ˜Q(n)
K is asymptotically chi-square with (m − 1)k(k −

1)/2 degrees of freedom under P(n)
ϑ0;g, ϑ0 ∈ H0, and asymptotically noncentral chi-square, still

with (m − 1)k(k − 1)/2 degrees of freedom, but with noncentrality parameter

lim
n→∞

{(
τ IV)(n)′

�IV
ϑ0;K,g

(
�IV

ϑ0;K,g

)⊥
�IV

ϑ0;K,g

(
τ IV)(n)} (9.6)

under P(n)

ϑ0+n−1/2τ (n);g. Evaluation of the limit in (9.6) yields the desired result.

(ii) The fact that ˜φ(n)
K has asymptotic level α directly follows from the asymptotic null dis-

tribution obtained in (i) and the classical Helly–Bray theorem.
(iii) Optimality is a consequence of the asymptotic equivalence of ˜QKf and Qϑ0,f described

in (5.3) under g = f = (f1, . . . , fm) ∈ (Fa)
m. �

Proof of Proposition 6.1. (i) It follows from Theorem 4.1 in Hallin et al. [21] that Q
(n)†
N is

asymptotically chi-square with (m − 1)k(k − 1)/2 degrees of freedom under P(n)
ϑ0;g, ϑ0 ∈ H0

and g ∈ (F 4
1 )m. Lemma 6.1 implies that Q

(n)†
N is asymptotically noncentral chi-square, still with

(m − 1)k(k − 1)/2 degrees of freedom, but with noncentrality parameter

lim
n→∞

(
τ IV)(n)′

�
g,IV
ϑ0;φ,g

(
�

g,IV
ϑ0;φ

)⊥
�

g,IV
ϑ0;φ,g

(
τ IV)(n)

(9.7)

under P(n)

ϑ0+n−1/2τ (n);g with g ∈ (F 4
a )m. Evaluation of the limit in (9.7) yields the result.

(ii) The fact that φ
(n)†

N has asymptotic level α directly follows from the asymptotic null dis-
tribution in (i) and the classical Helly–Bray theorem.

(iii) Optimality is a consequence of the asymptotic equivalence under g = (φ, . . . , φ) of
Q

N (n)
ϑ0,g

and Qϑ0,φ described in (5.3). �
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