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The approximation of fixed-interval smoothing distributions is a key issue in inference for general state-
space hidden Markov models (HMM). This contribution establishes non-asymptotic bounds for the Forward
Filtering Backward Smoothing (FFBS) and the Forward Filtering Backward Simulation (FFBSi) estimators
of fixed-interval smoothing functionals. We show that the rate of convergence of the Lq -mean errors of
both methods depends on the number of observations T and the number of particles N only through the
ratio T/N for additive functionals. In the case of the FFBS, this improves recent results providing bounds
depending on T/

√
N .

Keywords: additive functionals; deviation inequalities; FFBS; FFBSi; particle-based approximations;
sequential Monte Carlo methods

1. Introduction

State-space models play a key role in statistics, engineering and econometrics; see Cappé,
Moulines and Rydén [2], Durbin and Koopman [10], West and Harrison [18]. Consider a pro-
cess {Xt }t≥0 taking values in a general state-space X. This hidden process can be observed only
through the observation process {Yt }t≥0 taking values in Y. Statistical inference in general state-
space models involves the computation of expectations of additive functionals of the form

ST =
T∑

t=1

ht (Xt−1,Xt ),

conditionally to {Yt }Tt=0, where T is a positive integer and {ht }Tt=1 are functions defined on X
2.

These smoothed additive functionals appear naturally for maximum likelihood parameter infer-
ence in hidden Markov models. The computation of the gradient of the log-likelihood function
(Fisher score) or of the intermediate quantity of the Expectation Maximization algorithm involves
the estimation of such smoothed functionals, see Cappé, Moulines and Rydén [2], Chapters 10
and 11, and Poyiadjis, Doucet and Singh [17].

Except for linear Gaussian state-spaces or for finite state-spaces, these smoothed additive
functionals cannot be computed explicitly. In this paper, we consider Sequential Monte Carlo
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algorithms, henceforth referred to as particle methods, to approximate these quantities. These
methods combine sequential importance sampling and sampling importance resampling steps to
produce a set of random particles with associated importance weights to approximate the fixed-
interval smoothing distributions.

The most straightforward implementation is based on the so-called path-space method. The
complexity of this algorithm per time-step grows only linearly with the number N of particles,
see Del Moral [4]. However, a well-known shortcoming of this algorithm is known in the litera-
ture as the path degeneracy; see Poyiadjis, Doucet and Singh [17] for a discussion.

Several solutions have been proposed to solve this degeneracy problem. In this paper, we
consider the Forward Filtering Backward Smoothing algorithm (FFBS) and the Forward Filtering
Backward Simulation algorithm (FFBSi) introduced in Doucet, Godsill and Andrieu [9] and
further developed in Godsill, Doucet and West [11]. Both algorithms proceed in two passes. In
the forward pass, a set of particles and weights is stored. In the Backward pass of the FFBS, the
weights are modified but the particles are kept fixed. The FFBSi draws independently different
particle trajectories among all possible paths. Since they use a backward step, these algorithms
are mainly adapted for batch estimation problems. However, as shown in Del Moral, Doucet and
Singh [5], when applied to additive functionals, the FFBS algorithm can be implemented forward
in time, but its complexity grows quadratically with the number of particles. As shown in Douc
et al. [8], it is possible to implement the FFBSi with a complexity growing only linearly with the
number of particles.

The control of the Lq -norm of the deviation between the smoothed additive functional and
its particle approximation has been studied recently in Del Moral, Doucet and Singh [5,6]. In
an unpublished paper by Del Moral, Doucet and Singh [6], it is shown that the FFBS estimator
variance of any smoothed additive functional is upper bounded by terms depending on T and N

only through the ratio T/N . Furthermore, in Del Moral, Doucet and Singh [5], for any q > 2,
a Lq -mean error bound for smoothed functionals computed with the FFBS is established. When
applied to strongly mixing kernels, this bound amounts to be of order T/

√
N either for

(i) uniformly bounded in time general path-dependent functionals,
(ii) unnormalized additive functionals (see Del Moral, Doucet and Singh [5], equation (3.8),

page 957).

In this paper, we establish Lq -mean error and exponential deviation inequalities of both the
FFBS and FFBSi smoothed functionals estimators. We show that, for any q ≥ 2, the Lq -mean
error for both algorithms is upper bounded by terms depending on T and N only through the
ratio T/N under the strong mixing conditions for (i) and (ii). We also establish an exponential
deviation inequality with the same functional dependence in T and N .

This paper is organized as follows. Section 2 introduces further definitions and notations and
the FFBS and FFBSi algorithms. In Section 3, upper bounds for the Lq -mean error and expo-
nential deviation inequalities of these two algorithms are presented. In Section 4, some Monte
Carlo experiments are presented to support our theoretical claims. The proofs are presented in
Sections 5 and 6.
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2. Framework

Let X and Y be two general state-spaces endowed with countably generated σ -fields X and Y .
Let M be a Markov transition kernel defined on X × X and {gt }t≥0 a family of functions defined
on X. It is assumed that, for any x ∈ X, M(x, ·) has a density m(x, ·) with respect to a reference
measure λ on (X, X ). For any integers T ≥ 0 and 0 ≤ s ≤ t ≤ T , any measurable function h on
X

t−s+1, and any probability distribution χ on (X, X ), define

φs:t |T [h] def=
∫

χ(dx0)g0(x0)
∏T

u=1 M(xu−1,dxu)gu(xu)h(xs:t )∫
χ(dx0)g0(x0)

∏T
u=1 M(xu−1,dxu)gu(xu)

, (2.1)

where au:v is a short-hand notation for {as}vs=u. The dependence on g0:T is implicit and is dropped
from the notations.

Remark 2.1. Note that this equation has a simple interpretation in the particular case of hidden
Markov models. Indeed, let (�, F ,P) be a probability space and {Xt }t≥0 a Markov chain on
(�, F ,P) with transition kernel M and initial distribution χ (which we denote X0 ∼ χ ). Let
{Yt }t≥0 be a sequence of observations on (�, F ,P) conditionally independent given σ(Xt , t ≥ 0)

and such that the conditional distribution of Yu given σ(Xt , t ≥ 0) has a density given by g(Xu, ·)
with respect to a reference measure on Y and set gu(x) = g(x,Yu). Then, the quantity φs:t |T [h]
defined by (2.1) is the conditional expectation of h(Xs:t ) given Y0:T :

φs:t |T [h] = E
[
h(Xs:t )|Y0:T

]
, X0 ∼ χ.

In its original version, the FFBS algorithm proceeds in two passes. In the forward pass, each

filtering distribution φt
def= φt :t , for any t ∈ {0, . . . , T }, is approximated using weighted samples

{(ωN,�
t , ξ

N,�
t )}N�=1, where T is the number of observations and N the number of particles: all

sampled particles and weights are stored. In the backward pass of the FFBS, these importance
weights are then modified (see Doucet, Godsill and Andrieu [9], Hürzeler and Künsch [14],
Kitagawa [15]) while the particle positions are kept fixed. The importance weights are updated
recursively backward in time to obtain an approximation of the fixed-interval smoothing distri-
butions {φs:T |T }Ts=0. The particle approximation is constructed as follows.

Forward pass. Let {ξN,�
0 }N�=1 be i.i.d. random variables distributed according to the instrumental

density ρ0 and set the importance weights ω
N,�
0

def= dχ/dρ0(ξ
N,�
0 )g0(ξ

N,�
0 ). The weighted sample

{(ξN,�
0 ,ω

N,�
0 )}N�=1 then targets the initial filter φ0 in the sense that is a consistent estimator of

φ0[h] for any bounded and measurable function h on X.
Let now {(ξN,�

s−1,ω
N,�
s−1)}N�=1 be a weighted sample targeting φs−1. We aim at computing new

particles and importance weights targeting the probability distribution φs . Following Pitt and
Shephard [16], this may be done by simulating pairs {(IN,�

s , ξ
N,�
s )}N�=1 of indices and particles

from the instrumental distribution:

πs|s(�, h) ∝ ω
N,�
s−1ϑs

(
ξ

N,�
s−1

)
Ps

(
ξ

N,�
s−1, h

)
,
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on the product space {1, . . . ,N}×X, where {ϑs(ξ
N,�
s−1)}N�=1 are the adjustment multiplier weights

and Ps is a Markovian proposal transition kernel. In the sequel, we assume that Ps(x, ·) has, for
any x ∈ X, a density ps(x, ·) with respect to the reference measure λ. For any � ∈ {1, . . . ,N} we
associate to the particle ξ

N,�
s its importance weight defined by:

ωN,�
s

def= m(ξ
N,I

N,�
s

s−1 , ξ
N,�
s )gs(ξ

N,�
s )

ϑs(ξ
N,I

N,�
s

s−1 )ps(ξ
N,I

N,�
s

s−1 , ξ
N,�
s )

.

Backward smoothing. For any probability measure η on (X, X ), denote by Bη the backward
smoothing kernel given, for all bounded measurable function h on X and for all x ∈ X, by:

Bη(x,h)
def=
∫

η(dx′)m(x′, x)h(x′)∫
η(dx′)m(x′, x)

.

For all s ∈ {0, . . . , T − 1} and for all bounded measurable function h on X
T −s+1, φs:T |T [h] may

be computed recursively, backward in time, according to

φs:T |T [h] =
∫

Bφs (xs+1,dxs)φs+1:T |T (dxs+1:T )h(xs:T ).

2.1. The forward filtering backward smoothing algorithm

Consider the weighted samples {(ξN,�
t ,ω

N,�
t )}N�=1, drawn for any t ∈ {0, . . . , T } in the forward

pass. An approximation of the fixed-interval smoothing distribution can be obtained using

φN
s:T |T [h] =

∫
BφN

s
(xs+1,dxs)φ

N
s+1:T |T (dxs+1:T )h(xs:T ), (2.2)

and starting with φN
T :T |T [h] = φN

T [h]. Now, by definition, for all x ∈ X and for all bounded
measurable function h on X,

BφN
s
(x,h) =

N∑
i=1

ω
N,i
s m(ξ

N,i
s , x)∑N

�=1 ω
N,�
s m(ξ

N,�
s , x)

h
(
ξN,i
s

)
,

and inserting this expression into (2.2) gives the following particle approximation of the fixed-
interval smoothing distribution φ0:T |T [h]

φN
0:T |T [h] =

N∑
i0=1

· · ·
N∑

iT =1

(
T∏

u=1

�N
u (iu, iu−1)

)
× ω

N,iT
T

�N
T

h
(
ξ

N,i0
0 , . . . , ξ

N,iT
T

)
, (2.3)

where h is a bounded measurable function on X
T +1,

�N
t (i, j)

def= ω
N,j
t m(ξ

N,j
t , ξ

N,i
t+1)∑N

�=1 ω
N,�
t m(ξ

N,�
t , ξ

N,i
t+1)

, (i, j) ∈ {1, . . . ,N}2, (2.4)
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and

�N
t

def=
N∑

�=1

ω
N,�
t . (2.5)

The estimator of the fixed-interval smoothing distribution φN
0:T |T might seem impractical since

the cardinality of its support is NT +1. Nevertheless, for additive functionals of the form

ST,r (x0:T ) =
T∑

t=r

ht (xt−r:t ), (2.6)

where r is a nonnegative integer and {ht }Tt=r is a family of bounded measurable functions
on X

r+1, the complexity of the FFBS algorithm is reduced to O(Nr+2). Furthermore, the smooth-
ing of such functions can be computed forward in time as shown in Del Moral, Doucet and Singh
[5]. This forward algorithm is exactly the one presented in Poyiadjis, Doucet and Singh [17] as
an alternative to the use of the path-space method. Therefore, the results outlined in Section 3
hold for this method and confirm the conjecture mentioned in Poyiadjis, Doucet and Singh [17].

2.2. The forward filtering backward simulation algorithm

We now consider an algorithm whose complexity grows only linearly with the number of parti-
cles for any functional on X

T +1. For any t ∈ {1, . . . , T }, we define

F N
t

def= σ
{(

ξN,i
s ,ωN,i

s

);0 ≤ s ≤ t,1 ≤ i ≤ N
}
.

The transition probabilities {�N
t }T −1

t=0 defined in (2.4) induce an inhomogeneous Markov chain
{Ju}Tu=0 evolving backward in time as follows. At time T , the random index JT is drawn from

the set {1, . . . ,N} with probability proportional to (ω
N,1
T , . . . ,ω

N,N
T ). For any t ∈ {0, . . . , T −1},

the index Jt is sampled in the set {1, . . . ,N} according to �N
t (Jt+1, ·). The joint distribution of

J0:T is therefore given, for j0:T ∈ {1, . . . ,N}T +1, by

P
[
J0:T = j0:T |F N

T

]= ω
N,jT

T

�N
T

�N
T −1(jT , jT −1) · · ·�N

0 (j1, j0). (2.7)

Thus, the FFBS estimator (2.3) of the fixed-interval smoothing distribution may be written as the
conditional expectation

φN
0:T |T [h] = E

[
h
(
ξ

N,J0
0 , . . . , ξ

N,JT

T

)|F N
T

]
,

where h is a bounded measurable function on X
T +1. We may therefore construct an unbiased

estimator of the FFBS estimator given by

φ̃N
0:T |T [h] = N−1

N∑
�=1

h
(
ξ

N,J �
0

0 , . . . , ξ
N,J �

T

T

)
, (2.8)
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where {J �
0:T }N�=1 are N paths drawn independently given F N

T according to (2.7) and where h

is a bounded measurable function on X
T +1. This practical estimator was introduced in Godsill,

Doucet and West [11] (Algorithm 1, page 158). An implementation of this estimator whose
complexity grows linearly in N is introduced in Douc et al. [8].

3. Non-asymptotic deviation inequalities

In this section, the Lq -mean error bounds and exponential deviation inequalities of the FFBS
and FFBSi algorithms are established for additive functionals of the form (2.6). Our results are
established under the following assumptions.

A1
(i) There exists (σ−, σ+) ∈ (0,∞)2 such that σ− < σ+ and for any (x, x′) ∈ X

2, σ− ≤
m(x,x′) ≤ σ+ and we set ρ

def= 1 − σ−/σ+.
(ii) There exists c− ∈ R

∗+ such that
∫

χ(dx)g0(x) ≥ c− and for any t ∈ N
∗,

infx∈X

∫
M(x,dx′)gt (x

′) ≥ c−.
A2

(i) For all t ≥ 0 and all x ∈ X, gt (x) > 0.
(ii) supt≥0 |gt |∞ < ∞.

A3 supt≥1 |ϑt |∞ < ∞, supt≥0 |pt |∞ < ∞ and supt≥0 |ωt |∞ < ∞ where

ω0(x)
def= dχ

dρ0
(x)g0(x), ωt

(
x, x′) def= m(x,x′)gt (x

′)
ϑt (x)pt (x, x′)

∀t ≥ 1.

Assumptions A1 and A2 give bounds for the model and assumption A3 for quantities related to
the algorithm. A1(i), referred to as the strong mixing condition, is crucial to derive time-uniform
exponential deviation inequalities and a time-uniform bound of the variance of the marginal
smoothing distribution (see Del Moral and Guionnet [7] and Douc et al. [8]). For all function h

from a space E to R, osc(h) is defined by:

osc(h)
def= sup

(z,z′)∈E2

∣∣h(z) − h
(
z′)∣∣.

Theorem 3.1. Assume A1–A3. For all q ≥ 2, there exists a constant C (depending only on q ,
σ−, σ+, c−, supt≥1 |ϑt |∞ and supt≥0 |ωt |∞) such that for any T < ∞, any integer r and any
bounded and measurable functions {hs}Ts=r ,

∥∥φN
0:T |T [ST,r ] − φ0:T |T [ST,r ]

∥∥
q

≤ C√
N

ϒN
r,T

(
T∑

s=r

osc(hs)
2

)1/2

,

where ST,r is defined by (2.6), φN
0:T |T is defined by (2.3) and where

ϒN
r,T

def= √
r + 1

(√
1 + r ∧ √

T − r + 1 +
√

1 + r
√

T − r + 1√
N

)
.
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Similarly,

∥∥φ̃N
0:T |T [ST,r ] − φ0:T |T [ST,r ]

∥∥
q

≤ C√
N

ϒN
r,T

(
T∑

s=r

osc(hs)
2

)1/2

,

where φ̃N
0:T |T is defined by (2.8).

Remark 3.1. In the particular cases where r = 0 and r = T , ϒN
0,T = 1 +√

T + 1/N and ϒN
T,T =√

T + 1(1 + √
T + 1/N). Then, Theorem 3.1 gives

∥∥φN
0:T |T [ST,0] − φ0:T |T [ST,0]

∥∥
q

≤ C
(
∑T

s=0 osc(hs)
2)1/2

√
N

(
1 +

√
T + 1

N

)
,

and ∥∥φN
0:T |T [ST,T ] − φ0:T |T [ST,T ]∥∥

q
≤ C

√
T + 1

N

(
1 +

√
T + 1

N

)
osc(hT )2.

As stated in Section 1, theses bounds improve the results given in Del Moral, Doucet and Singh
[5] for the FFBS estimator.

Remark 3.2. The dependence on 1/
√

N is hardly surprising. Under the stated strong mixing
condition, it is known that the Lq -norm of the marginal smoothing estimator φN

t−r:t |T [h], t ∈
{r, . . . , T } is uniformly bounded in time by ‖φN

t−r:t |T [h]‖q ≤ C osc(h)N−1/2 (where C depends

only on q , σ−, σ+, c−, supt≥1 |ϑt |∞ and supt≥0 |ωt |∞). The dependence in
√

T instead of T

reflects the forgetting property of the filter and the backward smoother. As for r ≤ s < t ≤ T ,
the estimators φN

s−r:s|T [hs] and φN
t−r:t |T [ht ] become asymptotically independent as (t − s) gets

large, the Lq -norm of the sum
∑T

t=r φN
t−r:t |T [ht ] scales as the sum of a mixing sequence (see

Davidson [3]).

Remark 3.3. It is easy to see that the scaling in
√

T/N cannot in general be improved. Assume
that the kernel m satisfies m(x,x′) = m(x′) for all (x, x′) ∈ X × X. In this case, for any t ∈
{0, . . . , T }, the filtering distribution is

φt [ht ] =
∫

m(x)gt (x)ht (x)dx∫
m(x)gt (x)dx

,

and the backward kernel is the identity kernel. Hence, the fixed-interval smoothing distribution
coincides with the filtering distribution. If we assume that we apply the bootstrap filter for which
ps(x, x′) = m(x′) and ϑs(x) = 1, the estimators {φN

t |T [ht ]}t∈{0,...,T } are independent random vari-
ables corresponding to importance sampling estimators. It is easily seen that∥∥∥∥∥

T∑
t=0

φN
t [ht ] − φt [ht ]

∥∥∥∥∥
q

≤ C max
0≤t≤T

{
osc(ht )

}√ T

N
.
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Remark 3.4. The independent case also clearly illustrates why the path-space methods are sub-
optimal (see also Briers, Doucet and Maskell [1] for a discussion). When applied to the inde-
pendent case (for all (x, x′) ∈ X × X, m(x,x′) = m(x′) and ps(x, x′) = m(x′)), the asymptotic
variance of the path-space estimators is given in Del Moral [4] by

�0:T |T [ST,0] def=
T −1∑
t=0

m(g2
T )

m(gT )2

m(gt [ht − φt (ht )]2)

m(gt )
+ m(g2

T [hT − φT (hT )]2)

m(gT )2

+
T −1∑
t=1

{
t−1∑
s=0

m(g2
t )

m(gt )2

m(gs[hs − φs(hs)]2)

m(gs)
+ m(g2

t [ht − φt (ht )]2)

m(gt )2

}

+ χ(g2
0[h0 − φ0(h0)]2)

χ(g0)2
.

The asymptotic variance thus increases as T 2 and hence, under the stated assumptions, the vari-
ance of the path-space methods is of order T 2/N . It is believed (and proved in some specific
scenarios) that the same scaling holds for path-space methods for non-degenerated Markov ker-
nel (the result has been formally established for strongly mixing kernel under the assumption
that σ−/σ+ is sufficiently close to 1).

We provide below a brief outline of the main steps of the proofs (a detailed proof is given
in Section 5). Following Douc et al. [8], the proofs rely on a decomposition of the smoothing
error. For all 0 ≤ t ≤ T and all bounded and measurable function h on X

T +1 define the kernel
Lt,T : Xt+1 × X ⊗T +1 → [0,1] by

Lt,T h(x0:t )
def=
∫ T∏

u=t+1

M(xu−1,dxu)gu(xu)h(x0:T ).

The fixed-interval smoothing distribution may then be expressed, for all bounded and measurable
function h on X

T +1, by

φ0:T |T [h] = φ0:t |t [Lt,T h]
φ0:t |t [Lt,T 1] ,

and this suggests to decompose the smoothing error as follows

�N
T [h] def= φN

0:T |T [h] − φ0:T |T [h]
(3.1)

=
T∑

t=0

φN
0:t |t [Lt,T h]

φN
0:t |t [Lt,T 1] − φN

0:t−1|t−1[Lt−1,T h]
φN

0:t−1|t−1[Lt−1,T 1] ,

where we used the convention

φN
0:−1|−1[L−1,T h]

φN
0:−1|−1[L−1,T 1] = φ0[L0,T h]

φ0[L0,T 1] = φ0:T |T [h].
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Furthermore, for all 0 ≤ t ≤ T ,

φN
0:t |t [Lt,T h] =

∫
φN

0:t |t (dx0:t )Lt,T h(x0:t )

=
∫

φN
t (dxt )BφN

t−1
(xt ,dxt−1) · · ·BφN

0
(x1,dx0)Lt,T h(x0:t )

=
∫

φN
t (dxt )LN

t,T h(xt ),

where LN
t,T and Lt,T are two kernels on X × X ⊗(T +1) defined for all xt ∈ X by

Lt,T h(xt )
def=
∫

Bφt−1(xt ,dxt−1) · · ·Bφ0(x1,dx0)Lt,T h(x0:t ), (3.2)

LN
t,T h(xt )

def=
∫

BφN
t−1

(xt ,dxt−1) · · ·BφN
0
(x1,dx0)Lt,T h(x0:t ). (3.3)

For all 1 ≤ t ≤ T , we can write

φN
0:t |t [Lt,T h]

φN
0:t |t [Lt,T 1] − φN

0:t−1|t−1[Lt−1,T h]
φN

0:t−1|t−1[Lt−1,T 1] = φN
t [LN

t,T h]
φN

t [LN
t,T 1] − φN

t−1[LN
t−1,T h]

φN
t−1[LN

t−1,T 1]

= 1

φN
t [LN

t,T 1]
(

φN
t

[
LN

t,T h
]− φN

t−1[LN
t−1,T h]

φN
t−1[LN

t−1,T 1]φ
N
t

[
LN

t,T 1
])

,

and then,

�N
T [h] =

T∑
t=0

N−1∑N
�=1 ω

N,�
t GN

t,T h(ξ
N,�
t )

N−1
∑N

�=1 ω
N,�
t Lt,T 1(ξ

N,�
t )

, (3.4)

with GN
t,T is a kernel on X × X ⊗(T +1) defined, for all xt ∈ X and all bounded and measurable

function h on X
T +1, by

GN
t,T h(xt )

def= LN
t,T h(xt ) − φN

t−1[LN
t−1,T h]

φN
t−1[LN

t−1,T 1] LN
t,T 1(xt ),

where, by the same convention as above,

GN
0,T h(x0)

def= L0,T h(x0) − φ0[L0,T h]
φ0[L0,T 1] L0,T 1(x0).

Two families of random variables {CN
t,T (f )}Tt=0 and {DN

t,T (f )}Tt=0 are now introduced to trans-
form (3.4) into a suitable decomposition to compute an upper bound for the Lq -mean error. As
shown in Lemma 5.1, the random variables {ωN,�

t GN
t,T f (ξ

N,�
t )}N�=1 are centered given F N

t−1. The
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idea is to replace N−1∑N
�=1 ω

N,�
t Lt,T 1(ξ

N,�
t ) in (3.4) by its conditional expectation given F N

t−1
to get a martingale difference. This conditional expectation is computed using the following in-
termediate result. For any measurable function h on X and any t ∈ {0, . . . , T },

E
[
ω

N,1
t h

(
ξ

N,1
t

)|F N
t−1

]= φN
t−1[Mgth]
φN

t−1[ϑt ]
. (3.5)

Indeed,

E
[
ω

N,1
t h

(
ξ

N,1
t

)|F N
t−1

]
= E

[
m(ξ

N,I
N,1
t

t−1 , ξ
N,1
t )gt (ξ

N,1
t )

ϑt (ξ
N,I

N,1
t

t−1 )pt (ξ
N,I

N,1
t

t−1 , ξ
N,1
t )

h
(
ξ

N,1
t

)∣∣∣F N
t−1

]

=
(

N∑
i=1

ω
N,i
t−1ϑt

(
ξ

N,i
t−1

))−1 N∑
i=1

∫
ω

N,i
t−1ϑt

(
ξ

N,i
t−1

)
pt

(
ξ

N,i
t−1, x

) M(ξ
N,i
t−1,dx)gt (x)

ϑt (ξ
N,i
t−1)pt (ξ

N,i
t−1, x)

h(x)

=
(

N∑
i=1

ω
N,i
t−1ϑt

(
ξ

N,i
t−1

))−1 N∑
i=1

∫
ω

N,i
t−1M

(
ξ

N,i
t−1,dx

)
gt (x)h(x)

= φN
t−1[Mgth]
φN

t−1[ϑt ]
.

This result, applied with the function h = Lt,T 1, yields

E
[
ω

N,1
t Lt,T 1

(
ξ

N,1
t

)|F N
t−1

]= φN
t−1[Mgt Lt,T 1]

φN
t−1[ϑt ]

= φN
t−1[Lt−1,T 1]
φN

t−1[ϑt ]
.

For any 0 ≤ t ≤ T , define for all bounded and measurable function h on X
T +1,

DN
t,T (h)

def= E

[
ω

N,1
t

Lt,T 1(ξ
N,1
t )

|Lt,T 1|∞
∣∣∣F N

t−1

]−1

N−1
N∑

�=1

ω
N,�
t

GN
t,T h(ξ

N,�
t )

|Lt,T 1|∞
(3.6)

= φN
t−1[ϑt ]

φN
t−1[Lt−1,T 1/|Lt,T 1|∞]N

−1
N∑

�=1

ω
N,�
t

GN
t,T h(ξ

N,�
t )

|Lt,T 1|∞ ,

CN
t,T (h)

def=
[

1

N−1
∑N

i=1 ω
N,i
t Lt,T 1(ξ

N,i
t )/|Lt,T 1|∞

− φN
t−1[ϑt ]

φN
t−1[Lt−1,T 1/|Lt,T 1|∞]

]
(3.7)

× N−1
N∑

�=1

ω
N,�
t

GN
t,T h(ξ

N,�
t )

|Lt,T 1|∞ .



2232 C. Dubarry and S. Le Corff

Using these notations, (3.4) can be rewritten as follows:

�N
T [h] =

T∑
t=0

DN
t,T (h) +

T∑
t=0

CN
t,T (h). (3.8)

For any q ≥ 2, the derivation of the upper bound relies on the triangle inequality:

∥∥�N
T [ST,r ]

∥∥
q

≤
∥∥∥∥∥

T∑
t=0

DN
t,T (ST,r )

∥∥∥∥∥
q

+
T∑

t=0

∥∥CN
t,T (ST ,r )

∥∥
q
,

where ST,r is defined in (2.6). The proof for the FFBS estimator φN
0:T |T is completed by using

Propositions 5.1 and 5.2. According to (3.8), the smoothing error can be decomposed into a sum
of two terms which are considered separately. The first one is a martingale whose Lq -mean error
is upper-bounded by

√
(T + 1)/N as shown in Proposition 5.1. The second one is a sum of

products, Lq -norm of which being bounded by 1/N in Proposition 5.2.
The end of this section is devoted to the exponential deviation inequality for the error �N

T [ST,r ]
defined by (3.1). We use the decomposition of �N

T [ST,r ] obtained in (3.8) leading to a similar
dependence on the ratio (T + 1)/N . The martingale term DN

t,T (ST,r ) is dealt with using the

Azuma–Hoeffding inequality while the term CN
t,T (ST ,r ) needs a specific Hoeffding-type inequal-

ity for ratio of random variables.

Theorem 3.2. Assume A1–A3. There exists a constant C (depending only on σ−, σ+, c−,
supt≥1 |ϑt |∞ and supt≥0 |ωt |∞) such that for any T < ∞, any N ≥ 1, any ε > 0, any integer r ,
and any bounded and measurable functions {hs}Ts=r ,

P
{∣∣φ0:T |T [ST,r ] − φN

0:T |T [ST,r ]
∣∣> ε

}
≤ 2 exp

(
− CNε2

�r,T

∑T
s=r osc(hs)2

)
+ 8 exp

(
− CNε

(1 + r)
∑T

s=r osc(hs)

)
,

where ST,r is defined by (2.6), φN
0:T |T is defined by (2.3) and where

�r,T
def= (1 + r)

{
(1 + r) ∧ (T − r + 1)

}
. (3.9)

Similarly,

P
{∣∣φ0:T |T [ST,r ] − φ̃N

0:T |T [ST,r ]
∣∣> ε

}
≤ 4 exp

(
− CNε2

�r,T

∑T
s=r osc(hs)2

)
+ 8 exp

(
− CNε

(1 + r)
∑T

s=r osc(hs)

)
,

where φ̃N
0:T |T is defined by (2.8).
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4. Monte-Carlo experiments

In this section, the performance of the FFBSi algorithm is evaluated through simulations and
compared to the path-space method.

4.1. Linear Gaussian model

Let us consider the following model:{
Xt+1 = φXt + σuUt ,

Yt = Xt + σvVt ,

where X0 is a zero-mean random variable with variance σ 2
u

1−φ2 , {Ut }t≥0 and {Vt }t≥0 are two
sequences of independent and identically distributed standard Gaussian random variables (in-
dependent from X0). The parameters (φ,σu, σv) are assumed to be known. Observations were
generated using φ = 0.9, σu = 0.6 and σv = 1. Table 1 provides the empirical variance of the es-

timation of the unnormalized smoothed additive functional IT
def= ∑T

t=0 E[Xt |Y0:T ] given by the
path-space and the FFBSi methods over 250 independent Monte Carlo experiments. We display
in Figure 1 the empirical variance for different values of N as a function of T for both estimators.
These estimates are represented by dots and a linear regression (resp., quadratic regression) is
also provided for the FFBSi algorithm (resp., for the path-space method).

Table 1. Empirical variance for different values of T and N

Path-space

N

T 300 500 750 1000 1500 5000 10 000 15 000 20 000

300 137.8 119.4 63.7 46.1 36.2 12.8 7.1 3.8 3.0
500 290.0 215.3 192.5 161.9 80.3 30.1 14.9 11.3 7.4
750 474.9 394.5 332.9 250.5 206.8 71.0 35.6 24.4 21.7

1000 673.7 593.2 505.1 483.2 326.4 116.4 70.8 37.9 34.6
1500 1274.6 1279.7 916.7 804.7 655.1 233.9 163.1 89.7 80.0

FFBSi

N

T 300 500 750 1000 1500

300 5.1 3.1 2.3 1.4 1.0
500 9.7 5.1 3.7 2.6 2.2
750 11.2 7.1 4.9 3.7 2.6

1000 16.5 10.5 6.7 5.1 3.4
1500 25.6 14.1 7.8 6.8 5.1
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Figure 1. Empirical variance of the path-space (top) and FFBSi (bottom) for N = 300 (dotted line),
N = 750 (dashed line) and N = 1500 (bold line).

In Figure 2, the FFBSi algorithm is compared to the path-space method to compute the
smoothed value of the empirical mean (T + 1)−1 IT . For the purpose of comparison, this quan-
tity is computed using the Kalman smoother. We display in Figure 2 the box and whisker plots
of the estimations obtained with 100 independent Monte Carlo experiments. The FFBSi algo-
rithm clearly outperforms the other method for comparable computational costs. In Table 2, the
mean CPU times over the 100 runs of the two methods are given as a function of the number of
particles (for T = 500 and T = 1000).

4.2. Stochastic volatility model

Stochastic volatility models (SVM) have been introduced to provide better ways of modeling
financial time series data than ARCH/GARCH models (Hull and White [13]). We consider the
elementary SVM model introduced by Hull and White [13]:{

Xt+1 = φXt + σUt+1,

Yt = βeXt/2Vt ,

where X0 is a zero-mean random variable with variance σ 2
u

1−φ2 , {Ut }t≥0 and {Vt }t≥0 are two
sequences of independent and identically distributed standard Gaussian random variables (inde-
pendent from X0). This model was used to generate simulated data with parameters (φ = 0.3,
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Figure 2. Computation of smoothed additive functionals in a linear Gaussian model. The variance of the
estimation given by the FFBSi algorithm is the smallest one in both cases.

σ = 0.5, β = 1) assumed to be known in the following experiments. The empirical variance
of the estimation of IT given by the path-space and the FFBSi methods over 250 independent
Monte Carlo experiments is displayed in Table 3. We display in Figure 3 the empirical variance
for different values of N as a function of T for both estimators.

Table 2. Average CPU time to compute the smoothed value of the empirical mean in the LGM

FFBSi Path-space method

T = 500
N 500 500 5000 10 000
CPU time (s) 4.87 0.24 2.47 4.65

T = 1000
N 1000 1000 10 000 20 000
CPU time (s) 16.5 0.9 8.5 17.2
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Table 3. Empirical variance for different values of T and N in the SVM

Path-space method

N

T 300 500 750 1000 1500 5000 10 000 15 000 20 000

300 52.7 33.7 22.0 17.8 12.3 3.8 2.0 1.4 1.2
500 116.3 84.8 64.8 53.5 30.7 11.4 6.8 4.1 2.8
750 184.7 187.6 134.2 120.0 65.8 29.1 12.8 7.3 7.7

1000 307.7 240.4 244.7 182.8 133.2 43.6 24.5 15.6 11.6
1500 512.1 487.5 445.5 359.9 249.5 90.9 52.0 32.6 29.3

FFBSi

N

T 300 500 750 1000 1500

300 1.2 0.6 0.5 0.4 0.2
500 2.1 1.2 0.8 0.6 0.4
750 3.7 1.8 1.4 0.9 0.6

1000 4.0 2.7 1.8 1.3 0.9
1500 7.3 3.8 3.1 1.6 1.4

5. Proof of Theorem 3.1

We preface the proof of Proposition 5.1 by the following lemma.

Lemma 5.1. Under assumptions A1–A3, we have, for any t ∈ {0, . . . , T } and any measurable
function h on X

T +1:

(i) The random variables {ωN,�
t

GN
t,T h(ξ

N,�
t )

|Lt,T 1|∞ }N�=1 are, for all N ∈ N:

(a) conditionally independent and identically distributed given F N
t−1,

(b) centered conditionally to F N
t−1

where GN
t,T h is defined in (3) and LN

t,T is defined in (3.3).
(ii) For any integers r , t and N :∣∣∣∣GN

t,T ST,r (ξ
N,�
t )

|Lt,T 1|∞
∣∣∣∣≤ T∑

s=r

ρmax(t−s,s−r−t,0) osc(hs), (5.1)

where ST,r and ρ are respectively defined in (2.6) and in A1(i).

(iii) For all x ∈ X, Lt,T 1(x)

|Lt,T 1|∞ ≥ σ−
σ+ and Lt−1,T 1(x)

|Lt,T 1|∞ ≥ c− σ−
σ+ .

Proof. The proof of (i) is given by Douc et al. [8], Lemma 3.
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Figure 3. Empirical variance of the path-space (top) and FFBSi (bottom) for N = 300 (dotted line),
N = 750 (dashed line) and N = 1500 (bold line) in the SVM.

Proof of (ii). Let �s−r:s,T be the operator which associates to any bounded and measurable
function h on X

r+1 the function �s−r:s,T h given, for any (x0, . . . , xT ) ∈ X
T +1, by

�s−r:s,T h(x0:T )
def= h(xs−r:s).

Then, we may write ST,r =∑T
s=r �s−r:s,T hs and GN

t,T ST,r =∑T
s=r GN

t,T �s−r:s,T hs . By (3), we
have

GN
t,T �s−r:s,T hs(xt )

LN
t,T 1(xt )

= LN
t,T �s−r:s,T hs(xt )

LN
t,T 1(xt )

− φN
t−1[LN

t−1,T �s−r:s,T hs]
φN

t−1[LN
t−1,T 1] ,

and, following the same lines as in Douc et al. [8], Lemma 10,∣∣GN
t,T �s−r:s,T hs

∣∣∞ ≤ ρs−r−t osc(hs)|Lt,T 1|∞ if t ≤ s − r,∣∣GN
t,T �s−r:s,T hs

∣∣∞ ≤ ρt−s osc(hs)|Lt,T 1|∞ if t > s,

where ρ is defined in A1(i). Furthermore, for any s − r < t ≤ s,∣∣GN
t,T �s−r:s,T hs

∣∣∞ ≤ osc(hs)|Lt,T 1|∞,

which shows (ii).
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Proof of (iii). From the definition (3.2), for all x ∈ X and all t ∈ {1, . . . , T },

Lt,T 1(x) =
∫

m(x,xt+1)gt+1(xt+1)

T∏
u=t+2

M(xu−1,dxu)gu(xu)λ(dxt+1),

hence, by assumption A1,

|Lt,T 1|∞ ≤ σ+
∫

gt+1(xt+1)Lt+1,T 1(xt+1)λ(dxt+1)

Lt,T 1(x) ≥ σ−
∫

gt+1(xt+1)Lt+1,T 1(xt+1)λ(dxt+1),

which concludes the proof of the first statement. By construction, for any x ∈ X and any t ∈
{1, . . . , T },

Lt−1,T 1(x) =
∫

M
(
x,dx′)gt

(
x′)Lt,T 1

(
x′),

and then, by assumption A1,

Lt−1,T 1(x)

|Lt,T 1|∞ =
∫

M
(
x,dx′)gt

(
x′)Lt,T 1(x′)

|Lt,T 1|∞ ≥ c−
σ−
σ+

. �

Proposition 5.1. Assume A1–A3. For all q ≥ 2, there exists a constant C (depending only on
q , σ−, σ+, c−, supt≥1 |ϑt |∞ and supt≥0 |ωt |∞) such that for any T < ∞, any integer r and any
bounded and measurable functions {hs}Ts=r on X

r+1,∥∥∥∥∥
T∑

t=0

DN
t,T (ST,r )

∥∥∥∥∥
q

≤ C√
N

√
1 + r(

√
1 + r ∧ √

T − r + 1)

(
T∑

s=r

osc(hs)
2

)1/2

, (5.2)

where DN
t,T is defined in (3.6).

Proof. Since {DN
t,T (ST,r )}0≤t≤T is a is a forward martingale difference and q ≥ 2, Burkholder’s

inequality (see Hall and Heyde [12], Theorem 2.10, page 23) states the existence of a constant C

depending only on q such that:

E

[∣∣∣∣∣
T∑

t=0

DN
t,T (ST,r )

∣∣∣∣∣
q]

≤ CE

[∣∣∣∣∣
T∑

t=0

DN
t,T (ST,r )

2

∣∣∣∣∣
q/2]

.

Moreover, by application of the last statement of Lemma 5.1(iii),

φN
t−1[ϑt ]

φN
t−1[Lt−1,T 1/|Lt,T 1|∞] ≤ σ+ supt≥0 |ϑt |∞

σ−c−
,
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and thus,

E

[∣∣∣∣∣
T∑

t=0

DN
t,T (ST,r )

2

∣∣∣∣∣
q/2]

≤
(

σ+ supt≥0 |ϑt |∞
σ−c−

)q

E

[∣∣∣∣∣
T∑

t=0

(
N−1

N∑
�=1

a
N,�
t,T

)2∣∣∣∣∣
q/2]

,

where a
N,�
t,T

def= ω
N,�
t

GN
t,T ST ,r (ξ

N,�
t )

|Lt,T 1|∞ . By the Minkowski inequality,

∥∥∥∥∥
T∑

t=0

DN
t,T (ST,r )

∥∥∥∥∥
q

≤ C

{
T∑

t=0

(
E

[∣∣∣∣∣N−1
N∑

�=1

a
N,�
t,T

∣∣∣∣∣
q])2/q}1/2

. (5.3)

Since for any t ≥ 0 the random variables {aN,�
t,T }N�=1 are conditionally independent and centered

conditionally to F N
t−1, using again the Burkholder and the Jensen inequalities we obtain

E

[∣∣∣∣∣
N∑

�=1

a
N,�
t,T

∣∣∣∣∣
q ∣∣∣F N

t−1

]
≤ CNq/2−1

N∑
�=1

E
[∣∣aN,�

t,T

∣∣q |F N
t−1

]
(5.4)

≤ C

[
T∑

s=r

ρmax(t−s,s−r−t,0) osc(hs)

]q

Nq/2,

where the last inequality comes from (5.1). Finally, by (5.3) and (5.4), we get∥∥∥∥∥
T∑

t=0

DN
t,T (ST,r )

∥∥∥∥∥
q

≤ CN−1/2

{
T∑

t=0

(
T∑

s=r

ρmax(t−s,s−r−t,0) osc(hs)

)2}1/2

.

By the Holder inequality, we have

T∑
s=r

ρmax(t−s,s−r−t,0) osc(hs)

≤
(

T∑
s=r

ρmax(t−s,s−r−t,0)

)1/2

×
(

T∑
s=r

ρmax(t−s,s−r−t,0) osc(hs)
2

)1/2

≤ C
√

1 + r

(
T∑

s=r

ρmax(t−s,s−r−t,0) osc(hs)
2

)1/2

,

which yields ∥∥∥∥∥
T∑

t=0

DN
t,T (ST,r )

∥∥∥∥∥
q

≤ CN−1/2(1 + r)

(
T∑

s=r

osc(hs)
2

)1/2

.
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We obtain similarly ∥∥∥∥∥
T∑

t=0

DN
t,T (ST,r )

∥∥∥∥∥
q

≤ CN−1/2(1 + r)1/2
T∑

s=r

osc(hs),

which concludes the proof. �

Proposition 5.2. Assume A1–A3. For all q ≥ 2, there exists a constant C (depending only on
q , σ−, σ+, c−, supt≥1 |ϑt |∞ and supt≥0 |ωt |∞) such that for any T < +∞, any 0 ≤ t ≤ T , any
integer r , and any bounded and measurable functions {hs}Ts=r on X

r+1,

∥∥CN
t,T (ST ,r )

∥∥
q

≤ C

N

T∑
s=r

ρmax(t−s,s−r−t,0) osc(hs), (5.5)

where CN
t,T is defined in (3.7).

Proof. According to (3.7), CN
t,T (ST ,r ) can be written

CN
t,T (ST ,r ) = UN

t,T V N
t,T WN

t,T , (5.6)

where

UN
t,T = N−1∑N

�=1 ω
N,�
t GN

t,T ST ,r (ξ
N,�
t )/|Lt,T 1|∞

N−1�N
t

,

V N
t,T = N−1

N∑
�=1

(
E

[
ω

N,1
t

Lt,T 1(ξ
N,1
t )

|Lt,T 1|∞
∣∣∣Ft−1

]
− ω

N,�
t

Lt,T 1(ξ
N,�
t )

|Lt,T 1|∞
)

,

WN
t,T = N−1�N

t

E[ωN,1
t Lt,T 1(ξ

N,1
t )/|Lt,T 1|∞|Ft−1]N−1

∑N
�=1 ω

N,�
t Lt,T 1(ξ

N,�
t )/|Lt,T 1|∞

,

and where �N
t is defined by (2.5). Using the last statement of Lemma 5.1, we get the following

bound:

E

[
ω

N,1
t

Lt,T 1(ξ
N,1
t )

|Lt,T 1|∞
∣∣∣Ft−1

]
= φN

t−1[Lt−1,T 1/|Lt,T 1|∞]
φN

t−1[ϑt ]
≥ c−σ−

|ϑt |∞σ+
,

Lt,T 1(ξ
N,�
t )

|Lt,T 1|∞ ≥ σ−
σ+

,

which implies ∣∣WN
t,T

∣∣≤ (σ+
σ−

)2 |ϑt |∞
c−

. (5.7)
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Then, |CN
t,T (ST ,r )| ≤ C|UN

t,T ||V N
t,T | and we can use the decomposition

UN
t,T V N

t,T = V N
t,T

[
N−1∑N

�=1 a
N,�
t,T

E[�̃N
t |Ft−1]

+ N−1∑N
�=1 a

N,�
t,T

�̃N
t E[�̃N

t |Ft−1]
(
E
[
�̃N

t |Ft−1
]− �̃N

t

)]
,

where a
N,�
t,T

def= ω
N,�
t

GN
t,T ST ,r (ξ

N,�
t )

|Lt,T 1|∞ and �̃N
t

def= N−1�N
t . By (3.5), E[ωN,1

t |F N
t−1] = φN

t−1[Mgt ]
φN

t−1[ϑt ] and

then, by A1(ii), A3 and (5.1),

1

E[�̃N
t |Ft−1]

≤ |ϑt |∞
c−

and
N−1∑N

�=1 a
N,�
t,T

�̃N
t E[�̃N

t |Ft−1]
≤ C

|ϑt |∞
c−

T∑
s=r

ρmax(t−s,s−r−t,0) osc(hs).

Therefore, |CN
t,T (ST ,r )| ≤ C(C

1,N
t,T +∑T

s=r ρmax(t−s,s−r−t,0) osc(hs)C
2,N
t,T ) where

C
1,N
t,T

def= V N
t,T · N−1

N∑
�=1

a
N,�
t,T and C

2,N
t,T

def= V N
t,T

∣∣E[�̃N
t |Ft−1

]− �̃N
t

∣∣.
The random variables {ωN,�

t
Lt,T 1(ξ

N,�
t )

|Lt,T 1|∞ }N�=1 being bounded and conditionally independent

given F N
t−1, following the same steps as in the proof of Proposition 5.1, there exists a constant C

(depending only on q , σ−, σ+, c− and supt≥0 |ωt |∞) such that ‖V N
t,T ‖2q ≤ CN−1/2. Similarly∥∥∥∥∥N−1

N∑
�=1

a
N,�
t,T

∥∥∥∥∥
2q

≤ C

∑T
s=r ρmax(t−s,s−r−t,0) osc(hs)

N1/2
,

and ∥∥E[�̃N
t |Ft−1

]− �̃N
t

∥∥
2q

≤ C

N1/2
.

The Cauchy–Schwarz inequality concludes the proof of (5.5). �

The proof of Theorem 3.1 is now concluded for the FFBS estimator φN
0:T |T [ST,r ] and we can

proceed to the proof for the FFBSi estimator. We preface the proof of Theorem 3.1 for the FFBSi
estimator φ̃N

0:T |T by the following Lemma. We first define the backward filtration {GN
t,T }T +1

t=0 by⎧⎨⎩GN
T +1,T

def= F N
T ,

GN
t,T

def= F N
T ∨ σ

{
J �

u ,1 ≤ � ≤ N, t ≤ u ≤ T
} ∀t ∈ {0, . . . , T }.

Lemma 5.2. Assume A1–A3. Let � ∈ {1, . . . ,N} and T < +∞. For any bounded measurable
function h on X

r+1 we have,
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(i) for all u, t such that r ≤ t ≤ u ≤ T ,∣∣E[h(ξN,J �
t−r:t

t−r:t
)|GN

u,T

]− E
[
h
(
ξ

N,J �
t−r:t

t−r:t
)|GN

u+1,T

]∣∣≤ ρu−t osc(h),

where ρ is defined in A1(i).
(ii) for all u, t such that t − r ≤ u ≤ t − 1 ≤ T ,∣∣E[h(ξN,J �

t−r:t
t−r:t

)|GN
u,T

]− E
[
h
(
ξ

N,J �
t−r:t

t−r:t
)|GN

u+1,T

]∣∣≤ osc(h).

Proof. According to Section 2.2, for all � ∈ {1, . . . ,N}, {JN,�
u }Tu=0 is an inhomogeneous Markov

chain evolving backward in time with backward kernel {�N
u }T −1

u=0 . For any r ≤ t ≤ u ≤ T , we
have

E
[
h
(
ξ

N,J
N,�
t−r:t

t−r:t
)|GN

u,T

]− E
[
h
(
ξ

N,J
N,�
t−r:t

t−r:t
)|GN

u+1,T

]
=
∑
jt :u

[
δ
J

N,�
u

(ju) −
(

�u

(
J

N,�
u+1, ju

)
1u<T + ω

N,ju

T

�u

1u=T

)]

×
t+1∏
�=u

�N
�−1(j�, j�−1)

∑
jt−r:t−1

t−r+1∏
�=t

�N
�−1(j�, j�−1)h

(
ξ

N,jt−r:t
t−r:t

)
.

The RHS of this equation is the difference between two expectations started with two different
initial distributions. Under A1(i), the backward kernel satisfies the uniform Doeblin condition,

∀(i, j) ∈ {1, . . . ,N}2 �N
s (i, j) ≥ σ−

σ+
ωi

s

�N
s

,

and the proof is completed by the exponential forgetting of the backward kernel (see Cappé,
Moulines and Rydén [2], Del Moral and Guionnet [7]). The proof of (ii) follows exactly the
same lines. �

To compute an upper-bound for the Lq -mean error of the FFBSi algorithm, we may define the
difference between the FFBS and the FFBSi estimators:

δN
T [ST,r ] = φ̃N

0:T |T [ST,r ] − φN
0:T |T [ST,r ]. (5.8)

Proof of Theorem 3.1 for the FFBSi estimator. The difference between the FFBS and the
FFBSi estimators, δN

T , defined in (5.8), can be written

δN
T [ST,r ] = 1

N

N∑
�=1

T∑
t=r

ht

(
ξ

N,J
N,�
t−r:t

t−r:t
)− E

[
ht

(
ξ

N,J
N,1
t−r:t

t−r:t
)|F N

T

]

= 1

N

N∑
�=1

T∑
t=r

T∑
u=t−r

E
[
ht

(
ξ

N,J
N,�
t−r:t

t−r:t
)|GN

u,T

]− E
[
ht

(
ξ

N,J
N,�
t−r:t

t−r:t
)|GN

u+1,T

]= 1

N

N∑
�=1

T∑
u=0

ζN,�
u ,
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where

ζN,�
u

def=
(u+r)∧T∑

t=r

E
[
ht

(
ξ

N,J
N,�
t−r:t

t−r:t
)|GN

u,T

]− E
[
ht

(
ξ

N,J
N,�
t−r:t

t−r:t
)|GN

u+1,T

]
.

For all � ∈ {1, . . . ,N} and all u ∈ {0, . . . , T }, the random variable ζ
N,�
u is GN

u,T -measurable and

E[ζN,�
u |GN

u+1,T ] = 0 so that ζ
N,�
u can be seen as the increment of a backward martingale. Hence,

since q ≥ 2, using the Burkholder inequality (see Hall and Heyde [12], Theorem 2.10, page 23),
there exists a constant C (depending only on q , σ−, σ+, c−, supt≥1 |ϑt |∞ and supt≥0 |ωt |∞) such
that

∥∥δN
T [ST,r ]

∥∥
q

≤ C

{
T∑

u=0

E

[∣∣∣∣∣N−1
N∑

�=1

ζN,�
u

∣∣∣∣∣
q]2/q}1/2

. (5.9)

Then, since the random variables {ζN,�
u }N�=1 are conditionally independent and centered condi-

tionally to GN
u+1,T , using the Burkholder inequality once again implies:

E

[∣∣∣∣∣
N∑

�=1

ζN,�
u

∣∣∣∣∣
q ∣∣∣GN

u+1,T

]
≤ CNq/2−1

N∑
�=1

E
[∣∣ζN,�

u

∣∣q |GN
u+1,T

]
. (5.10)

Furthermore, according to Lemma 5.2(i),

∣∣ζN,�
u

∣∣ ≤ u∑
t=r

∣∣E[ht

(
ξ

N,J
N,�
t−r:t

t−r:t
)|GN

u,T

]− E
[
ht

(
ξ

N,J
N,�
t−r:t

t−r:t
)|GN

u+1,T

]∣∣
+

(u+r)∧T∑
t=u+1

∣∣E[ht

(
ξ

N,J
N,�
t−r:t

t−r:t
)|GN

u,T

]− E
[
ht

(
ξ

N,J
N,�
t−r:t

t−r:t
)|GN

u+1,T

]∣∣ (5.11)

≤
u∑

t=r

ρu−t osc(ht ) +
(u+r)∧T∑
t=u+1

osc(ht ).

Putting (5.9), (5.10) and (5.11) together leads to

∥∥δN
T [ST,r ]

∥∥
q

≤ C√
N

{
T∑

u=0

(
(u+r)∧T∑

t=r

ρ(u−t)∨0 osc(ht )

)2}1/2

.

Using the Holder inequality as in the proof of Proposition 5.1 yields

∥∥δN
T [ST,r ]

∥∥
q

≤ C√
N

√
1 + r(

√
1 + r ∧ √

T − r + 1)

(
T∑

s=r

osc(hs)
2

)1/2

,
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and the proof of Theorem 3.1 for the FFBSi estimator is derived from the triangle inequality:∥∥φ0:T |T (ST,r ) − φ̃N
0:T |T (ST,r )

∥∥
q

≤ ∥∥�N
T [ST,r ]

∥∥
q

+ ∥∥δN
T [ST,r ]

∥∥
q
,

where �N
T [ST,r ] is defined by (3.1) and δN

T [ST,r ] is defined by (5.8). �

6. Proof of Theorem 3.2

We preface the proof of the theorem by showing that the martingale term of the error �N
T [ST,r ]

(which is defined by (3.1)) satisfies an exponential deviation inequality in the following proposi-
tion.

Proposition 6.1. Assume A1–A3. There exists a constant C (depending only on σ−, σ+, c−,
supt≥1 |ϑt |∞ and supt≥0 |ωt |∞) such that for any T < ∞, any N ≥ 1, any ε > 0, any integer r

and any bounded and measurable functions {hs}Ts=r on X
r+1,

P

{∣∣∣∣∣
T∑

t=0

DN
t,T (ST,r )

∣∣∣∣∣> ε

}
≤ 2 exp

(
− CNε2

�r,T

∑T
s=r osc(hs)2

)
, (6.1)

where DN
t,T is defined in (3.6) and �r,T is defined by (3.9).

Proof. According to the definition of DN
t,T (ST,r ) given in (3.6), we can write

T∑
t=0

DN
t,T (ST,r ) =

N(T +1)∑
k=1

υN
k ,

where for all t ∈ {0, . . . , T } and � ∈ {1, . . . ,N}, υN
Nt+� is defined by

υN
Nt+� = φN

t−1[ϑt ]
φN

t−1[Lt−1,T 1/|Lt,T 1|∞]N
−1ω

N,�
t

GN
t,T ST ,r (ξ

N,�
t )

|Lt,T 1|∞ ,

and is bounded by (see (5.1))

∣∣υN
Nt+�

∣∣≤ CN−1
T∑

s=r

ρmax(t−s,s−r−t,0) osc(hs).

Furthermore, we define the filtration {HN
k }N(T +1)

k=1 , for all t ∈ {0, . . . , T } and � ∈ {1, . . . ,N}, by:

HN
Nt+�

def= F N
t−1 ∨ σ

{(
ω

N,i
t , ξ

N,i
t

)
,1 ≤ i ≤ �

}
,
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with the convention F N
−1 = σ(Y0:T ). Then, according to Lemma 5.1, {υk}N(T +1)

k=1 is martingale

increment for the filtration {HN
k }N(T +1)

k=1 and the Azuma–Hoeffding inequality completes the
proof. �

Proposition 6.2. Assume A1–A3. There exists a constant C (depending only on σ−, σ+, c−,
supt≥1 |ϑt |∞ and supt≥0 |ωt |∞) such that for any T < ∞, any N ≥ 1, any ε > 0, any integer r

and any bounded and measurable functions {hs}Ts=r on X
r+1,

P

{∣∣∣∣∣
T∑

t=0

CN
t,T (ST ,r )

∣∣∣∣∣> ε

}
≤ 8 exp

(
− CNε

(1 + r)
∑T

s=r osc(hs)

)
, (6.2)

where CN
t,T (F ) is defined in (3.7).

Proof. In order to apply Lemma A.2 in the Appendix, we first need to find an exponential
deviation inequality for CN

t,T (ST ,r ) which is done by using the decomposition CN
t,T (ST ,r ) =

UN
t,T V N

t,T WN
t,T given in (5.6). First, the ratio UN

t,T is dealt with through Lemma A.1 in the Ap-
pendix by defining ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aN
def= N−1

N∑
�=1

ω
N,�
t GN

t,T ST ,r

(
ξ

N,�
t

)
/|Lt,T 1|∞,

bN
def= N−1

N∑
�=1

ω
N,�
t ,

b
def= E

[
ω1

t |F N
t−1

]= φN
t−1[Mgt ]/φN

t−1[ϑt ],
β

def= c−/|ϑt |∞.

Assumption A1(ii) and A3 shows that b ≥ β and (5.1) shows that |aN/bN | ≤
C(1 + r)maxr≤t≤T {osc(ht )}. Therefore, Condition (i) of Lemma A.1 is satisfied. The bounds
0 < ωl

t ≤ |ωt |∞ and the Hoeffding inequality lead to

P
[|bN − b| ≥ ε

] = E

[
P

[∣∣∣∣∣N−1
N∑

�=1

(
ω

N,�
t − E

[
ω

N,1
t |F N

t−1

])∣∣∣∣∣≥ ε

∣∣∣F N
t−1

]]
≤ 2 exp

(
− 2Nε2

|ωt |2∞

)
,

establishing Condition (ii) in Lemma A.1. Finally, Lemma 5.1(i) and the Hoeffding inequality
imply that

P
[|aN | ≥ ε

] = E

[
P

[∣∣∣∣∣N−1
N∑

�=1

ω
N,�
t GN

t,T ST ,r

(
ξ

N,�
t

)
/|Lt,T 1|∞

∣∣∣∣∣≥ ε

∣∣∣F N
t−1

]]

≤ 2 exp

(
− Nε2

2|ωt |2∞(
∑T

s=r ρmax(t−s,s−r−t,0) osc(hs))2

)
.
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Lemma A.1 therefore yields

P
{∣∣UN

t,T

∣∣≥ ε
}≤ 2 exp

(
− CNε2

(
∑T

s=r ρmax(t−s,s−r−t,0) osc(hs))2

)
.

Then V N
t,T is dealt with by using again the Hoeffding inequality and the bounds 0 < b

N,�
t,T ≤ |ωt |∞,

where b
N,�
t,T

def= ω
N,�
t

Lt,T 1(ξ
N,�
t )

|Lt,T 1|∞ :

P

[∣∣∣∣∣N−1
N∑

�=1

b
N,�
t,T − E

[
b

N,1
t,T |Ft−1

]∣∣∣∣∣≥ ε

]

= E

[
P

[∣∣∣∣∣N−1
N∑

�=1

(
b

N,�
t,T − E

[
b

N,�
t,T |F N

t−1

])∣∣∣∣∣≥ ε

∣∣∣F N
t−1

]]
≤ 2 exp

(−CNε2).
Finally, WN

t,T has been shown in (5.7) to be bounded by a constant depending only on σ−, σ+,

c−, supt≥1 |ϑt |∞ and supt≥0 |ωt |∞: |WN
t,T | ≤ C so that

P
{∣∣CN

t,T (ST ,r )
∣∣> ε

}≤ P
{∣∣UN

t,T V N
t,T

∣∣> ε/C
}≤ P

{∣∣UN
t,T

∣∣> εu

}+ P
{∣∣V N

t,T

∣∣> εv

}
,

where

εu
def=
√√√√ε

T∑
s=r

ρmax(t−s,s−r−t,0) osc(hs)/C and εv
def=
√

ε

C
∑T

s=r ρmax(t−s,s−r−t,0) osc(hs)
.

Therefore,

P
{∣∣CN

t,T (ST ,r )
∣∣> ε

}≤ 4 exp

(
− CNε∑T

s=r ρmax(t−s,s−r−t,0) osc(hs)

)
.

The proof of (6.2) is finally completed by applying Lemma A.2 with

Xt = CN
t,T (ST ,r ), A = 4, Bt = CN∑T

s=r ρmax(t−s,s−r−t,0) osc(hs)
, γ = 1/2. �

Proof of Theorem 3.2 for the FFBS estimator. The result is obtained by writing

P
{∣∣�N

T [ST,r ]
∣∣> ε

}≤ P

{∣∣∣∣∣
T∑

t=0

CN
t,T (ST ,r )

∣∣∣∣∣> ε/2

}
+ P

{∣∣∣∣∣
T∑

t=0

DN
t,T (ST,r )

∣∣∣∣∣> ε/2

}
,

and using (6.1) and (6.2). �
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Proof of Theorem 3.2 for the FFBSi estimator. We recall the decomposition used in the proof
of Theorem 3.1 for the FFBSi estimator:

δN
T [ST,r ] = 1

N

N∑
�=1

T∑
u=0

ζN,�
u ,

where δN
T [ST,r ] is defined by (5.8). Since {ζN,�

u }N�=1 are GN
u,T measurable and centered condi-

tionally to GN
u+1,T using the same steps as in the proof of Proposition 6.1, we get

P
{∣∣δN

T [ST,r ]
∣∣> ε

}≤ 2 exp

(
− CNε2

�r,T

∑T
s=r osc(hs)2

)
,

where �r,T is defined by (3.9). The proof is finally completed by writing

φ0:T |T [ST,r ] − φ̃N
0:T |T [ST,r ] = �N

T [ST,r ] + δN
T [ST,r ],

and by using Theorem 3.2 for the FFBS estimator. �

Appendix: Technical results

Lemma A.1. Assume that aN , bN , and b are random variables defined on the same probability
space such that there exist positive constants β , B , C, and M satisfying

(i) |aN/bN | ≤ M , P-a.s. and b ≥ β , P-a.s.,
(ii) For all ε > 0 and all N ≥ 1, P[|bN − b| > ε] ≤ Be−CNε2

,
(iii) For all ε > 0 and all N ≥ 1, P[|aN | > ε] ≤ Be−CN(ε/M)2

.

Then,

P

{∣∣∣∣aN

bN

∣∣∣∣> ε

}
≤ B exp

(
−CN

(
εβ

2M

)2)
.

Proof. See Douc et al. [8], Lemma 4. �

Lemma A.2. For T ≥ 0, let {Xt }Tt=0 be (T + 1) random variables. Assume that there exists a
constants A ≥ 1 and for all 0 ≤ t ≤ T , there exists a constant Bt > 0 such that and all ε > 0

P
{|Xt | > ε

}≤ Ae−Bt ε.

Then, for all 0 < γ < 1 and all ε > 0, we have

P

{∣∣∣∣∣
T∑

t=0

Xt

∣∣∣∣∣> ε

}
≤ A

1 − γ
e−γBε/(T +1),
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where

B
def=
(

1

T + 1

T∑
t=0

B−1
t

)−1

.

Proof. By the Bienayme–Tchebychev inequality, we have

P

{∣∣∣∣∣
T∑

t=0

Xt

∣∣∣∣∣> ε

}
= P

{
exp

[
γB

T + 1

∣∣∣∣∣
T∑

t=0

Xt

∣∣∣∣∣
]

> eγBε/(T +1)

}
(A.1)

≤ e−γBε/(T +1)
E

[
exp

[
γB

T + 1

∣∣∣∣∣
T∑

t=0

Xt

∣∣∣∣∣
]]

.

It remains to bound the expectation in the RHS of (A.1) by A(1 − γ )−1. First, by the Minkowski
inequality,

E

[
exp

[
γB

T + 1

∣∣∣∣∣
T∑

t=0

Xt

∣∣∣∣∣
]]

=
∞∑

q=0

γ qBq

q!(T + 1)q
E

[∣∣∣∣∣
T∑

t=0

Xt

∣∣∣∣∣
q]

≤ 1 +
∞∑

q=1

γ qBq

q!(T + 1)q

(
T∑

t=0

‖Xt‖q

)q

.

Moreover, for q ≥ 1, E[|Xt |q ] can be bounded by

E
[|Xt |q

]= ∫ ∞

0
P
{|Xt | > ε1/q

}
dε ≤ A

∫ ∞

0
e−Bt ε

1/q

dε = Aq!
B

q
t

.

Finally,

E

[
exp

[
γB

T + 1

∣∣∣∣∣
T∑

t=0

Xt

∣∣∣∣∣
]]

≤ A

∞∑
q=0

γ q = A

(1 − γ )
. �
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