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In this paper, we study the existence of the density associated with the exponential functional of the Lévy
process ξ ,

Ieq :=
∫ eq

0
eξs ds,

where eq is an independent exponential r.v. with parameter q ≥ 0. In the case where ξ is the negative
of a subordinator, we prove that the density of Ieq , here denoted by k, satisfies an integral equation that
generalizes that reported by Carmona et al. [7]. Finally, when q = 0, we describe explicitly the asymptotic
behavior at 0 of the density k when ξ is the negative of a subordinator and at ∞ when ξ is a spectrally
positive Lévy process that drifts to +∞.
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1. Introduction

A real-valued Lévy process is a stochastic process issued from the origin with stationary and
independent increments and almost-sure right-continuous paths with left limits. For background
on Lévy processes see, e.g., [1] and [23]. We write ξ = (ξt , t ≥ 0) for its trajectory and P for
its law. The law P of a Lévy process is characterized by its one-time transition probabilities. In
particular, there always exists a triple (a, σ 2,�), where a ∈ R, σ 2 ≥ 0 and � is a measure on
R \ {0}, satisfying the integrability condition

∫
R
(1 ∧ x2)�(dx) < ∞, such that for t ≥ 0 and

z ∈ R,

E
[
eizξt

] = exp
{−�(z)t

}
, (1.1)

where

�(z) = iaz + 1

2
σ 2z2 +

∫
R

(
1 − eizx + izx1{|x|<1}

)
�(dx).

In the case when ξ is a subordinator, the Lévy measure � has support on [0,∞) and fulfills the
extra condition

∫
(0,∞)

(1 ∧ x)�(dx) < ∞. Thus, the characteristic exponent � can be expressed
as

�(z) = −icz +
∫

(0,∞)

(
1 − eizx)�(dx),
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where c ≥ 0 and is known as the drift coefficient. It is well known that the function � can be
extended analytically on the complex upper half-plane, and so the Laplace exponent of ξ is given
by

φ(λ) := − logE
[
e−λξ1

] = �(iλ) = cλ +
∫

(0,∞)

(
1 − e−λx

)
�(dx).

Similarly, in the case where ξ is a spectrally negative Lévy process (i.e., has no positive jumps),
the Lévy measure � has support on (−∞,0), and the characteristic exponent � can be written
as

�(z) = iaz + 1

2
σ 2z2 +

∫
(−∞,0)

(
1 − eizx + izx1{x>−1}

)
�(dx).

It is also well known that the function � can be extended analytically on the complex lower
half-plane, and so its Laplace exponent satisfies

ψ(λ) := logE
[
eλξ1

] = −�(−iλ) = aλ + 1

2
σ 2λ2 +

∫
(−∞,0)

(
eλx − 1 + −λx1{x>−1}

)
�(dx).

In this article, we examine the existence of the density associated with the exponential functional

Ieq :=
∫ eq

0
eξs ds,

where eq is an exponential random variable independent of the Lévy process ξ with parameter
q ≥ 0. If q = 0, then eq is understood to be ∞. In this case, we assume that the process ξ drifts
toward −∞, because it is a necessary and sufficient condition for the almost-sure finiteness of
I := I∞ (see, e.g., Theorem 1 of Bertoin and Yor [4]).

To the best of our knowledge, nothing is known about the existence of the density of Ieq when
q > 0. In the case where q = 0, the existence of the density of I has been proven by Carmona
et al. [7] for Lévy processes with a jump structure of finite variation and recently by Bertoin et
al. [2], Theorem 3.9, for any real-valued Lévy process. In particular, when ξ is the negative of a
subordinator such that E[|ξ1|] < ∞, Carmona et al. [7], Proposition 2.1, proved that the random
variable I has a density, k, that is the unique (up to a multiplicative constant) L1-positive solution
to the equation

(1 − cx)k(x) =
∫ ∞

x

�
(
log(y/x)

)
k(y)dy, x ∈ (0,1/c), (1.2)

where c ≥ 0 is the drift coefficient and �(x) := �(x,∞). Here we generalize the foregoing
equation. Indeed, we establish an integral equation for the density of Ieq , q ≥ 0, when ξ is the
negative of a subordinator. We note that when q = 0, the condition E[|ξ1|] < ∞ is not essential
for the existence of its density and the validity of (1.2).

Another interesting problem is determining the behavior of the density of the exponential
functional I at 0 and at ∞. This problem was recently studied by Kuznetzov [13] for Lévy
processes with rational Laplace exponent (at 0 and at ∞), by Kuznetsov and Pardo [15] for



1940 J.C. Pardo, V. Rivero and K. van Schaik

hypergeometric Lévy processes (at 0 and at ∞), and by Patie [20] for spectrally negative Lévy
processes (at ∞). In most applications, it is sufficient to have estimates of the tail behavior
P(I ≤ t) when t goes to 0 and/or P(I ≥ t) when t goes to ∞. The tail behavior P(I ≤ t) was
studied by Pardo [19] in the case where the underlying Lévy process is spectrally positive and
its Laplace exponent is regularly varying at infinity with index γ ∈ (1,2), and by Caballero
and Rivero [6] in the case when ξ is the negative of a subordinator whose Laplace exponent
is regularly varying at 0. The tail behavior P(I ≥ t) also has been studied in a general setting
(see [8,18,21,22]). The second main result of this paper is related to this problem. Namely, we
describe in detail the asymptotic behavior at 0 of the density of I when ξ is a subordinator, which
in particular implies the behavior of P(I < t) near 0.

The paper is organized as follows. In Section 2 we state our main results. In particular, we study
the density of Ieq and the asymptotic behavior at 0 of the density of the exponential functional
associated with the negative of a subordinator. In Section 3 we provide the proof of the main
results, and in Section 4 we give some examples and some numerical results for the density of
Ieq when the driving process is the negative of a subordinator.

2. Main results

Our first main result states that Ieq has a density for q > 0. Before we establish our first theorem,
we introduce some notation and recall some facts about positive self-similar Markov processes
(pssMp), which is our main tool in this first part.

Let (ξ
†
t , t ≥ 0) be the process obtained by killing ξ at an independent exponential time of

parameter q > 0, here denoted by eq . The law and the lifetime of ξ† are denoted by P† and β ,
respectively.

We first note that

(
I,P†) =

(∫ β

0
exp

{
ξ

†
t

}
dt,P†

)
d=

(∫ eq

0
eξt dt,P

)
.

For x ≥ 0, let Qx be the law of X(x), the positive self-similar Markov process with self-similarity
index 1 issued from x associated with ξ† via its Lamperti’s representation (see [17] for more
details on this representation), that is, for x > 0,

X
(x)
t =

{
x exp

{
ξ

†
τ(t/x)

}
, if τ(t/x) < ∞,

0, if τ(t/x) = ∞,
t ≥ 0,

where

τ(s) = inf

{
r > 0:

∫ r

0
eξ

†
t dt > s

}
, inf{∅} = ∞

and 0 is a cemetery state. The process X(x) is a strong Markov process that fulfills the scaling
property; that is, for k > 0, (

kX
(x)
t/k, t ≥ 0

) d= (
X

(kx)
t , t ≥ 0

)
.
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We denote by T
(x)
0 := inf{t > 0: X

(x)
t = 0}, the first hitting time of X(x) at 0. Observe that for

s > 0, we have the following equivalences:

τ(s) < ∞ iff τ(s) ≤ β iff s ≤
∫ β

0
eξ

†
t dt.

Thus, from the construction of X, the following equality in law holds:

(T0,Q1)
d=

(∫ eq

0
eξt dt,P

)
.

In what follows, we denote by EQx the expectation with respect to the probability measure Qx ,
x ≥ 0.

We now have all of the elements necessary to establish our first main result. It concerns the
existence of the density of Ieq .

Theorem 2.1. Let q > 0. Then the function

h(t) := qEQ1

[
1

Xt

1{t<T0}
]
, t ≥ 0,

is a density for the law of Ieq .

Corollary 2.2. Assume that q > 0 and that ξ is a subordinator. Then the law of the random vari-
able Ieq is a mixture of exponentials; that is, its law has a density h on (0,∞) that is completely
monotone. Furthermore, limt↓0 h(t) = q .

In the sequel, we will assume that ξ = −ζ , where ζ is a subordinator. We denote its drift by
c ≥ 0 and the renewal measure of the killed subordinator (ζt , t ≤ eq) by Uq(dx), that is,

E

[∫ eq

0
f (ζt )dt

]
=

∫
[0,∞)

f (x)Uq(dx), (2.1)

where f is a positive measurable function. If the renewal measure is absolutely continuous with
respect to the Lebesgue measure, then the function uq(x) = Uq(dx)/dx is usually called the
renewal density. If q = 0, then we denote U0 and u0 by U and u.

Our second main result generalizes the integral equation (1.2) of Carmona et al. for subordi-
nators.

Theorem 2.3. Let q ≥ 0. The random variable Ieq has a density that we denote by k, and it
solves the equations∫ ∞

y

k(x)dx =
∫ ∞

0
k
(
yex

)
Uq(dx) almost everywhere, (2.2)
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and

(1 − cx)k(x) =
∫ ∞

x

�
(
log(y/x)

)
k(y)dy + q

∫ ∞

x

k(y)dy, x ∈ (0,1/c). (2.3)

Conversely, if a density on (0,1/c) satisfies any of the equations (2.2) or (2.3), then it is the
density of Ieq .

We illustrate the importance of the foregoing result in Theorem 2.5, where we study the asymp-
totic behavior at 0 of the density k, and in Section 4, where we provide some examples in which k

can be computed explicitly. Further applications have been provided by Haas [11] and by Haas
and Rivero [12], who used this equation to estimate the right tail behavior of the law of I and to
study the maximum domain of attraction of I .

The following corollary is another important application of equation (2.3). In particular, it says
that if we know the density of the exponential functional of the negative of a subordinator, say k,
then for ρ ≥ 0, xρk(x), adequately normalized is the density of the exponential functional asso-
ciated to the negative of a new subordinator. The proof of this fact follows easily by multiplying
in both sides of equation (2.3) by xρ . Such a result also has been given by Chazal et al. [9], but
in terms of the distribution of Ieq , not in terms of its density.

Corollary 2.4. Let q ≥ 0, ρ > 0, and cρ be the positive constants satisfying

cρ =
∫

(0,∞)

xρk(x)dx.

Then the function h(x) := c−1
ρ xρk(x) is the density of the exponential functional of the negative

of a subordinator whose Laplace exponent is given by

φρ(λ) = λ

λ + ρ

(
φ(λ + ρ) + q

)
. (2.4)

Moreover, the density h solves the equation

(1 − cx)h(x) =
∫ ∞

x

�ρ(logy/x)h(y)dy, x ∈ (0,1/c), (2.5)

where �ρ(z) = �(z)e−ρz + qe−ρz.

We remark that the transformation studied by Chazal et al. [9] is more general than that pre-
sented in (2.4), and that they applied the transformation to Lévy processes with one-sided jumps.
We also note that the subordinator with Laplace exponent given by φρ has an infinite lifetime in
any case.

Our next goal is to study the behavior of the density of Ieq near 0. When q = 0, we work with
the following assumption:
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(A) The Lévy measure � belongs to the class Lα for some α ≥ 0; that is, the tail Lévy measure
� satisfies

lim
x→∞

�(x + y)

�(x)
= e−αy for all y ∈ R. (2.6)

Observe that regularly varying and subexponential tail Lévy measures satisfy this assumption
with α = 0, and that convolution-equivalent Lévy measures are examples of Lévy measures
satisfying (2.6) for some index α > 0.

Theorem 2.5. Let q ≥ 0 and ξ = −ζ , where ζ is a subordinator such that when q = 0, the Lévy
measure � satisfies assumption (A). The following asymptotic behavior holds for the density
function k of the exponential functional Ieq .

(i) If q > 0, then

k(x) → q as x ↓ 0.

(ii) If q = 0, then E[I−α] < ∞ and

k(x) ∼ E
[
I−α

]
�(log 1/x) as x ↓ 0.

In the sequel, we will assume that q = 0. The foregoing result will help us describe the be-
havior at ∞ of the density of the exponential functional of a particular spectrally negative Lévy
process associated with the subordinator ζ . To explain such relation, we need the following as-
sumptions. Assume that U , the renewal measure of the subordinator ζ , is absolutely continuous
with respect to the Lebesgue measure with density u, which is nonincreasing and convex. We
also suppose that E[ζ1] < ∞. According to Theorem 2 of Kyprianou and Rivero [16], there ex-
ists a spectrally negative Lévy process Y = (Yt , t ≥ 0) that drifts to +∞, with Laplace exponent
described by

ψ(λ) = λφ∗(λ) = λ2

φ(λ)
for λ ≥ 0,

where φ∗ is the Laplace exponent of another subordinator and satisfies

φ∗(λ) := q∗ + c∗λ +
∫

(0,∞)

(
1 − e−λx

)
�∗(dx),

where

q∗ =
(

c +
∫

(0,∞)

x�(dx)

)−1

, c∗ =
{

0, c > 0 or �(0,∞) = ∞,

1/�(0,∞), c = 0 and �(0,∞) < ∞,

and the Lévy measure �∗ satisfies

U(dx) = c∗δ0(dx) + (
q∗ + �

∗
(x)

)
dx for x ≥ 0.
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Let Iψ be the exponential functional associated with −Y , that is,

Iψ =
∫ ∞

0
e−Ys ds,

and denote its density by kψ . From the proof of Proposition 4 of Rivero [21], the density kψ

satisfies

kψ(x) = q∗ 1

x
k

(
1

x

)
for x > 0. (2.7)

The following corollary explains the asymptotic behavior at ∞ of the density of the exponential
functional of −Y .

Corollary 2.6. Suppose that ζ is a subordinator satisfying assumption (A) such that its renewal
measure has a density thst is nonincreasing and convex, and let Y be its associated spectrally
negative Lévy process defined as above. Then the following asymptotic behavior holds for the
density function kψ :

kψ(x) ∼ q∗E
[
I−α

] 1

x
�(logx) as x → ∞.

3. Proofs

Proof of Theorem 2.1. We start the proof by showing that the function

h(t, x) := qEQx

[
1

Xt

1{t<T0}
]
, t ≥ 0, x > 0,

is such that ∫ ∞

0
h(t, x)dt = 1 for x > 0. (3.1)

Then the result follows from the identity (3.1) and the fact that

h(t + s) = EQ1
[
h(s,Xt )1{t<T0}

]
for s, t ≥ 0,

which is a straightforward consequence of the Markov property.
We now prove (3.1). From the definition of X and the change of variables u = τ(t/x), which

implies that du = x−1 exp{−ξ
†
τ(t/x)}dt, we get∫ ∞

0
h(t, x)dt

= q

∫ ∞

0
dtE

[
x−1 exp

{−ξ
†
τ(t/x)

}
1{τ(t/x)<∞}

]
= qE

[∫ ∞

0
x−1 exp

{−ξ
†
τ(t/x)

}
1{t≤x

∫ β
0 eξ

†
s ds} dt

]
= qE

[∫ ∞

0
1{u≤β} du

]
= qE(β) = 1.
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We now prove that ∫ ∞

t

h(s)ds = P(Ieq > t), t > 0.

Indeed, letting t > 0, making a change of variables, and using the semi-group property and Fu-
bini’s theorem, we have∫ ∞

t

h(s)ds =
∫ ∞

0
h(s + t,1)ds = EQ1

[(∫ ∞

0
h(s,Xt )ds

)
1{t<T0}

]
= Q1(t < T0).

The result follows from the identity Q1(t < T0) = P(Ieq > t). �

Proof of Corollary 2.2. Here we use the same notation as above and follow similar arguments
as in the proofs of Lemma 5 and Proposition 1 of [3]. We first prove that for every 0 ≤ t < T0

and p > 0, the variable

X
p
t

∫ T0

t

1

X
p+1
s

ds

is independent of σ {Xs,0 ≤ s ≤ t} and is distributed as∫ eq

0
e−pξs ds.

As a consequence of the Markov property at time t , we need only to show that under Qx , the
variable

xp

∫ T0

0

1

X
p+1
s

ds

is distributed as
∫ eq

0 e−pξs ds. Then the change of variables t = τ(s/x), s = x
∫ t

0 eξ
†
u du yields

xp

∫ T0

0

1

X
p+1
s

ds = x−1
∫ T0

0
e−(p+1)ξ

†
τ (s/x) ds

=
∫ β

0
e−(p+1)ξ

†
t eξ

†
t dt

=
∫ β

0
e−pξ

†
t dt,

which implies the desired identity in law, because (ξ
†
t ,0 ≤ t ≤ β) and (ξt ,0 ≤ t ≤ eq) have the

same law. Thus, we have

EQ1

[∫ T0

t

1

X
p+1
s

ds

]
= EQ1 [X−p

t ; t < T0]
φ(p) + q

,
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which implies that

∂EQ1 [X−p
t ; t < T0]
∂t

= −(
φ(p) + q

)
EQ1

[
X

−(p+1)
t ; t < T0

]
.

By iteration, we have that the function t �→ EQ1[X−p
t ; t < T0] is completely monotone and takes

value 1 for t = 0. Thus, taking p = 1, we deduce that h(t) is completely monotone on (0,∞),
and that limt↓0 h(t) = q . Finally from Theorem 51.6 and Proposition 51.8 of [23], we have that
the law of Ieq is a mixture of exponentials. �

Proof of Theorem 2.3. By Theorem 2.1 (when q > 0) and Theorem 3.9 of [2] (when q = 0),
we know that there exists a density of Ieq for q ≥ 0, which we denote by h. Moreover, [7] proved
that the positive integer moments of Ieq satisfy the following recursive equation:

E
[
In

eq

] = n

φ(n) + q
E

[
In−1

eq

]
, n > 0. (3.2)

In particular, we have

E
[
In

eq

] = n!∏n
i=1(q + φ(i))

, n ≥ 0, (3.3)

where the product is understood as 1 when n = 0.

The proof of (2.2) follows from the identity (3.2). Indeed, on the one hand, it is clear that

E
[
In

eq

] =
∫ ∞

0
xnk(x)dx = n

∫ ∞

0
dy yn−1

∫ ∞

y

k(x)dx.

On the other hand, from the identity (2.1) with f (x) = e−nx and a change of variables, we get

n

φ(n) + q
E

[
In−1

eq

] = n

∫ ∞

0
Uq(dx)e−nx

∫ ∞

0
yn−1k(y)dy

= n

∫ ∞

0
Uq(dx)

∫ ∞

0
yn−1e−nxk(y)dy

= n

∫ ∞

0
Uq(dx)

∫ ∞

0
zn−1k

(
zex

)
dz

= n

∫ ∞

0
dz zn−1

∫ ∞

0
k
(
zex

)
Uq(dx).

Then, putting the pieces together, we have

∫ ∞

0
dy yn−1

∫ ∞

y

k(x)dx =
∫ ∞

0
dy yn−1

∫ ∞

0
k
(
ye−x

)
Uq(dx) for n > 0,
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which implies the desired result because the density

y �→ 1

E(Ieq )

∫ ∞

y

k(x)dx,

is determined by its positive integer moments, which readily follows from the fact that k is so.
Now, we verify the equation (2.3). We first prove that the function h̃: (0,∞) → (0,∞), de-

fined via

h̃(x) =
⎧⎨
⎩ cxh(x) +

∫ ∞

x

�
(
log(y/x)

)
h(y)dy + q

∫ ∞

x

h(y)dy, if x ∈ (0,1/c),

0, elsewhere,

is a density for the law of Ieq and thus that h = h̃ a.e. Then we prove that the equality (2.3) holds.
To do so, it is sufficient to verify that∫ ∞

0
xnh̃(x)dx = n!∏n

i=1(q + φ(i))
, n ∈ N,

given that the law of Ieq is determined by its positive integer moments. Indeed, elementary com-
putations, identity (2.2), and the fact that∫ ∞

0
e−θyUq(dy) = 1

φ(θ) + q
, θ ≥ 0,

give that for any integer n ≥ 0,∫ ∞

0
xnh̃(x)dx = c

∫ ∞

0
dx xn+1h(x) +

∫ ∞

0
dxxn

∫ ∞

x

dy�
(
log(y/x)

)
h(y)

+ q

∫ ∞

0
dx xn

∫ ∞

0
h
(
xey

)
Uq(dy)

= n!(n + 1)c∏n+1
i=1 (q + φ(i))

+
∫ ∞

0
dy h(y)

∫ y

0
dx xn�

(
log(y/x)

)

+ q

∫ ∞

0
Uq(dy)

∫ ∞

0
dx xnh

(
xey

)
= n!(n + 1)c∏n+1

i=1 (q + φ(i))
+

∫ ∞

0
dy h(y)yn+1

∫ ∞

0
dz e−(n+1)z�(z)

+ q

∫ ∞

0
Uq(dy)e−(n+1)y

∫ ∞

0
dz znh(z)

= n!(n + 1)c∏n+1
i=1 (q + φ(i))

+ (n + 1)!∏n+1
i=1 (q + φ(i))

∫ ∞
0 (1 − e−(n+1)z)�(dz)

n + 1
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+ q
n!∏n

i=1(q + φ(i))

∫ ∞

0
Uq(dy)e−(n+1)y

= n!∏n
i=1(q + φ(i))

(n + 1)c + ∫ ∞
0 (1 − e−(n+1)z)�(dz) + q

q + φ(n + 1)

= n!∏n
i=1(q + φ(i))

.

Now, let N = {x ∈ R: h(x) �= h̃(x)}. By the foregoing arguments, we know that the Lebesgue
measure of N is 0. Let k: (0,∞) → (0,∞) be the function defined by

k(x) =
⎧⎨
⎩

h(x), if x ∈ N c,

1

1 − cx

(∫ ∞

x

�
(
log(y/x)

)
h(y)dy + q

∫ ∞

x

h(y)dy

)
, if x ∈ N .

We now prove that k(x) satisfies equation (2.3) everywhere. If x ∈ N c, then we have that k(x) =
h(x) = h̃(x), and thus equation (2.3) is verified. Indeed, if x ∈ N , then we have the following
equalities:

cxk(x) +
∫ ∞

x

�
(
log(y/x)

)
k(y)dy + q

∫ ∞

x

k(y)dy

= cxk(x) +
∫ ∞

x

�
(
log(y/x)

)
k(y)1{y∈N c} dy + q

∫ ∞

x

k(y)1{y∈N c} dy

= cxk(x) +
∫ ∞

x

�
(
log(y/x)

)
h(y)1{y∈N c} dy + q

∫ ∞

x

h(y)1{y∈N c} dy

= cx

1 − cx

(∫ ∞

x

�
(
log(y/x)

)
h(y)dy + q

∫ ∞

x

h(y)dy

)

+
∫ ∞

x

�
(
log(y/x)

)
h(y)dy + q

∫ ∞

x

h(y)dy

= k(x).

Conversely, if k is a density on (0,1/c) satisfying equation (2.2) or (2.3), then from the foregoing
computations, it is clear that k and Ieq have the same positive integer moments. This implies that k
is a density of the exponential functional Ieq . �

Proof of Theorem 2.5. The proof consists of three steps. First, we show that when q = 0,

E[I−α] < ∞. Then, for q ≥ 0, we obtain a technical estimate on the maximal growth of k(x) as
x ↓ 0. Finally, we obtain the statement of the theorem.

Step 1. We assume that q = 0 and prove that E[I−α] < ∞. The case where α = 0 is obvious.
For α ∈ (0,1), we have from Theorem 2 of [4] that there exists a random variable R, independent

of ξ , such that IR
d= e, where e follows a unit mean exponential distribution. Because E[e−α] <

∞, the result follows.
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Finally, let α ≥ 1. With (2.3) and some standard computations, we find that∫ ∞

0
x−β−1k(x)dx = c

∫ ∞

0
dx x−βk(x) +

∫ ∞

0
dx x−β−1

∫ ∞

x

dy �
(
log(y/x)

)
k(y)

= cE
[
I−β

] +
∫ ∞

0
dy k(y)

∫ y

0
dx x−β−1�

(
log(y/x)

)
= cE

[
I−β

] +
∫ ∞

0
dy y−βk(y)

∫ ∞

0
du eβu�(u)

= − 1

β
E

[
I−β

](−cβ +
∫ ∞

0

(
1 − eβz

)
�(dz)

)
,

that is,

E
[
I−β−1] = E

[
I−β

]φ(−β)

−β
, (3.4)

where φ is the Laplace exponent of ξ , which can be extended to (−α,∞) because, for β < α,∫ ∞

0

(
eβu − 1

)
�(du) = β

∫ ∞

1
�

(
log(z)

)
zβ−1 dz < ∞. (3.5)

To see that (3.5) holds, note that �(log(z)) is regularly varying with index −α by (2.6). Thus,
�(log z) = z−α�(z) for a slowly varying function �, and we can apply Proposition 1.5.10 of
Bingham et al. [5].

Now, by iteratively using (3.4), we see that for E[I−α] < ∞, it is sufficient to have E[I−α′ ] <

∞ for some α′ ∈ [0,1). But this obviously holds if α′ = 0, whereas if α′ ∈ (0,1), it then holds
by the same argument as used above for the case where α ∈ (0,1).

Step 2. We assume that q ≥ 0. For q = 0, let p be any function such that p(0) = 0 and
min{θ − 1,0} < p(θ) < θ , for all θ > 0. When q > 0, the function p will be taken as 0, and thus
the symbol p(x) will be taken as 0. The goal of this step is to show that

k(x)

xp(α)
stays bounded as x ↓ 0, (3.6)

where α is the parameter given in the assumption (A).
Observe that when q > 0, it follows from (2.3) that lim infx→0 k(x) ≥ q. Set h(x) :=

k(x)/xp(α). We can write (2.3) as

1 − cx = x

∫ ∞

1
�

(
log(z)

)
zp(α) h(xz)

h(x)
dz + qxp(α)P(Ieq > x)

h(x)
. (3.7)

We argue by contradiction. Take some x̂ ∈ (0,1/c). If h were not bounded at 0+, then 1{x≤x̂}h(x)

would keep on attaining new maxima as x ↓ 0. (Note that x̂ is present just to ensure that this
statement also holds if k is not bounded at 1/c−.) In particular, this means that a sequence of
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points (xn)n≥0 exists with xn ↓ 0 as n → ∞ and such that h(xn) ≥ supx∈[xn,x̂] h(x). We will
show that this implies

xn

∫ ∞

1
�

(
log(z)

)
zp(α) h(xnz)

h(xn)
dz + qx

p(α)
n P(Ieq > xn)

h(xn)
→ 0 as n → ∞,

which indeed contradicts (3.7) because 1 − cxn → 1 as n → ∞. Observe that if q > 0 and h is
not bounded at 0+, then the second term in the latter equation tends to 0, because p(α) = 0 by
construction. Thus, we just need to prove that the first term in the latter equation tends to 0. For
this, we have

xn

∫ ∞

1
�

(
log(z)

)
zp(α) h(xnz)

h(xn)
dz = xn

∫ x̂/xn

1
�

(
log(z)

)
zp(α) h(xnz)

h(xn)
dz

(3.8)

+ xn

∫ ∞

x̂/xn

�
(
log(z)

)
zp(α) h(xnz)

h(xn)
dz.

We first deal with the first integral on the right-hand side of (3.8). By construction of the sequence
(xn)n≥0, we have h(xnz) ≤ h(xn) for any z ∈ [1, x̂/xn]; thus,

xn

∫ x̂/xn

1
�

(
log(z)

)
zp(α) h(xnz)

h(xn)
dz ≤ xn

∫ x̂/xn

1
�

(
log(z)

)
zp(α) dz. (3.9)

If q > 0 or α = 0 (recall p(0) = 0), then we can take any 1 < z0 and write

xn

∫ x̂/xn

1
�

(
log(z)

)
dz = xn

∫ z0

1
�

(
log(z)

)
dz + xn

∫ x̂/xn

z0

�
(
log(z)

)
dz

≤ xn

∫ z0

1
�

(
log(z)

)
dz + xn

(
x̂

xn

− z0

)
�

(
log(z0)

)
,

where the inequality uses that � is decreasing. Letting n → ∞, recalling that xn ↓ 0, we see that
the first integral on the right-hand side vanishes, whereas the second term tends to x̂�(log z0).
Because we can make this term arbitrarily small by choosing z0 sufficiently large, because
�(log z) → 0 as z → ∞, it follows that (3.9) vanishes.

Next, consider the case where α > 0 and q = 0. Because α − 1 < p(α) < α, we can choose
some β ∈ (0, α) such that p(α) − β + 1 ∈ (0,1). Using this, we find that

xn

∫ x̂/xn

1
�

(
log(z)

)
zp(α) dz = xn

∫ x̂/xn

1
�

(
log(z)

)
zβ−1zp(α)−β+1 dz

≤ xn

(
x̂

xn

)p(α)−β+1 ∫ x̂/xn

1
�

(
log(z)

)
zβ−1 dz,

and the right-hand side vanishes as n → ∞, again because xn ↓ 0, and by (3.5).
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It remains to show that the second integral on the right-hand side of (3.8) vanishes as n → ∞.
We have

xn

∫ ∞

x̂/xn

�
(
log(z)

)
zp(α) h(xnz)

h(xn)
dz ≤ xn�

(
log(x̂/xn)

) 1

h(xn)

∫ ∞

x̂/xn

zp(α)h(xnz)dz

= �(log(x̂/xn))

x
p(α)
n

1

h(xn)

∫ ∞

x̂

k(u)du,

where the inequality uses that � is decreasing and to get the equality we apply the definition of
h together with the substitution u = xnz. Because k is a density and, by assumption, h(xn) → ∞
as n goes to ∞, for the right-hand side to vanish, it remains to show that �(log x̂/xn)/x

p(α)
n stays

bounded as n increases. When q > 0 or α = 0 (recall that p(0) = 0), it is immediate, because �

is decreasing. When α > 0 and q = 0, for any 1 < z0 < z, integration by parts yields

�
(
log(z)

)
zp(α) = p(α)

∫ z

z0

�
(
log(u)

)
up(α)−1 du +

∫ z

z0

up(α) d�
(
log(u)

) + �
(
log(z0)

)
z
p(α)

0 .

Now, if we let z go to ∞, then, because p(α) < α, we see from (3.5) that the first integral on the
right-hand side stays bounded, whereas the second integral is negative because � is decreasing.
Consequently, the left-hand side must stay bounded, and we are done.

Step 3, case q = 0. Denote Cα = E[I−α], which is finite by step 1. From (2.3), we obtain, for
all x > 0,

(1 − cx)
k(x)

�(log(1/x))
=

∫ ∞

x

�(log(y/x))

�(log(1/x))
k(y)dy. (3.10)

Because �(log(1/x)) is regularly varying (cf. (2.6)) with index −α, we have that for any δ >

0, there is Dδ such that �(log(1/x)) ≥ Dδx
−α−δ for x sufficiently small. Thus, the latter and

property (3.6) imply that

lim
x→0

cxk(x)

�(log(1/x))
= 0. (3.11)

Using equation (3.10) together with k ≥ 0, Fatou’s lemma, and identity (3.11) yields

lim inf
x↓0

k(x)

�(log(1/x))
= lim inf

x↓0

cxk(x)

�(log(1/x))
+ lim inf

x↓0

∫ ∞

x

�(log(y/x))

�(log(1/x))
k(y)dy

≥
∫ ∞

0
y−αk(y)dy = Cα.

In contrast, for any ε > 0, we have as x ↓ 0,∫ ∞

ε

�(log(y/x))

�(log(1/x))
k(y)dy →

∫ ∞

ε

y−αk(y)dy ≤ Cα.

If α > 0, this follows from the fact that the convergence (2.6) is uniform over y ∈ [ε,∞) (see,
e.g., Theorem 1.5.2 of [5]). If α = 0 this uniformity holds only over intervals of the form [ε, x0],
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in which case we can write the left-hand side as the sum of integrals over [ε, x0] and [x0,∞),
the former in the limit again is bounded above by Cα, whereas for the latter, we can use that �

is decreasing to see

∫ ∞

x0

�(log(y/x))

�(log(1/x))
k(y)dy ≤ �(log(x0/x))

�(log(1/x))

∫ ∞

x0

k(y)dy,

then letting first x → ∞, thereby using (2.6), and then x0 → ∞, it follows that this term vanishes.
So it remains to show that

lim sup
x↓0

∫ ε

x

�(log(y/x))

�(log(1/x))
k(y)dy → 0 as ε → 0.

For this, we get for ε small enough and x < ε,

1

�(log(1/x))

∫ ε

x

�
(
log(y/x)

)
k(y)dy = x

�(log(1/x))

∫ ε/x

1
�

(
log(z)

)
k(xz)dz

≤ Cx

�(log(1/x))

∫ ε/x

1
�

(
log(z)

)
(xz)p(α) dz

= Cx1+p(α)

�(log(1/x))

∫ ε/x

1
�

(
log(z)

)
zp(α) dz

∼ C′x1+p(α)

�(log(1/x))

(
ε

x

)p(α)+1

�
(
log(ε/x)

)
as x ↓ 0,

where C and C′ are constants, the inequality holds by step 2 (cf. (3.6)), and the asymptotics
follow from Karamata’s theorem (see, e.g., Theorem 1.5.11 of [5]), which indeed applies here
because �(log(z)) is regularly varying with index −α (cf. (2.6)) and by construction (see step 2),
p(α) ≥ α − 1. Now, using (2.6), we see that ultimately, the right-hand side goes to C′εp(α)+1−α

as x ↓ 0, and that this vanishes as ε → 0 because, by construction, p(α) + 1 − α > 0 for all
α ≥ 0.

Step 3, case q > 0. We will prove that∫ ∞

x

�
(
log(y/x)

)
k(y)dy →

x→0
0.

By step 2, we can assume that k is bounded by K ≥ q, in a neighborhood of 0+. Letting δ > 1
fixed, for x small enough, we have that

∫ xδ

x

�
(
log(y/x)

)
k(y)dy ≤ K

∫ xδ

x

�
(
log(y/x)

)
dy

= K

∫ log δ

0
�(u)xeu du ≤ Kxδ

∫ log δ

0
�(u)du →

x→0
0.
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In addition, we have that∫ ∞

xδ

�
(
log(y/x)

)
k(y)dy ≤ �(log δ)

∫ ∞

xδ

k(y)dy →
x→0

�(log δ).

We conclude by making δ → ∞. Indeed, using equation (2.3) and the foregoing arguments, we
conclude that

(1 − cx)k(x) − qP(Ieq > x) →
x→0

0,

and the result follows. �

4. Examples and some numerics

In this section, we illustrate Theorem 2.3, Corollary 2.4, and equation (2.7) with some examples,
and provide some applications of Theorem 2.5.

Example 1. Let q > 0 and consider the case where the subordinator is just a linear drift with
c > 0. By a simple Laplace inversion, we deduce uq(x) = c−1e−(q/c)x . Thus, from identities (2.3)
and (2.2), we get

(1 − cx)k(x) = q

c

∫
[0,∞)

k
(
xey

)
e−(q/c)y dy, x ∈ (0,1/c).

After straightforward computations, we deduce that the density of Ieq is of the form

k(x) = q(1 − cx)q/c−1, x ∈ (0,1/c).

It is important to note that we can get the density k by direct calculations, because

Ieq =
∫ eq

0
e−ct dt = c−1(1 − e−ceq

)
,

and eq is exponentially distributed.
In what follows, we use the notation in Corollary 2.4 and in the discussion after Theorem 2.5.

Let ρ > 0 and note that

φρ(θ) = cθ + q
θ

θ + ρ
and cρ = q

cρ+1

ρ(ρ + 1)�(q/c)

�(ρ + q/c + 1)
.

According to Corollary 2.4, the density of the exponential functional of the subordinator with
Laplace exponent given by φρ , satisfies

h(x) = cρ+1 �(ρ + q/c + 1)

�(ρ + 1)�(q/c)
xρ(1 − cx)q/c−1 for x ∈ (0,1/c),
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in other words, the exponential functional has the same law as c−1B(ρ + 1, q/c), where B(ρ +
1, q/c) is a beta random variable with parameters (ρ + 1, q/c).

We now consider the associated spectrally negative Levy process Y whose Laplace exponent
is written as follows:

ψ(λ) = λ2

φρ(λ)
= λ(λ + ρ)

c(λ + ρ) + q
,

From (2.7), we deduce that the density of the exponential functional Iψ associated to Y satisfies

kψ(x) = ρcρ+1

cρ + q

�(ρ + q/c + 1)

�(ρ + 1)�(q/c)
x−(ρ+q/c)(x − c)q/c−1 for x > c.

Thus, Iψ has the same law as c(B(ρ, q/c))−1.

Example 2. Let q = c = 0, β > 0, and

�(z) = β

�(a + 1)
e−((s−1)/a)z

(
ez/a − 1

)a−1
,

where a ∈ (0,1] and s ≥ a. Thus, the Laplace exponent φ has the form

φ(θ) = β
θ�(a(θ − 1) + s)

�(aθ + s)
.

In this case, the equation (2.3) can be written as

k(x) = β

�(a + 1)

∫ ∞

x

(y/x)−(s−1)/a
(
(y/x)1/a − 1

)a−1
k(y)dy

= βx

�(a)

∫ ∞

0
(z + 1)a−sza−1k

(
x(z + 1)a

)
dz,

where we are using the change of variable z = (y/x)1/a −1. After some computations, we deduce
that

k(z) = βs/a

a�(s)
z(s−a)/ae−(βz)1/a

for z ≥ 0. (4.1)

In other words, I has the same law as β−1γ a
s , where γs is a gamma random variable with param-

eter s.
If a = 1, then the process ξ is a compound Poisson process of parameter β > 0 with exponen-

tial jumps of mean (s − 1)−1 > 0. From (4.1), it is clear that the law of its associated exponential
functional has the same law as γ(s,β), a gamma random variable with parameters (s, β).

We now consider the associated spectrally negative Levy process Y with Laplace exponent
satisfying

ψ(λ) = λ2

φ(λ)
= λ�(aλ + s)

β�(a(λ − 1) + s)
.
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The density of the exponential functional Iψ associated with Y is given by

kψ(x) = β(s−a)/a

a�(s − a)
x−s/ae−(β/x)1/a

, x > 0.

We remark that when a = 1, the process ξ is a Brownian motion with drift, and that the expo-
nential functional Iψ has the same law as γ −1

(s−1,β). This identity in law has been established by
Dufresne [10].

Next, let ρ > 0 and note that

φρ(θ) = β
θ�(a(θ + ρ − 1) + s)

�(a(θ + ρ) + s)
and cρ = �(aρ + s)

βρ�(s)
.

According to Corollary 2.4, the density of the exponential functional of the subordinator with
Laplace exponent given by φρ satisfies

h(x) = β(s+aρ)/a

a�(aρ + s)
x(aρ+s−a)/ae−(βx)1/a

for x > 0;

that is, it has the same law as β−1γ a
aρ+s . In particular, the density of the exponential functional

of its associated spectrally negative Levy process satisfies

kψ(x) = β(s+aρ−a)/a

a�(a(ρ − 1) + s)
x−(aρ+s)/ae−(β/x)1/a

, x > 0.

Example 3. Finally, let a ∈ (0,1), β ≥ a, c = 0, q = �(β)/�(β − a),

�(z) = 1

�(1 − a)

∫ ∞

z

e(1+a−β)x/a

(ex/a − 1)1+a
dx and uq(z) = 1

�(a + 1)
e−(β−1)z/a

(
ez/a − 1

)a−1
.

The process ξ with such characteristics is a killed Lamperti stable subordinator with parameters
(1/�(1 − a),1 + a − β,1/a, a); see Section 3.2 in Kuznetsov et al. [14] for a proper definition.
From Theorem 1.3, the density of Ieq satisfies the equation

k(x) =
∫ ∞

0

(
xey

�(1 − a)

∫ ∞

z

e(1+a−β)x/a

(ex/a − 1)1+a
dx + �(β)e−(β−1)z/a

�(β − a)�(a + 1)

(
ey/a − 1

)a−1
)

k
(
xey

)
dy.

Because the foregoing equation seems difficult to solve, we use the method of moments to deter-
mine the law of Ieq . We first note that

E
[
In

eq

] = n!�(β)

�(an + β)
,

and that in the case where β = 1, the exponential functional Ieq has the same distribution as X−a
a ,

where Xa is a α-stable positive random variable, that is,

E
[
e−λXa

] = exp
{−λa

}
, λ ≥ 0;
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see Section 3 in [3]. Recall that the negative moments of Xa are given by

E
[
X−n

a

] = �(1 + n/a)

�(1 + n)
, n ≥ 0.

We now introduce L(a,β) and A, two independent random variables, whose laws are described as
follows:

P(L(a,β) ∈ dy) = E

[
a�(β)

�(β/a)X
β
a

; 1

Xa
a

∈ dy

]

and

P(A ∈ dy) = (β/a − 1)(1 − x)β/a−21[0,1](x)dx.

It is important to note from Example 1, that A has the same law as the exponential functional
associated with the subordinator σ , which is defined as follows:

σt = t + β/a − 1, t ≥ 0.

On the one hand, it is clear that

E
[
Ln

(a,β)

] = a�(β)

�(β/a)
E

[
X−(an+β)

a

] = �(β)

�(β/a)

�(n + β/a)

�(an + β)
,

and on the other hand, we have

E
[
An

] = �(n + 1)�(β/a)

�(n + β/a)
,

which implies that Ieq has the same law as La,βA.

Finally, we numerically illustrate the density k and its asymptotic behavior at 0 for some par-
ticular subordinators ζ . First, we briefly discuss our method. Clearly, the equation (1.2) motivates
the following straightforward discretization procedure. Approximate k by a step function k̃, that
is,

k̃(x) =
N−1∑
i=0

1{x∈[xi ,xi+1)}yi,

where 0 = x0 < x1 < · · · < xN = 1/c forms a grid on the x-axis. The heights yi can then be
found by iterating over i = N − 1, . . . ,0, thereby using (1.2) at each step, with x = xi and k

replaced by k̃. Two remarks are pertinent here.
First, because (1.2) is linear in k, the condition that k is a density is required to uniquely

determine the solution. This translates to the fact that the numerical procedure discussed above
requires a starting point; that is, the value yN−1 > 0 should be known. (Of course, starting with
yN = 0 yields k̃ ≡ 0.) We proceed by leaving yN−1 undetermined, running the iteration so that
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every yi in fact becomes a linear function of yN−1, and then finding yN−1 by requiring that k̃

integrates to 1.
Second, even though any choice of grid would work in principle, we found one particularly

useful. Indeed, if we set xn = (1/c)�N−n for some � less than (but typically very close to) 1,
then equation (2.3) yields the following relation:

(1 − cxn)yn =
∫ ∞

xn

�
(
log(y/xn)

)
k̃(y)dy = xn

∫ ∞

1
�

(
log(z)

)
k̃(xnz)dz

= xn

N−1∑
i=n

yi

∫ ∞

1
�

(
log(z)

)
1{xnz∈[xi ,xi+1)} dz = xn

N−1∑
i=n

yi

∫ �n−i−1

�n−i

�
(
log(z)

)
dz.

The approximation yielded by this setup is very efficient compared with, for example, the ap-
proximation using a standard equidistant grid, because in this case we need evaluate only N

different integrals numerically1.
We consider two examples in which the density k of I is explicitly known. The first example

is taken from Example 2 with a = 1, β = 2, and s = 3/2. In this case, from (4.1), we have

k(x) = 25/2

√
π

x1/2e−2x for x > 0.

Figures 1–4 show plots of the density k, the difference k̃−k (where k̃ is obtained by the foregoing
method with � = 0.998, yielding a grid of ∼ 4500 points and a few minutes computation time
on an average laptop), the ratio k(x)/�(log(1/x)), and the ratio k̃(x)/�(log(1/x)), respectively.

Figure 1. The density function k.

1All computations were done in the open source computer algebra system SAGE: www.sagemath.org



1958 J.C. Pardo, V. Rivero and K. van Schaik

Figure 2. The difference k̃ − k.

The second explicit example is also from Example 2 with β = 1 and s = 1 and a = 1/2. In
this case, from (4.1), we have

k(x) = 2xe−x2
for x > 0.

Figure 3. The ratio k(x)/�(log 1/x).
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Figure 4. The ratio k̃(x)/�(log 1/x).

It is important to note that � satisfies (A) with α = 1. In this case, Figures 5–8 show plots plots of
the density k, the difference k̃ − k, the ratio k(x)/�(log(1/x)), and the ratio k̃(x)/�(log(1/x)),
respectively.

We next examine two examples in which no formula for k is available. The first example is
where ξ is a stable subordinator with drift, that is, c = 1 and �(dx) = x−1−a dx, where we take

Figure 5. The density function k.
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Figure 6. The difference k̃ − k.

a = 1/4. Figures 9 and 10 show plots of k̃ and the ratio k̃(x)/�(log(1/x)), respectively. Note
that this is an example of a Lévy measure satisfying (2.6) with parameter 0.

The second example is a subordinator ξ with zero drift and Lévy measure of the form �(dx) =
x−1/4 exp(−xn)dx. Figure 11 shows k̃ for n = 1, n = 2 , and n = 3. Figure 12 shows the ratio
k̃(x)/�(log 1/x) for the case where n = 1, where (A) is satisfied with α = 1.

Figure 7. The ratio k(x)/�(log 1/x).
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Figure 8. The ratio k̃(x)/�(log 1/x).

Figure 9. The density function k̃.
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Figure 10. The ratio k̃(x)/�(log 1/x).

Figure 11. Density functions k̃.
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Figure 12. The ratio k̃(x)/�(log 1/x).
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