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In this paper we consider a heavy-tailed stochastic volatility model, Xt = σtZt , t ∈ Z, where the volatility
sequence (σt ) and the i.i.d. noise sequence (Zt ) are assumed independent, (σt ) is regularly varying with
index α > 0, and the Zt ’s have moments of order larger than α. In the literature (see Ann. Appl. Probab.
8 (1998) 664–675, J. Appl. Probab. 38A (2001) 93–104, In Handbook of Financial Time Series (2009)
355–364 Springer), it is typically assumed that (logσt ) is a Gaussian stationary sequence and the Zt ’s are
regularly varying with some index α (i.e., (σt ) has lighter tails than the Zt ’s), or that (Zt ) is i.i.d. centered
Gaussian. In these cases, we see that the sequence (Xt ) does not exhibit extremal clustering. In contrast to
this situation, under the conditions of this paper, both situations are possible; (Xt ) may or may not have
extremal clustering, depending on the clustering behavior of the σ -sequence.

Keywords: EGARCH; exponential AR(1); extremal clustering; extremal index; GARCH; multivariate
regular variation; point process; stationary sequence; stochastic volatility process

1. Introduction

The stochastic volatility model

Xt = σtZt , t ∈ Z, (1.1)

has attracted some attention in the financial time series literature. Here the volatility sequence
(σt ) is (strictly) stationary and consists of non-negative random variables independent of the
i.i.d. sequence (Zt ). We refer to [1] for a recent overview of the theory of stochastic volatility
models. The popular GARCH model has the same structure (1.1), but every Zt feeds into the
future volatilities σt+k , k ≥ 1, and thus (σt ) and (Zt ) are dependent in this case; see, for example,
the definition of a GARCH(1,1) process in Example 4.1. However, neither σt nor Zt is directly
observable, and thus whether we prefer a stochastic volatility a GARCH, or any other model for
returns depends on our modeling efforts.

Previous research on extremes (e.g., [7,12,13,25]) has focused mainly on stochastic volatility
models, where (logσt ) constitutes a Gaussian stationary process and (Zt ) is light-tailed (e.g.,
centered Gaussian) or rather heavy-tailed in the sense that there exists α > 0, a slowly varying
function L and constants p,q ≥ 0 such that p + q = 1 and

P(Z > x) ∼ px−αL(x) and P(Z ≤ −x) ∼ qx−αL(x), x → ∞. (1.2)
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Here and in what follows, for any (strictly) stationary sequence (Yt ), Y denotes a generic element.
A random variable Z satisfying (1.2) will be called regularly varying with index α.

Under the foregoing conditions, the sequence (Xt ) exhibits extremal behavior similar to an
i.i.d. sequence whatever the strength of dependence in the Gaussian log-volatility sequence. In
particular, (Xt ) does not have extremal clusters. It is common to measure extremal clustering in
a stationary sequence (Yt ) by considering the extremal index; suppose that an i.i.d. sequence (Ỹt )

with the same marginal distribution as Y satisfies the limit relation

lim
n→∞P

(
c−1
n

(
max(Ỹ1, . . . , Ỹn) − dn

)≤ x
)= H(x), x ∈ R

for suitable constants cn > 0, dn ∈ R and a nondegenerate limit distribution function H (which
is necessarily continuous). If the same limit relation holds with max(Ỹ1, . . . , Ỹn) replaced by
max(Y1, . . . , Yn) and H replaced by Hθ for some θ ∈ [0,1], then θ is called the extremal index
of (Yt ). Clearly, that the smaller the θ , the stronger the extremal clustering effect present in the
sequence. Under the aforementioned conditions, the stochastic volatility model (Xt ) has extremal
index 1; that is, this process does not exhibit extremal clustering. However, real-life financial
returns typically cluster around large positive and small negative values. This effect is described
by the GARCH model, which under general conditions has an extremal index θ < 1 (see [3,27]).

The aim of this paper is to show that the lack of extremal clustering in stochastic volatility
models is due to the conditions on the tails of distributions of the sequences (σt ) and (Zt ). In
particular, we focus on the heavy-tailed situation when the distribution of σ has power law tails
in the sense that there exist α > 0 and a slowly varying function L such that

P(σ > x) ∼ x−αL(x), x → ∞;
that is, σ is regularly varying with index α, and Z has lighter tail in the sense that E|Z|α+ε < ∞
for some ε > 0. By a result of Breiman [8], we then have

P(X > x) ∼ EZα+P(σ > x) and P(X ≤ −x) ∼ EZα−P(σ > x), x → ∞.

This means that the tail behavior of X is essentially determined by the right tail of σ . This
is in contrast to the situation mentioned earlier. In that case, also by Breiman’s result, P(X >

x) ∼ EσαP (Z > x). The latter relation is responsible for the lack of clustering; it indicates
that extreme values of the sequence (Xt ) are essentially determined by the extremes in the i.i.d.
sequence (Zt ), an extremal index θ = 1 result. We mention in passing that extremal clustering
also can be expected when both the tails of Z and σ are regularly varying with the same index
α > 0. In that case it is well known (see [17]) that X has regularly varying tails with a slowly
varying function L, which in general is rather difficult to determine. We will not treat this case
because it is of limited interest and will lead to rather technical conditions.

The paper is organized as follows. In Section 2 we introduce the notion of a regularly vary-
ing sequence and review point process convergence for such a sequence which was developed
by [10]. We then state a result (Theorem 2.6) which translates mixing and regular variation of the
sequence (σt ) to the stochastic volatility model (Xt ) defined in (1.1). Our results in Sections 3–5
are concerned with three major examples. In Section 3 we study the stochastic volatility model
(1.1), where (σt ) is an exponential AR(1) process with regularly varying marginals. We show that
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this model does not exhibit extremal clustering, due to the lack of extremal clustering in (σt ).
We also show that an EGARCH model with the same volatility dynamics has no extremal clus-
tering either. In Section 4 we assume that a positive power of (σt ) satisfies a random coefficient
autoregressive equation, which we call stochastic recurrence equation. In this case, the extremal
clustering of (σt ) translates to the stochastic volatility model. In Section 5 we consider another
model with genuine extremal clustering. Here we assume that (σt ) is some positive power of the
absolute values of a regularly varying moving average process.

2. Preliminaries

2.1. Regularly varying sequences

A strictly stationary sequence (Xt ) is said to be regularly varying with index α > 0 if for every
d ≥ 1, the vector Xd = (X1, . . . ,Xd)′ is regularly varying with index α > 0. This means that
there exists a sequence (an) with an → ∞ and a sequence of non-null Radon measures (μd) on
the Borel σ -field of R

d
0 = R

d \ {0} such that for every d ≥ 1,

nP (a−1
n Xd ∈ ·) v→ μd(·),

where
v→ denotes vague convergence and μd satisfies the scaling property μd(t ·) = t−αμd(·),

t > 0. The latter property justifies the term “regular variation with index α > 0.” The sequence
(an) can be chosen as such that nP (|X1| > an) → 1. We refer to [30,31] for more reading on
regular variation and vague convergence of measures. Examples of regularly varying sequences
are GARCH processes with i.i.d. Student or normal noise and ARMA processes with i.i.d. reg-
ularly varying noise. [12] studied the extremes of the stochastic volatility model (1.1) under the
assumptions that Eσα+ε < ∞ for some ε > 0 and (Zt ) is i.i.d. regularly varying with index
α > 0. Then (Xt ) is regularly varying with index α, and the measures μd are concentrated on the
axes. This property is shared with an i.i.d. regularly varying sequence (Xt ).

In this paper, we consider the opposite situation. We assume that (σt ) is regularly varying with
index α > 0, normalizing constants (an) such that nP (σ > an) → 1, and limiting measures νd ,
d = 1,2, . . . . This means that for �d = (σ1, . . . , σd)′, d ≥ 1, the relations

nP (a−1
n �d ∈ ·) v→ νd(·)

hold. We also assume that E|Z|α+ε < ∞ for some ε > 0.

Lemma 2.1. Under the foregoing conditions, (Xt ) is regularly varying with index α and limiting
measures μd , d = 1,2, . . . , given by the relation

μd(·) = Eνd{s ∈ R
d+: (Z1s1, . . . ,Zdsd) ∈ ·}. (2.1)

Proof. Assuming that all vectors are written in column form, we have Xd = A�d , where A =
diag(Z1, . . . ,Zd). The matrix A has moment of order α + ε and then regular variation of Xd
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with normalizing constants (an) given by nP (σ > an) → 1 and the form of the limit measures
μd follow from the multivariate Breiman result (see [3]). �

The limits (2.1) are generally difficult to evaluate. We consider some simple examples.

Example 2.2. Assume that νd is concentrated on the axes, that is, it has the form

νd(·) = cd

d∑
i=1

∫ ∞

0
x−α−1I{xei∈·} dx

for some constants cd > 0, where ei denotes the ith unit vector in R
d . Then (2.1) reads as

μd(·) = cd

d∑
i=1

∫ ∞

0
x−α−1P(xZ1ei ∈ ·)dx

= cd

[
EZα+

d∑
i=1

∫ ∞

0
x−α−1I{xei∈·} dx + EZα−

d∑
i=1

∫ ∞

0
x−α−1I{−xei∈·} dx

]
.

Sometimes it is possible to characterize the limit measures μd by their values on all sets of the
form Ac = {x ∈ Xd : c′x > 1} for any choice of c in the unit sphere S

d−1 of R with respect to the
Euclidean norm. However, in general, μd cannot be reconstructed from its values on the sets Ac
(see [2,6,20]).

Example 2.3. Consider an i.i.d. sequence of symmetric β-stable random variables (Zt ); that is,
the characteristic function of Z is given by e−c|z|β , z ∈ R, for some c > 0. Assume that β = 2 for
α ≥ 2 and 2 ≥ β > α for α < 2. Then, for c ∈ S

d−1,

μd(Ac) = Eνd

{
s ∈ R

d+:
d∑

i=1

ciZisi > 1

}

= Eνd

{
s ∈ R

d+: Z

(
d∑

i=1

|ci |βs
β
i

)1/β

> 1

}

= EZα+νd

{
s ∈ R

d+:

(
d∑

i=1

|ci |βs
β
i

)1/β

> 1

}
.

The measure μd , for example, is uniquely determined by the values μd(Ac), c ∈ S
d−1, provided

that they are positive and α is not an integer (see [2]) or, in view of the symmetry of the underlying
distributions, if α is an odd integer (see [24]). By virtue of the foregoing calculations, this means
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that μd is uniquely determined by the values of νd on the sets{
s ∈ R

d+:

(
d∑

i=1

|ci |βs
β
i

)1/β

> 1

}
, c ∈ S

d−1, (2.2)

provided that these values are positive. For β = 2, Z is centered normal, and then (2.2) describes
the complements of all ellipsoids in R

d with
∑d

i=1 c2
i = 1 intersected with R

d+.

2.2. Mixing conditions

For the reader’s convenience, here we introduce mixing concepts for strictly stationary sequences
(Xt ) used in this work. For h ≥ 1, let

αh = sup
A∈σ(−∞,0],B∈σ[h,∞)

|P(A ∩ B) − P(A)P (B)|,

βh = E
(

sup
B∈σ[h,∞)

∣∣P (B|σ(−∞,0]
)− P(B)

∣∣),
where σA is the σ -field generated by (Xt )t∈A for any A ⊂ Z. The sequence (Xt ) is strongly
mixing with rate function (αh) if αh → 0 as h → ∞. If βh → 0 as h → ∞, then (Xt ) is β-
mixing with rate function (βh). Strong mixing is known to imply β-mixing (see Doukhan [15]
for examples and comparisons of different mixing concepts).

Strong mixing and β-mixing were introduced in the context of the central limit theory for
partial sums of (Xt ). For partial maxima of (Xt ), other mixing concepts are more suitable (see,
e.g., the conditions D and D′ in Leadbetter et al. [26]). In this paper, we make use of the con-
dition A(an) introduced by Davis and Hsing [10]: Assume that there exists a sequence rn → ∞
such that rn = o(n) and

�f (Nn) − (�f (Nn,rn))
n/rn → 0, (2.3)

where Nn is the point process of the points (a−1
n Xt )t=1,...,n, Nn,rn is the point process of the

points (a−1
n Xt )t=1,...,rn , �f (N) denotes the Laplace functional of the point process N evalu-

ated at the non-negative function f and (an) satisfies P(|X| > an) ∼ n−1. Davis and Hsing [10]
required (2.3) to hold only for non-negative measurable step functions f , which have bounded
support in R0. The mixing condition A(an) is very general. It ensures that Nn has the same
limit (provided that it exists) as a sum of [n/rn] i.i.d. copies of the point process Nn,rn . Condi-
tion A(an) is implied by many known mixing conditions, particularly strong mixing (see [10]).

2.3. The Davis and Hsing [10] approach

Davis and Hsing presented a rather general approach to the extremes of a strictly stationary
sequence (Xt ). We quote their Theorem 2.7 for further reference.
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Theorem 2.4. Assume that (Xt ) is regularly varying with index α > 0 and normalization (an)

such that P(|X| > an) ∼ n−1, the mixing condition A(an) is satisfied, and the anticlustering
condition

lim
m→∞ lim sup

n→∞
P
(

max
m≤|t |≤rn

|Xt | > yan

∣∣|X0| > yan

)
= 0, y > 0, (2.4)

holds. Here (rn) is an integer sequence such that rn → ∞, rn = o(n), which appears in the
definition of A(an). Then the following point process convergence holds in Mp(R0), the set of
point processes with state space R0, equipped with the vague topology and the Borel σ -field:

Nn =
n∑

i=1

εXt/an

d→ N =
∞∑
i=1

∞∑
j=1

εPiQij
,

where (Pi) are the points of a Poisson process on (0,∞) with intensity λ(dx) = θ|X|αx−α−1 dx

and
∑∞

i=1 εQij
, j ≥ 1, constitute an i.i.d. sequence of point processes whose points satisfy the

property |Qij | ≤ 1 a.s. and supj |Qij | = 1 a.s. Here θ|X| ∈ [0,1] is the extremal index of the
sequence (|Xt |).

Remark 2.5. The anticlustering condition (2.4) ensures that clusters of extremes become sepa-
rated from one another through time. (For a precise description of the distribution of the point
processes

∑∞
i=1 εQij

, see [10]. For more on the extremal index of a stationary sequence, see [26]
and [16], Section 8.1. For an introduction to point processes and their convergence in the context
of extreme value theory, see [30,31].)

An immediate consequence of Theorem 2.4 is limit theory for the maxima M
|X|
n =

maxt=1,...,n |Xt |, n ≥ 1, of the sequence (|Xt |). Indeed, we conclude with (an) chosen such
that nP (|X| > an) ∼ 1,

lim
n→∞P

(
a−1
n M |X|

n ≤ x
) = lim

n→∞P
(
Nn([−x, x]) = 0

)= P
(
N([−x, x]) = 0

)
= P
(

sup
i≥1

Pi sup
j≥1

|Qij | ≤ x
)

= P
(

sup
i≥1

Pi ≤ x
)

= P(P1 ≤ x)

= 

θ|X|
α (x), x > 0,

where 
α(x) = exp{−x−α}, x > 0, denotes the Fréchet distribution function with parameter α.
Similar results can be derived for the maxima and upper-order statistics of the X-sequence, joint
convergence of minima and maxima, and other results belonging to the folklore of extreme value
theory. Theorem 2.4 is fundamental for an extreme value theory of the sequence (Xt ), and the
results reported by [3,4,10,11,31] also show that the point process convergence can be used to
derive limit results for sums, sample autocovariances and autocorrelations, and large deviation
results.
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2.4. A translation result

Our next result states that the stochastic volatility model (1.1) inherits the properties relevant for
the extremal behavior of (Xt ) from the volatility sequence (σt ).

Theorem 2.6. Consider the stochastic volatility model (1.1). Assume that (σt ) is regularly vary-
ing with index α > 0, it satisfies the strong mixing property, and E|Z|α+ε < ∞ for some ε > 0.
Then (Xt ) is regularly varying with index α and is strongly mixing with the same rate as (σt ). If
(Xt ) also satisfies the anticlustering condition (2.4), then Theorem 2.4 applies.

Proof. The proof of the regular variation of (Xt ) follows from Lemma 2.1. Strong mixing of
(σt ) implies strong mixing of (Xt ) with the same rate (see page 258 in [14]). Because we assume
the anticlustering condition (2.4) for (Xt ), the conditions of Theorem 2.4 are satisfied. �

Remark 2.7. If |Z| ≤ M a.s. for some positive M , then the anticlustering condition for (Xt )

follows trivially from that for (σt ). If Z is unbounded, then whether this conclusion remains true
is not obvious. However, when dealing with concrete examples, it often is not difficult to derive
the anticlustering condition for (Xt ); see the examples below.

In what follows, we consider three examples of regularly varying stochastic volatility mod-
els. In all cases, the volatility sequence (σt ) is stationary and dependent. We verify the regular
variation, strong mixing, and anticlustering conditions for (σt ) and show that these properties
are inherited by (Xt ). The exponential AR(1) model (σt ) of Section 3 does not cause extremal
clustering of (Xt ) whereas a random coefficient autoregressive or linear process structure of (σt )

triggers extremal dependence in the stochastic volatility model; see Sections 4 and 5.

3. Exponential AR(1)

Our first example is an exponential autoregressive process of order 1 process [we write AR(1)]
given by

σt = eYt , t ∈ Z, (3.1)

where (Yt ) is a causal stationary AR(1) process Yt = ϕYt−1 + ηt for some ϕ ∈ (−1,1) and an
i.i.d. sequence (ηt ) of random variables.

Example 3.1. Volatility sequences of the type (3.1) appear in the EGARCH (exponential
GARCH) model introduced by [29]. In this case, Xt = σtZt , t ∈ Z, (Zt ) is an i.i.d. sequence
and

log(σ 2
t ) = α0(1 − ϕ)−1 +

∞∑
k=0

ϕk(γ0Zt−1−k + δ0|Zt−1−k|), t ∈ Z (3.2)

for positive parameters α0, δ0, γ0 and ϕ ∈ (−1,1). Most often, it is assumed that (Zt ) is an
i.i.d. standard normal sequence. In that case, σ has all moments in contrast to the situation that
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we consider in this section. This model is close to the stochastic volatility model (1.1) with an
exponential AR(1) volatility sequence (3.1). However, in the EGARCH model, Zt feeds into the
sequence (σs)s>t , and thus the σ - and Z-sequences are dependent.

3.1. Mixing property

It is known that (Yt ), and hence (σt ), are β-mixing with geometric rate if η has a positive density
in some neighborhood of Eη (cf. [15], Theorem 6, page 99).

3.2. Regular variation

We introduce the following conditions:

P(eη > x) = x−αL(x), x > 0, (3.3)

P(eη−
> x) ≤ cP (eη > x), x ≥ 1, (3.4)

for some α > 0, a slowly varying function L and some constant c > 0, and η− denotes the
negative part of η. Here and in what follows, c denotes any positive constants that are possibly
different but whose values are not of interest. Note that these conditions are satisfied if η is
gamma or Laplace distributed.

We first prove that σ is regularly varying.

Lemma 3.2. Assume (3.3) and also (3.4) if ϕ < 0. Then Ee(α+ε)ϕY < ∞ for some small ε > 0,
and the following relation holds:

P(σ > x) ∼ EeαϕY P (eη > x) = EeαϕY x−αL(x), x → ∞. (3.5)

Proof. Because σt = eηt σ
ϕ
t−1, the random variables eηt , σt−1 are independent and, by (3.3), eη is

regularly varying with index α > 0, we may apply a result of Breiman [8] to conclude that (3.5)
holds if we can show that there exists an ε > 0 such that Ee(α+ε)ϕY < ∞. We first consider the
case of positive ϕ. Here

Ee(α+ε)ϕY =
∞∏
i=1

Ee(α+ε)ϕiη.

By (3.3), for every δ > 0, there exists an x0 > 1 such that P(eη > x) ≤ x−α+δ for x ≥ x0 (so-
called Potter bounds; see Bingham et al. [5], page 25). Thus for small ε, δ > 0 such that ((α −
δ)/[(α + ε)ϕ1] − 1) > 0,

Ee(α+ε)ϕiη ≤ x
(α+ε)ϕi

0 +
∫ ∞

x
(α+ε)ϕi

0

P
(
e(α+ε)ϕiη > y

)
dy

≤ x
(α+ε)ϕi

0 + ((α − δ)/[(α + ε)ϕi] − 1
)−1

x
−α+δ+(α+ε)ϕi

0 .
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We conclude that for small ε, δ > 0, some constants c > 0,

∞∏
i=1

Ee(α+ε)ϕiη ≤ exp

{ ∞∑
i=1

[
x

(α+ε)ϕi

0 − 1 + ((α − δ)/[(α + ε)ϕi] − 1
)−1

x
−α+δ+(α+ε)ϕi

0

]}

≤ c exp

{
c

∞∑
i=1

ϕi

}
< ∞.

We next consider the case of negative ϕ. We observe that

Ee(α+ε)ϕY ≤
∞∏
i=1

Ee(α+ε)ϕ2iη
∞∏
i=1

Ee(α+ε)|ϕ|2i−1η−
.

Similar calculations as before, where we exploit (3.3) and (3.4), show that the right-hand side is
finite for small ε. �

Lemma 3.3. Assume the conditions of Lemma 3.2. Then the sequence (σt ) is regularly varying
with index α. The limit measure of the vector �d = (σ1, . . . , σd)′ is given by the following limiting
relation on the Borel σ -field of R

d
0 :

P(x−1�d ∈ ·)
P (σ > x)

v→ α

d∑
i=1

∫ ∞

0
y−α−1I{yei∈·} dy, x → ∞, (3.6)

where ei is the ith unit vector in R
d .

Proof. We give the proof only for positive ϕ and η. Proofs for the other cases are similar.
We observe that

�d = diag(eϕY0 , eϕ2Y0 , . . . , eϕdY0)

⎛⎜⎜⎝
eη1

eη2+ϕη1

...

eηd+ϕηd−1+···+ϕd−1η1

⎞⎟⎟⎠= AB.

Because E‖A‖α+ε < ∞ for small positive ε and A and B are independent regular variation of �d

will follow from Breiman’s multivariate result [3] if it can be shown that B is regularly varying
with index α. Indeed, we will show that B has the same limit measure as

(eη1, eη2Eeαϕη, . . . , eηd Eeαϕη · · ·Eeαϕd−1η)′.

This fact does not follow from the continuous mapping theorem for regularly varying vectors

(see [19,21]), because the function (r1, . . . , rd) → (r1, r
ϕ
1 r2, . . . , r

ϕd−1

1 · · · rϕ
d−1rd) does not have

the homogeneity property.
For simplicity, we prove the result only for d = 2, the general case being analogous. To ease

notation, we also write Ri = eηi , i = 1,2. Choose an such that P(eη > an) ∼ n−1 and take any
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set A ⊂ R
2
0 that is a subset of the first orthant bounded away from 0 and continuous with respect

to the limiting measure of �d in the formulation of the lemma. Write B = {a−1
n (R1,R

ϕ
1 R2) ∈ A},

and for any ε, γ > 0, consider the disjoint sets

B1 = B ∩ {R1 > εan,R2 > γan},
B2 = B ∩ {R1 > εan,R2 ≤ γ an},
B3 = B ∩ {R1 ≤ εan,R2 > γan},
B4 = B ∩ {R1 ≤ εan,R2 ≤ γ an}.

Then for any ε, γ > 0,

nP (B1) ≤ nP (R1 > εan)P (R2 > γan) → 0.

Next, consider B3. Choose some M > 1 and consider the disjoint partition of B3,

B31 = B3 ∩ {R1 ∈ [1,M]}, B32 = B3 ∩ {R1 > M}.
Then

nP (B32) ≤ nP (R2 > γan)P (R1 > M) ∼ γ −αP (R1 > M), n → ∞.

Thus, for any ε, γ > 0,

lim
M→∞ lim sup

n→∞
nP (B32) = 0.

Observe that nP (R1I{R1∈[1,M]} > can) → 0 for every c > 0 and, by Breiman’s result [8],
R2R

ϕ
1 I{R1∈[1,M]} is regularly varying. By Lemma 3.12 of [22],(

R1I{R1∈[1,M]},R2R
ϕ
1 I{R1∈[1,M]}

)= (R1I{R1∈[1,M]},0
)+ (0,R2R

ϕ
1 I{R1∈[1,M]}

)
is regularly varying with the same index and limiting measure as (0,R2R

ϕ
1 I{R1∈[1,M]}). There-

fore,

nP (B31) ∼ nP
(
a−1
n

(
0,R2R

ϕ
1 I{R1∈[1,M]}

) ∈ A,R2 > γan

)
= nP

(
a−1
n R2R

ϕ
1 I{R1∈[1,M]} ∈ proj2 A,R2 > γan

)
I{proj1 A={0}},

where proji A, i = 1,2, are the projections of A on the x- and y-axes, respectively. Regular
variation of R2 with limit measure μ(t,∞) = t−α , t > 0, ensures that

lim
M→∞ lim

γ→0
lim

n→∞nP (B31) = lim
M→∞ lim

γ→0
Eμ
{
t > γ : R

ϕ
1 I{R1∈[1,M]}t ∈ proj2 A

}
I{proj1 A={0}}

= lim
M→∞Eμ

{
t > 0: R

ϕ
1 I{R1∈[1,M]}t ∈ proj2 A

}
I{proj1 A={0}}

= lim
M→∞ER

αϕ
1 I{R1∈[1,M]}μ(proj2 A)I{proj1 A={0}}

= ER
αϕ
1 μ(proj2 A)I{proj1 A={0}}.
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We have A ⊂ {x: |x1| + |x2| > δ} for small δ > 0. Then B4 is contained in the union of the
following sets for M > 1:

B41 = B4 ∩ {R1 > 0.5δan},
B42 = B4 ∩ {Rϕ

1 R2 > 0.5δan,R1 > M},
B43 = B4 ∩ {Rϕ

1 R2 > 0.5δan,R1 ∈ [1,M]}.

Choosing ε sufficiently small, B41 is empty. Moreover, by Breiman’s result,

nP (B42) ≤ nP (R
ϕ
1 R2 > 0.5δan,R1 > M) ∼ cE

[
R

αϕ
1 I{R1>M}

]
, n → ∞.

Choosing γ sufficiently small, the set B43 is empty. Therefore, and because E[R(α+ε)ϕ
1 ] < ∞,

lim
M→∞ lim sup

n→∞
nP (B4i ) = 0, i = 1,2,3.

It remains to consider the set B2. Consider the disjoint partition of B2 for M > 1,

B21 = B2 ∩ {R2 ≤ M} and B22 = B2 ∩ {R2 > M}.

Because P(B22) ≤ P(R1 > εan)P (R2 > M), we have

lim
M→∞ lim sup

n→∞
nP (B22) = 0.

Moreover,

nP (B21) ∼ nP
(
R1 > εan, a

−1
n (R1,0) ∈ A

)
.

Thus, for every M > 0,

lim
ε→0

lim
n→∞nP (B21) = lim

ε→0
μ{t > ε: t ∈ proj1 A}I{proj2 A={0}}

= μ{proj1 A}I{proj2 A={0}}.

Summarizing the foregoing arguments, we have proven that

nP
(
a−1
n (R1,R

ϕ
1 R2) ∈ A

)→ α

∫ ∞

0
x−α−1[I{xe1∈A} + ER

αϕ
1 I{xe2∈A}

]
dx.

Modifying the proof above for d ≥ 2, we obtain

nP (a−1
n B ∈ A)

→ α

∫ ∞

0
x−α−1[I{xe1∈A} + EeαϕηI{xe2∈A} + · · · + Eeαϕη · · ·Eeαϕd−1ηI{xed∈A}

]
dx.
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We now apply the multivariate Breiman result [3] to obtain

nP (a−1
n AB ∈ A)

→ α

∫ ∞

0
x−α−1E

[
I{eϕY xe1∈A} + EeαϕηI{eϕ2Y xe2∈A} + · · ·

+ Eeαϕη · · ·Eeαϕd−1ηI{eϕdY xed∈A}
]

dx

= α

∫ ∞

0
x−α−1[EeαϕY I{xe1∈A} + EeαϕηEeαϕ2Y I{xe2∈A} + · · ·

+ Eeαϕη · · ·Eeαϕd−1ηEeαϕdY I{xed∈A}
]

dx

= αEeαϕY

∫ ∞

0
x−α−1[I{xe1∈A} + I{xe2∈A} + · · · + I{xed∈A}

]
dx.

This relation and Lemma 3.2 conclude the proof for ϕ ∈ (0,1) and η > 0 a.s. �

3.3. Anticlustering condition

Lemma 3.4. Assume (3.3) and also

P
(
e|η| > x

)≤ cP (eη > x), x ≥ 1 (3.7)

for some c > 0, ϕ ∈ (−1,1). Then the anticlustering condition (2.4) holds for the sequence (σt )

and any sequence (rn) satisfying rn = O(nγ ) for some γ ∈ (0,1). If |Z| has finite moments of
any order, then (2.4) is also satisfied for the stochastic volatility sequence (Xt ) with the same
sequence (rn) as for (σt ). If E|Z|α+ξ < ∞ for some ξ > 0, then (2.4) holds for the sequence
(Xt ) with (rn) such that rn = O(nγ ) for every γ ∈ (0,1).

Proof. Throughout, we assume that ϕ �= 0. If ϕ = 0, then both (σt ) and (Xt ) are i.i.d. regularly
varying sequences, and (2.4) is trivially satisfied.

We first prove the result for (σt ). We begin under the assumptions ϕ ∈ (0,1) and η > 0, and
verify that

lim
m→∞ lim sup

n→∞
P
(

max
m≤t≤rn

Yt > log(yan)
∣∣Y0 > log(yan)

)
= 0, y > 0. (3.8)

Fix y > 0 and write B = {maxm≤t≤rn Yt > log(yan)} and observe that

Yt = ϕt−mYm +
t∑

i=m+1

ϕt−iηi, m ≤ t. (3.9)

Then B ⊂ B1 ∪ B2, where for δ ∈ (0,1),

B1 = {Ym > δ log(yan)} and B2 =
{

max
m≤t≤rn

t∑
i=m+1

ϕt−iηi > (1 − δ) log(yan)

}
.
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Because Y0 is independent of (ηt )t≥1, P(B2) = P(B2|Y0 > log(yan)). Therefore, and by
Markov’s inequality,

P
(
B2|Y0 > log(yan)

) ≤ rn∑
t=m

P

(
t∑

i=m+1

ϕt−iηi > (1 − δ) log(yan)

)

≤
rn∑

t=m

P
(
Yt > (1 − δ) log(yan)

)
≤ rnP

(
Y > (1 − δ) log(yan)

)
≤ rnEe(α−ε)Y (yan)

−(1−δ)(α−ε)

for 0 < ε < α and large n. Because Ee(α−ε)Y < ∞ and an = n1/α�(n) for some slowly varying
function �, choosing δ, ε > 0 sufficiently small, the right-hand side converges to 0 if rn = O(nγ )

for some γ < 1. Moreover, B1 ⊂ B11 ∪ B12, where

B11 = {ϕmY0 > 0.5δ log(yan)} and B12 =
{

m∑
i=1

ϕm−iηi > 0.5δ log(yan)

}
.

For any m, small ε > 0, large n, we have

nP
(
B11 ∩ {Y0 > log(yan)}

)= nP
(
Y0 > 0.5δ log(yan)ϕ

−m
)≤ n(yan)

−0.5δϕ−m(α−ε).

Therefore, choosing m sufficiently large, the right-hand side converges to 0. Because Y0 and B12
are independent,

P
(
B12|Y0 > log(yan)

)= P(B12).

The right-hand side is bounded by P(Y > 0.5δ log(yan)) = o(1). Thus, we have proven

lim
n→∞P

(
B1|Y0 > log(yan)

)= 0

and that (3.8) holds. Next, we prove

lim
m→∞ lim sup

n→∞
P
(

max−rn≤t≤−m
Yt > log(yan)

∣∣Y0 > log(yan)
)

= 0. (3.10)

Write

C =
{

max−rn≤t≤−m
Yt > log(yan), Y0 > log(yan)

}
.

Again using (3.9), we see that C ⊂ C1 ∪ C2, where, for δ ∈ (0,1),

C1 = {Y−rn > δ logan,Y0 > log(yan)},

C2 =
{

max−rn≤t≤−m

t∑
i=−rn+1

ϕt−iηi > (1 − δ) log(yan), Y0 > log(yan)

}
.
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Another application of (3.9) and stationarity yields

nP (C1) ≤ nP
(
Y0 > δ log(yan), Y0 > (1 − δ)ϕ−rn log(yan)

)
+ nP

(
Y0 > δ log(yan),

rn∑
i=1

ϕrn−iηi > δ log(yan)

)
= I1 + I2.

By regular variation, for small 0 < ε < α and large n,

I1 ≤ n(yan)
−(α−ε)(1−δ)ϕ−rn

.

Because rn → ∞, we have I1 = o(1) as n → ∞. Moreover, it follows that

lim sup
n→∞

I2 ≤ c lim sup
n→∞

P

(
rn∑

i=1

ϕrn−iηi > δ log(yan)

)
= 0.

Thus, we have proven that lim supn→∞ nP (C1) = 0. For C2, we have C2 ⊂ C21 ∪ C22, where

C21 =
{

max−rn≤t≤−m

t∑
i=−rn+1

ϕt−iηi > (1 − δ) log(yan),ϕ
mY−m > δ log(yan)

}
,

C22 =
{

max−rn≤t≤−m

t∑
i=−rn+1

ϕt−iηi > (1 − δ) log(yan),

0∑
i=−m+1

ϕ−iηi > (1 − δ) log(yan)

}
.

Thus, for small ε, large m,

nP (C21) ≤ nP
(
Y0 > ϕ−mδ log(yan)

)≤ n(yan)
−(α−ε)δϕ−m → 0, n → ∞,

and for small ε, δ,

nP (C22) = nP

(
max−rn≤t≤−m

t∑
i=−rn+1

ϕt−iηi > (1 − δ) log(yan)

)

× P

(
0∑

i=−m+1

ϕ−iηi > (1 − δ) log(yan)

)

≤ nrn
[
P
(
Y > (1 − δ) log(yan)

)]2 ≤ nrn(yan)
−2(α−ε)(1−δ) = o(1),

provided that rn = O(nγ ) for some γ < 1. For general η and |ϕ| < 1, we see that |Yt | ≤∑
i=j |ϕ|j |ηt−j |. We can apply the same reasoning as above, using (3.7).
We now turn to the proof of the anticlustering condition for (Xt ). An inspection of the forego-

ing proof shows that we have to add the terms Rt = log |Zt | to |Yt |. We restrict ourselves to the
cases ϕ ∈ (0,1), η > 0 a.s., and only show that

lim
m→∞ lim sup

n→∞
P
(

max
m≤t≤rn

(Yt + Rt) > log(yan)
∣∣Y0 + R0 > log(yan)

)
= 0, y > 0. (3.11)
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We use the same notation for the modified events. We start by observing that

B =
{

max
m≤t≤rn

(Yt + Rt) > log(yan)
}

⊂ B1 ∪ B2,

where B2 is the same as above and

B1 =
{
Ym + max

m≤t≤rn
Rt > δ log(yan)

}
⊂ {Ym > 0.5δ log(yan)} ∪

{
max

m≤t≤rn
Rt > 0.5δ log(yan)

}
= D1 ∪ D2.

Now P(D1) can be treated in the same way as P(B1) in the foregoing proof. If |Z| has moments
of any order h > 0, then an application of Markov’s inequality for sufficiently large h yields, for
any choice of rn = o(n),

P(D2) = P
(

max
m≤t≤rn

|Zt | > (yan)
0.5δ
)

≤ rnP
(|Z| > (yan)

0.5δ
)≤ crn(yan)

−0.5hδ = o(1).

On the other hand, if rn = O(nγ ) for every small γ , then Markov’s inequality of order h = α + ξ

yields the same result by choosing γ close to 0. This completes the proof of (3.11). �

3.4. Main result for the exponential AR(1) process

Here we give sufficient conditions for the validity of Theorem 2.4 when (Xt ) is a stochastic
volatility process and the volatility process (σt ) is an exponential AR(1) process. The result is a
consequence of the translation result Theorem 2.6 and the foregoing calculations.

Theorem 3.5. Consider the stochastic volatility model (1.1), where the volatility sequence (σt )

is an exponential AR(1) process (3.1) for some ϕ ∈ (−1,1). Assume the following conditions:

• The regular variation conditions (3.3) and (3.7) hold for some index α > 0.
• The random variable η has positive density in some neighborhood of Eη.

Then the following properties hold for (σt ).

(1) Regular variation with index α and limiting measures given in (3.6).
(2) β-mixing with geometric rate and A(an) are satisfied for any sequence (rn) satisfying

rn ≥ c logn for some c > 0 and rn = o(n).
(3) The anticlustering condition for rn = O(nγ ) for any γ ∈ (0,1).

The following properties hold for the stochastic volatility process (Xt ):

(4) The strong mixing property with geometric rate and A(an) are satisfied for any sequence
(rn) satisfying rn ≥ c logn for some c > 0 and rn = o(n).

Also assume that

• E|Z|α+δ < ∞ for some δ > 0.
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Then

(5) (Xt ) is regularly varying with index α and limiting measures given in Example 2.2.
(6) (Xt ) satisfies the anticlustering condition (2.4) for (rn) such that rn = O(nγ ) for every

γ < 1.

Moreover, if

• Z has all moments,

then

(7) (Xt ) satisfies the anticlustering condition (2.4) for any sequence (rn) such that rn = O(nγ )

for some γ < 1.

In particular, Theorem 2.4 applies to the sequences (σt ) and (Xt ).

Proof. We first give the proof for the volatility sequence (σt ). Regular variation of (σt ) follows
from Lemma 3.3, and β-mixing with geometric rate follows from Section 3.1. It follows from
[10] and references therein that condition A(an) is satisfied with rn ≥ c logn for some c > 0.
Condition (2.4) for (σt ) follows from Lemma 3.4 under the assumption that rn = O(nγ ) for
some γ ∈ (0,1).

Because β-mixing with geometric rate implies strong mixing with geometric rate and, using
the argument on page 258 of [14], it follows that (Xt ) is strongly mixing with geometric rate. It
follows from [10] and references therein that condition A(an) is satisfied for any rn ≥ c logn for
some c > 0. Regular variation of (Xt ) follows from Theorem 2.6, and the limiting measures are
derived in Example 2.2. Finally, condition (2.4) was verified in Lemma 3.4. �

Using the machinery in [3,10–12], we can now derive various limit results for the sequence
(Xt ). These include infinite variance limits for the normalized partial sums

∑n
t=1 Xt and sample

covariances
∑n−h

t=1 XtXt+h in the case where α < 2. For general α > 0, the fact that the limit
measures of the regular variation of (Xt ) are concentrated on the axes implies that the normalized
partial maxima of (Xt ) converge to a Fréchet distribution,

lim
n→∞P

(
a−1
n max

t=1,...,n
Xt ≤ x

)
= 
α(x) = e−px−α

, x > 0, (3.12)

where (an) satisfies nP (|X| > an) → 1 and

lim
x→∞

P(X > x)

P (|X| > x)
= EZα+

E|Z|α = p ∈ [0,1].

Relation (3.12) means that the extremal index of the sequence (Xt ) is 1; that is, we get the same

result as for an i.i.d. sequence (X̃t ) with X̃
d= X. In other words, the stochastic volatility model

does not exhibit extremal clustering. This is analogous to stochastic volatility models in which
Eσα+δ < ∞ and Z is regularly varying with index α (see [12,13]), although the reasons are
very different in the two cases. Figure 1 presents graphs of regularly varying stochastic volatility
models with light-tailed and heavy-tailed multiplicative noise. In the present case, the structure of
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Figure 1. 1000 realizations of a stochastic volatility model, where (logσt ) is an AR(1) process with
ϕ = 0.9. The parallel lines indicate the 0.01 and 0.99 quantiles of the distribution of X. Left: The ran-
dom variable η is Laplace distributed: P(X > x) = P(X ≤ −x) = 0.5e−4x , x > 0, and Z standard normal.
Right: The random variable η is N(0,0.25)-distributed and Z is t-distributed with 4 degrees of freedom
standardized to unit variance. In both graphs, (Xt ) is regularly varying with index 4, and there is no extremal
clustering in the sense that high and low exceedances of the lines occur separated through time.

the limiting measures for the regularly varying finite-dimensional distributions of the σ -sequence
is responsible for the limiting measures of the X-sequence.

In passing, we mention that a condition of type (3.3) limits the choice of the distributions
of the noise variable η in the exponential AR(1) process. If η has a slightly heavier right tail
than suggested by (3.3) the random variable Y will not have any moments. This occurs, for
example, when η has a lognormal or Student distribution. Thus regular variation of (σt ) and (Xt )

is possible only for a relatively thin class of noise variables η.
Before we consider other stochastic volatility models with genuine extremal clustering, we

show that the EGARCH model from Example 3.1 is regularly varying and does not have extremal
clusters.

Example 3.6. Recall the definition of the EGARCH model from Example 3.1, particularly
the dynamics of (σ 2

t ) given by (3.2). Writing ηt = 0.5(α0(1 − ϕ)−1 + γ0Zt + δ0|Zt |) and
assuming the conditions of Lemma 3.2, we conclude that (σt ) is regularly varying with in-
dex α, and the limiting measures are concentrated on the axes. Using the modified Breiman
lemma from [22], an inspection of the proof of Lemma 3.3 shows that �d = (σ1, . . . , σd)′ and
(eη0 , . . . , eηd−1)′Eeαϕη have the same limit measures of regular variation. Therefore, regular vari-
ation of Xd = (X1, . . . ,Xd)′ will follow if we can show that Rd = (Z1eη0, . . . ,Zdeηd−1)′ is
regularly varying with limit measures concentrated on the axes. By Breiman’s result, Z1eη0 is
regularly varying with index α. Let (an) be such that nP (eη > an) → 1. By construction, Z

has all moments, and thus we can choose a sequence cn → ∞ such that nP (|Z| > cn) → 0 and
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an/cn → ∞. Then, for d ≥ 2, δ > 0,

nP (|Zie
ηi−1 | > δan, i = 1, . . . , d) ≤ nP (|Z1eη0 | > δan, |Z2eη1 | > δan)

≤ nP (|Z1eη0 | > δan)P (eη1 > δan/cn) + nP (|Z| > cn)

= o(1).

Thus, if nP (a−1
n Rd ∈ ·) has a non-vanishing vague limit, then it must be concentrated on the

axes. To show this, we focus on the case where d = 2. Here, for x, δ > 0, by Breiman’s result
and the previous calculations,

nP (a−1
n |Z1|eη0 ≤ δ, a−1

n Z2eη1 > x) = nP (a−1
n Z2eη1 > x)

− nP (a−1
n |Z1|eη0 > δ,a−1

n Z2eη1 > x)

∼ x−αEZα+,

nP (a−1
n |Z1|eη0 ≤ δ, a−1

n Z2eη1 ≤ −x) = nP (a−1
n Z2eη1 ≤ −x)

− nP (a−1
n |Z1|eη0 > δ,a−1

n Z2eη1 ≤ −x)

∼ x−αEZα−.

Therefore, (Xt ) is regularly varying with index α, and the limiting measures are concentrated
on the axes. Furthermore, if η has a positive density in some neighborhood of Eη, then (logσt ),
hence (Xt ), is strongly mixing with geometric rate, and then A(an) holds for any sequence
(rn) satisfying rn = o(n) and rn ≥ c logn for some c > 0. For the proof of the anticlustering
condition of (Xt ), we can follow along the lines of the proof of Lemma 3.7, observing that Z has
all moments. Thus, the conditions of Theorem 2.4 are satisfied, in particular because the limiting
measures of the regularly varying finite-dimensional distributions of (Xt ) are concentrated on
the axes the extremal index θ|X| = 1, that is, there is no extremal clustering in this sequence.

4. Stochastic recurrence equations

We assume that the stationary sequence (σt ) satisfies the relation

σ
p
t = Atσ

p

t−1 + Bt , t ∈ Z (4.1)

for an i.i.d. sequence ((At ,Bt ))t∈Z of non-negative random variables and some positive p.
Throughout we assume the conditions of Kesten [23], which ensure that (4.1) has a strictly sta-
tionary solution, namely E logA < 0 and E log+ B < ∞.

Example 4.1. For p = 2, a model of the type (4.1) has attracted major attention in the finan-
cial time series literature [1]: the GARCH process of order (1,1) (we write GARCH(1,1))
given by X̃t = σtηt , t ∈ Z, (ηt ) is an i.i.d. centered sequence with unit variance and σ 2

t =
α0 + σ 2

t−1(α1η
2
t−1 + β1) for positive parameters αi,β1. The main difference from the stochastic

volatility model (1.1) with the same sequence (σt ) is that ηt feeds into (σt+k)k≥1, and thus the
noise (ηt ) and (σt ) are dependent.
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4.1. Mixing property

It follows from [28] that (σ
p
t ) is strongly mixing with geometric rate if A,B satisfy some regu-

larity condition. In particular, if At and Bt are polynomials of an i.i.d. sequence (ηt ) and η has
a positive density in some neighborhood of Eη, then (σt ) is β-mixing with geometric rate. Thus
the GARCH(1,1) model satisfies this condition for p = 2 if η has a positive density in some
neighborhood of the origin.

4.2. Regular variation

Regular variation of the marginal distribution of the solution to the stochastic recurrence equation
(4.1) was proven by Kesten [23] and Goldie [18]. In particular, they showed that

P(σp > x) ∼ cx−α, x → ∞ (4.2)

for some constant c > 0. The index α is then obtained as the unique positive solution to the
equation EAκ = 1. Relation (4.2) holds under general conditions on (A,B), which we do not
give here. Regular variation of (σt ) is inherited by the solution to (4.1).

Lemma 4.2. Assume the conditions of Kesten [23] for the stochastic recurrence equation (4.1)
and the moment conditions EAα+ε < ∞ and EBα+ε < ∞ for some ε > 0. Then (σt ) is regularly
varying with index αp and for �d = (σ1, . . . , σd)′,

P(x−1�d ∈ ·)
P (σ > x)

(4.3)
v→ αp

∫ ∞

0
t−αp−1P

(
t (1,A

1/p

1 , . . . , (Ad−1 · · ·A1)
1/p)′ ∈ ·)dt, x → ∞.

Moreover, if E|Z|αp+δ < ∞ for some δ > 0, then the stochastic volatility model (Xt ) is regularly
varying with index αp, and the limiting measure of Xd = (X1, . . . ,Xd)′ is given by

P(x−1Xd ∈ ·)
P (|X| > x)

(4.4)
v→ αp

E|Z|αp

∫ ∞

0
t−αp−1P

(
t (Z1,Z2A

1/p

1 , . . . ,Zd(Ad−1 · · ·A1)
1/p)′ ∈ ·)dt.

If Z is symmetric and P(Z = 0) = 0, then the limit in (4.4) turns into

αp

∫ ∞

0
t−αp−1P

(
t
(
sign(Z1), (Z2/|Z1|)A1/p

1 , . . . , (Zd/|Z1|)(Ad−1 · · ·A1)
1/p
)′ ∈ ·)dt.

Proof. We take the approach in the proof of Corollary 2.7 in [3]. For every t , we have

σ
p
t = At · · ·A1σ

p

0 +
t∑

i=1

At · · ·Ai+1Bi, (4.5)
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and thus, applying the power operation component-wise,

�
p
d = σ

p

0 (A1,A2A1, . . . ,Ad · · ·A1)
′ + Rd,

where, by virtue of the moment conditions on (A,B), E|Rd |α+ε < ∞ for some ε > 0. By
Kesten’s theorem (cf. (4.2)), as x → ∞,

P(σ > xt)

P (σ > x)
→ t−αp = μ(t,∞), t > 0.

Therefore, and in view of a version of the multivariate Breiman result (see [22]), P(x−1�d ∈
·)/P (σ > x) has the same limit measure as

P(x−1σ0(A1,A2A1, . . . ,Ad · · ·A1)
′1/p ∈ ·)

P (σ > x)

v→ Eμ{t > 0: t (A1,A2A1, . . . ,Ad · · ·A1)
′1/p ∈ ·}

= αpEAα

∫ ∞

0
t−αp−1P

(
t (1,A2, . . . ,Ad · · ·A2)

′1/p ∈ ·)dt

= αp

∫ ∞

0
t−αp−1P

(
t (1,A1, . . . ,Ad−1 · · ·A1)

′1/p ∈ ·)dt.

Relation (4.4) follows by an application of the multivariate Breiman result; compare Lemma 2.1.
�

4.3. Anticlustering condition

Lemma 4.3. Assume that the conditions of Lemma 4.2 are satisfied, ensuring that (σt ) is reg-
ularly varying with index αp. Then the anticlustering condition (2.4) is satisfied for (σt ) for a
sequence (rn) satisfying rn = O(nγ ) for any small γ > 0. Moreover, if E|Z|αp+δ < ∞ for some
δ > 0, then (2.4) also holds for (Xt ) with the same sequence (rn).

Proof. Condition (2.4) for (σt ) follows from the proof of Theorem 2.10 in [3]. Indeed, [3] used
(4.5) to show that

lim
m→∞ lim sup

n→∞

∑
m≤|t |≤rn

P (σt > any|σ0 > any) = 0, y > 0. (4.6)

The corresponding result for (Xt ) follows along the lines of the proof of (4.6), exploiting (4.5)
and the independence of (σt ) and (Zt ). �

4.4. Main result for solution to stochastic recurrence equation

We formulate an analog of Theorem 3.5, summarizing the foregoing results in the case of a
solution to a stochastic recurrence equation.
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Theorem 4.4. Assume that the volatility sequence (σt ) is given via the solution (σ
p
t ) of the

stochastic recurrence equation (4.1) for some p > 0. Assume the following conditions:

• (σ
p
t ) satisfies Kesten’s [23] conditions.

• (σt ) is strongly mixing with geometric rate.

Then

(1) (σt ) is regularly varying with index αp and limiting measures given in (4.3).
(2) Condition A(an) is satisfied for any (rn) satisfying rn = o(n) and rn ≥ c logn for some

c > 0.
(3) The anticlustering condition (2.4) holds for (σt ) with a sequence (rn) satisfying rn =

O(nγ ) for any small γ > 0.

Moreover, if E|Z|αp+δ < ∞ for some δ > 0, then the following hold:

(4) (Xt ) is regularly varying with index αp and limiting measures given in (4.4).
(5) (Xt ) is strongly mixing with geometric rate, and condition A(an) is satisfied for any (rn)

satisfying rn = o(n) and rn ≥ c logn for some c > 0.
(6) The anticlustering condition (2.4) holds for (Xt ) and sequences (rn) satisfying rn = O(nγ )

for any small γ > 0.

In particular, Theorem 2.4 is applicable to the sequences (σt ) and (Xt ).

Now we can again use the machinery of [3,10–12] to derive various limit results for functionals
of the sequence (Xt ). We only derive the extremal index of (Xt ) in a special situation, to show
the crucial difference between the exponential AR(1) process considered in Section 3 and the
present situation.

Example 4.5. Recall the definition of a GARCH(1,1) process from Example 4.1. We assume
that (σ 2

t ) is the squared volatility process of a GARCH(1,1) process that is regularly varying
with index α > 0 and E|Z|2α+δ < ∞ for some δ > 0. Such a GARCH(1,1) process and the
corresponding stochastic volatility model are shown in Figure 2. Assume that both (σt ) and the
corresponding stochastic volatility model (Xt ) satisfy the conditions of Theorem 2.4; sufficient
conditions are given in Theorem 4.4. It is well known (e.g., [27], Theorem 4.1) that the extremal
indices of (σt ) and (σ 2

t ) coincide and are given by

θσ = α

∫ ∞

1
P

(
sup
t≥1

t∏
j=1

Aj ≤ y−1

)
y−1−α dy,

where Aj = α1η
2
j + β1, j ≥ 1. For the extremal index θ|X| of the sequences (|Xt |) and (X2

t ), we
use the expression in [10] given by

θ|X| = lim
m→∞

(|θ(m)
0 |α − maxj=1,...,m |θ(m)

j |α)+
E|θ(m)

0 |α
, (4.7)



Stochastic volatility models with extremal clustering 1709

Figure 2. Left: 1000 realizations of a GARCH(1,1) process with parameters α0 = 10−7, α1 = 0.1,
β1 = 0.89 and i.i.d. standard normal noise. Right: Realizations of a stochastic volatility model, where (σt )

is taken from the GARCH(1,1) process in the left graph and Z is standard normal. In both graphs, (σt ) and
(Xt ) are regularly varying with index 4 causing extremal clustering in both sequences. The parallel lines
indicate the 0.99 and 0.01 quantiles of the distribution of X.

where �(m) = (θ
(m)
j )|j |≤m is a vector with values in the unit sphere S

2m of R
2m+1, which has the

spectral distribution of the random vector X̂(m) = (X2
t )|t |≤m, that is,

P(|X̂(m)| > x, X̂(m)/|X̂(m)| ∈ ·)
P (|X̂(m)| > x)

w→ P
(
�(m) ∈ ·), x → ∞.

For any Borel set S ⊂ S
2m that is a continuity set with respect to P(�(m) ∈ ·), we conclude from

(4.4) with R(m) = (Z2
1,Z2

2A1, . . . ,Z
2
2m+1A2m · · ·A1)

′

P(|X̂(m)| > x, X̂(m)/|X̂(m)| ∈ S)

P (|X̂(m)| > x)
→ α

∫∞
0 t−α−1P(t |R(m)|I{R(m)/|R(m)|∈S} > 1)dt

E|R(m)|α

= E|R(m)|αI{R(m)/|R(m)|∈S}
E|R(m)|α = P

(
�(m) ∈ S

)
.

The latter relation, (4.7), and the fact that EAα = 1 yield

θ|X| = lim
m→∞

E(|Z1|2α − maxj=2,...,m(Z2
j

∏j

i=2 Ai)
α)+

E|Z|2α
.

A comparison with Theorem 4.1 in [27] shows that a similar expression can be derived for the
extremal index θ|X| of the GARCH(1,1) process; the Z’s must be replaced by the corresponding
η’s. (For details on the foregoing calculations, see [27].) A direct comparison of the magnitude
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of the extremal indices of a GARCH(1,1) process and the corresponding stochastic volatility
model seems difficult.

5. Moving average processes

In this section we assume that the volatility process (σt ) is given in the form σ
p
t = |Yt | for some

p > 0 and Yt =∑q

j=0 ψjηt−j , t ∈ Z, for some q ≥ 1 and an i.i.d. sequence (ηt ) such that η

is regularly varying in the sense of (1.2) with tail balance coefficients p̃, q̃ ≥ 0, p̃ + q̃ = 1 and
index α > 0. Because Yd = (Y1, . . . , Yd)′ has representation as a linear transformation of a finite
vector of the Z’s, an application of the continuous mapping theorem implies that the vector Yd

is regularly varying with index α. Writing ψd = 0 for d /∈ {0, . . . , q}, we conclude from [9],
Theorem 2.4, that

P(x−1Yd ∈ ·)
P (|η| > x)

v→ α

q+d−1∑
j=0

∫
R0

|x|−α−1[p̃I(0,∞)(x) + q̃I(−∞,0)(x)
]

(5.1)
× I{x(ψj−d+1,...,ψj )∈·} dx.

The mixing condition A(an) and the anticlustering condition (2.4) are automatically satisfied for
(σt ) and (Xt ). Thus Theorem 2.6 holds. We conclude from (5.1) and Breiman’s result that

P(x−1(Z1σ1, . . . ,Zdσd) ∈ ·)
P (|η| > x)

v→ αp

q+d−1∑
j=0

∫ ∞

0
|x|−αp−1P

(
x(Z1|ψj−d+1|1/p, . . . ,Zd |ψj |1/p) ∈ ·)dx.

An application of (4.7) yields

θ|X| = E maxj=0,...,q |Zj |αp|ψj |α
E|Z|αp

∑q

j=0 |ψj |α
. (5.2)

In the degenerate case when Z = 1, we get the well-known form of the extremal index of the
absolute values of a moving average process (see [9]; cf. [16], page 415). Again, a direct com-
parison of the value (5.2) with the corresponding one for Z = 1 seems difficult.

Remark 5.1. The foregoing techniques can be applied in the case where (Yt ) constitutes an
infinite moving average process as well. However, in this case mixing conditions are generally
difficult to check; instead, [9] used approximations of an infinite moving average by finite moving
averages. This technique does not completely fit into the framework of [10]; see Theorem 2.4
above. However, if (Yt ) is an ARMA process with i.i.d. noise (ηt ) that is regularly varying with
index α > 1 and has a positive density in some neighborhood of Eη, then (Yt ) is strongly mixing
with geometric rate. Then A(an) holds for every sequence (rn) with r ≥ c logn for some c > 0,
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and A(an) also holds for (Xt ) and the same sequence (rn). The anticlustering condition for (Xt )

can be checked in this case as well, but the calculations are lengthy. We omit further details.

6. Concluding remarks

The aim of this paper was to show that the stochastic volatility model (Xt ) given by (1.1) may
exhibit extremal clustering provided that (σt ) is a regularly varying sequence with index α > 0
and the i.i.d. noise sequence (Zt ) has (α + ε)th moment for some ε > 0. Extremal clustering is
inherited from the volatility sequence (σt ). If (σt ) does not have extremal clusters, then neither
does the sequence (Xt ). An example of this lack of clustering is given by an exponential AR(1)

process σt = eYt , Yt = ϕYt−1 + ηt for ϕ ∈ (−1,1) and an i.i.d. regularly varying sequence (eηt ).
The results of Section 3 show that the sequence (Xt ) above high levels essentially behaves like
the i.i.d. sequence (eηt ), resulting in an extremal index θ|X| = 1. This is surprising, given that
the autocorrelation function of (|Xt |) is not negligible. This example includes (σt ) given by the
dynamics of an EGARCH process. The EGARCH process itself does then not exhibit extremal
clustering either.

In contrast to an exponential AR(1), the stochastic volatility model (1.1) exhibits extremal
clustering if the dynamics of (σt ) or some positive power of it are given by a moving average
or the solution to a stochastic recurrence equation. The latter case captures the example of the
volatility sequence of a GARCH(1,1) process.

We have chosen to describe extremal clustering in terms of the extremal index of the sequence
(Xt ). If θ|X| < 1, then evaluating this quantity is difficult in the examples considered. We would
depend on numerical or Monte Carlo methods if we were interested in numerical values of θ|X|.
These methods also would depend on the model.

The literature on the extremes of the stochastic volatility model focuses on the case where
(σt ) is lognormal and (Zt ) is i.i.d. normal or regularly varying (cf. [13]). In these cases, (Xt )

does not have extremal clusters. The latter property can be considered a disadvantage for mod-
eling return series that are believed to have the clustering property, often referred to as volatility
clusters. From a modeling standpoint, neither the stochastic volatility model with or without ex-
tremal clusters nor any standard model such as GARCH or EGARCH can be discarded as long
as no efficient methods for distinguishing between these models exist. For example, the volatil-
ity dynamics of an EGARCH model and a stochastic volatility model with exponential AR(1)

volatility are rather similar and so are the volatility dynamics of a GARCH(1,1) and a stochastic
volatility model with GARCH(1,1) volatility.
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