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Asymptotic mean stationarity and absolute
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This paper relates – for point processes � on R – two types of asymptotic mean stationarity (AMS) prop-
erties and several absolute continuity results for the common probability measures emerging from point
process theory. It is proven that � is AMS under the time-shifts if and only if it is AMS under the event-
shifts. The consequences for the accompanying two types of ergodic theorem are considered. Furthermore,
the AMS properties are equivalent or closely related to several absolute continuity results. Thus, the class
of AMS point processes is characterized in several ways. Many results from stationary point process the-
ory are generalized for AMS point processes. To obtain these results, we first use Campbell’s equation to
rewrite the well-known Palm relationship for general nonstationary point processes into expressions which
resemble results from stationary point process theory.
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absolute continuity; Radon–Nikodym approach; inversion formulae

1. Introduction

Point process theory on R utilizes two types of shifts (event-shifts and time-shifts) and sev-
eral closely related probability measures. Each type of shifts brings its own ergodic theorem
and – by taking expectations – its own concept ‘asymptotic mean stationarity’ (AMS). This
paper develops a theory of AMS point processes on R. The basic result is that the two types
of AMS are equivalent, thus extending a classical result of Kaplan [8] about equivalence of
event-stationarity and time-stationarity. Furthermore, the paper extends classical ergodic theo-
rems, including Birkhoff’s theorem, to the AMS setting. It relates AMS to absolute continuity
(AC) properties for probability measures welling up from point process theory and it generalizes
results that are well known for stationary point processes.

The general theory of AMS probability measures, with an underlying shift transformation
(say) T , was mainly developed during the period 1945–1985. Dowker [2] proved that, for in-
vertible and nonsingular T , the ergodic theorem holds if and only if AMS is valid. Rechard [13]
and finally Gray and Kieffer [5] derived similar results under weaker assumptions for T . AMS
is frequently used to generalize stationarity, for instance, in information theory. See also Faigle
and Schönhuth [3].

In point process theory, it is the presence of the two types of shifts and two types of stationarity
which offers new possibilities. Furthermore, in point process theory we can employ the close
relationships between the following probability distributions:

- the distribution P of the point process,
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- the distributions Pn; that is, P as experienced at the nth occurrence, n ∈ Z,
- the distribution P ∗ arising from P0 by shifting the origin to a completely random position

between 0 and the first positive occurrence,
- the Palm distributions P x ; that is: P given an occurrence at x, x ∈ R,
- the shifted Palm distributions P 0,x ; that is, P as experienced at an occurrence in x, x ∈ R.

Some researchers noted the close connection between (Birkhoff’s) ergodic results and the
AMS concepts in point process theory. Daley and Vere-Jones ([1]; Chapter 13) give overviews of
authors and results; see also Sigman ([15]; Chapter 2). They use coupling results to study AMS,
as in Thorisson [17]. However, to the best knowledge of the author of the present paper, a precise
and rather complete study of AMS for point processes on R has not yet been performed.

Starting point of the paper is the theorem which states that for P the concepts ‘event-
asymptotic mean stationarity’ (EAMS) and ‘time-asymptotic mean stationarity’ (TAMS) are
equivalent. This result and relationships between the (above mentioned) distributions are used
to link AMS to several AC properties. Thus, the class of AMS point processes is characterized
in many ways and well-known results from stationary point process theory are generalized.

In the remainder of the (current) Section 1, basic notations and definitions are introduced. In
Section 2, we summarize important results of stationary point process theory. Especially the so-
called Radon–Nikodym (RN) approach – typical for this research – is explained. Many of the
results will be generalized later under (weaker) AMS conditions. In Section 3, some well-known
formulae from nonstationary point process theory on R are rewritten into formulae resembling
results from Section 2, into forms useful for later sections. General definitions of P x , P 0,x , Pn

and P ∗ are given. In Section 4, the concepts TAMS and EAMS are defined and their equivalence
is proven. Also the relationship with accompanying ergodic results is considered. Section 5 is
about the equivalence of AMS to AC properties for {Pn} and P ∗, and to a weak AC property for
{P 0,x}. Results from Section 2 are generalized by using results from Section 3. Sections 6 and 7
are about AC properties for {P 0,x} and P – respectively, with respect to an event-stationary
and a time-stationary distribution –, both stronger than AMS. Again, results from Section 2
are generalized. In Section 8, AC properties for P and {P 0,x} are related and the relationships
between the RN-derivatives are considered.

Basic notations

In the present research, R denotes the set of real numbers and Bor(R) the set of Borel-sets of R.
For k ∈ Z, the set Rk is defined as the positive half-line (0,∞) if k > 0 and as the nonpositive
half-line (−∞,0] if k ≤ 0. The notations := and ⇔def both mean is by definition. Furthermore,
a.e. means almost everywhere and w.r.t. means with respect to.

Although many results in this paper can be generalized to more general (like marked) point
processes, we will only consider point processes on R. A point process is a measurable mapping
� from a probability space (�, A,P) to the set E of all integer-valued measures ϕ on R for
which ϕ(B) < ∞ for all bounded B ∈ Bor(R). E is endowed with the σ -field E generated by the
sets {ϕ ∈ E: ϕ(B) = k}, for k ∈ Z and sets B ∈ Bor(R). We also define

M := {
ϕ ∈ E: ϕ(R) > 0;ϕ{y} ≤ 1 for all y ∈ R

}
,
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and add the σ -field M := M ∩ E . We denote the (probability) distribution of � by P . Reversely,
probability distributions on (M, M) are called point process distributions. We will only allow
single occurrences; we assume that P(M) = 1.

The atoms (called points, events, occurrences, arrivals) of ϕ ∈ M are denoted by Tn(ϕ) under
the convention that

· · · < T−1(ϕ) < T0(ϕ) ≤ 0 < T1(ϕ) < T2(ϕ) < · · · ,
provided that they are finite. Occasionally, we will also write T (n) instead of Tn. We write
αn(ϕ) := Tn+1(ϕ)−Tn(ϕ), n ∈ Z, for the interval lengths between finite occurrences. Sets in M
will be called eventualities. Eventualities like the set {ϕ ∈ M: αn(ϕ) < 3} will shortly be written
as [αn(ϕ) < 3] or even [αn < 3]. Some other subsets of M with natural σ -fields:

Fn := {
ϕ ∈ M:

∣∣Tn(ϕ)
∣∣ < ∞}

and Fn := Fn ∩ M, n ∈ Z,

Mx := {
ϕ ∈ M: ϕ{x} = 1

}
and Mx := Mx ∩ M, x ∈ R,

M∞ := {
ϕ ∈ M: ϕ(−∞,0] = ϕ(0,∞) = ∞}

and M∞ := M∞ ∩ M,

M0 := {
ϕ ∈ M∞: ϕ{0} = 1

}
and M0 := M0 ∩ M.

The family {θy : y ∈ R} of time-shifts θy :E → E defined by θy(ϕ) := θyϕ := ϕ(y + ·) is
important. The same holds for the family {ηn: n ∈ Z} of event-shifts ηn :Fn → E with ηn(ϕ) :=
ηnϕ := ϕ(Tn(ϕ) + ·). Note that θy 	 θx = θy+x for all y, x ∈ R and that θyϕ has occurrences
in Tk(ϕ) − y (if finite) for k ∈ Z. Also note that ηn 	 ηk = ηn+k for all n, k ∈ Z, that ηnϕ has
occurrences in Tk(ϕ) − Tn(ϕ) (if finite), and that ηm = (η1)

m for all positive m ∈ Z. Regarding
these shifts, the following notations are adopted:

θ−1
y A := {ϕ ∈ E: θyϕ ∈ A}, y ∈ R and A ∈ E ,

η−1
n A := {ϕ ∈ Fn: ηnϕ ∈ A}, n ∈ Z and A ∈ E ,

I ′ := {
A ∈ M∞: θ−1

y A = A for all y ∈ R
}

and I := {
A ∈ M∞: η−1

1 A = A
}
.

In Nieuwenhuis ([11]; Lemma 2), it was proved that the invariant σ -fields I ′ and I coincide. As
a consequence, it holds for all I -measurable functions f :M∞ → R that:

f 	 θy = f and f 	 ηn = f for all y ∈ R and n ∈ Z. (1.1)

For A ∈ M and B ∈ Bor(R), we define: an A-occurrence is an arrival time Tn for which the
eventuality [ηnϕ ∈ A] occurs, N(B) is the number of occurrences in B and NA(B) the number
of the A-occurrences in B . That is:

N(B) :=
∑
n∈Z

1[T (n)∈B] and NA(B) :=
∑
n∈Z

(1[T (n)∈B]1A 	 ηn). (1.2)

Expectation under P is denoted by E, expectation under P by E. For measurable functions
f :M → R, we use Ef (�), Ef , Ef (�) and even Ef (ϕ) to denote the expectation of f (�).
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From Section 4 onwards, we will use the notations Pts and Pes to respectively denote an event-
stationary (ES) and a time-stationary (TS) distribution on (M, M). Furthermore, AC means ‘ab-
solute continuity’. For two probability measures P and Q on (M, M), the notation P � Q

denotes that P is AC with respect to (w.r.t.) Q. We also say that Q dominates P and denote
a Radon–Nikodym derivative as RN. A discrete-time stochastic process {Xn: n ∈ Z} on M is
called Q-stationary or stationary under Q if it holds for each positive integer m that:

(X1, . . . ,Xm) =d (Xk+1, . . . ,Xk+m) under Q (for all k ∈ Z). (1.3)

2. Stationary point processes

We offer a brief but coherent overview of stationary point process theory, enclosing only results
that will be used or generalized later; our notations originate from Franken et al. [4]. The second
half of this section is less known; it reflects the special approach in the present paper.

A point process � (and also its distribution P ) is called time-stationary (shortly TS) if
Pθ−1

y (A) := P(θ−1
y A) = P(A) for all y ∈ R and A ∈ M. It is called event-stationary (ES)

if P(M∞) = 1 and it holds for all A ∈ M∞ that Pη−1
1 (A) := P(η−1

1 A) = P(A), and hence
that P(η−1

n A) = P(A) for all n ∈ Z. For TS distributions P with P(M) = 1, we have
P(M∞) = 1 and P(M0) = 0; ES distributions P satisfyP(M∞) = 1 and P(M0) = 1. If �

is TS, we call λ := E(N(0,1]) the intensity of � and P ; we will always implicitly assume that
λ < ∞.

Suppose that P is TS and y ≥ 0. Then, E(N(0, y]) = λy. For all x > 0 the definition below
yields one probability measure P 0 on (M∞, M∞), the Palm distribution (PD) of � and P :

P 0(A) := 1

λx
E

(
NA(0, x]) = 1

λx
E

(
N(0,x]∑
i=1

1A 	 ηi

)
for A ∈ M∞. (2.1)

Informally, P 0 is the conditional distribution of the point process if there is an occurrence in the
origin. We denote P 0-expectation by E0. This PD has the following properties:

P 0(M0) = 1, P 0η−1
n = P 0 for all n ∈ Z, (2.2)

λ = 1

E0(α0)
= E

(
1

α0

)
, (2.3)

P 0(A) = E(NA(0, x])
E(N(0, x]) for all x > 0 and A ∈ M∞. (2.4)

Hence, the PD of a TS distribution P is ES and the sequence {αn} is stationary under P 0. With
λA := E(NA(0,1]), the intensity of the A-occurrences, it follows that:

P 0(A) = λA/λ. (2.5)
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Compared to (2.1), the following so-called inversion formulae work the other way round:

P(A) = λ

∫
Rk

P 0[ϕ(−x + ·) ∈ A and T−k(ϕ) ≤ −x < T−k+1(ϕ)
]

dx

(2.6)

= λE0
(∫ −T (−k)

−T (−k+1)

1A 	 θ−x dx

)
= λE0

(∫ T (−k+1)

T (−k)

1A 	 θy dy

)
.

Here, A ∈ M∞ and k ∈ Z. It is allowed to replace Rk by R. See Slivnyak [16] and Kaplan [8]
for the one-to-one correspondence described in (2.4) and (2.6).

In Nieuwenhuis ([10]; Theorem 8.1) it was proved that, for TS distributions P and all n ∈ Z,
the intermediate distribution Pn := Pη−1

n is equivalent (i.e., AC in two directions) to the PD P 0:

Pn � P 0 and Pn(A) = λE0(α−n1A), (2.7a)

P 0 � Pn and P 0(A) = 1

λ
En

(
1

α−n

1A

)
= 1

λ
E

(
1

α0
1A 	 ηn

)
, A ∈ M∞. (2.7b)

(We write En for Pn-expectation.) See also Ryll–Nardzewski [14] and Thorisson [17] for similar
approaches. Results (2.7a), (2.7b), which reflect the so-called Radon–Nikodym approach, offer
the opportunity to jump easily between P , P 0 and related distributions and are very important
for this paper. We illustrate their use and derive some frequently used results.

Since P(A) = λE0(
∫ α0

0 1A 	 θy dy), it follows from (2.7b) that P(A) can be written otherwise
as a P -expectation:

P(A) = E0

(
1

α0

∫ α0

0
1A 	 θy dy

)
= E

(
1

α0

∫ T1

T0

1A 	 θy dy

)
. (2.8a)

By (2.8a) we obtain, for all functions g : R → R with E|g(T1)| < ∞:

E
(
g(T1)|(αn)n∈Z

) = 1

α0

∫ α0

0
g(x)dx P -a.s. (2.8b)

Hence: conditionally on α0, the distribution of T1 under P is uniform(0, α0). Note that h :=
1
α0

∫ T1
T0

1A 	 θy dy satisfies h 	 η0 = h on M∞. We obtain by (2.8a), for P -integrable functions f

and g :M∞ → R:

E

(
f · 1

α0

∫ T (1)

T (0)

g 	 θy dy

)
= E

(
g · 1

α0

∫ T (1)

T (0)

f 	 θy dy

)
. (2.8c)

Set α = E0(α0|I) and N = E(N(0,1]|I). By (2.7a) and (2.7b), Birkhoff’s ergodic results

1

n

n∑
i=1

αi → α as n → ∞ P 0-a.s. and
1

x
N(0, x] → N as x → ∞ P -a.s.
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are also valid P -a.s. and P 0-a.s., respectively. Furthermore, it can be proved that:

N = 1

α
= E

(
1

α0

∣∣∣I
)

P 0-a.s. and P -a.s. (2.9)

A TS point process is called ergodic if P(C) = 0 or 1 (or, equivalently, P 0(C) = 0 or 1) for all
C ∈ I . It is called pseudo-ergodic if P 0[λα = 1] = 1; see also Nieuwenhuis [12].

Note that, for all x ∈ R, A ∈ M∞ and functions f :M∞ → R with f = f 	 η0 on M∞:

E0(1A · f 	 θ−x) =
∑
k∈Z

E0(1A · f 	 ηk · 1[Tk≤−x<Tk+1])

= E0(f · NA[x, x + α0)
)

(2.10a)

= 1

λ
E

(
f · NA[x + T0, x + T1)/α0

)
, (2.10b)

P 0(A) = E

(
NA[x + T0, x + T1)

1

λα0

)
and E

(
N [x + T0, x + T1)

1

α0

)
= λ. (2.10c)

In coming sections, ES distributions and TS distributions are usually denoted as Pes and Pts (and
the accompanying expectation operators as Ees and Ets ). The ES Palm distribution associated
with a TS distribution Pts , is denoted by P 0

ts . So, the relationships between Pts and P 0
ts are the

same as the relationships between P and P 0 described in (2.1)–(2.10).

3. Non-stationary point processes

In this section, we consider, for general point processes on R, the PDs {P x} and their shifted
versions {P 0,x}. Furthermore, we carefully define the distributions Pn and P ∗ informally men-
tioned in Section 1. Campbell’s equation is used to obtain inversion formulae (3.6) and (3.7)
which resemble and generalize (2.6) and (2.7a). We generalize (2.5) for the case that P = P ∗
and characterize the class of the TS point process distributions.

We assume that the point process � satisfies P(M) = 1, and that the intensity measure ν on
Bor(R) with ν(B) := E(N(B)) for B ∈ Bor(R) exists and is locally finite. Below, for A ∈ M,
also the locally finite measures νA and μA play important roles:

νA(B) := E
(
N(B)1A

)
and μA(B) := E

(
NA(B)

); B ∈ Bor(R).

Palm distributions

For A ∈ M, νA is dominated by ν. An RN-derivative is denoted by x → P x(A), so:

νA(B) =
∫

B

P x(A)dν(x); B ∈ Bor(R). (3.1)
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A basic result in Palm theory now is that {P x(A): x ∈ R and A ∈ M} can be chosen such that
the function x → P x(A) is measurable for all A ∈ M, P x is a probability measure on M for all
x ∈ R, and ∫

M

∫ ∞

−∞
f (x,ϕ)dϕ(x)dP(ϕ) =

∫ ∞

−∞

∫
M

f (x,ϕ)dP x(ϕ)dν(x) (3.2)

for all Bor(R) × M-measurable functions f on R × M that are either nonnegative or satisfy
E[∫ ∞

−∞ f (x,�)d�(x)] < ∞. Thus, the family {P x} of probability distributions turns out to be
uniquely defined by (3.2) apart from a Borel-set in R with ν-measure 0. See Matthes [9]. See also
Jagers [6] and Kallenberg [7]. In the sequel, we will assume that the family {P x} is chosen this
way. Note that f (x,ϕ) = 1B×A(x,ϕ), x ∈ R and ϕ ∈ M , returns (3.1). The probability measures
in {P x : x ∈ R} are called Palm distributions (PDs) of P . It can be proved that P x(Mx) = 1 for
ν-a.e. x ∈ R. By letting A in (3.1) shrink to {x}, we obtain the intuitive meaning for P x(A) as
the probability that � ∈ A under the condition that �{x} = 1.

Shifted Palm distributions

We are especially interested in {P 0,x}, the family of shifted PDs defined by P 0,x := P xθ−1
x .

Note that P 0,x satisfies P 0,x(M0) = 1, and that, in queuing terms, it can be considered as the
probability measure that under P is experienced by a customer arriving at time x. For time-
stationary P we have P 0,x = P 0 for ν-a.e. x ∈ R, where P 0 is the event-stationary PD of P in
(2.1). Note that the choice f (x,ϕ) = 1A(θxϕ)1B(x) in (3.2) yields that:

μA(B) =
∫

B

P 0,x(A)dν(x); B ∈ Bor(R) and A ∈ M. (3.3)

Hence, for all A ∈ M, the function x → P 0,x(A) is just an RN-derivative of μA with respect
to ν. If ν is AC with respect to Leb with intensity λ(·), then μA is also AC with respect to Leb.
If x → λA(x) denotes an accompanying RN-derivative (the intensity of the point process of the
A-occurrences), it then follows for all A ∈ M that

P 0,x(A) = λA(x)/λ(x) for ν-a.e. x ∈ R; (3.4)

cf. (2.5). However, it cannot be concluded that for ν-a.e. x ∈ R the shifted PDs satisfy P 0,x(A) =
λA(x)/λ(x) for all A ∈ M; (3.4) not even necessarily defines a probability measure for ν-a.e.
x ∈ R. By letting B in (3.3) shrink to {x} we obtain the intuitive meaning for P 0,x(A) as the
probability that θx� ∈ A under the condition that �{x} = 1.

Intermediate probability measures

For n ∈ Z with P(Fn) > 0, we define the intermediate probability measure Pn of P as a condi-
tional probability distribution:

Pn(A) := P
([ηnϕ ∈ A]|Fn

)
, A ∈ M. (3.5)
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We investigate the relationships between P , {Pn} and {P 0,x}. Set Ix := (0, x] for x > 0 and
Ix := (x,0] for x ≤ 0, and choose f in (3.2) as:

f (x,ϕ) = 1A(ϕ)1{|k|}
(
ϕ(Ix)

)
1Rk

(x), A ∈ M and k ∈ Z.

We obtain:

P(A ∩ Fk) =
∫

Rk

P x
(
A ∩ [

ϕ(Ix) = |k|])dν(x), (3.6a)

P(A ∩ Fk) =
∫

Rk

P x
(
A ∩ [Tk = x])dν(x), (3.6b)

P(A ∩ Fk) =
∫

Rk

P 0,x
([θ−xϕ ∈ A] ∩ [T−k ≤ −x < T−k+1]

)
dν(x). (3.6c)

Compare with (2.6). It follows that, for all A ∈ M and k ∈ Z with P(Fk) > 0:

Pk(A) = 1

P(Fk)

∫
Rk

P 0,x
(
A ∩ [T−k ≤ −x < T−k+1]

)
dν(x). (3.7)

Note that it is allowed to replace Rk by R in (3.6b), (3.6c) and (3.7), and that (3.7) generalizes
(2.7a). Substitution of A ∩ [Tk ∈ B] for A in (3.6c) yields

P
(
A ∩ [Tk ∈ B]) =

∫
B

P 0,x
([θ−xϕ ∈ A] ∩ [T−k ≤ −x < T−k+1]

)
dν(x) (3.8)

for all k ∈ Z, B ∈ Bor(R) and A ∈ M. By taking
∑

k∈Z
, the left-hand side becomes equal to

νA(B) and we get (3.1) back. When A in (3.8) is replaced by [ηkϕ ∈ A], we obtain:

P
([ηkϕ ∈ A] ∩ [Tkϕ ∈ B]) =

∫
B

P 0,x
(
A ∩ [T−k ≤ −x < T−k+1]

)
dν(x). (3.9)

Note that we get (3.3) back by taking
∑

k∈Z
. The choice A = M0 in (3.9) ensures that, if P(Fk)

is larger than 0, the conditional distribution P([Tk ∈ ·]|Fk) of Tk is AC with respect to ν with
RN-derivative γ (x) := P 0,x[T−k ≤ −x < T−k+1]/P (Fk). So:

P
([Tk ∈ ·]|Fk

) � ν, γ (x) = P x[Tk = x]/P (Fk) for ν-a.e. x ∈ R. (3.10)

The distribution P ∗

For P such that P(M∞) = 1, we define the distribution P ∗ as follows:

P ∗(A) := E

(
1

α0

∫ T (1)

T (0)

1A 	 θy dy

)
= E0

(
1

α0

∫ α0

0
1A 	 θy dy

)
for A ∈ M∞. (3.11)

By (2.8a) and (2.7a), time-stationary point processes (with finite intensity) satisfy:
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(a) P = P ∗ and (3.12a)

(b) there exists an ES point process distribution Pes such that:

P0 � Pes and dP0/dPes = λα0 with λ = 1/Ees(α0) ∈ (0,∞). (3.12b)

Reversely, if P satisfies (3.12a), (3.12b) then, for A ∈ M∞:

P(A) = P ∗(A) = λEes

(∫ α0

0
1A 	 θy dy

)
=: Pts(A).

Note that Pts (and hence P ) is just the TS distribution such that the accompanying PD is Pes ;
see (2.6). Hence, (3.12a), (3.12b) characterize the class of TS point process distributions.

For A ∈ M∞ and B ∈ Bor(R), set μ∗
A(B) := E∗(NA(B)) and ν∗(B) := E∗(N(B)). Here,

E∗ refers to P ∗-expectation.

Theorem 3.1. Suppose that P is a point process distribution with P(M∞) = 1. Then:

(1) the intermediate distributions of P ∗ and P coincide;
(2) under P ∗, the conditional distribution of T1 given (αn)n∈Z, is uniform(0, α0);
(3) for A ∈ M∞ it holds that μ∗

A � Leb and ν∗ � Leb, with intensity functions

λ∗
A(x) = E

(
1

α0
NA[x + T0, x + T1)

)
and λ∗(x) = E

(
1

α0
N [x + T0, x + T1)

)
;

(4) the shifted PDs of P ∗ satisfy P ∗0,x(A) = λ∗
A(x)/λ∗(x) for ν∗-a.e. x ∈ R and A ∈ M∞.

Proof. Part (1) is immediate. Part (2) holds since for all eventualities A in the σ -field generated
by (αn)n∈Z and all functions g : R → R with E∗|g(T1)| < ∞ we have:

E∗(1AE∗(g(T1)|(αn)n∈Z

)) = E∗(1Ag(T1)
) = E

(
1A

1

α0

∫ T (1)

T (0)

g(T1 	 θy)dy

)

= E0

(
1A

1

α0

∫ α0

0
g(x)dx

)
= E∗

(
1A

1

α0

∫ α0

0
g(x)dx

)
.

For (3), note that for A ∈ M∞ and B ∈ Bor(R) we have that μ∗
A(B) equals:

∑
k∈Z

P ∗[Tk(ϕ) ∈ B and ηkϕ ∈ A
]

=
∑
k∈Z

E

(
1

α0

∫ T (k)−T (0)

T (k)−T (1)

1B(y)dy1[ηkϕ∈A]
)

=
∑
k∈Z

E

(
1

α0

∫
B

1[y+T (0)≤T (k)<y+T (1)] dy1[ηkϕ∈A]
)

=
∫

B

λ∗
A(x)dx.
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Hence, μ∗
A � Leb. The choice A = M∞ yields ν∗ � Leb. For (4), first note that it holds for

ν∗-a.e. x ∈ R that Q0,x(A) := λ∗
A(x)/λ∗(x) defines a probability measure on (M∞, M∞). Re-

placing P , {P x} and ν by P ∗, {Q0,xθ−1−x } and ν∗ in (3.2) yields, for both sides:

E

(
1

α0(ϕ)

∑
k∈Z

∫ T1ϕ

T0ϕ

f (Tkϕ − y, θyϕ)dy

)
.

So, (4) follows from the uniqueness of the family of PDs. �

It follows from Theorem 3.1(1), (2) that P ∗ arises from P0 by shifting the origin to an arbitrary
position in the interval (0, α0). By (2.10c) and Theorem 3.1(4), we get a generalization of (2.5);
cf. (2.10c):

P = P ∗ ⇒ P 0,x(A) = λA(x)/λ(x) for ν-a.e. x ∈ R and all A ∈ M∞. (3.13)

4. Asymptotic mean stationarity

A point process (as well as its distribution P ) is called time-asymptotic(ally) mean stationary
(shortly TAMS) if a probability distribution Pts on (M, M) exists such that:

1

x

∫ x

0
P [θyϕ ∈ A]dy → Pts(A) as x → ∞, for all A ∈ M. (4.1)

Note that Pts is indeed TS. We write “P is TAMS(Pts )” and call Pts the time-stationary
limit distribution of P . A point process (and its distribution P ) with P(M∞) = 1 is called
event-asymptotic(ally) mean stationary (shortly EAMS) if a probability distribution Pes on
(M∞, M∞) exists such that:

1

n

n∑
i=1

P [ηiϕ ∈ A] → Pes(A) as n → ∞, for all A ∈ M∞. (4.2)

We write “P is EAMS(Pes )” and call Pes the event-stationary limit distribution of P . Note that
Pes is ES and that, for P being EAMS, it is only its behavior on M0 which matters. Sigman [15]
refers to the AMS concepts as time and event asymptotic stationarity; Daley and Vere-Jones [1]
use (C,1)-asymptotic stationarity and event-stationarity, respectively.

Note that TS point processes are TAMS and ES point processes are EAMS. However, we will
see that the class of TAMS (EAMS) point processes is – considerably – larger than the class
of TS (ES) point processes. As an example: with Pts the distribution of the TS Poisson point
process with intensity λts , the definition P(A) := Ets(1A · N(0,1])/λts for A ∈ M∞ yields a
point process distribution P which is absolutely continuous with respect to Pts and hence (see
(4.8b) below) is TAMS. However, P is not TS since, by Jensen’s inequality:

E
(
N(0,1]) = Ets

[(
N(0,1])2]

/λts > λts = E
(
N(1,2]).

The following characterizations of EAMS and TAMS will be used frequently.
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Theorem 4.1. Let � be a point process with distribution P for which P(M∞) = 1, and let Pes

and Pts , respectively, be an ES and a TS point process distribution. Then:

P is EAMS(Pes) ⇔ P = Pes on I;
(4.3)

P is TAMS(Pts) ⇔ P = Pts on I.

Proof. The implications ‘⇒’ follow from (1.1). For the implications ‘⇐’, suppose respectively
that P = Pes on I and P = Pts on I . Note that, for each A ∈ M∞, the eventualities[

1

n

n∑
i=1

1A 	 ηi → Ees(1A|I)

]
and

[
1

x

∫ x

0
1A 	 θy dy → Ets(1A|I)

]

are elements of I which (by Birkhoff’s ergodic theorem) have probability 1 under respectively,
Pes and Pts , and hence they both have P -probability 1. Take P -expectations. �

The next theorem roughly states that P is EAMS iff P is TAMS; see also Daley and Vere-
Jones ([1]; Theorem 13.4.VI) for a similar (but different) theorem. If P is EAMS(Pes), then
limn→∞

∑n
i=1 αi/n equals α := Ees(α0|I); this holds Pes -a.s. and (by Theorem 4.1) also P -a.s.

If P is TAMS(Pts), then limx→∞ N(0, x]/x equals N := Ets(N(0,1]|I), Pts -a.s. and also P -a.s.

Theorem 4.2. Let � be a point process with distribution P for which P(M∞) = 1. Then:

P is EAMS(Pes) and Pes[0 < α < ∞] = 1

⇔
P is TAMS(Pts) and Pts[0 < N < ∞] = 1.

These distributions Pes and Pts are related as follows:

Pts(A) = Ees

(
1

α

∫ α0

0
1A 	 θy dy

)
and

(4.4)

Pes(A) = Ets

(
1

α0

1

N
1A 	 η0

)
for A ∈ M∞,

N = 1

α
= Ets

(
1

α0

∣∣∣I
)

Pes-a.s.,Pts-a.s., and P -a.s. (4.5)

Pes is the event-stationary PD of Pts ⇔ Pes is pseudo-ergodic.

Proof.
Proof of ‘⇒’. By Birkhoff’s ergodic theorem and the left-hand side of (4.3), we obtain that,

for all Pes -integrable functions f :M∞ → R, the following convergence holds not only Pes -a.s.
but also P -a.s.:

1

n

n∑
i=1

f 	 ηi → Ees(f |I) as n → ∞.
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The choices f = α0 and f = ∫ T1
T0

1A 	 θy dy (with A ∈ M∞) respectively yield that, P -a.s.:

1

n
Tn → α and

1

n

∫ T (n)

T (0)

1A 	 θy dy → Ees

(∫ α0

0
1A 	 θy dy

∣∣∣I
)

as n → ∞.

After replacing n by N(0, x] and using that P [α > 0] = 1, we obtain that it holds P -a.s. that:

N(0, x]
x

→ 1

α
and

1

N(0, x]
∫ x

0
1A 	 θy dy → Ees

(∫ α0

0
1A 	 θy dy

∣∣∣I
)

as x → ∞;

N(0, x]
x

1

N(0, x]
∫ x

0
1A 	 θy dy → 1

α
Ees

(∫ α0

0
1A 	 θy dy

∣∣∣I
)

as x → ∞.

By taking P -expectations we get, again from (4.3):

1

x

∫ x

0
P [θyϕ ∈ A]dy → Pts(A) := Ees

(
1

α

∫ α0

0
1A 	 θy dy

)
as x → ∞.

So, P is TAMS(Pts). Note that P = Pes = Pts on I . Hence, N := Ets(N(0,1]|I) and 1/α are
both the Pes -, P - and Pts -a.s. limit of N(0, x]/x. So:

N = 1

α
Pts-a.s.,P -a.s. and Pes-a.s. and Pts[0 < N < ∞] = 1.

Proof of ‘⇐’. By Birkhoff’s ergodic theorem and the right-hand side of (4.3), we obtain that,
for all Pts -integrable functions f :M∞ → R, the following convergence not only holds Pts -a.s.
but also P -a.s.:

1

x

∫ x

0
f 	 θy dy → Ets(f |I) as x → ∞.

After replacing x by Tn+1 and choosing f = 1A 	 η0/α0 with A ∈ M∞, we get Pts-a.s. and
P -a.s.:

1

Tn+1

∫ Tn+1

T1

1A 	 η0 	 θy

1

α0 	 θy

dy → Ets

(
1A 	 η0

1

α0

∣∣∣I
)

as n → ∞. (4.6)

If, for ϕ ∈ M∞, y is such that Ti(ϕ) ≤ y < Ti+1(ϕ), then:

α0 	 θy(ϕ) = αi(ϕ) and 1A 	 η0 	 θy(ϕ) = 1A 	 ηi(ϕ).

Hence, the left-hand side of (4.6) is equal to:

1

Tn+1

n∑
i=1

∫ Ti+1

Ti

1A 	 ηi

1

αi

dy = 1

Tn+1

n∑
i=1

1A 	 ηi.
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Note that N(0, x]/x → N holds Pts - and P -a.s. Replacing x by Tn+1 yields that Tn+1/n → 1/N

also holds Pts - and P -a.s. By (4.6) we obtain, Pts - and P -a.s.:

1

n

n∑
i=1

1A 	 ηi = Tn+1

n

1

Tn+1

n∑
i=1

1A 	 ηi → 1

N
Ets

(
1A 	 η0

1

α0

∣∣∣I
)

as n → ∞.

Since P = Pts on I , we obtain by taking P -expectation:

1

n

n∑
i=1

P [ηiϕ ∈ A] → Pes(A) := Ets

(
1

α0

1

N
1A 	 η0

)
as n → ∞.

Especially, P = Pes on I . For C ∈ I we have, since P = Pts on I :

E(1C) = Ets

(
1C/(α0N)

) = Ets

(
1

N
Ets

(
1

α0

∣∣∣I
)

1C

)
= E

(
1

N
Ets

(
1

α0

∣∣∣I
)

1C

)
.

We conclude: P is EAMS(Pes) and 1
N

Ets(
1
α0

|I) = 1 Pts -, P - and Pes -a.s. �

Remark. Let Pts be a TS point process distribution with λts := Ets(N(0,1]) < ∞ and P 0
ts the

accompanying TS Palm distribution. Note that Pts is TAMS(Pts) and P 0
ts is EAMS(P 0

ts ). By
Theorem 4.2 it follows that Pts is EAMS and P 0

ts is TAMS. By respectively using the results
(4.4), (2.7a) and (4.5), (2.7b), (2.8a), (2.8c), (1.1) in 1 and 2 below, we obtain:

1. Pts is EAMS(P̃ 0
ts ) with P̃ 0

ts (A) := λtsE
0
ts (α1A) for A ∈ M∞, where α = E0

ts (α0|I);
2. P 0

ts is TAMS(P̃ts) with P̃ts(A) := Ets(N1A)/λts for A ∈ M∞ with N = Ets(N(0,1]|I);
3. P̃ 0

ts = P 0
ts ⇔ P 0

ts is pseudo-ergodic ⇔ P̃ts = Pts .

The validity of EAMS (respectively, TAMS) is equivalent to the validity of the ergodic result
under the shift transformation η1 (respectively under the flow {θy : y ∈ R}).

Theorem 4.3. Let � be a point process with distribution P for which P(M∞) = 1.

(a) P is EAMS ⇔ ∀A∈M∞: 1

n

n∑
i=1

1A 	 ηi converges P -a.s. (as n → ∞);

(b) P is EAMS with limit distribution Pes such that Pes

[
0 < Ees(α0|I) < ∞] = 1

⇔ ∀A∈M∞: 1

x
NA(0, x] converges P -a.s. (as x → ∞) and

the limit of
1

x
N(0, x] belongs P -a.s. to (0,∞);

(c) P is TAMS ⇔ ∀A∈M∞: 1

x

∫ x

0
1A 	 θy dy converges P -a.s. (as x → ∞).
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Proof. For (a), the implication ‘⇒’ follows since by Birkhoff’s ergodic theorem the right-hand
convergence holds a.s. under the ES limit distribution of P , and hence under P itself by Theo-
rem 4.1. The implication ‘⇐’ follows from the theorem of Vitali–Hahn–Saks. For ‘⇒’ of (c),
apply Birkhoff’s ergodic theorem to the flow {θy} and the TS limit distribution of P , and ap-
ply Theorem 4.1. For ‘⇐’ of (c), apply again Vitali–Hahn–Saks. So, only (b) is left. If P is
EAMS(Pes) and Pes[0 < Ees(α0|I) < ∞] = 1, then application of (a) and Theorem 4.2 yields:

NA(0, x] 1

N(0, x] = 1

N(0, x]
N(0,x]∑
i=1

1A 	 ηi converges P -a.s. (as x → ∞), (4.7a)

1

x
NA(0, x] = 1

x
N(0, x] · NA(0, x] 1

N(0, x] converges P -a.s. (as x → ∞). (4.7b)

Implication ‘⇐’ of (b) follows from (a), since the expression below converges P -a.s.:

1

n

n∑
i=1

1A 	 ηi = 1

n
NA(0, Tn] = Tn

N(0, Tn] · NA(0, Tn]
Tn

.
�

Since P is EAMS iff P0 is EAMS, part (a) also follows from Theorem 1 of Gray and Kieffer
[5]. By Theorem 4.3(a), (c) it follows immediately that, for point process distributions P and Q:

Q � P and P is EAMS ⇒ Q is EAMS, (4.8a)

Q � P and P is TAMS ⇒ Q is TAMS . (4.8b)

Theorems 4.1–4.3 yield several related limit results for AMS point processes; we mention
a few. Suppose that P is EAMS(Pes) and Pes[0 < Ees(α0|I) < ∞] = 1. Let Pts be the TS
limit-distribution of P with λts = Ets(N(0,1]) < ∞ and accompanying event-stationary PD
P 0

ts . Then, it follows by (4.7a), (4.7b) that, for all A ∈ M∞:

(a) E( 1
x
NA(0, x]) = 1

x

∫
(0,x] P

0,y(A)dν(y) → λtsP
0
ts (A) as x → ∞;

(b) E[NA(0, x]/N(0, x]] → Pes(A) while E(NA(0, x])/E(N(0, x]) → P 0
ts (A) as x → ∞;

cf. (2.4).

Example 4.4. We will use Theorem 4.3(a) to construct a point process distribution P which is
not EAMS. Set:

a(1) = 4 and a(k) =

⎧⎪⎨
⎪⎩

a(k − 1), if k is even,
k−1∑
i=1

a(i), if k is odd for k = 2,3, . . . ,

b(0) = 0 and b(k) =
k∑

i=1

a(i) for k = 1,2, . . . .
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A sequence (xi) of {0, 1}-numbers is defined as follows:

xi =
{

1, if i ∈ {
b(k) + 1, . . . , b(k + 1)

}
for k even,

0, if i ∈ {
b(k) + 1, . . . , b(k + 1)

}
for k odd

for k = 0,1,2, . . . .

Note that the sequence (mn) with mn = 1
n

∑n
i=1 xi has no limit for n → ∞ since:

mb(2n) → 1
2 and mb(2n+1) → 3

4 .

A point process distribution P which P -a.s. experiences a fixed eventuality A at the times Ti

with xi = 1 and Ac at the times Ti with xi = 0, is not EAMS.

Unless stated otherwise, we will always assume that the conditions about α and N in Theo-
rem 4.2 are satisfied.

5. Absolute continuity properties equivalent to AMS

It is proven that AMS is equivalent to AC properties for {Pn} and P ∗, and also to a weak AC
property for {P 0,x}. Thus, the class of AMS point processes is characterized in three ways. With
(3.12a), (3.12b), we recognize the TS subclass within the AMS class.

If Pm � Pes for a fixed m ∈ Z, then Pn � Pes for all n ∈ Z since Pes(A) = 0 implies
Pes[ηn−m(ϕ) ∈ A] = 0 and hence Pn(A) = Pm[ηn−m(ϕ) ∈ A] = 0. We get, for each m ∈ Z:

{Pn} � Pes ⇔def ∀n∈Z: Pn � Pes ⇔ Pm � Pes.

The theorem below shows that P is EAMS if and only if, for one (and hence all) m ∈ Z, the
intermediate distribution Pm is absolutely continuous w.r.t. an ES point process distribution.

Theorem 5.1. Let P be a point process distribution. Then:

(1) P is EAMS(Pes) ⇒ {Pn} � Pes ,
(2) {Pn} � Pes with δ−n := dPn/dPes ⇒ P is EAMS(P̃es).

Here, P̃es(A) = Ees(δ1A) with δ := Ees(δ0|I).

Proof. Suppose that P is EAMS(Pes), and that it holds for certain A ∈ M∞ and n ∈ Z that
Pes(A) = 0 but Pn(A) = a > 0. Set Ã := A∪ (

⋃
k∈Z

η−1
k A). Note that Pes(Ã) = 0. However, for

all k ∈ Z we have:

Pk(Ã) ≥ Pk

(
η−1

n−kA
) = a.

Hence, Pes(Ã) = limm→∞ 1
m

∑m
k=1 Pk(Ã) ≥ a > 0, which leads to a contradiction. Hence,

{Pn} � Pes . For the reversed implication, suppose that {Pn} � Pes and δ−n = dPn/dPes . For
all n ∈ Z and C ∈ M∞ it holds that Pn(C) = Ees(δ−n1C), but also that:

Pn(C) = P−1
(
η−1

n+1C
) = Ees(δ1 · 1C 	 ηn+1) = Ees(δ1 	 η−n−1 · 1C).
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So, Pes[δk = δ1 	 ηk−1] = 1 for all k ∈ Z and the discrete-time stochastic process {δk} is Pes -
stationary. With δ := Ees(δ0|I) we have by Birkhoff’s ergodic theorem that, for all A ∈ M∞:

1

n

n∑
i=1

δ−i1A → δ1A as n → ∞ Pes-a.s.

By taking Pes -expectation it follows that P is EAMS with ES limit distribution P̃es . �

Remark. We conclude that P is AMS iff there exists an ES point process distribution Pes such
that P0 � Pes , which also follows by combining Theorems 2, 3 and 4 of Gray and Kieffer [5].
Comparison with (3.12a), (3.12b) learns that the class of TS point processes is (only) a relatively
small part of the class of all AMS point processes.

Theorem 5.2. Let P be a point process distribution, and Pts a TS point process distribution with
finite intensity λts and associated PD P 0

ts . Let P ∗ be defined as in (3.11). Then:

(a) If P � Pts with σ := dP/dPts , then:

P0 � P 0
ts with δ0 := dP0/dP 0

ts = λts

∫ α0

0
σ 	 θy dy;

(b) P ∗ � Pts ⇔ P0 � P 0
ts ;

for σ ∗ := dP ∗/dPts and δ0 := dP0/dP 0
ts we have:

Pts

[
σ ∗ = δ0 	 η0/(λtsα0)

] = 1 and P 0
ts

[
δ0 = λts

∫ α0

0
σ ∗ 	 θy dy

]
= 1,

so σ ∗ satisfies Pts[σ ∗ 	 η0 = σ ∗] = 1.

Proof. Part (a) follows immediately by applying (2.8a) and (2.7a) to Pts , Pts,0 and P 0
ts . Implica-

tion ‘⇒’ of (b) is a consequence of (a) and Theorem 3.1(1). For ‘⇐’ of (b), note that by (3.11),
(2.7b) and (2.8a) we obtain for A ∈ M∞ that P ∗(A) equals:

E0
ts

(
δ0/α0 ·

∫ α0

0
1A 	 θy dy

)
= 1

λts

Ets

(
δ0 	 η0/α0 · 1

α0

∫ T (1)

T (0)

1A 	 θy dy

)

= 1

λts

Ets

(
δ0 	 η0

1

α0
1A

)
�

Hence, P is EAMS ⇔ there exists a TS point process distribution Pts such that P ∗ � Pts .

Theorem 5.3. Suppose that P(M) = 1. For all A ∈ M, the following holds:

(1) P(A) = 0 ⇔ P x(A) = 0 for ν-a.e. x ∈ R;
(2) Pn(A) = 0 for all n ∈ Z with P(Fn) > 0 ⇔ P 0,x(A) = 0 for ν-a.e. x ∈ R.
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Proof. The left-hand sides of (1) and (2) are, respectively, equivalent to νA(B) being 0 for all
B ∈ Bor(R) and to μA(B) being 0 for all B ∈ Bor(R). Next, use (3.1) and (3.3). �

Below, we will consider the following absolute continuity properties:{
P 0,x

} � Pes ⇔def for ν-a.e. x ∈ R and ∀A∈M: Pes(A) = 0 ⇒ P 0,x(A) = 0

⇔def
{
P 0,x

}
is absolute continuous w.r.t. Pes,{

P 0,x
} �w Pes ⇔def ∀A∈M and for ν-a.e. x ∈ R: Pes(A) = 0 ⇒ P 0,x(A) = 0

⇔def
{
P 0,x

}
is weakly absolute continuous w.r.t. Pes,{

P x
} � P ⇔def for ν-a.e. x ∈ R and ∀A∈M: P(A) = 0 ⇒ P x(A) = 0.

The next result is an immediate consequence of Theorem 5.3.

Corollary 5.4. Let P be a point process distribution. It holds for event-stationary Pes that:
{P 0,x} � Pes ⇒ {P 0,x} �w Pes ⇔ {Pn} � Pes .

The example below shows that Theorem 5.3 does not necessarily imply that {P x} � P

and also not that {P 0,x} � Pn. It also shows that {P 0,x} �w Pes does not necessarily imply
{P 0,x} � Pes .

Example 5.5. Let P be the distribution of an ES Poisson point process. Note that the eventuali-
ties Ax := [ϕ{x} = 1] have P -probability 0 and P x -probability 1 as long as x �= 0. So, {P x} � P

is not valid. Also {P 0,x} � Pn is not valid since Pn = P and the eventualities Cx := [ϕ{−x} = 1]
have P 0,x -probability 1 and Pn-probability 0 for x �= 0. By Corollary 5.4, we have {P 0,x} �w P .
However, {P 0,x} � P is not valid since for all x �= 0 we have P(Cx) = 0 while P 0,x(Cx) = 1.

If P satisfies P(M0) = 1, then P = P0. So, the property P � Pes is not interesting for further
investigation about AMS. However, the property P � Pts is interesting since, by (2.8a), it only
implies that P ∗ � Pts (i.e., no equivalence) and hence that P is AMS. By Corollary 5.4, the
property {P 0,x} � Pes also (only) implies that P is AMS. In Sections 6–8, we will characterize
the properties {P 0,x} � Pes and P � Pts and derive relationships between them.

6. Absolute continuity of {P 0,x} w.r.t. Pes

The property {P 0,x} � Pes implies that P can be expressed in Pes . The property is stronger than
AMS; we characterize it. Below, we will use that:

P(ηn,Tn)(A × B) := P [ηnϕ ∈ A;Tnϕ ∈ B] for A ∈ M∞ and B ∈ Bor(R).

Suppose that {P 0,x} � Pes with RN derivatives {ρx}. Then we have, for ν-a.e. x ∈ R:

P 0,x(A) = Ees(ρx1A) for all A ∈ M. (6.1)
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Since Pes(M
∞) = 1, it follows that P 0,x(M∞) = 1 for ν-a.e. x ∈ R. Hence, P(M∞) = 1 by

Theorem 5.3(1). By (3.6c) and (6.1) we can express P in Pes :

P(A) = Ees

(∫
(−T−k+1,−T−k]

ρy · 1A 	 θ−y dν(y)

)
, A ∈ M∞ and k ∈ Z. (6.2)

Theorem 6.1. Let Pes be an ES distribution on (M0, M0). Then:{
P 0,x

} � Pes on
(
M0, M0)

⇔ ∀n∈Z: {P(ηn,Tn)} � Pes × ν on
(
M0 × R, M0 ⊗ Bor(R)

)
.

The RN-derivatives

ρx(ϕ) := dP 0,x

dPes

(ϕ) and τ−n(ϕ, x) := dP(ηn,Tn)

d(Pes × ν)
(ϕ, x),

ϕ ∈ M0, x ∈ R and n ∈ Z, are related as follows:

(1) τ−n(ϕ, x) = ρx(ϕ) · 1[T (−n)≤−x<T (−n+1)](ϕ) (Pes × ν)-a.e.
(2) ρx(ϕ) = ∑

k∈Z
τ−k(ϕ, x) Pes -a.s. for ν-a.e. x ∈ R.

Proof. The implication ‘⇒’ and (1) follow from (3.9) and (6.1). Next, suppose that for all n ∈ Z

the P -distribution of (ηn, Tn) is dominated by Pes × ν, with RN-derivative denoted as τ−n(ϕ, x).
Set Q0,x(A) := ∫

A
(
∑

n∈Z
τ−n(ϕ, x))dPes(ϕ), for A ∈ M0. Note that∫

B

Q0,x
(
M0)dν(x) =

∑
n∈Z

∫
B

∫
M0

τ−n(ϕ, x)dPes(ϕ)dν(x) = ν(B) =
∫

B

1 dν(x)

for all B ∈ Bor(R). So, for ν-a.e. x ∈ R it holds that Q0,x(M0) = 1 and Q0,x is a probability
measure. The right-hand side of (3.2), with P x(·) replaced by Q0,x[θ−xϕ ∈ ·], equals∫

R

∫
M0

f (x, θ−xϕ)dQ0,x(ϕ)dν(x)

=
∫

R

∫
M0

f (x, θ−xϕ)
∑
n∈Z

τ−n(ϕ, x)dPes(ϕ)dν(x)

=
∑
n∈Z

∫
M0×R

f (x, θ−xϕ)dP(ηn,Tn)(ϕ, x)

=
∑
n∈Z

∫
M

f
(
Tnϕ, θ−Tn(ϕ)(ηnϕ)

)
dP(ϕ) =

∑
n∈Z

∫
M

f (Tnϕ,ϕ)dP(ϕ),

which is just the left-hand side of (3.2). Since the family of PD’s of P is unique in the ν-a.e.
sense, we have P 0,x = Q0,x for ν-a.e. x ∈ R. The if-part and (2) follow. �
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Corollary 6.2. Suppose that {P 0,x} � Pes with RN-derivatives {ρx}. Then:

(1) For all n ∈ Z: Pn � Pes with RN-derivative δ−n = ∫
(−T (−n+1),−T (−n)] ρy dν(y).

(2) For all m ∈ Z it holds that Pes[δm+1 = δm 	 η1] = 1, so {δn} is Pes -stationary.
(3) If it holds additionally that Pes[δ0 > 0] = 1, then:{

P 0,x
} � P0 and P0 � Pes; here, dP 0,x/dP0 = ρx/δ0 P0-a.s.

Proof. (1) follows immediately from Theorem 6.1. For (2), note that, for all A ∈ M∞ and
m ∈ Z:

Ees(1A · δm+1) = P−m[η−1ϕ ∈ A] = Ees(1A 	 η−1 · δm) = Ees(1A · δm 	 η1).

Part (3) follows from (1) and from the fact that it holds for ν-a.e. x ∈ R that:

P 0,x(A) = Ees(ρx1A) = Ees(ρx1A1[δ0>0]) = E0

(
ρx

1

δ0
1A

)
for A ∈ M0. �

Note that Corollary 6.2(1) generalizes (2.7a). By (6.2), the additional assumption Pes[δ0 >

0] = 1 yields that P can be expressed in terms of P0, a property that according to (2.8a) and
(3.11) also holds for TS distributions P and, more generally, for distributions P with P ∗ = P .

7. Absolute continuity of P w.r.t. Pts

The point processes with P � Pts are characterized within the class of AMS point processes.
We also compare the properties P � Pts , P � P ∗, P ∗ � Pts , ν � Leb, and P ∗ = P . The
equivalence of ‘P is also TS’ and ‘I -measurability of dP/dPts ’ is proved. For time-stationary P ,
the property P � Pts holds equivalently for the associated event-stationary PDs.

Assume that P � Pts . Hence, P [ϕ{0} = 0] = 1 and P(M∞) = 1. Set σ := dP/dPts , let λts

be the (finite) intensity of Pts and let P 0
ts be the event-stationary PD of Pts . It follows that:

P(A) = Ets(σ · 1A), A ∈ M∞, (7.1)

P(A) = λtsE
0
ts

(∫
(−T−k+1,−T−k]

σ 	 θ−y · 1A 	 θ−y dy

)
, A ∈ M∞ and k ∈ Z. (7.2)

Theorem 7.1. Let P and Pts be point process distributions and let P ∗ be as in (3.11); sup-
pose that Pts is time-stationary. Below, versions of RN-derivatives for P � Pts , P ∗ � Pts and
P � P ∗ are (if existing) respectively denoted as σ , σ ∗ and τ .

(a) P � Pts ⇔ P � P ∗ and P ∗ � Pts ; σ ∗ = 1
α0

∫ T (1)

T (0)
σ 	 θy dy and τ = σ/σ ∗;

(b) If P � Pts , then: P = P ∗ ⇔ Pts[σ = σ 	 η0] = 1;
(c) If P � Pts , then ν � Leb.

Proof. The implication ‘⇐’ of (a) is trivial. For the implication ‘⇒’, suppose that P � Pts .
By (3.11), (7.1), and (2.8a) under Pts , it follows that P ∗ � Pts with σ ∗ as indicated. Since
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σ ∗ 	 η0 = σ ∗, we obtain by (3.11) that not only P ∗[σ ∗ = 0] = 0, but also P [σ ∗ = 0] = 0. It
follows that P � P ∗ since, because of P ∗ � Pts , we have for all A ∈ M∞:

E∗
(

σ

σ ∗ 1A

)
= Ets(σ1[σ ∗>0]1A) = P

(
A ∩ [

σ ∗ > 0
]) = P(A).

Part (b) follows from (a). For (c), suppose that P � Pts . If B ∈ Bor(R) satisfies Leb(B) = 0,
then ν(B) = 0 since:

EtsN(B) = λts · Leb(B) = 0 and Pts

[
ϕ(B) = 0

] = 1 = P
[
ϕ(B) = 0

]
. �

By Theorems 5.2(b) and 7.1(a) it follows that the point processes with P � Pts are just the
AMS point processes for which it additionally holds that P � P ∗.

If P is time-stationary too . . .

We will consider the consequences of P � Pts if P is also time-stationary.

Theorem 7.2. Suppose that P � Pts and that λts < ∞. Then:

(a) P is time-stationary too ⇔ there exists an I -measurable version of dP/dPts .
(b) If P is also time-stationary and Pts is ergodic, then P = Pts .
(c) If P is also time-stationary with intensity λ and Pts is pseudo-ergodic, then P is also

pseudo-ergodic and λ = λts .

Proof. For (a), suppose that P is also TS and set σ = dP/dPts . By Birkhoff’s ergodic theorem
and taking E-expectations, we obtain for A ∈ M∞:

1

x

∫ x

0
1A 	 θy dy → Ets(1A|I) as x → ∞ P -a.s., (7.3)

P(A) = E
(
Ets(1A|I)

) = Ets

(
σEts(1A|I)

) = Ets(σ1A).

Hence, σ := Ets(σ |I) is an I -measurable version of dP/dPts . The if-part follows from (1.1).
Statement (b) follows from (7.3) since now the limit is Pts(A). For (c), note that E(N(0,1]|I)

and λts are both the P -a.s. limit of N(0, x]/x as x → ∞. Hence, P [E(N(0,1]|I) = λts] = 1,
P is pseudo-ergodic too, and λ = λts . �

Theorem 7.3. Suppose that P and Pts are both TS with respective (finite) intensities λ and λts ,
and accompanying event-stationary PDs P 0 and P 0

ts . Then:

P � Pts ⇔ P 0 � P 0
ts .

Respective I -measurable versions σ and σ0 of the RNs satisfy: λσ0 = λtsσ P 0
ts -a.s. and Pts -a.s.
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Proof. If P � Pts , then, by Theorem 7.2(a), we can take an I -measurable version σ for
dP/dPts . By (2.7b), (1.1) and (2.7a) we obtain for all A ∈ M∞:

P 0(A) = 1

λ
E

(
1

α0
1A 	 η0

)
= 1

λ
Ets

(
σ

1

α0
1A 	 η0

)
= λts

λ
E0

ts (σ · 1A).

Hence, P 0 � P 0
ts , and σ0 = dP 0/dP 0

ts satisfies P 0
ts[λσ0 = λtsσ ] = 1. If P 0 � P 0

ts , it can be
proved (as in the proof of Theorem 7.2(a)) that σ0 can be taken as an I -measurable function. By
(2.6), (2.7b) under Pts , and (2.8c) under Pts , we have for C ∈ M∞:

P(C) = λE0
(∫ α0

0
1C 	 θy dy

)
= λE0

ts

(
σ0

∫ α0

0
1C 	 θy dy

)

= λ

λts

Ets

(
σ0 · 1

α0

∫ T (1)

T (0)

1C 	 θy dy

)
= λ

λts

Ets(σ0 · 1C). �

8. Relationships between absolute continuity properties

The properties P � Pts and {P 0,x} � P 0
ts are compared and the relationships between the ac-

companying RN derivatives are investigated. If P ∗ = P , then P is AMS iff there exist a time-
stationary Pts which dominates P .

Theorem 8.1. Let P and Pts be point process distributions, where Pts is time-stationary,
λts < ∞ and P 0

ts is the accompanying Palm distribution. Then:

P � Pts ⇔ ν � Leb and
{
P 0,x

} � P 0
ts .

The RN-derivatives σ := dP/dPts , λ(·) := dν/dLeb and ρx := dP 0,x/dP 0
ts satisfy:

(a) λ(y) = λts · E0
ts (σ 	 θ−y) for Leb-a.e. y ∈ R;

(b) P 0
ts[λ(y) · ρy = λts · σ 	 θ−y] = 1 for Leb-a.e. y ∈ R;

(c) P 0
ts[λ(y) · ρy = λts · σ 	 θ−y for Leb-a.e. y ∈ R] = 1;

(d) Pts[λts · σ = λ(Tk) · (ρTk
	 ηk)] = 1 for all k ∈ Z.

Proof. Suppose that P � Pts with RN-density σ . First note that ν � Leb by Theorem 7.1(c).
Write λ(·) for the RN-density and note that λ(x) > 0 for ν-a.e. x ∈ R. For B ∈ Bor(R) we have:∫

B

λ(x)dx = EN(B) =
∑
k∈Z

P [Tk ∈ B].

For all ϕ ∈ M0, k ∈ Z, and y ∈ R with T−k(ϕ) < −y ≤ T−k+1(ϕ), we have Tk(θ−yϕ) = y and
ηk(θ−yϕ) = ϕ; call this observation (∗). Taking A = [Tk ∈ B] in (7.2) yields∫

B

λ(x)dx =
∫

B

λtsE
0
ts (σ 	 θ−x)dx,
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which proves (a). As a consequence of (a), we have:

Leb
{
x ∈ R: λ(x) = 0 and P 0

ts

[
σ(θ−xϕ) �= 0

]
> 0

} = 0. (8.1)

To prove that {P 0,x} � P 0
ts , we use (3.2). For ν-a.e. x ∈ R, we define probability measures Q0,x

on (M, M) as follows: Q0,x(C) := λtsE
0
ts (σ 	 θ−x · 1C)/λ(x) for C ∈ M∞ . By (7.1), (2.6), the

above observation (∗), and (8.1), the left-hand side of (3.2) equals:

Ets

[
σ(ϕ)

∑
k∈Z

f (Tkϕ,ϕ)

]
=

∑
k∈Z

λtsE
0
ts

[∫ −T−k

−T−k+1

σ(θ−xϕ)f
(
Tk(θ−xϕ), θ−xϕ

)
dx

]

=
∫ ∞

−∞

∫
M

f (x, θ−xϕ)λtsσ (θ−xϕ)dP 0
ts (ϕ)dx

=
∫

{x∈R: λ(x)>0}

∫
M

f (x, θ−xϕ)λtsσ (θ−xϕ)
1

λ(x)
dP 0

ts (ϕ)dν(x)

=
∫ ∞

−∞

∫
M

f (x, θ−xϕ)dQ0,x(ϕ)dν(x). (8.2)

Note that (8.2) is just the right-hand side of (3.2) if we take P x(A) = Q0,x[θ−xϕ ∈ A], A ∈ M∞.
Because of the uniqueness of {P x} it follows for ν-a.e. x ∈ R that Q0,x = P 0,x , that P 0,x is
dominated by P 0

ts for ν-a.e. x ∈ R and that the RNs ρx satisfy (b) with ν instead of Leb. Hence,∫
R

P 0
ts[λ(x)ρx �= λtsσ 	 θ−x]dν(x) = 0 and

Leb
{
x ∈ R: λ(x)P 0

ts

[
λ(x)ρx �= λtsσ 	 θ−x

]
> 0

} = 0.

By (8.1), we obtain that P 0
ts[λ(x)ρx �= λtsσ 	 θ−x] = 0 for Leb-a.e. x ∈ R, which proves (b).

Since (b) can equivalently be formulated as∫
R

P 0
ts

[
λ(y)ρy �= λtsσ 	 θ−y

]
dy = 0,

result (c) is just a consequence of Fubini’s theorem. Next, suppose that ν � Leb and
{P 0,x} � P 0

ts . By (6.2) we have, for A ∈ M∞ and k ∈ Z:

P(A) = E0
ts

(∫
(−T−k+1,−T−k]

ρy · 1A 	 θ−yλ(y)dy

)
. (8.3)

By observation (*), we can replace ρy and λ(y) by, respectively, ρTk	θ−y 	ηk 	θ−y and λ(Tk 	θ−y).
We obtain by (2.6) under Pts that the right-hand side of (8.3) equals:

Ets

(
λ(Tk) · (ρTk

	 ηk) · 1A

)
/λts .

Hence, P � Pts and (d) follows. �
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Remark. Theorem 8.1 generalizes Theorem 7.3. Also note that, by (a) and (c), it holds P 0
ts -a.s.

that:

ρx = σ 	 θ−x

E0
ts (σ 	 θ−x)

for ν-a.e. x ∈ R. (8.4)

Starting with some preliminary TS model Pts , each measurable function σ :M∞ → [0,∞) with
Ets(σ ) = 1 can be used to transform Pts into a (usually) not TS but AMS new model P via
P(A) = Ets(σ · 1A), A ∈ M∞ . The accompanying family {P 0,x} of shifted Palm distributions
is then dominated by the (event-stationary) Palm distribution of Pts . The family of RN-densities
{ρx} is given by (8.4).

By Theorems 8.1, 3.1(3), and Corollary 5.4 it follows that for point process distributions P

with P ∗ = P , weak absolute domination of {P 0,x} (and hence AMS) is equivalent to strong
absolute domination:

Corollary 8.2. If P is a point process distribution with P ∗ = P , then:

P � Pts ⇔ {
P 0,x

} � P 0
ts ⇔ {

P 0,x
} �w P 0

ts .

The next results are immediate consequences of Corollary 6.2(1), Theorem 8.1 and (3.3).

Corollary 8.3. Suppose that P � Pts with λts < ∞ and σ = dP/dPts . Then:

(a) {Pn} � P 0
ts with δ−n := dPn/dP 0

ts = λts

∫ T−n+1
T−n

σ 	 θy dy for all n ∈ Z.
(b) For ν-a.e. x ∈ R and all A ∈ M∞ it holds that:

P 0,x(A) = λtsE
0
ts (1A · σ 	 θ−x)

λtsE
0
ts (σ 	 θ−x)

. (8.5)

Here, numerator and denominator are just λA(x) and λ(x), RN-derivatives of μA and ν

with respect to Leb.
(c) If it holds additionally that σ(ϕ) = σ(η0(ϕ)) for all ϕ ∈ M∞ (and hence P ∗ = P ), then

δ−n = σ 	 η−n · λtsα−n.

In the example below, results of this paper are used to investigate consequences of a transfor-
mation via P � Pts if Pts is TS and Poisson.

Example 8.4. Let Pts be the distribution of a TS Poisson point process on R with intensity λts .
Suppose that P � Pts with σ(ϕ) = λtsα0(ϕ)/2 for ϕ ∈ M∞. It follows that, for x ≥ 0:

P [α0 > x] = e−λtsx
(
λ2

tsx
2/2 + λtsx + 1

)
and Pts[α0 > x] = e−λtsx(λtsx + 1).

Hence, α0 is under P stochastically larger than under Pts . However, for i �= 0 the distributions
of αi under P and Pts are the same. By Theorems 7.1(b) and 3.1(2) it follows that, as under Pts ,
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it holds under P that T1 is (conditionally) uniformly distributed on (0, α0). Starting with Theo-
rem 8.1(a), (8.4) and (8.5), we obtain after tough calculations that, for x ∈ R:

λ(x) = λ2
tsE

0
ts (α0 	 θ−x)/2 = λts − λts exp(−λts |x|)/2,

ρx = λtsα0 	 θ−x/
(
2 − exp

(−λts |x|)),
P 0,x(A) = λtsE

0
ts (1A · α0 	 θ−x)/

(
2 − exp

(−λts |x|)).
The independence of the interval lengths under P 0

ts yields that:

- if x ≤ 0 and A ∈ σ {α−1, α−2, . . .} then P 0,x(A) = P 0
ts (A);

- if x > 0 and A ∈ σ {α0, α1, . . .} then P 0,x(A) = P 0
ts (A).

More generally, it can be proven that, for each n ∈ Z, the RN-derivative σn := αn/Ets(αn)

transforms the TS Poisson distribution Pts into an AMS distribution P that conserves the inde-
pendence of the interval lengths αk and for k �= n also their distributions, but making αn stochas-
tically larger. However, an RN-derivative of the form σ = γ0α0 + γ1α1 with γ0 ≥ 0, γ1 ≥ 0 and
γ1 = λts − 2γ0 transforms Pts into a distribution under which α0 and α1 are independent if and
only if (γ0, γ1) = (0, λts) or (γ0, γ1) = (λts/2,0).
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