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We consider a circular deconvolution problem, in which the density f of a circular random variable X must
be estimated nonparametrically based on an i.i.d. sample from a noisy observation Y of X. The additive
measurement error is supposed to be independent of X. The objective of this work was to construct a fully
data-driven estimation procedure when the error density ϕ is unknown. We assume that in addition to the
i.i.d. sample from Y , we have at our disposal an additional i.i.d. sample drawn independently from the error
distribution. We first develop a minimax theory in terms of both sample sizes. We propose an orthogonal
series estimator attaining the minimax rates but requiring optimal choice of a dimension parameter depend-
ing on certain characteristics of f and ϕ, which are not known in practice. The main issue addressed in
this work is the adaptive choice of this dimension parameter using a model selection approach. In a first
step, we develop a penalized minimum contrast estimator assuming that the error density is known. We
show that this partially adaptive estimator can attain the lower risk bound up to a constant in both sample
sizes n and m. Finally, by randomizing the penalty and the collection of models, we modify the estimator
such that it no longer requires any previous knowledge of the error distribution. Even when dispensing
with any hypotheses on ϕ, this fully data-driven estimator still preserves minimax optimality in almost the
same cases as the partially adaptive estimator. We illustrate our results by computing minimal rates under
classical smoothness assumptions.

Keywords: adaptive density estimation; circular deconvolution; minimax theory; model selection;
orthogonal series estimation; spectral cut-off

1. Introduction

This work deals with the estimation of circular probability densities from noisy observations.
“Circular” means that the observations are points on the circle. Such models arise in numerous
and various fields of application. Data with temporal structure are most naturally represented in
this way; for example, times of day when events of interest occur such as requests in a computer
network, financial transactions, or gun crimes, can be represented as points on a clock face (Gill
and Hangartner [22]), as illustrated in Figure 1. Replacing the clock face by a compass rose,
directional data also can be treated in the circular setting. Curray [14] considered the analysis
of directional data in the context of geological research. Cochran, Mouritsen and Wikelski [9]
investigated migrating birds’ navigation abilities using circular data.

The applications of circular data are not restricted to a spatiotemporal context. Gill and
Hangartner [22] provided an overview of circular data in political science, where they can be
used to, for example, model political preferences, which are not of a temporal or a spatial na-
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Figure 1. A trimodal circular density and a density estimator from periodic data.

ture. For a more detailed discussion of the specifics of circular data, see Mardia [32]. Numerous
circular data sets and examples of their statistical analysis have been provided by Fisher [21].

Let X be the circular random variable whose density f we are interested in and let ε be
an independent additive circular error with unknown density ϕ. Denote by Y the contaminated
observation and by g its density. Throughout this work, we identify the circle with the unit
interval [0,1) for notational convenience. Thus, X and ε take their values in [0,1). Let �·� be
the floor function. Taking into account the circular nature of the data, the model can be written
as Y = X + ε − �X + ε� or, equivalently, Y = X + ε mod [0,1). We then have

g(y) = (f ∗ ϕ)(y) :=
∫

[0,1)

f
(
(y − s) − �y − s�)ϕ(s)ds, y ∈ [0,1),

such that ∗ denotes circular convolution. Therefore, the estimation of f is called a circular decon-
volution problem. Let L2 := L2([0,1)) be the Hilbert space of square-integrable complex-valued
functions defined on [0,1) endowed with the usual inner product 〈f,g〉 = ∫

[0,1)
f (x)g(x)dx,

where g(x) denotes the complex conjugate of g(x). In this work, we suppose that f and ϕ, and
hence also g, belong to the subset D of all densities in L2. Consequently, they admit represen-
tations as discrete Fourier series with respect to the exponential basis, {ej }j∈Z, of L2, where
ej (x) := exp(−i2πjx) for x ∈ [0,1) and j ∈ Z. Given p ∈ D and j ∈ Z, let [p]j := 〈p, ej 〉 be
the j th Fourier coefficient of p. In particular, [p]0 = 1. The key to the analysis of the circular
deconvolution problem is the convolution theorem, which states that g = f ∗ ϕ if and only if
[g]j = [f ]j [ϕ]j for all j ∈ Z. Therefore, as long as [ϕ]j �= 0 for all j ∈ Z, which we assume
from here on, we have

f = 1 +
∑
|j |>0

[g]j
[ϕ]j ej with [g]j = Eej (−Y) and [ϕ]j = Eej (−ε) ∀j ∈ Z. (1.1)

Note that an analogous representation holds in the case of deconvolution on the real line when
the X-density is compactly supported but the error term ε, and hence Y , take their values in R.
In this situation, the deconvolution density still admits a discrete representation as in (1.1), but
involving the characteristic functions of ϕ and g rather than their discrete Fourier coefficients.
There is a vast literature on deconvolution on the real line, with or without compactly supported
deconvolution density. In the case where the error density is fully known, a very popular ap-
proach based on kernel methods has been considered by, among many others, Carroll and Hall



1578 J. Johannes and M. Schwarz

[7], Devroye [15], Fan [18,19], Stefanski [45], Zhang [47], Goldenshluger [23,24], and Kim and
Koo [29]. Mendelsohn and Rice [35] and Koo and Park [30], for example, studied spline-based
methods, whereas Pensky and Vidakovic [42], Fan and Koo [20], and Bigot and Van Bellegem
[2], used wavelet decomposition. Situations with only partial knowledge of the error density
have been considered as well (e.g., Butucea and Matias [4], Meister [33], Schwarz and Van Bel-
legem [44]). Consistent deconvolution without previous knowledge of the error distribution is
also possible in the case of panel data (e.g., Horowitz and Markatou [26], Hall and Yao [25], or
Neumann [40]) or by assuming an additional sample from the error distribution (e.g., Diggle and
Hall [16], Neumann [39], Johannes [27], or Comte and Lacour [11]). For a broader overview on
deconvolution problems, see the monograph of Meister [34].

We now return to the circular case. In this paper, we assume that we do not know the density
g = f ∗ ϕ of the contaminated observations or the error density ϕ, but we have at our disposal
two independent samples of i.i.d. random variables

Yk ∼ g (k = 1, . . . , n) and εk ∼ ϕ (k = 1, . . . ,m) (1.2)

of size n ∈ N and m ∈ N, respectively. Our aim is to establish a fully data-driven estimation
procedure for the deconvolution density f that attains optimal convergence rates in a mini-
max sense. More precisely, given classes F r

γ and E d
λ (defined below) of deconvolution and

error densities, respectively, we measure the accuracy of an estimator f̃ of f by the maxi-
mal weighted risk supf ∈F r

γ
supϕ∈E d

λ
E‖f̃ − f ‖2

ω defined with respect to some weighted norm

‖ · ‖2
ω := ∑

j∈Z
ωj |[·]j |2, where ω := (ωj )j∈Z is a strictly positive sequence of weights. This al-

lows us to quantify the estimation accuracy in terms of the mean integrated squared error (MISE)
not only of f itself, but also of its derivatives, for example. It is well known that even in case
of a known error density, the maximal risk in terms of the MISE in the circular deconvolution
problem is essentially determined by the asymptotic behavior of the sequences of Fourier coeffi-
cients ([f ])j∈Z and ([ϕ])j∈Z of the deconvolution density and the error density, respectively. For
a fixed deconvolution density f , a faster decay of the ε-density’s Fourier coefficients ([ϕ])j∈Z

results in a slower optimal rate of convergence. For example, in the standard context of an or-
dinary smooth deconvolution density, when ([f ])j∈Z decays polynomially, logarithmic rates of
convergence appear when the error density is super smooth, that is, ([ϕ])j∈Z has exponential
decay. Efromovich [17] treated this special case exclusively. However, this situation and many
others are covered by the density classes

F r
γ :=

{
p ∈ D:

∑
j∈Z

γj

∣∣[p]j
∣∣2 =: ‖p‖2

γ ≤ r

}
and

E d
λ :=

{
p ∈ D: 1/d ≤ |[p]j |2

λj

≤ d ∀j ∈ Z

}
,

where r, d ≥ 1 and the positive weight sequences γ := (γj )j∈Z and λ := (λj )j∈Z specify the
asymptotic behavior of the respective sequence of Fourier coefficients. In Section 2, we present a
lower bound of the maximal weighted risk that is determined essentially by the sequences γ , λ,
and ω. This lower bound is composed of two main terms, each of which depends on the size of
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one sample but not of the other sample. Let us define an orthogonal series estimator by replacing
the unknown Fourier coefficients in (1.1) by empirical counterparts, that is,

f̂k := 1 +
∑

0<|j |≤k

[̂g]j
[̂ϕ]j

1
{∣∣[̂ϕ]j

∣∣2 ≥ 1/m
}
ej

(1.3)

with [̂g]j := 1

n

n∑
i=1

ej (−Yi) and [̂ϕ]j := 1

m

m∑
i=1

ej (−εi).

For each j , we introduce a threshold for the estimated coefficient [̂ϕ]j that corresponds, in ac-
cordance with Neumann [39], to the rate at which [ϕ]j can be estimated. Again, things work out
analogously to deconvolution on the real line, where we need only replace the empirical Fourier
coefficients with the corresponding values of the empirical characteristic functions. Similar es-
timators have been studied by, for example, Neumann [39] on the real line and by Efromovich
[17] in the circular case.

We show below that the estimator f̂k attains the lower bound and thus is minimax optimal.
By comparing the minimax rates in the cases of known and unknown error density, we can
characterize the influence of the estimation of the error density on the quality of the estimation.
In particular, depending on the Y sample size n, we can determine the minimal ε sample size
mn needed to attain the same upper risk bound as in the case of a known error density, up to
a constant. Interestingly, the required sample size, mn, is far smaller than n in a wide range of
situations. For example, in the super smooth case, it is sufficient that the size of the ε sample be
a polynomial in n, that is, mn = nr for any r > 0.

Of course, minimax optimality can be achieved only if the dimension parameter k is chosen
in an optimal way. In general, this optimal choice of k depends on, among other things, the
sequences γ and λ. However, in the special case where the error density is known to be su-
per smooth and the deconvolution density is ordinary smooth, the optimal dimension parameter
depends only on λ and not on γ . Thus, the estimator is automatically adaptive with respect to
γ under the optimal choice of k. In this situation, Efromovich [17] provided an estimator that
is also adaptive with respect to the super smooth error density. In contrast, Cavalier and Hen-
gartner [8], deriving oracle inequalities in an indirect regression problem based on a circular
convolution contaminated by Gaussian white noise, treated only the ordinary smooth case. As in
our setting, their observation scheme involves two independent samples. Of note, application of
these estimators requires knowledge of whether the error density is ordinary or super smooth. In
this work, we provide a unified estimation procedure that can attain minimax rates in both cases,
being adaptive over a class including both ordinary and super smooth error densities. This fully
adaptive method of choosing the parameter k depends only on the observations, not on charac-
teristics of either f or ϕ. Our main result is that for this automatic choice k̂, the estimator f̂k̂

attains the lower bound up to a constant, and thus is minimax-optimal, over a wide range of se-
quences γ and λ, covering in particular both ordinary and super smooth error densities. A similar
result was recently derived in the context of a functional linear regression model by Comte and
Johannes [10].

Regarding the two sample sizes, the assumption of Cavalier and Hengartner [8] on the respec-
tive noise levels can be translated to our model by stating that the ε sample size m is at least as
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large as the Y sample size n. This assumption was also made by Efromovich [17]. Also note that
in the functional linear regression model, only one sample size, n, occurs (Comte and Johannes
[10]); however, as mentioned earlier, without changing the minimax rates, the ε-sample size can
be reduced to mn, which can be much smaller than n. This is a desirable property, given that the
observation of the additional sample from ε may be expensive in practice. Nevertheless, the min-
imal choice of m depends on, among other things, the sequences γ and λ and thus is unknown
in general. Despite the eventual deterioration of the minimax rate resulting from choosing the
sample size m smaller than n, the proposed estimator still attains this rate in many cases; that is,
no price, in terms of convergence rate, is paid for adaptivity.

The adaptive choice of k is motivated by the general model selection strategy developed by
Barron, Birgé and Massart [1]. Concretely, following Comte and Taupin [13], who treated the
case of a known error density only, k̂ is the minimizer1 of a penalized contrast

k̂ := argmin
1≤k≤K

[−‖f̂k‖2
ω + pen(k)

]
.

Note that we can compute ‖f̂k‖2
ω = 1+∑

0<|j |≤k ωj |[̂g]j |2|[ϕ̂]j |−21{|[ϕ̂]j |2 ≥ 1/m}. As in case
of a known error density, it turns out that both the penalty function pen(·) and the upper bound
K needed for the correct choice of k depend on a characteristic of the error density, which is
now unknown. This quantity is often referred to as the degree of ill-posedness of the underlying
inverse problem. Therefore, as an intermediate step, we allow the penalty function pen(·) and the
upper bound K to depend on the error density. We then show an upper risk bound for the resulting
partially adaptive estimator. We prove that over a wide range of sequences γ , this choice of k

yields the same upper risk bound as the optimal choice, up to a constant. Finally, we choose k

fully adaptively by replacing pen(·) and K by their empirical versions, which depend only on the
data. As in the case of known degree of ill-posedness, we show an upper risk bound for the now
fully adaptive estimator.

Let us return briefly to deconvolution on the real line with compactly supported X density. We
note that in this situation, the adaptive choice of k can be performed in the same way. Moreover,
the upper risk bounds remain valid, and the adaptive estimator is minimax optimal over a wide
range of cases. In fact, the circular structure of the model is exploited only in the proof of the
lower bound and to guarantee the existence of the discrete representation in (1.1), which still
holds in case of a compactly supported deconvolution density.

This paper is organized as follows. In the next section, we develop the minimax theory for the
circular deconvolution model with respect to the weighted norms introduced above and compute
the rates which we can obtain in different configurations for the weight sequences. We devote the
final section to constructing the adaptive estimator and show an upper risk bound. We illustrate
our results with example configurations considered in Section 2. All proofs are deferred to the
Appendix.

1For a sequence an attaining a minimum on N ⊆ N, let argminn∈N an := min{n ∈ N |an ≤ ak ∀k ∈ N}.
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2. Minimax optimal estimation

In this section, we develop the minimax theory for estimating a circular deconvolution density
under unknown error density when two independent samples from Y and ε, of size n and m,
respectively, are available. We derive a lower bound depending on both sample sizes and show
that the orthogonal series estimator f̂k defined in (1.3) attains this lower bound up to a constant
if k is chosen in an appropriate way. All results in this paper are derived under the following
minimal regularity conditions:

Assumption A1. Let (γj )j∈Z, (ωj )j∈Z and (λj )j∈Z be strictly positive symmetric sequences of
weights with γ0 = ω0 = ω1 = λ0 = λ1 = 1 such that (ωn/γn)n∈N and (λn)n∈N are nonincreasing,
respectively with � := ∑

j∈Z
λj < ∞.

Here and subsequently, we refer to any sequence (an)n∈Z as a whole by omitting its index as
in, for example “the sequence a”. We define arithmetic operations on sequences element-wise.
Furthermore, we denote by C universal numerical constants and by C(·) constants depending
only on the arguments. In both cases, the values of the constants may change from line to line.
Moreover, we write an � bn when an ≤ Cbn for all sufficiently large n ∈ N, and an ∼ bn when
an � bn and bn � an simultaneously.

Lower bounds

The next assertion provides a lower bound in the case of a known error density, which obviously
will depend on the size of the Y sample only. Of course, this lower bound is still valid in the case
of an unknown error density.

Theorem 2.1. Assume an i.i.d. Y sample of size n. Consider sequences ω, γ , and λ satisfying
Assumption A1 such that

∑
j∈Z

γ −1
j = � < ∞ and ϕ ∈ E d

λ for some d ≥ 1. Define, for all n ≥ 1,

k∗
n := k∗

n(γ,λ,ω) := argmin
k∈N

[
max

(
ωk

γk

,
∑

0<|j |≤k

ωj

nλj

)]
and

(2.1)

ψn := ψn(γ,λ,ω) := max

(
ωk∗

n

γk∗
n

,
∑

0<|j |≤k∗
n

ωj

nλj

)
.

If, in addition, η := infn≥1{ψ−1
n min(ωk∗

n
γ −1
k∗
n

,
∑

0<|l|≤k∗
n
ωl(nλl)

−1)} > 0, then, for all n ≥ 2

inf
f̃

sup
f ∈F r

γ

{
E‖f̃ − f ‖2

ω

} ≥ η min(r − 1,1/(8d�))

16
ψn,

where the infimum is taken over all possible estimators of f .
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Remark 2.2. When ϕ is known, it is natural to consider the orthogonal series estimator f̃k :=
1 + ∑

1<|j |≤k([̂g]j /[ϕ]j )ej . It is easily seen that for |j | ≤ k, we have E[[f̃ ]j ] = [f ]j and

Var([f̃ ]j ) ≤ (n|[ϕ]j |2)−1, whereas E[[f̃ ]j ] = 0 and Var([f̃ ]j ) = 0 for |j | > k. Thus, for all
f ∈ F r

γ and ϕ ∈ E d
λ , we have

E
[‖f̃k − f ‖2

ω

] ≤
∑
|j |>k

ωj

∣∣[f ]j
∣∣2 + 1

n

∑
0<|j |≤k

ωj

|[ϕ]j |2 ≤ (r + d)max

(
ωk

γk

,
∑

0<|j |≤k

ωj

nλj

)
.

Thus, the choice k∗
n of k from (2.1) realizes the best variance–bias trade-off, ψn. This demon-

strates that when ϕ is known, f̃k∗
n

attains the rate ψn, which thus is minimax optimal.

The proof of the last assertion is based on Assouad’s cube technique (Korostelëv and Tsy-
bakov [31]), which involves constructing 22k∗

n candidates of deconvolution densities that have
the largest possible ‖ · ‖ω-distance but are still statistically indistinguishable. Of note, the addi-
tional assumption

∑
j∈Z

γ −1
j = � < ∞ is used only to ensure that these candidates are densities.

Also of note, in the case where r = 1, the lower bound is equal to 0, because in this situation the
set F r

γ reduces to a singleton containing only the uniform density. In the next theorem, we state
a lower bound characterizing the additional complexity due to the unknown error density, which,
surprisingly, depends only on the error sample size.

Theorem 2.3. Assume (1.2) and let ω, γ , and λ be sequences satisfying Assumption A1. For all
m ≥ 2, let

κm := κm(γ,λ,ω) := max
j∈N

{
ωjγ

−1
j min

(
1,

1

mλj

)}
. (2.2)

If in addition there exists a density in E
√

d
λ that is bounded from below by 1/2, then, for all m ≥ 2,

inf
f̃

sup
f ∈F r

γ

sup
ϕ∈E d

λ

{
E‖f̃ − f ‖2

ω

} ≥ min(r − 1,1)min(1/(4d), (1 − d−1/4)2)

4
√

d
κm,

where the infimum is taken over all possible estimators of f .

The proof of the last assertion takes its inspiration from a proof given by Neumann [39], who
proved a similar lower bound for deconvolution on the real line when both densities f and ϕ

are ordinary smooth, that is, γ and λ have polynomial decay. In contrast to the proof of Theo-
rem 2.1, here we only need compare two candidates of error densities that are still statistically
indistinguishable. However, to ensure that these candidates are densities, we impose the addi-
tional condition. It is easily seen that this condition is satisfied if � := ∑

j∈Z
λ

−1/2
j < ∞ and√

d ≥ max(4�2,1). Of note, in case where d = 1, the set E d
λ of possible error densities reduces

to a singleton, and thus the lower bound is equal to 0. Finally, by a combination of both lower
bounds, we obtain the next corollary.
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Corollary 2.4. Under the assumptions of Theorem 2.1 and 2.3 for all n,m ≥ 2

inf
f̃

sup
f ∈F r

γ

sup
ϕ∈E d

λ

{
E‖f̃ − f ‖2

ω

} ≥ C(η, r, d,�)max(ψn, κm).

Upper bound

In the next theorem and all subsequent results, we assume observations according to (1.2). First,
we summarize sufficient conditions to ensure the optimality of the orthogonal series estimator
f̂k defined in (1.3), provided that the dimension parameter k is chosen appropriately. We use
the value k∗

n defined in (2.1), which, although obviously involving the sequences ω,γ , and λ,
surprisingly does not depend on the ε sample size m. With this choice, the estimator attains the
lower bound given in Corollary 2.4 up to a constant and thus is minimax-optimal.

Theorem 2.5. Under Assumption A1, we have, for all n,m ≥ 1,

sup
f ∈F r

γ

sup
ϕ∈E d

λ

{
E‖f̂k∗

n
− f ‖2

ω

} ≤ C
{
(d + r)ψn + drκm

}
.

Note that under slightly stronger conditions on the sequences ω, γ , and λ than those in As-
sumption A1, it can be shown that in the case of equally large samples from Y and ε, we always
have the same rate as in the case of known error density. However, in special cases, the required
ε sample size can be much smaller than the Y sample size, as we show below.

Illustration: Estimation of derivatives

Here we illustrate our results considering classical smoothness assumptions. Regarding the de-
convolution density f , it is interesting to recall that the class F r

γ is a subset of the Sobolev space

of p-times differentiable periodic functions if γj ∼ |j |2p (Neubauer [37,38]). We call this case
ordinary smooth. Moreover, up to a constant, for any function h ∈ F r

γ , the weighted norm ‖h‖ω

with ωj ∼ j2s equals the L2 norm of the sth weak derivative h(s) for each integer 0 ≤ s ≤ p.
By virtue of this relationship, the results in the previous section imply both a lower bound and
an upper bound of the L2 risk for estimation of the sth weak derivative of f . If, in contrast,
γj ∼ exp(|j |2p) with p > 1, then F r

γ is a class of analytic functions (Kawata [28]). We refer to
this situation as super smooth.

As for the error densities, we consider two special cases corresponding to a regular decay of
their Fourier coefficients. The error density is called ordinary smooth if λj ∼ |j |−2a for some
a > 1/2 and super smooth if λj ∼ exp(−|j |2a) for some a > 0.

We consider the following three situations: In the cases [o-o] and [s-o], the error density is
ordinary smooth and the deconvolution density is either ordinary smooth or super smooth case,
respectively. Case [o-s] is the opposite of case [s-o].

It is readily seen that in all of these cases, the minimal regularity conditions given in Assump-
tion A1 and the additional conditions in Theorems 2.1 and 2.3 translate to simple restrictions on
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p,a, and s, which are given in the following proposition. Roughly speaking, these restrictions
imply that both the deconvolution density and the error density are at least continuous. The lower
bounds presented in the following assertion follow directly from Corollary 2.4:

Proposition 2.6.

[o-o] For p > 1/2, a > 1, and 0 ≤ s ≤ p, we have for all n,m ≥ 1

inf
f̃ (s)

sup
f ∈F r

γ

sup
ϕ∈E d

λ

{
E

∥∥f̃ (s) − f (s)
∥∥2} � n−2(p−s)/(2p+2a+1) + m−((p−s)∧a)/a.

[s-o] For p > 0, a > 1, and s ≥ 0, we have for all n,m ≥ 1

inf
f̃ (s)

sup
f ∈F r

γ

sup
ϕ∈E d

λ

{
E

∥∥f̃ (s) − f (s)
∥∥2} � n−1(logn)(2a+2s+1)/(2p) + m−1.

[o-s] For p > 1/2, a > 0, and 0 ≤ s ≤ p, we have for all n,m ≥ 1

inf
f̃ (s)

sup
f ∈F r

γ

sup
ϕ∈E d

λ

{
E

∥∥f̃ (s) − f (s)
∥∥2} � (logn)−(p−s)/a + (logm)−(p−s)/a.

Remark 2.7. We do not treat the doubly exponential case [s-s] here, because doing so would
require rather intricate computations and distinctions of cases. A detailed analysis of this case in
the context of density deconvolution on the real line has been provided by Butucea and Tsybakov
[5,6]. Note that the expressions in n in the foregoing result coincide with the lower bounds for
the deconvolution problem on the real line, which can be found in the literature. For example,
in cases where the error distribution is known, Fan [18] have addressed the cases [o-o] and [o-s]
and Butucea [3] examined the case [s-o].2 Those authors developed kernel-based estimation
procedures which attain these lower bounds. In the case [o-o] (still on the real line), for cases
where the error density is unknown, [39] also investigated the impact of estimating the error
density and obtained the same lower bound as in the foregoing result.

As an estimator of f (s), we consider the sth weak derivative of the estimator f̂k defined in
(1.3), with k as specified below. Given the exponential basis {ej }j∈Z, we recall that for each
integer 0 ≤ s ≤ p, the sth derivative in a weak sense of the estimator f̂k is

f̂
(s)
k =

∑
j∈Z

(2iπj)s[f̂k]j ej . (2.3)

As an immediate consequence of Theorem 2.5, the rates of the lower bound given by Proposi-
tion 2.6 are attained for k = k∗

n , as summarized in the next result. Thus, we have proven that

these rates are optimal and that the proposed estimator f̂
(s)
k∗
n

is minimax optimal in both cases.
Furthermore, it is of interest to characterize the minimal size m of the additional sample from ε

2When comparing the bounds, attention must be given to the slightly different parameterizations of the density classes
in the cited articles.
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needed to attain the same rate as in case of a known error density. Thus, we let the ε-sample size
depend on the Y -sample size n as well.

Proposition 2.8. Let (mn)n≥1 be a sequence of positive integers:

[o-o] For p > 1/2, a > 1, and 0 ≤ s ≤ p with k∗
n ∼ n1/(2p+2a+1), we have for all n,m ≥ 1

sup
f ∈F r

γ

sup
ϕ∈E d

λ

{
E

∥∥f̂
(s)
k∗
n

− f (s)
∥∥2} � n−2(p−s)/(2p+2a+1) + m−((p−s)∧a)/a

and if qo-o := limn→∞ n2((p−s)∨a)/(2p+2a+1)m−1
n exists,3 then it follows that as n → ∞

sup
f ∈F r

γ

sup
ϕ∈E d

λ

{
E

∥∥f̂
(s)
k∗
n

− f (s)
∥∥2} =

{
O

(
n−2(p−s)/(2p+2a+1)

)
if qo-o < ∞,

O
(
m

−((p−s)∧a)/a
n

)
otherwise.

[s-o] For p > 0, a > 1, and s ≥ 0 with k∗
n ∼ (logn)1/(2p), we have, for all n,m ≥ 1,

sup
f ∈F r

γ

sup
ϕ∈E d

λ

{
E

∥∥f̂
(s)
k∗
n

− f (s)
∥∥2} � n−1(logn)(2a+2s+1)/(2p) + m−1

and if qs-o := limn→∞ n(logn)−(2a+2s+1)/(2p)m−1
n exists, it follows as n → ∞

sup
f ∈F r

γ

sup
ϕ∈E d

λ

{
E

∥∥f̂
(s)
k∗
n

− f (s)
∥∥2} =

{
O

(
n−1(logn)(2a+2s+1)/(2p)

)
if qs-o < ∞,

O
(
m−1

n

)
otherwise.

[o-s] For p > 1/2, a > 0, and 0 ≤ s ≤ p with k∗
n ∼ (logn)1/(2a), we have, for all n,m ≥ 1,

sup
f ∈F r

γ

sup
ϕ∈E d

λ

{
E

∥∥f̂
(s)
k∗
n

− f (s)
∥∥2} � (logn)−(p−s)/a + (logm)−(p−s)/a

and if qo-s := limn→∞(logn)(logmn)
−1 exists, then it follows, as n → ∞,

sup
f ∈F r

γ

sup
ϕ∈E d

λ

{
E

∥∥f̂
(s)
k∗
n

− f (s)
∥∥2} =

{
O

(
(logn)−(p−s)/a

)
if qo-s < ∞,

O
(
(logmn)

−(p−s)/a
)

otherwise.

The existence of the limits qo-o, qo-s, and qs-o is required only to exclude the case of oscillating
sequences, which we are not interested in here. In this case, none of the two terms in the upper
bound is asymptotically dominant, and the convergence rate is the alternating maximum of the
two terms.

In the case [o-o], whenever n2((p−s)∨a)/(2p+2a+1) = O(mn), which is much less than mn = n,
we obtain the rate of known error density. This is even more visible in the case [o-s], where the
rate of known error density is attained even if mn = nr for arbitrarily small r > 0. Moreover, we

3The limit “∞” is authorized, with limn→∞ an = ∞ :⇐⇒ ∀K > 0 ∃n0 ∈ N ∀n ≥ n0: an ≥ K .
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emphasize the influence of the parameter a that characterizes the rate of decay of the Fourier co-
efficients of the error density ϕ. Because a smaller value of a leads to faster rates of convergence,
this parameter is often called degree of ill-posedness (e.g., Natterer [36]).

3. Adaptive estimation

Our aim is to construct an adaptive estimator of the deconvolution density f . Adaptation means
that despite an unknown error density in E d

λ , the estimator should attain the optimal rate of
convergence max(ψn, κm) over the ellipsoid F r

γ for a wide range of different weight sequences
γ and λ.

In a first step, we suppose that ϕ is known, but γ and r are unknown. In what follows, we
consider the orthogonal series estimator f̂k defined in (1.3) and construct a procedure to choose
the dimension parameter k based on a model selection approach via penalization. This partially
adaptive choice k̃ will involve only the data and the error density ϕ.

In a second step, we replace ϕ with its empirical version and thus dispense with any knowledge
about ϕ. Doing so, we obtain a fully adaptive choice k̂ of the dimension parameter.

Partially adaptive estimation knowing ϕ

We first introduce sequences that are used below.

Definition 3.1. For all n,m ≥ 1 and k ≥ 0, define

(i) 
k := 
k(ϕ) := max−k≤j≤k
ωj

|[ϕ]j |2 and δk := δk(ϕ) := 2k
k
log(
k∨(k+2))

log(k+2)
;

(ii) given ω+
k := max0≤j≤k ωj and N◦

n := max{1 ≤ N ≤ n|ω+
N ≤ n}, let

Nn := Nn(ϕ) := min

{
1 ≤ j ≤ N◦

n

∣∣∣ |[ϕ]j |2
jω+

j

≤ log(n + 2)

n

}
− 1,

defining further bm := (8 log(log(m + 20)))−1, let

Mm := Mm(ϕ) := min
{
1 ≤ j ≤ m|∣∣[ϕ]j

∣∣2 ≤ m−1+bm
} − 1;

with Nn := N◦
n and Mm := m when the respective set in the definition is empty.

These sequences are used for small sample sizes as well, which explains their rather compli-
cated form. We can now define a partially adaptive choice of the dimension parameter k,

k̃ := argmin
0≤k≤(Nn∧Mm)

[
−‖f̂k‖2

ω + 60
δk

n

]
, (3.1)

which obviously depends only on the data and the error density ϕ. We obtain the fully adaptive
estimator below by introducing the empirical versions of δ,N , and M given in Definition 3.1.
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For a fixed ϕ, we could now derive an upper risk bound for the partially adaptive estimator f̂k̃ ,
which would depend on δ, N , and M . But because we wish to obtain a uniform upper risk bound
over the class E d

λ , instead we now redefine the foregoing objects referring only to the weight
sequence λ and the constant d .

Definition 3.2. Let ω+, N◦, and b as in Definition 3.1.

(i) For all k ≥ 0, define 
λ
k := max−k≤j≤k ωj/λj and

δλ
k := 2k
λ

k

log(
λ
k ∨ (k + 2))

log(k + 2)
.

(ii) Define two sequences, Nλ and Mλ, as follows:

Nλ
n := min

{
1 ≤ j ≤ N◦

n

∣∣∣ λj

jω+
j

<
4d log(n + 2)

n

}
− 1,

Mλ
m := min

{
1 ≤ j ≤ m|λj < 4dm−1+bm

} − 1.

If the set in the definition is empty, then we set Nλ
n := 0 or Mλ

m := 0, respectively.
(iii) Define two sequences, Nu and Mu, as follows:

Nu
n := Nu

n (λ) := min

{
1 ≤ j ≤ n

∣∣∣ λj

jω+
j

<
log(n + 2)

4dn

}
− 1,

Mu
m := Mu

m(λ) := min

{
1 ≤ j ≤ m

∣∣∣λj <
m−1+bm

4d

}
− 1.

If the set in the definition is empty, we set Nu
n := n or Mu

m := m.
(iv) Let � : R → R be a non-decreasing function such that, for all C > 0,∑

k≥1

C
λ
k exp

(
−k log(
λ

k ∨ (k + 2))

3C log(k + 2)

)
≤ �(C) < ∞.

It is easy to see that there exists always a function � satisfying the defining condition.
Moreover, as we show in Lemma A1 in the Appendix, the sequences defined above satisfy
Nλ

n ≤ Nn ≤ Nu
n and Mλ

m ≤ Mm ≤ Mu
m for all n,m ∈ N. In the illustration below we compute

these objects explicitly.

Theorem 3.3. Let ζd := log(3d)/ log(d). Under Assumption A1, for all n,m ≥ 1,

sup
f ∈F r

γ

sup
ϕ∈E d

λ

{
E‖f̂k̃ − f ‖2

ω

} ≤ C

{
(r + dζd) min

0≤k≤(Nλ
n ∧Mλ

m)

[
max

(
ωk

γk

,
δλ
k

n

)]
+ rdκm

}

+ C(r, d,�,�)

[
1

m
+ 1

n

]
.
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A comparison with the lower bound from Corollary 2.4 shows that this upper bound ensures
minimax optimality of the estimator f̂k̃ only if

ψ�
n,m := min

1≤k≤(Nλ
n ∧Mλ

m)

[
max

(
ωk

γk

,
δλ
k

n

)]

is in the same order as ψn = mink∈N{max(
ωk

γk
,
∑

0<|j |≤k

ωj

nλj
)}. Note that, by construction, δλ

k ≥∑
0<|j |≤k ωjλ

−1
j for all k ≥ 1. In addition, δλ is direcly related to the penalty function. The next

assertion is a immediate consequence of Theorem 3.3, and we omit its proof.

Corollary 3.4. Under Assumption A1, and if

η� := sup
n,m≥1

{
ψ�

n,m/max(ψn, κm)
}

< ∞,

then we have, for all n,m ≥ 1,

sup
f ∈F r

γ

sup
ϕ∈E d

λ

{
E‖f̂k̃ − f ‖2

ω

} ≤ C
(
η�,�, r, d,�

)
max(ψn, κm).

In Theorem 2.5, we have shown the minimax optimality of the orthogonal series estimator
under the optimal choice k∗

n of the dimension parameter. Comparing Corollary 3.4 with this the-
orem, it is noteworthy that the only additional assumption needed to ensure minimax optimality
of the partially adaptive estimator is η� < ∞.

Remark 3.5. The partially adaptive choice k̃ still depends on ϕ ∈ E d
λ . However, we can already

define a procedure depending only on the sequence λ and the constant d , namely

k̃λ := argmin
1≤k≤(Nλ

n ∧Mλ
m)

[
−‖f̂k‖2

ω + 60
dδλ

k

n

]
.

Roughly speaking, this choice requires knowledge of the degree of ill-posedness of the under-
lying inverse problem only. It is straightforward to derive an upper risk bound for f̂k̃λ , which
is, up to minor changes in the constants, the same as that in Theorem 3.3. Its proof follows the
lines of the proof of Theorem 3.3, using the new penalty term pen(k) = 60dδλ

k . The only change
occurs when applying Lemma A4, which uses δ∗

k = dδλ
k and 
∗

k = d
λ
k rather than δ∗

k = δk and

∗

k = 
k .

Fully adaptive estimation

We begin by defining empirical versions of the sequences given in Definition 3.1.
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Definition 3.6. For all n,m ≥ 1 and k ≥ 0, define

(i) 
̂k := max−k≤j≤k
ωj

|[̂ϕ]j |2 1{|[̂ϕ]j |2 ≥ 1/m} and δ̂k := k
̂k
log(
̂k∨(k+2))

log(k+2)
;

(ii) given N◦
n , ω+, and b from Definition 3.1,

N̂n := min

{
1 ≤ j ≤ N◦

n

∣∣∣min(|[̂ϕ]j |2, |[̂ϕ]−j |2)
jω+

j

<
log(n + 2)

n

}
− 1,

M̂m := min
{
1 ≤ j ≤ m|min

(∣∣[̂ϕ]j
∣∣2

,
∣∣[̂ϕ]−j

∣∣2)
< m−1+bm

} − 1,

with N̂n := N◦
n and M̂m := m if the respective sets in the definition are empty.

We now define a data-driven choice of k, which, in contrast to k̃, depends not on the sequences
δ, N , or M , but rather on δ̂, N̂ , and M̂ :

k̂ := argmin
0≤k≤(N̂n∧M̂m)

[
−‖f̂k‖2

ω + 600
δ̂k

n

]
. (3.2)

The constant 600 arising in the definition of k̂, although convenient for deriving the theory, may
be far too large in practice and instead be determined by means of a simulation study, as done by
Comte, Rozenholc and Taupin [12], for example.

In the proof of Theorem 3.3, we used (Nλ
n ∧Mλ

m) ≤ (Nn ∧Mm) ≤ (Nu
n ∧Mu

m) (Lemma A1). In
the proof of the next theorem, we consider the event {(Nλ

n ∧ Mλ
m) ≤ (N̂n ∧ M̂m) ≤ (Nu

n ∧ Mu
m)},

on which we can imitate the proof of Theorem 3.3. To control the risk on the complement of this
event, we need to bound its probability, which necessitates the following assumption.

Assumption A2. Suppose that m7 exp(−mλMu
m+1/(72d)) ≤ C(λ,d) for all m ≥ 1.

Theorem 3.7. Under Assumptions A1 and A2, we have, for all n,m ≥ 1,

sup
f ∈F r

γ

sup
ϕ∈E d

λ

{
E‖f̂k̂ − f ‖2

ω

} ≤ C

{
(r + dζd) min

0≤k≤(Nλ
n ∧Mλ

m)

[
max

(
ωk

γk

,
δλ
k

n

)]
+ rdκm

}

+ C(r, d,λ,�)

[
1

m
+ 1

n

]
.

Remark 3.8. Up to a change in the constant in front of the negligible terms, we obtain
the same bound as for the partially adaptive estimator (Theorem 3.3). Compared with Theo-
rem 3.3, the only additional assumption is A2. Note that in Lemma A2(ii) in the Appendix,
we show that m7 exp(−mλMu

m
/(72d)) ≤ C(d) for all m ≥ 1 using only Assumption A1. How-

ever, it is not obvious to us that Assumption A1 also implies the slightly stronger assertion
m7 exp(−mλMu

m+1/(72d)) ≤ C(d) for sufficiently large m, although in the illustrations below,
we show that Assumption A2 is satisfied.
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Comparing Theorem 3.7 with the lower bound from Corollary 2.4 shows that this upper bound
does not necessarily ensure minimax optimality of the estimator f̂k̂ . However, as in the partially
adaptive case (cf. Corollary 3.4), under the additional assumption η� < ∞, the next assertion
establishes its optimality. Because this is an immediate consequence of Theorem 3.7, we omit
the proof.

Corollary 3.9. Under Assumptions A1 and A2, and if

η� = sup
n,m≥1

{
ψ�

n,m/max(ψn, κm)
}

< ∞,

we have, for all n,m ≥ 1,

sup
f ∈F r

γ

sup
ϕ∈E d

λ

{
E‖f̂k̂ − f ‖2

ω

} ≤ C
(
η�,�, r, d,�

)
max(ψn, κm).

Conclusion

The minimax optimality of the estimator f̂k∗
n

has been shown under Assumption A1 in Theo-
rem 2.5, where the choice k∗

n of the dimension parameter depends on the deconvolution density
f and the error density ϕ. We have developed a fully data-driven choice k̂. The foregoing results
show that we need only the additional Assumptions A2 and η� < ∞ for the adaptive estimator
f̂k̂ to be minimax optimal as well.

Illustration: Estimation of derivatives (continued from Section 2)

The following result shows that without any prior knowledge on the error density ϕ, the adaptive
penalized estimator automatically attains the optimal rate in the cases [o-s] and [s-o] and in the
case [o-o] if p − s > a. Recall that the computation of the dimension parameter k̂ given in (3.2)
involves the sequence N◦, which in our illustration satisfies N◦

n � n1/(2s).

Proposition 3.10. Let (mn)n≥1 be a sequence of positive integers and suppose that the limits
qo-o, qo-s, and qs-o defined in Proposition 2.8 exist in the respective cases.

[o-o] We have that


λ
k ∼ k2a+2s , δλ

k � k2a+2s+1, ψ�
n,mn

∼ (
k∗
n ∧ Mλ

mn

)−2(p−s)
,

Nλ
n � (n/ logn)1/(2a+2s+1), Mλ

mn
� m

(1−bm)/(2a)
n .

In the case wehere p − s > a, the adaptive estimator f̂
(s)

k̂
attains the optimal rates (see

Proposition 2.8). In the case where p − s ≤ a, if qo-o < ∞, then we have, supposing

that qb
o-o := limn→∞ n2a/(2p+2a+1)m

−1+bmn
n exists,

sup
f ∈F r

γ

sup
ϕ∈E d

λ

{
E

∥∥f̂
(s)

k̂
− f (s)

∥∥2} =
{

O
(
n−2(p−s)/(2p+2a+1)

)
if qb

o-o < ∞,

O
(
m

−(p−s)/a
n m

bmn
n

)
otherwise,
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whereas if qo-o = ∞, then we have

sup
f ∈F r

γ

sup
ϕ∈E d

λ

{
E

∥∥f̂
(s)

k̂
− f (s)

∥∥2} = O
(
m

−(p−s)/a
n mbm

n

)
.

[s-o] The sequences 
λ, δλ, Nλ, and Mλ are the same as above. We have that ψ�
n,mn

∼
(k∗

n ∧ Mλ
mn

)2s exp(−(k∗
n ∧ Mλ

mn
)2p), and f̂

(s)

k̂
attains the optimal rates.

[o-s] We have that


λ
k = k2s exp

(
k2a

)
, δλ

k � k2a+2s+1 exp
(
k2a

)
(logk)−1,

ψ�
n,m ∼ (

k∗
n ∧ Mλ

mn

)−2(p−s)
,

Nλ
n � (

log
(
n/(logn)(2a+2s+1)/(2a)

))1/(2a)
, Mλ

mn
� (

(1 − bm) logmn

)1/(2a)
,

and the adaptive estimator f̂
(s)

k̂
attains the optimal rates.

The adaptive estimator always attains the minimal rates if n � mn. We emphasize that this
still holds when mn � n, except in the case [o-s] when the error density is smoother than the
sth derivative of the deconvolution density (p − s ≤ a) and when at the same time mn grows

far more slowly than n. The estimation of ϕ is negligible as soon as m
1−bmn
n grows at least as

fast as n2a/(2p+2a+1) in this situation, whereas in the nonadaptive case, only mn must satisfy this

condition. In the lossy case, the convergence rate differs from the optimal rate by a factor m
bmn
n

only; however, the exponent bmn tends to 0 as n tends to infinity.
If considering the [o-s] case only, we could replace the bound m−1+bm by m−1 logm in the

definition of Mu (Definition 3.2). Using this definition, Assumption A2 would still hold, and
applying Theorem 3.7, the adaptive estimator would miss the optimal rates by a logarithmic
factor in the lossy case only. However, Assumption A2 is violated in the super smooth case
under this definition of Mu.

Appendix: Proofs

A.1. Proofs of Section 2 (minimax theory)

Lower bounds

Proof of Theorem 2.1. Given ζ := η min(r − 1,1/(8d�)) and αn := ψn(
∑

0<|j |≤k∗
n
ωj /(λj ×

n))−1, we consider the function f := 1 + (ζαn/n)1/2 ∑
0<|j |≤k∗

n
λ

−1/2
j ej . We show that for any

θ := (θj ) ∈ {−1,1}2k∗
n , the function fθ := 1 + ∑

0<|j |≤k∗
n
θj [f ]j ej belongs to F r

γ and thus is a
possible candidate for the deconvolution density. For each θ , the Y density corresponding to the
X density fθ is given by gθ := fθ ∗ϕ. We denote by gn

θ the joint density of an i.i.d. n sample from
gθ and by Eθ the expectation with respect to the joint density gn

θ . Furthermore, for 0 < |j | ≤ k∗
n
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and each θ , we introduce θ(j) by θ
(j)
l = θl for j �= l and θ

(j)
j = −θj . The key argument of this

proof is the following reduction scheme. If f̃ denotes an estimator of f , then we conclude that

sup
f ∈F r

γ

E‖f̃ − f ‖2
ω ≥ sup

θ∈{−1,1}2k∗
n

Eθ‖f̃ − fθ‖2
ω ≥ 1

22k∗
n

∑
θ∈{−1,1}2k∗

n

Eθ‖f̃ − fθ‖2
ω

≥ 1

22k∗
n

∑
θ∈{−1,1}2k∗

n

∑
0<|j |≤k∗

n

ωjEθ

∣∣[f̃ − fθ ]j
∣∣2

= 1

22k∗
n

∑
0<|j |≤k∗

n

ωj

2

∑
θ∈{−1,1}2k∗

n

{
Eθ

∣∣[f̃ − fθ ]j
∣∣2 + Eθ(j)

∣∣[f̃ − fθ(j)]j
∣∣2}

,

where for each 0 < |j | ≤ k∗
n and any function F : {−1,1}2k∗

n → R, we have∑
θ∈{−1,1}2k∗

n

F (θ) =
∑

θ∈{−1,1}2k∗
n

F
(
θ(j)

)
.

Below we show that for all n ≥ 2, we have

{
Eθ

∣∣[f̃ − fθ ]j
∣∣2 + Eθ(j)

∣∣[f̃ − fθ(j)]j
∣∣2} ≥ ζαn

4λjn
. (A.1)

Combining the last lower bound and the reduction scheme gives

sup
f ∈F r

γ

E‖f̃ − f ‖2
ω ≥ 1

22k∗
n

∑
θ∈{−1,1}2k∗

n

∑
0<|j |≤k∗

n

ωj

2

ζαn

4λjn
= ζ

8
αn

∑
0<|j |≤k∗

n

ωj

λjn
.

Thus, using the definition of ζ and αn, we obtain the lower bound given in the theorem.
To conclude the proof, it remains to check (A.1) and fθ ∈ F r

γ for all θ ∈ {−1,1}2k∗
n . The latter

is easily verified if f ∈ F r
γ . To show that f ∈ F r

γ , we first note that f integrates to 1. Moreover, f

is nonnegative, because |∑0<|j |≤k∗
n
[f ]j ej | ≤ 1 and ‖f ‖2

γ ≤ r , which can be realized as follows.

Using the condition
∑

j∈Z
γ −1
j = � < ∞, we have

∣∣∣∣ ∑
0<|j |≤k∗

n

[f ]j ej

∣∣∣∣ ≤
∑

0<|j |≤k∗
n

∣∣[f ]j
∣∣ =

(
ζαn

n

)1/2 ∑
0<|j |≤k∗

n

λ
−1/2
j

≤ (ζαn)
1/2

( ∑
0<|j |≤k∗

n

γ −1
j

)1/2( ∑
0<|j |≤k∗

n

γj

nλj

)1/2

≤ (ζαn�)1/2
( ∑

0<|j |≤k∗
n

γj

nλj

)1/2

.
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Because ω/γ is nonincreasing, the definitions of ζ , αn, and η imply that∣∣∣∣ ∑
0<|j |≤k∗

n

[f ]j ej

∣∣∣∣ ≤ (ζ�)1/2
(

γk∗
n

ωk∗
n

αn

∑
0<|j |≤k∗

n

ωj

λjn

)1/2

≤
(

ζ�

η

)1/2

≤ 1, (A.2)

as well as ‖f ‖2
γ ≤ 1 + ζ

γk∗
n

ωk∗
n

αn(
∑

0<|j |≤k∗
n

ωj

nλj
) ≤ 1 + ζ/η ≤ r .

It remains to show (A.1). Consider the Hellinger affinity ρ(gn
θ , gn

θ(j) ) = ∫ √
gn

θ

√
gn

θ(j) . We then

obtain that, for any estimator f̃ of f ,

ρ
(
gn

θ , gn
θ(j)

) ≤
∫ |[f̃ − fθ(j)]j |

|[fθ − fθ(j)]j |
√

gn
θ(j)

√
gn

θ +
∫ |[f̃ − fθ ]j |

|[fθ − fθ(j)]j |
√

gn
θ

√
gn

θ(j)

≤
(∫ |[f̃ − fθ(j)]j |2

|[fθ − fθ(j)]j |2 gn
θ(j)

)1/2

+
(∫ |[f̃ − fθ ]j |2

|[fθ − fθ(j)]j |2 gn
θ

)1/2

.

Rewriting the last estimate, we obtain{
Eθ

∣∣[f̃ − fθ ]j
∣∣2 + Eθ(j)

∣∣[f̃ − fθ(j)]j
∣∣2} ≥ 1

2

∣∣[fθ − fθ(j)]j
∣∣2

ρ2(gn
θ , gn

θ(j)

)
. (A.3)

Next, we bound from below the Hellinger affinity ρ(gn
θ , gn

θ(j) ). Therefore, we first consider the
Hellinger distance,

H 2(gθ , gθ(j) ) :=
∫

(
√

gθ − √
gθ(j) )

2

=
∫ |gθ − gθ(j) |2

(
√

g
θ
+ √

g
θ(j) )2

≤ 4‖gθ − gθ(j)‖2 = 16
∣∣[f ]j

∣∣2∣∣[ϕ]j
∣∣2 ≤ 16ζd

ηn
,

where we have used that αn ≤ 1/η, ϕ ∈ E d
λ , and gθ ≥ 1/2 because |∑0<|j |≤k∗

n
[gθ ]j ej | ≤ 1/2,

which can be realized as follows. Using the condition
∑

j∈Z
γ −1
j = � < ∞ and ϕ ∈ E d

λ , we
obtain, in analogy to the proof of (A.2), that∣∣∣∣ ∑

0<|j |≤k∗
n

[gθ ]j ej

∣∣∣∣ ≤
∑

0<|j |≤k∗
n

∣∣[f ]j
∣∣∣∣[ϕ]j

∣∣ ≤
(

ζαnd

n

)1/2 ∑
0<|j |≤k∗

n

λ
−1/2
j ≤

(
ζd�

η

)1/2

≤ 1/2.

Therefore, the definition of ζ implies H 2(gθ , gθ(j) ) ≤ 2/n. Using the independence, that is,
ρ(gn

θ , gn
θ(j) ) = ρ(gθ , gθ(j) )n, together with the identity ρ(gθ , gθ(j) ) = 1 − 1

2H 2(gθ , gθ(j) ), it fol-

lows ρ(gn
θ , gn

θ(j) ) ≥ (1 − n−1)n ≥ 1/4 for all n ≥ 2. Combining the last estimate with (A.3), we
obtain (A.1), which completes the proof. �

Proof of Theorem 2.3. We construct for each θ ∈ {−1,1} an error density ϕθ ∈ E d
λ and a

deconvolution density fθ ∈ F r
γ , such that gθ := fθ ∗ ϕθ satisfies g1 = g−1. To be more pre-

cise, define k∗
m := argmax|j |>0[ωjγ

−1
j min(1,m−1λ−1

j )] and αm := ζ min(1,m−1/2λ
−1/2
k∗
m

) with
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ζ := min(1/(2
√

d), (1 − d−1/4)). Observe that 1 ≥ (1 − αm)2 ≥ (1 − (1 − 1/d1/4))2 ≥ 1/d1/2

and 1 ≤ (1 + αm)2 ≤ (1 + (1 − 1/d1/4))2 = (2 − 1/d1/4)2 ≤ d1/2, which implies 1/d1/2 ≤ (1 +
θαm)2 ≤ d1/2. We use these inequalities below without further reference. By assumption, there

is a density ϕ ∈ E
√

d
λ such that ϕ ≥ 1/2. We show below that for each θ , the function fθ := 1 +

(1−θαm)
min(

√
r−1,1)

d1/4 γ
−1/2
k∗
m

ek∗
m

belongs to F r
γ , and that the function ϕθ := ϕ+θαm[ϕ]k∗

m
ek∗

m
is an

element of E
√

d
λ . Moreover, it is easily verified that gθ = 1 + (1 −α2

m)
min(

√
r−1,1)

d1/4 γ
−1/2
k∗
m

[ϕ]k∗
m
ek∗

m
,

and thus g1 = g−1. We denote by gn
θ the joint density of an i.i.d. n-sample from gθ and by ϕm

θ

the joint density of an i.i.d. m sample from ϕθ . Because the samples are independent of one
another, pθ := gn

θ ϕm
θ is the joint density of all observations, and we denote by Eθ the expec-

tation with respect to pθ . Applying a reduction scheme, we deduce that for each estimator f̃

of f ,

sup
f ∈F r

γ

sup
ϕ∈E d

λ

E‖f̃ − f ‖2
ω ≥ max

θ∈{−1,1}
Eθ‖f̃ − fθ‖2

ω ≥ 1

2

{
E1‖f̃ − f1‖2

ω + E−1‖f̃ − f−1‖2
ω

}
.

Below we also show that for all m ≥ 2, we have

E1‖f̃ − f1‖2
ω + E−1‖f̃ − f−1‖2

ω ≥ 1
8‖f1 − f−1‖2

ω. (A.4)

Moreover, we have ‖f1 − f−1‖2 = 4α2
mωk∗

m
γ −1
k∗
m

(r−1)∧1
d1/2 = 4 (r−1)∧1

d1/2 ζ 2ωk∗
m
γ −1
k∗
m

min(1, 1
mλk∗

m

).

Combining the last lower bound, the reduction scheme, and the definition of k∗
m implies the

result of the theorem.
To conclude the proof, it remains to check (A.4), fθ ∈ F r

γ , and ϕθ ∈ E d
λ for both θ . To

show fθ ∈ F r
γ , we first observe that fθ integrates to 1. Moreover, fθ is nonnegative, be-

cause |(1 − θαm) 1∧√
r−1

d1/4 γ
−1/2
k∗
m

| ≤ γ
−1/2
k∗
m

≤ 1 and ‖fθ‖2
γ = 1 + γk∗

m
|[fθ ]k∗

m
|2 ≤ 1 + γk∗

n
|(1 −

θαm) 1∧√
r−1

d1/4 γ
−1/2
k∗
m

|2 ≤ r . Consider ϕθ , which obviously integrates to 1. Furthermore, as ϕ ≥
1/2, the function ϕθ = ϕ+θαm[ϕ]k∗

m
ek∗

m
is nonnegative, because |θαm[ϕ]k∗

m
ek∗

m
| ≤ αmλ

1/2
k∗
m

d1/2 ≤
ζm−1/2

√
d ≤ 1/2 by using the definition of αm and ζ . To check that ϕθ ∈ E d

λ , it remains to

show that 1/d ≤ [ϕθ ]2
j /λj ≤ d for all |j | > 0. Because ϕ ∈ E

√
d

λ , it follows from the definition

of ϕθ that these inequalities are satisfied for all j �= k∗
m, and, moreover, that 1/d ≤ |[ϕ]k∗

m
|2√

dλk∗
m

≤
(1+θαm)2|[ϕ]k∗

m
|2

λk∗
m

≤
√

d|[ϕ]k∗
m

|2
λk∗

m

≤ d . Finally, consider (A.4). As in the proof of Theorem 2.1, by

using the Hellinger affinity ρ(p1,p−1), we obtain, for any estimator f̃ of f , that{
E1‖f̃ − f1‖2

ω + E−1‖f̃ − f1‖2
ω

} ≥ 1
2‖f1 − f−1‖2

ωρ(p1,p−1).

Next, we bound from below the Hellinger affinity ρ(p1,p−1) ≥ 1/4 for all m ≥ 2, which proves
(A.4). From the independence and the fact that g1 = g−1, it is readily seen that Hellinger affinity
satisfies ρ(p1,p−1) = ρ(g1, g−1)

nρ(ϕ1, ϕ−1)
m = ρ(ϕ1, ϕ−1)

m = (1 − 1
2H 2(ϕ1, ϕ−1))

m. Thus,



Adaptive circular deconvolution 1595

we conclude ρ(p1,p−1) ≥ (1 − 1/m)m ≥ 1/4, for all m ≥ 2, because

H 2(ϕ1, ϕ−1) ≤
∫ |ϕ1 − ϕ−1|2

ϕ1 + ϕ−1
=

∫ |ϕ1 − ϕ−1|2
ϕ

≤ 2
∫

|ϕ1 − ϕ−1|2

≤ 2
∫

4α2
m

∣∣[ϕ]k∗
m

∣∣2
e2
k∗
m

≤ 8dα2
mλk∗

m
= 8dζ 2m−1 ≤ 2m−1,

where we used that ϕ ≥ 1/2 and the definition of αm and ζ . This completes the proof. �

Upper bound

Proof of Theorem 2.5. We begin our proof with the observation that Var([̂g]j ) ≤ 1/n and
Var([ϕ̂]j ) ≤ 1/m for all j ∈ Z. Moreover, by applying Theorem 2.10 of Petrov [43], there exists
a constant C > 0 such that E|[ϕ̂]j − [ϕ]j |4 ≤ C/m2 for all j ∈ Z and m ∈ N. We use these re-
sults below without further reference. Now define f̃ := 1 + ∑

0<|j |≤k∗
n
[f ]j1{|[ϕ̂]j |2 ≥ 1/m}ej

and decompose the risk into two terms,

E‖f̂k∗
n
− f ‖2

ω ≤ 2E‖f̂k∗
n
− f̃ ‖2

ω + 2E‖f̃ − f ‖2
ω =: A + B, (A.5)

which we bound separately. First, consider A, which we decompose further,

E‖f̂k∗
n
− f̃ ‖2

ω ≤ 2
∑

0<|j |≤k∗
n

ωjE

[ |[̂g]j − [g]j |2
|[ϕ̂]j |2 1

{∣∣[ϕ̂]j
∣∣2 ≥ 1/m

}]

+ 2
∑

0<|j |≤k∗
n

ωj

∣∣[f ]j
∣∣2

E

[ |[ϕ̂]j − [ϕ]j |2
|[ϕ̂]j |2 1

{∣∣[ϕ̂]j
∣∣2 ≥ 1/m

}] =: A1 + A2.

Using the elementary inequality |[ϕ]j /[ϕ̂]j |2 ≤ 2|[ϕ]j /[ϕ̂]j − 1|2 + 2, the independence of ϕ̂

and ĝ, and ϕ ∈ E d
λ , together with the definition of ψn given in (2.1), we obtain

A1 ≤ 4
∑

0<|j |≤k∗
n

ωj

{
mVar([̂g]j )Var([ϕ̂]j )

|[ϕ]j |2 + Var([̂g]j )
|[ϕ]j |2

}
≤ 8d

∑
0<|j |≤k∗

n

ωj

nλj

≤ 8dψn.

Moreover, we have E
|[ϕ̂]j −[ϕ]j |2

|[ϕ̂]j |2 1{|[ϕ̂]j |2 ≥ 1/m} ≤ 2mE|[ϕ̂]j −[ϕ]j |4
|[ϕ]j |2 + 2Var([ϕ̂]j )

|[ϕ]j |2 ≤ 2(C+1)

m|[ϕ]j |2 ≤
2(C+1)d

mλj
and E

|[ϕ̂]j −[ϕ]j |2
|[ϕ̂]j |2 1{|[ϕ̂]j |2 ≥ 1/m} ≤ 1, where we have again used the elementary in-

equality and ϕ ∈ E d
λ . Combining both bounds together with f ∈ F r

γ and the definition of κm

given in (2.2), we obtain

A2 ≤ 4(C + 1)d
∑

0<|j |≤k∗
n

ωj

∣∣[f ]j
∣∣2 min

(
1,

1

mλj

)
≤ 4(C + 1)drκm.
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Now consider B , which we decompose further into

E‖f̃ − f ‖2
ω =

∑
0<|j |

ωj

∣∣[f ]j
∣∣2(1 − 1

{
0 < |j | ≤ k∗

n

}
1
{∣∣[ϕ̂]j

∣∣2 ≥ 1/m
})2

=
∑

|j |>k∗
n

ωj

∣∣[f ]j
∣∣2 +

∑
0<|j |≤k∗

n

ωj

∣∣[f ]j
∣∣2P

(∣∣[ϕ̂]j
∣∣2

< 1/m
) =: B1 + B2,

where B1 ≤ ‖f ‖2
γ ωk∗

n
γ −1
k∗
n

≤ rψn, because f ∈ F r
γ . Moreover, B2 ≤ 4drκm, using that

P
(∣∣[ϕ̂]j

∣∣2
< 1/m

) ≤ 4d min

(
1,

1

mλj

)
, (A.6)

which we show below. The result of the theorem now follows by combining the decomposition
(A.5) and the estimates of A1,A2,B1, and B2.

To conclude, we prove (A.6). If |[ϕ]j |2 ≥ 4/m, then, using Tchebychev’s inequality, we de-
duce that

P
(∣∣[̂ϕ]j

∣∣2
< 1/m

) ≤ P
(∣∣[̂ϕ]j /[ϕ]j

∣∣ < 1/2
) ≤ P

(∣∣[̂ϕ]j − [ϕ]j
∣∣ >

∣∣[ϕ]j
∣∣/2

)
≤ 4

Var([̂ϕ]j )
|[ϕ]j |2 ≤ 4d/(mλj ).

On the other hand, in the case where |[ϕ]j |2 < 4/m, the estimate P(|[̂ϕ]j |2 < 1/m) ≤ 4d/(mλj )

also holds, because 1 ≤ 4/(m|[ϕ]j |2) ≤ 4d/(mλj ). Combining the last estimates and P(|[̂ϕ]j |2 <

1/m) ≤ 1, we obtain (A.6), which completes the proof. �

Illustration: Estimation of derivatives

Proof of Proposition 2.6. Because for each 0 ≤ s ≤ p, we have E‖f̃ (s) −f (s)‖2 ∼ E‖f̃ −f ‖2
ω,

we intend to apply the general result given in Corollary 2.4. In both cases, the additional con-
ditions formulated in Theorem 2.1 and 2.3 are readily verified. Thus, it is sufficient to evaluate
the lower bounds ψn and κm given in (2.1) and (2.2), respectively. Note that the optimal dimen-
sion parameter, k∗

n := argminj∈N[max(
ωj

γj
,
∑

0<|l|≤j
ωl

nλl
)] satisfies nωk∗

n
/γk∗

n
∼ ∑

0<|l|≤k∗
n
ωl/λl ,

because both sequences (γj /ωj ) and (
∑

0<|l|≤j
ωl

nλl
) are non-increasing.

[o-o] The well-known approximation
∑m

j=1 j r ∼ mr+1 for r > 0 implies that (γk∗
n
/ωk∗

n
) ×∑

0<|l|≤k∗
n
ωl/λl ∼ (k∗

n)2a+2p+1. It follows that k∗
n ∼ n1/(2p+2a+1), and the first lower bound is

ψn ∼ n−(2p−2s)/(2p+2a+1). Moreover, we have κm ∼ m−([p−s]∧a)/a , because the minimum in
κm = supj∈Z{|j |−2(p−s) min(1, |j |2a/m)} is equal to 1 for |j | ≥ m1/2a and |j |−2(p−s) is non-
increasing.

[s-o] Approximating the sum in the same way as above, we obtain (γk∗
n
/ωk∗

n
)
∑

0<|l|≤k∗
n
ωl/

λl ∼ (k∗
n)2a+1 exp(k∗

n
2p), and thus k∗

n ∼ (logn)1/(2p). The resulting rate is ψn ∼ n−1 ×
(logn)(2a+2s+1)/(2p). Furthermore, we have κm ∼ m−1, because the supremum is taken over
j2s exp(−j2p)min(1, j2a/m), which takes its maximum at the border because of the dominat-
ing exponential term.
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[o-s] Applying Laplace’s method (see chap. 3.7 in Olver [41]), we have (γk∗
n
/ωk∗

n
)×∑

0<|l|≤k∗
n
ωl/λl ∼ (k∗

n)2p+((2a−1)∨0) exp(|k∗
n|2a), which implies that k∗

n ∼ (logn)1/(2a) and

that the first lower bound can be rewritten as ψn ∼ (logn)−(p−s)/a . Furthermore, we have
κm ∼ (logm)−(p−s)/a , because the minimum in κm = supj∈Z{|j |−2(p−s) min(1, exp(|j |2a)/m)}
is equal to 1 for |j | ≥ (logm)(1/2a) and |j |−2(p−s) is non-increasing. Consequently, the lower
bounds in Proposition 2.6 follow by applying Corollary 2.4. �

Proof of Proposition 2.8. The result is an immediate consequence of Theorem 2.5 and Propo-
sition 2.6. �

A.2. Proofs of Section 3

Partially adaptive estimation

We begin by defining and recalling notations to be used in the proof. Given u ∈ L2[0,1], we
denote by [u] the infinite vector of Fourier coefficients [u]j := 〈u, ej 〉. In particular, we use the
notations

f̂k =
k∑

j=−k

[̂g]j
[̂ϕ]j

1
{∣∣[̂ϕ]j

∣∣2 ≥ 1/m
}
ej , f̃k :=

k∑
j=−k

[̂g]j
[ϕ]j ej , fk :=

k∑
j=−k

[g]j
[ϕ]j ej ,

�̂u :=
∑
j∈Z

[u]j
[̂ϕ]j

1
{∣∣[̂ϕ]j

∣∣2 ≥ 1/m
}
ej , �̃u :=

∑
j∈Z

[u]j
[ϕ]j ej .

Furthermore, let ĝ be the function with Fourier coefficients [̂g]j := [̂g]j . Given 0 ≤ k ≤ k′, we
then have, for all t ∈ Sk := span{e−k, . . . , ek},

〈t, fk′ 〉ω = 〈t, �̃g〉ω =
k∑

j=−k

ωj [t]j [g]j
[ϕ]j =

k∑
j=−k

ωj [t]j [f ]j = 〈t, f 〉ω,

〈t, f̃k′ 〉ω = 〈t, �̃ĝ〉ω = 1

n

n∑
i=1

k∑
j=−k

ej (−Yi)
ωj [t]j
[ϕ]j = 〈t, f̃k〉ω,

〈t, f̂k′ 〉ω = 〈t, �̂ĝ〉ω = 1

n

n∑
i=1

k∑
j=−k

ej (−Yi)
ωj [t]j
[̂ϕ]j

1
{∣∣[̂ϕ]j

∣∣2 ≥ 1/m
} = 〈t, f̂k〉ω.

Consider the function ν = ĝ −g with Fourier coefficients [ν]j = [̂g]j −[g]j = [̂g]j −E[̂g]j . We
then have, for every t ∈ Sk ,

〈t, �̂ĝ − f 〉ω = 〈t, �̂ĝ − �̃g〉ω = 〈t, �̃ĝ − �̃g〉ω + 〈t, �̂ĝ − �̃ĝ〉ω
(A.7)

= 〈t, �̃ν〉ω + 〈t, �̂ĝ − �̃ĝ〉ω = 〈t, �̃ν〉ω + 〈t, �̂ν − �̃ν〉ω + 〈t, �̂g − �̃g〉ω.
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At the end of this section, we prove some technical lemmas that are used in the following proof.

Proof of Theorem 3.3. We consider the contrast

ϒ(t) := ‖t‖2
ω − 2〈t, �̂ĝ〉ω ∀t ∈ L2[0,1].

It obviously follows that, for all t ∈ Sk , ϒ(t) = ‖t − f̂k‖2
ω − ‖f̂k‖2

ω, and thus,

arg min
t∈Sk

ϒ(t) = f̂k ∀k ≥ 0. (A.8)

Moreover, the adaptive choice of the dimension parameter from (3.1) can be rewritten as

k̃ = argmin
0≤k≤(Nn∧Mm)

[
ϒ(f̂k) + 60

δk

n

]
. (A.9)

Let pen(k) := 60δk/n; then, for all 1 ≤ k ≤ (Nn ∧ Mm), we have

ϒ(f̂k̃) + pen(̃k) ≤ ϒ(f̂k) + pen(k) ≤ ϒ(fk) + pen(k),

using first (A.9) and then (A.8). This inequality implies that

‖f̂k̃‖2
ω − ‖fk‖2

ω ≤ 2〈f̂k̃ − fk, �̂ĝ〉ω + pen(k) − pen(̃k),

and thus, using (A.7), we have, for all 1 ≤ k ≤ (Nn ∧ Mm),

‖f̂k̃ − f ‖2
ω ≤ ‖f − fk‖2

ω + pen(k) − pen(̃k)
(A.10)

+ 2〈f̂k̃ − fk, �̃ν〉ω + 2〈f̂k̃ − fk, �̂ν − �̃ν〉ω + 2〈f̂k̃ − fk, �̂g − �̃g〉ω.

Consider the unit ball Bk := {f ∈ Sk: ‖f ‖ω ≤ 1} and, for arbitrary τ > 0 and t ∈ Sk , the ele-
mentary inequality

2
∣∣〈t, h〉ω

∣∣ ≤ 2‖t‖ω sup
t∈Bk

∣∣〈t, h〉ω
∣∣ ≤ τ‖t‖2

ω + 1

τ
sup
t∈Bk

∣∣〈t, h〉ω
∣∣2 = τ‖t‖2

ω + 1

τ

k∑
j=−k

ωj

∣∣[h]j
∣∣2

.

Combining the last estimate with (A.10) and f̂k̃ − fk ∈ Sk̃∨k ⊂ SNn∧Mm , we obtain

‖f̂k̃ − f ‖2
ω ≤ ‖f − fk‖2

ω + 3τ‖f̂k̃ − fk‖2
ω + pen(k) − pen(̃k)

+ 1

τ
sup

t∈Bk∨k̃

∣∣〈t, �̃ν〉ω
∣∣2 + 1

τ
sup

t∈B(Nn∧Mm)

∣∣〈t, �̂ν − �̃ν〉ω
∣∣2

+ 1

τ
sup

t∈B(Nn∧Mm)

∣∣〈t, �̂g − �̃g〉ω
∣∣2

.
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Note that ‖f̂k̃ −fk‖2
ω ≤ 2‖f̂k̃ −f ‖2

ω +2‖fk −f ‖2
ω and that ‖f −fk‖2

ω ≤ rωk/γk for all f ∈ F r
γ ,

because ω/γ is non-increasing. Setting τ := 1/8, we obtain

1

4
‖f̂k̃ − f ‖2

ω ≤ 7

4
(rωk/γk) + pen(k) − pen(̃k)

+ 8 sup
t∈Bk∨k̃

∣∣〈t, �̃ν〉ω
∣∣2 + 8 sup

t∈B(Nn∧Mm)

∣∣〈t, �̂ν − �̃ν〉ω
∣∣2 (A.11)

+ 8 sup
t∈B(Nn∧Mm)

∣∣〈t, �̂g − �̃g〉ω
∣∣2

.

Defining the event

�q :=
{
∀0 ≤ |j | ≤ Mu

m:

∣∣∣∣ 1

[̂ϕ]j
− 1

[ϕ]j
∣∣∣∣ ≤ 1

2|[ϕ]j | ∧ ∣∣[̂ϕ]j
∣∣2 ≥ 1/m

}
, (A.12)

consider the following decomposition of the risk:

E‖f̂k̃ − f ‖2
ω = E‖f̂k̃ − f ‖2

ω1{�q} + E‖f̂k̃ − f ‖2
ω1

{
�c

q

}
. (A.13)

We bound these two terms separately. Consider the first term. By Lemma A1 below and
1{|[̂ϕ]j |2 ≥ 1/m}1{�q} = 1{�q}, it follows that for all 1 ≤ |j | ≤ (Nn ∧ Mm),( [ϕ]j

[̂ϕ]j
1
{∣∣[̂ϕ]j

∣∣2 ≥ 1/m
} − 1

)2

1{�q} = ∣∣[ϕ]j
∣∣21{�q}

∣∣∣∣ 1

[̂ϕ]j
− 1

[ϕ]j
∣∣∣∣2

≤ 1

4
.

Thus, supt∈Bk
|〈t, �̂ν − �̃ν〉ω|21{�q} ≤ 1

4 supt∈Bk
|〈t, �̃ν〉ω|2 for all 0 ≤ k ≤ (Nn ∧ Mm), and

(A.11) implies that

1

4
‖f̂k̃ − f ‖2

ω1{�q} ≤ 7

4
(rωk/γk) + 10

(
sup

t∈Bk∨k̃

∣∣〈t, �̃ν〉ω
∣∣2 − (6δk∨k̃)/n

)
+

(A.14)
+ (60δk∨k̃)/n + pen(k) − pen(̃k) + 8 sup

t∈B(Nn∧Mm)

∣∣〈t, �̂g − �̃g〉ω
∣∣2

.

Moreover, we have that 60δk∨k̃/n = pen(k ∨ k̃) ≤ pen(k) + pen(̃k). Further note that


k ≤ d
λ
k, δk ≤ dζdδλ

k , and δk/
k ≥ 2kζ−1
d

log(
λ
k ∨ (k + 2))

log(k + 2)
, (A.15)

with ζd = log(3d)/ logd . From Lemma A1, it follows that

sup
f ∈F r

γ

sup
ϕ∈E d

λ

E‖f̂k̃ − f ‖2
ω1{�q}

≤ 480(r + dζd) min
0≤k≤Nλ

n ∧Mλ
m

[
max

(
ωk/γk, δ

λ
k /n

)]
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+ 40 sup
f ∈F r

γ

sup
ϕ∈E d

λ

∑
0≤k′≤(Nu

n ∧Mu
m)

E

(
sup
t∈Bk′

∣∣〈t, �̃ν〉ω
∣∣2 − (6δk′)/n

)
+

+ 32 sup
f ∈F r

γ

sup
ϕ∈E d

λ

E

[
sup

t∈B(Nu
n ∧Mu

m)

∣∣〈t, �̂g − �̃g〉ω
∣∣2

]
.

To bound the second term, we apply Lemma A4 with δ∗
k = δk and 
∗

k = 
k . By virtue of (A.15),
we have, for all k ≥ 0,

E

(
sup
t∈Bk

∣∣〈t, �̃ν〉ω
∣∣2 − 6

δk

n

)
+

≤ C

{
1

n2
exp

(−K2
√

n
)
dζdδλ

k

+ ‖ϕ‖2‖f ‖2

n
d
λ

k exp

(
− k

3‖ϕ‖2‖f ‖2ζd

log(
λ
k ∨ (k + 2))

log(k + 2)

)}
.

Owing to Lemmas A1 and A2(i) and the properties of the function � from Definition 3.1, we
have

Nu
n∑

k=0

E

(
sup
t∈Bk

∣∣〈t, �̃ν〉ω
∣∣2 − 6

δk

n

)
+

≤ C

n
d�

(‖ϕ‖2‖f ‖2ζd

)
.

It can be readily verified that ‖ϕ‖2 ≤ d� for all ϕ ∈ E d
λ and ‖f ‖2 ≤ r for all f ∈ F r

γ . The
remaining term can be controlled by virtue of Lemma A5, which shows that

sup
f ∈F r

γ

sup
ϕ∈E d

λ

E‖f̂k̃ − f ‖2
ω1{�q} ≤ C

{
(r + dζd) min

0≤k≤(Nλ
n ∧Mλ

m)

[
max

(
ωk/γk, δ

λ
k /n

)]
(A.16)

+ rdκm + d�(rd�ζd)n−1
}
.

Consider the second term from (A.13). Let f̆k := 1 + ∑
0<|j |≤k[f ]j1{|[̂ϕ]j |2 ≥ 1/m}ej . It is

easy to see that ‖f̂k − f̆k‖2 ≤ ‖f̂k′ − f̆k′ ‖2 for all k ≤ k′ and ‖f̆k − f ‖2 ≤ ‖f ‖2 for all k ≥ 0.
Thus, using that 0 ≤ k̃ ≤ (N◦

n ∧ m), we can write

E‖f̂k̃ − f ‖2
ω1

{
�c

q

} ≤ 2
{
E‖f̂k̃ − f̆k̃‖2

ω1
{
�c

q

} + E‖f̆k̃ − f ‖2
ω1

{
�c

q

}}
≤ 2

{
E‖f̂(N◦

n∧m) − f̆(N◦
n∧m)‖2

ω1
{
�c

q

} + ‖f ‖2
ωP

[
�c

q

]}
.

Moreover, applying Theorem 2.10 of Petrov [43],

E‖f̂(N◦
n∧m) − f̆(N◦

n∧m)‖2
ω1

{
�c

q

}
≤ 2m

∑
0<|j |≤(N◦

n∧m)

ωj

{
E

([̂g]j − [ϕ]j [f ]j
)21

{
�c

q

} + E
([ϕ]j [f ]j − [̂ϕ]j [f ]j

)21
{
�c

q

}}
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≤ 2m

{ ∑
0<|j |≤(N◦

n∧m)

ωj

[
E

([̂g]j − [g]j
)4]1/2P

[
�c

q

]1/2

+
∑

0<|j |≤(N◦
n∧m)

ωj

∣∣[f ]j
∣∣2[

E
([̂ϕ]j − [ϕ]j

)4]1/2P
[
�c

q

]1/2
}

≤ 2m
{

2m
(

max
1≤j≤N◦

n

ωj

)(
Cn−1) + (

Cm−1)‖f ‖2
ω

}
P
[
�c

q

]1/2
,

which implies, using Definition 3.1(ii),

E‖f̂k̃ − f ‖2
ω1

{
�c

q

} ≤ 4C
(
m2 + ‖f ‖2

ω

)
P
[
�c

q

]1/2 + 2‖f ‖2
ωP

[
�c

q

]
(A.17)

≤ 6Cm2(1 + ‖f ‖2
ω

)
P
[
�c

q

]1/2
.

By Lemma A6, it follows that for all m ∈ N,

sup
f ∈F r

γ

sup
ϕ∈E d

λ

E‖f̂k̂ − f ‖2
ω1

{
�c

p

} ≤ C(d)(1 + r)m−1. (A.18)

The result of the theorem follows from a combination of the last estimate and (A.16). �

Lemma A1. Under Assumption A1, we have, for all n,m ∈ N,

Nλ
n ≤ Nn ≤ Nu

n and Mλ
m ≤ Mm ≤ Mu

m.

Proof. We first prove that Nλ
n ≤ Nn. If Nλ

n = 0 or Nn = N◦
n , then there is nothing to show.

Noting that

Nλ
n = 0 ⇐⇒ max

1≤j≤N◦
n

λj

jω+
j

<
4d logn

n
and Nn = 0 ⇐⇒ max

1≤j≤N◦
n

λj

jω+
j

<
d logn

n
,

we deduce that in the case where Nn = 0, we also have Nλ
n = 0. This also holds when Nλ

n > 0
and N◦

n > Nn > 0, which implies

min
1≤j≤Nλ

n

λj

jω+
j

≥ 4d logn

n
and

logn

n
>

|[ϕ]Nn+1|2
NnωNn+1

≥ λNn+1

dNnω
+
Nn+1

and thus Nn + 1 > Nλ
n , which proves the claim.

We now prove Nn ≤ Nu
n . If Nn = 0 or Nu

n = n, then this is trivial. On the other hand, if
n > Nu

n ≥ 0 and N◦
n ≥ Nn > 0, then it follows from the definitions that

min
1≤j≤Nn

dλj

jω+
j

≥ min
1≤j≤Nn

|[ϕ]j |2
jω+

j

≥ logn

n
and

λN◦
n+1

(N◦
n + 1)ω+

N◦
n+1

<
logn

4dn
,

which implies that N◦
n +1 > Nn, and hence the claim. Similar arguments show the corresponding

estimates in m. �
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Lemma A2. Under Assumption A1, we have that

(i) δNu
n
/n ≤ 32d2 for all n ≥ 1,

(ii) m7 exp(−mλMu
m

72d
) ≤ C(d) for all m ≥ 1,

and for m ≥ exp(512 log(3d)2) that

(iii) min1≤j≤Mu
m

|[ϕ]j |2 ≥ 2
m

.

Proof. (i) For Nu
n = 0, we have δNu

n
= 0, and there is nothing to show. If 0 < Nu

n ≤ n, then we
can show that ω+

Nu
n
/λNu

n
≤ 4dn/(Nu

n log(n + 2)), which we use in the following computation:

δNu
n

= Nu
n

ω+
Nu

n

λNu
n

log((ω+
Nu

n
/λNu

n
) ∨ (Nu

n + 2))

log(Nu
n + 2)

≤ 4dn

log(n + 2)
log

(
4dn

Nu
n log(n + 2)

∨ (
Nu

n + 2
))/

log
(
Nu

n + 2
)

≤ n

{
4d

(
log(n + 2) ≥ 4d

)
,

4d
(
4d + log(4d)

)
/
(
log(n + 2)

)
(otherwise),

which implies that δNu
n
/n ≤ 4d(4d + log(4d)) ≤ 32d2 for all n ≥ 1.

(ii) For 0 < Mu
m ≤ m, we have λMu

m
≥ m−1+bm(4d)−1. Thus,

m7 exp

(
−mλMu

m

72d

)
≤ exp

(
− mbm

288d2
+ 7 logm

)
.

This proves the claim, because logm � mbm . Note that Mu
m = 0 cannot occur, because we assume

that λ1 = 1.
(iii) We have that

min
1≤j≤Mu

m

∣∣[ϕ]j
∣∣2 ≥ min

1≤j≤Mu
m

λj

d
≥ mbm

4d2m
≥ 2

m
,

where the last step holds for m ≥ exp(128 log(8d2)2), as shown by some algebra. �

For the proof of Lemma A4 below, we need the following lemma, which can be found in
Talagrand [46].

Lemma A3 (Talagrand’s inequality). Let T1, . . . , Tn be independent random variables, and let
ν∗
n(r) = (1/n)

∑n
i=1[r(Ti) − E[r(Ti)]], for r belonging to a countable class R of measurable

functions. Then,

E

[
sup
r∈R

∣∣ν∗
n(r)

∣∣2 − 6H 2
2

]
+ ≤ C

(
v

n
exp

(−(
nH 2

2 /6v
)) + H 2

1

n2
exp

(−K2(nH2/H1)
))
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with numerical constants K2 = (
√

2 − 1)/(21
√

2) and C > 0 and with

sup
r∈R

‖r‖∞ ≤ H1, E

[
sup
r∈R

∣∣ν∗
n(r)

∣∣] ≤ H2, sup
r∈R

1

n

n∑
i=1

Var
(
r(Ti)

) ≤ v.

Lemma A4. Let δ∗ and 
∗ be sequences such that for all k ≥ 1,

δ∗
k ≥

∑
−k≤j≤k

ωj

|[ϕ]j |2 and 
∗
k ≥ max

0≤|j |≤k

ωj

|[ϕ]j |2

and let K2 := (
√

2 − 1)/(21
√

2). Then, for all n, k ≥ 1,

E

[(
sup
t∈Bk

∣∣〈t, �̃ν〉ω
∣∣2 − 6δ∗

k

n

)
+

]

≤ C

{‖ϕ‖2‖f ‖2

n

∗

k exp

(
− 1

6‖ϕ‖2‖f ‖2

(
δ∗
k /
∗

k

)) + 1

n2
exp(−K2

√
n)δ∗

k

}
.

Proof. For t ∈ Sk , define the function rt := ∑
k≤j≤k ωj [t]j [ϕ]−1

j ej . Then it is readily seen that

〈t, �̃ν〉ω = 1
n

∑n
k=1 rt (Yk) − E[rt (Yk)]. We next compute constants H1, H2, and v verifying the

three inequalities required in Lemma A3, which then implies the result.
First, consider H1:

sup
t∈Bk

‖rt‖2∞ = sup
y∈R

∑
−k≤j≤k

ωj

∣∣[ϕ]j
∣∣−2∣∣ej (y)

∣∣2 =
∑

−k≤j≤k

ωj

∣∣[ϕ]j
∣∣−2 ≤ δ∗

k =: H 2
1 .

Next, find H2. Note that

E

[
sup
t∈Bk

∣∣〈t, �̃ν〉ω
∣∣2

]
= 1

n

∑
−k≤j≤k

ωj

∣∣[ϕ]j
∣∣−2

Var
(
ej (Y1)

)
.

Because Var(ej (Y1)) ≤ E[|ej (Y1)|2] = 1, we define E[supt∈Bk
|〈t, �̃ν〉|2] ≤ δ∗

k /n =: H 2
2 .

Finally, consider v. Given t ∈ Bk and a sequence (zj )j∈Z, let [t] := ([t]−k, . . . , [t]k)T and
denote by Dk(z) := diag[z−k, . . . , zk] the corresponding diagonal matrix. Define the Hermitian

and positive semi-definite matrix Ak := ([ϕ]−1
j [ϕ]−1

j ′ [ϕ]j−j ′ [f ]j−j ′)j,j ′=−k,...,k . Straightforward
algebra shows that supt∈Bk

Var(rt (Y1)) ≤ supt∈Bk
〈AkDk(ω)[t],Dk(ω)[t]〉C2k+1 ; thus,

sup
t∈Bk

1

n

n∑
k=1

Var
(
rt (Yk)

) ≤ sup
t∈Bk

〈
A

1/2
k Dk(ω)[t],A1/2

k Dk(ω)[t]〉
C2k+1

= sup
t∈Bk

∥∥A
1/2
k Dk(ω)[t]∥∥2

C2k+1 = ∥∥Dk(
√

ω)AkDk(
√

ω)
∥∥

C2k+1 .
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Clearly, we have Ak = Dk([ϕ]−1)BkDk([ϕ]−1
), where Bk := ([ϕ]j−k[f ]j−k)j,k=−k,...,k . Conse-

quently,

sup
t∈Bk

1

n

n∑
k=1

Var
(
rt (Yk)

) ≤ ∥∥Dk

(√
ω[ϕ]−1)∥∥2

C2k+1‖Bk‖C2k+1 .

We have that ‖Dk(
√

ω[ϕ]−1)‖2
C2k+1 = max0≤|j |≤k ωj |[ϕ]j |−2 ≤ 
∗

k . It remains to show the

boundedness of ‖Bk‖C2k+1 . Let �2 be the space of square-summable sequences in C, and de-
fine the operator B :�2 → �2 by (Bz)k := ∑

j∈Z
[ϕ]j−k[f ]j−kzj , k ∈ Z. Then it is easily verified

that for any z ∈ �2 with ‖z‖�2 = 1, the Cauchy–Schwarz inequality yields ‖Bz‖2
�2 ≤ ‖ϕ‖2‖f ‖2,

and thus ‖B‖2
�2 ≤ ‖ϕ‖2‖f ‖2. Given the orthogonal projection �k in �2 onto Sk , the operator

�kB�k : Sk → Sk has matrix representation Bk via the isomorphism Sk
∼= C

2k+1, and hence
‖�kB�k‖�2 = ‖Bk‖C2k+1 . Given orthogonal projections with a norm bounded by 1, we con-
clude that ‖Bk‖C2k+1 ≤ ‖B‖�2 for all k ∈ N, which implies that supt∈Bk

1
n

∑n
k=1 Var(rt (Yk)) ≤

‖ϕ‖2‖f ‖2
∗
k =: v, which completes the proof. �

Lemma A5. For every m ≥ 1 and k ≥ 0, we have

sup
f ∈F r

γ

E

[
sup
t∈Bk

∣∣〈t, �̂g − �̃g〉ω
∣∣2

]
≤ Cr max

j∈N

{
ωj

γj

min

(
1,

1

m[ϕ]2
j

)}
≤ Cdrκm(γ,λ,ω).

Proof. First, given that f ∈ F r
γ , it can be easily seen that

E

[
sup
t∈Bk

∣∣〈t, �̂g − �̃g〉ω
∣∣2

]
≤ r sup

−k≤j≤k

ωj

γj

E
[|Rj |2

]
,

where Rj is as defined by

Rj :=
( [ϕ]j

[̂ϕ]j
1
{∣∣[̂ϕ]j

∣∣2 ≥ 1/m
} − 1

)
.

In view of the definition (2.2) of κm, the result follows from E[|Rj |2] ≤ C min{1, 1
m|[ϕ]j |2 }, which

can be realized as follows. Consider the identity

E|Rj |2 = E

[∣∣∣∣ [ϕ]j
[̂ϕ]j

− 1

∣∣∣∣2

1
{∣∣[̂ϕ]j

∣∣2 ≥ 1/m
}] + P

[∣∣[̂ϕ]j
∣∣2

< 1/m
] =: RI

j + RII
j .

Trivially, RII
j ≤ 1. If 1 ≤ 4/(m|[ϕ]j |2), then obviously RII

j ≤ 4 min{1, 1
m|[ϕ]j |2 }. Otherwise, we

have 1/m < |[ϕ]j |2/4 and thus, using Tchebychev’s inequality,

RII
j ≤ P

[∣∣[̂ϕ]j − [ϕ]j
∣∣ >

∣∣[ϕ]j
∣∣/2

] ≤ 4 Var([̂ϕ]j )
|[ϕ]j |2 ≤ 4 min

{
1,

1

m|[ϕ]j |2
}
,
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where Var([̂ϕ]j ) ≤ 1/m for all j . Now consider RI
j . We find that

RI
j = E

[ |[̂ϕ]j − [ϕ]j |2
|[̂ϕ]j |2

1
{∣∣[̂ϕ]j

∣∣2 ≥ 1/m
}] ≤ mVar

([̂ϕ]j
) ≤ 1. (A.19)

On the other hand, using that E[|[̂ϕ]j − [ϕ]j |4] ≤ C/m2 (cf. Petrov [43], Theorem 2.10), we
obtain

RI
j ≤ E

[ |[̂ϕ]j − [ϕ]j |2
|[̂ϕ]j |2

1
{∣∣[̂ϕ]j

∣∣2 ≥ 1/m
}
2

{ |[̂ϕ]j − [ϕ]j |2
|[ϕ]j |2 + |[̂ϕ]j |2

|[ϕ]j |2
}]

≤ 2mE[|[̂ϕ]j − [ϕ]j |4]
|[ϕ]j |2 + 2 Var([̂ϕ]j )

|[ϕ]j |2 ≤ 2C

m|[ϕ]j |2 + 2

m|[ϕ]j |2 .

Combining this result with (A.19) gives RI
j ≤ 2(C + 1)min{1, 1

m|[ϕ]j |2 }, which completes the

proof. �

Lemma A6. Under Assumption A1, P[�c
q ] ≤ C(d)m−6 for all m ≥ 1.

Proof. The estimate is obvious for m < exp(512 log(3d)2) =: m0. Consider the complement of
�q given by

�c
q =

{
∃0 < |j | ≤ Mu

m:

∣∣∣∣ [ϕ]j
[̂ϕ]j

− 1

∣∣∣∣ >
1

2
∨ ∣∣[̂ϕ]j

∣∣2
< 1/m

}
.

Because of Lemma A2(iii), for all m ≥ m0 and 0 < |j | ≤ Mu
m, we have |[ϕ]j |2 ≥ 2/m. This

yields

�c
q ⊆

{
∃0 <|j | ≤ Mu

m:

∣∣∣∣ [̂ϕ]j
[ϕ]j − 1

∣∣∣∣ >
1

3

}
.

By Hoeffding’s inequality, for all 0 < |j | ≤ Mu
m,

P
[∣∣[̂ϕ]j /[ϕ]j − 1

∣∣ > 1/3
] ≤ 2 exp

(
−m|[ϕ]j |2

72

)
≤ 2 exp

(
−mλMu

m

72d

)
, (A.20)

which implies the result by virtue of Lemma A2(ii). �

Fully adaptive estimation

Proof of Theorem 3.7. We begin the proof by defining the event �qp := �q ∩ �p , where �q is
given in (A.12) and

�p := {(
Nλ

n ∧ Mλ
m

) ≤ (N̂n ∧ M̂m) ≤ (
Nu

n ∧ Mu
m

)}
. (A.21)
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Observe that on �q , we have (1/2)
k ≤ 
̂k ≤ (3/2)
k for all 0 ≤ k ≤ Mu
m, and thus (1/2)[
k ∨

(k + 2)] ≤ [
̂k ∨ (k + 2)] ≤ (3/2)[
k ∨ (k + 2)], which implies that

(1/2)k
k

(
log[
k ∨ (k + 2)]

log(k + 2)

)(
1 − log 2

log(k + 2)

log(k + 2)

log(
k ∨ [k + 2])
)

≤ δ̂k ≤ (3/2)k
k

(
log(
k ∨ [k + 2])

log(k + 2)

)(
1 + log 3/2

log(k + 2)

log(k + 2)

log(
k ∨ [k + 2])
)

.

Using log(
k ∨ (k + 2))/log(k + 2) ≥ 1, we conclude from the previous estimate that

δk/10 ≤ (log 3/2)/(2 log 3)δk ≤ (1/2)δk

[
1 − (log 2)/ log(k + 2)

] ≤ δ̂k

≤ (3/2)δk

[
1 + (log 3/2)/ log(k + 2)

] ≤ 3δk.

Letting pen(k) := 60δkn
−1 and p̂en(k) := 600̂δkn

−1, it follows that on �q ,

pen(k) ≤ p̂en(k) ≤ 30 pen(k) ∀0 ≤ k ≤ Mu
m.

On �qp = �q ∩ �p , we have k̂ ≤ Mu
m. Thus,(

pen(k ∨ k̂) + p̂en(k) − p̂en(̂k)
)
1{�qp} ≤ (

pen(k) + pen(̂k) + p̂en(k) − p̂en(̂k)
)
1{�qp}

(A.22)
≤ 31 pen(k) ∀0 ≤ k ≤ Mu

m.

Now consider the decomposition

E‖f̂k̂ − f ‖2
ω = E‖f̂k̂ − f ‖2

ω1{�qp} + E‖f̂k̂ − f ‖2
ω1

{
�c

qp

}
. (A.23)

We now bound the two terms separately:

E‖f̂k̂ − f ‖2
ω1{�qp} ≤ C

{
‖f − fk‖2

ω + dζd

δλ
k

n
+ rdκm

+ dζd

δλ
1 + �(ζ−1

d ‖ϕ‖2‖f ‖2)

n

}
,

E‖f̂k̂ − f ‖2
ω1

{
�c

p

} ≤ C

(
d

λ1

)7
(1 + ‖f ‖2

ω)

m
.

Consider the first term. Following the proof of (A.14) line by line, it is easily seen that for
0 ≤ k ≤ (Nλ

n ∧ Mλ
m), we have

(1/4)‖f̂k̂ − f ‖2
ω1{�qp}

≤ (7/4)(rωk/γk) + 10
Nu

n∑
j=0

(
sup
t∈Bj

∣∣〈t, �̃ν〉ω
∣∣2 − 6

δj

n

)
+
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+ 8 sup
t∈BNu

n ∧Mu
m

∣∣〈t, �̂g − �̃g〉ω
∣∣2 + (

pen(k ∨ k̂) + p̂en(k) − p̂en(̂k)
)
1{�qp}

≤ (7/4)(rωk/γk) + 10
Nu

n∑
j=0

(
sup
t∈Bj

∣∣〈t, �̃ν〉ω
∣∣2 − 6

δj

n

)
+

+ 8 sup
t∈BNu

n ∧Mu
m

∣∣〈t, �̂g − �̃g〉ω
∣∣2 + 31 pen(k),

where the last inequality follows from (A.22). The second and third terms are controlled by
Lemmas A4 and A5, respectively (cf. the proof of (A.16)). It follows that

sup
f ∈F r

γ

sup
ϕ∈E d

λ

E‖f̂k̂ − f ‖2
ω1{�qp} ≤ C

{
(r + dζd) min

0≤k≤(Nλ
n ∧Mλ

m)

[
max

(
ωk/γk, δ

λ
k /n

)]
(A.24)

+ rdκm + d�(rd�ζd)n−1
}
.

Consider the second term of (A.23). Following the proof of (A.17) and replacing �c
q by �c

qp ,
we obtain

E‖f̂k̂ − f ‖2
ω1

{
�c

qp

} ≤ Cm2(1 + ‖f ‖2
ω

)
P
[
�c

qp

]1/2
.

It follows by Lemma A7 that for all m ≥ 1,

sup
f ∈F r

γ

sup
ϕ∈E d

λ

E‖f̂k̂ − f ‖2
ω1

{
�c

qp

} ≤ C(λ,d)(1 + r)m−1.

The result of the theorem follows by combining the last estimate with (A.18) and (A.24). �

Lemma A7. Under Assumptions A1 and A2, the event �p defined in (A.21) satisfies

P
(
�c

p

) ≤ C(λ,d)m−6 ∀n,m ≥ 1.

Proof. Let �I := {(Nλ
n ∧ Mλ

m) > (N̂n ∧ M̂m)} and �II := {(N̂n ∧ M̂m) > (Nu
n ∧ Mu

m)}. We then
have �c

p = �I ∪ �II. First, consider �I = {N̂n < (Nλ
n ∧ Mλ

m)} ∪ {M̂m < (Nλ
n ∧ Mλ

m)}. By the

definition of Nλ
n , we have that min1≤|j |≤Nλ

n

|[ϕ]j |2
|j |ω+

j

≥ 4(logn)
n

, which implies that

{
N̂n <

(
Nλ

n ∧ Mλ
m

)} ⊂
{
∃1 ≤ |j | ≤ (

Nλ
n ∧ Mλ

m

)
:

|[̂ϕ]j |2
|j |ω+

j

<
logn

n

}

⊂
⋃

1≤|j |≤Nλ
n ∧Mλ

m

{ |[̂ϕ]j |
|[ϕ]j | ≤ 1/2

}
⊂

⋃
1≤|j |≤Nλ

n ∧Mλ
m

{∣∣∣∣ [̂ϕ]j
[ϕ]j − 1

∣∣∣∣ ≥ 1/2

}
.
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From min1≤|j |≤Mλ
m

|[ϕ]j |2 ≥ 4m−1+bm , it follows in the same way that

{
M̂m <

(
Nλ

n ∧ Mλ
m

)} ⊂
⋃

1≤|j |≤Nλ
n ∧Mλ

m

{∣∣∣∣ [̂ϕ]j
[ϕ]j − 1

∣∣∣∣ ≥ 1/2

}
.

Therefore, �I ⊂ ⋃
1≤|j |≤Mu

m
{|[̂ϕ]j /[ϕ]j − 1| ≥ 1/2}, because Mλ

m ≤ Mu
m. Thus, applying

Hoeffding’s inequality and Lemma A2(ii) as in (A.20) yields

P[�I] ≤
∑

1≤|j |≤Mu
m

2 exp

(
−m|[ϕ]j |2

72

)
≤ C(d)m−6. (A.25)

Consider �II = {N̂n > (Nu
n ∧Mu

m)} ∩ {M̂m > (Nu
n ∧Mu

m)}. In the case where (Nu
n ∧Mu

m) = Nu
n ,

use logn
4n

≥ max|j |≥Nu
n +1

|[ϕ]j |2
|j |ω+

j

, such that

�II ⊂ {
N̂n > Nu

n

} ⊂
{
∀1 ≤ |j | ≤ Nu

n + 1:
|[̂ϕ]j |2
|j |ω+

j

≥ logn

n

}

⊂
{ |[̂ϕ]Nu

n +1|
|[ϕ]Nu

n +1| ≥ 2

}
⊂ {∣∣[̂ϕ]Nu

n +1/[ϕ]Nu
n +1 − 1

∣∣ ≥ 1
}
.

In the case where (Nu
n ∧ Mu

m) = Mu
m, it follows analogously from m−1+bm ≥ 4 ×

max|j |≥Mu
m+1 |[ϕ]j |2 that

�II ⊂ {
M̂m > Mu

m

} ⊂ {∣∣[̂ϕ]Mu
m+1/[ϕ]Mu

m+1 − 1
∣∣ ≥ 1

}
.

Therefore, we have �II ⊂ {|[̂ϕ](Nu
n ∧Mu

m)+1/[ϕ](Nu
n ∧Mu

m)+1 − 1| ≥ 1}. Applying Hoeffding’s in-
equality as in (A.20) and using Assumption A2, we obtain, for all m ≥ 1,

P[�II] ≤ 2 exp

(
−m|[ϕ]Mu

m+1|2
72

)
≤ C(λ,d)m−7. (A.26)

Combining (A.25) and (A.26) implies the result. �

Illustration: Estimation of derivatives

Proof of Proposition 3.10. In light of the proof of Proposition 2.6, we apply Theorem 3.7, where
in both cases we need only check the additional Assumption A2. The result then follows by an
evaluation of the upper bound.

[o-o] It is easily seen that (mλMu
m+1)

−1 logm = o(1) as m → ∞. Thus, Assumption A2 is
satisfied in this case. Because k∗

n ∼ n1/(2a+2p+1), we have k∗
n � Nλ

n . Thus, the upper bound is(
k∗
n ∧ Mλ

mn

)−2(p−s) + m
−(1∧((p−s)/a))
n . (A.27)
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We consider two cases. First, let p − s > a. Suppose that n2(p−s)/(2p+2a+1) = O(mn); then,

k∗
n

Mλ
mn

∼ n1/(2a+2p+1)

(m
1−bmn
n )(1/2a)

= n1/(2a+2p+1)

m
1/2(p−s)
n

(
m

−a+(p−s)(1−bmn )
n

)1/(2(p−s)a) = o(1).

This means that k∗
n � Mλ

mn
, so the resulting upper bound is (k∗

n)−2(p−s) + m−1
n � (k∗

n)−2(p−s).
Suppose now that mn = o(n2(p−s)/(2p+2a+1)). If in addition k∗

n = O(Mλ
mn

), then the first sum-
mand in (A.27) reduces to (k∗

n)−2(p−s) and thus the upper bound is m−1
n . On the other hand,

if Mλ
mn

/k∗
n = o(1), then the first term is (Mλ

mn
)−2(p−s) ∼ (m

−a+(p−s)(1−bmn )
n )1/am−1

n � m−1
n ,

because p − s > a. Combining both cases, we obtain the result in the case where p − s > a.
Now assume that p − s ≤ a. First, suppose that k∗

n = O(Mλ
mn

). Then the first summand in
(A.27) reduces to (k∗

n)−2(p−s), and, moreover, it follows that n2a/(2p+2a+1) = O(mn). There-
fore, the upper bound is (k∗

n)−2(p−s). Now consider Mλ
mn

= o(k∗
n). Then (A.27) can be rewritten

as (m
1−bmn
n )−(p−s)/a + m

−(p−s)/a
n , which results in the rate (m

1−bm
n )−(p−s)/a . Combining both

cases gives the result. More precisely, mn = o(n2a/(2p+2a+1)) implies Mλ
mn

= o(k∗
n). In contrast,

in the case where n2a/(2p+2a+1) = O(mn), if k∗
n/Mλ

mn
= O(1), then the rate is (k∗

n)−2p , whereas

if Mλ
mn

/k∗
n = o(1), then the rate is (m

1−bm
n )−(p−s)/a .

[s-o] As in case [o-o], Assumption A2 is satisfied. Recall that k∗
n ∼ (logn)1/(2p). If

n(logn)−(2a+2s+1)/(2p) = O(mn), then k∗
n � Mλ

mn
and m−1

n � ψ�
n,mn

∼ n−1(logn)(2a+2s+1)/(2p).
In the opposite case, we have ψ�

n,mn
� m−1

n , which proves the result.
[o-s] To verify that Assumption A2 is satisfied in this setting, we can proceed as follows.

Define the sequence M̃u exactly as Mu, but replacing bm by am = b2k

m . Then M̃u satisfies as-
sertion Lemma A2(ii), the proof being similar to that for Mu. In contrast, we can show that
M̃u

m − Mu
m → ∞ as m → ∞, which amounts to showing Assumption A2.

We have k∗
n � (logn)1/2a . The upper bound becomes (k∗

n ∧Mλ
mn

)−2(p−s) +(logmn)
−(p−s)/a ∼

(k∗
n ∧ Mλ

mn
)−2(p−s). Distinguishing k∗

n � Mλ
m and the opposite case shows the result. �
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