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In this paper, we establish relationships between four important concepts: (a) hitting time problems of
Brownian motion, (b) 3-dimensional Bessel bridges, (c) Schrödinger’s equation with linear potential, and
(d) heat equation problems with moving boundary. We relate (a) and (b) by means of Girsanov’s theorem,
which suggests a strategy to extend our ideas to problems in R

n and general diffusions. This approach
also leads to (c) because we may relate, through a Feynman–Kac representation, functionals of a Bessel
bridge with two Schrödinger-type problems. In particular, we also find a fundamental solution to a class
of parabolic partial differential equations with linear potential. Finally, the relationship between (c) and (d)
suggests a possible link between Generalized Airy processes and their hitting times.
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1. Introduction

Finding the density for the first time, a Brownian motion reaches a moving boundary is an old
and classic problem with a wide range of applications in both mathematics and applied sciences.
The problem may be traced back to Louis Bachelier’s doctoral thesis Bachelier, L. [1], Théorie
de la Spéculation, and to a paper by the Austrian physicist Erwin Schrödinger [13].

On the other hand, [10] and later [6,12] and [9] are among the first to explicitly establish the
relationship between hitting time problems and parabolic partial differential equations.

The aim of this work is not to provide a new set of solutions to the problem of boundary cross-
ing. Our goal is instead conceptual: we establish relationships between (a) hitting time problems
of Brownian motion, (b) 3-dimensional Bessel bridge, (c) Schrödinger’s equation with linear po-
tential, and (d) heat equation problems with moving boundary. We determine conditions under
which these problems are equivalent. As a corollary, we derive a Green function to a class of
parabolic partial differential equations with linear potential.

The paper is organized as follows: The hitting time problem is introduced in Section 2, and
by use of Girsanov’s theorem, we relate it to a functional of a 3-dimensional Bessel bridge. This
relationship is established in Section 3.

In Section 4, we derive the Feynman–Kac representation that will allow us to determine the
correspondence between Bessel bridges and Schrödinger’s equation with linear potential. Next,
in Section 5 we derive a pair of equivalent problems which in Section 6 are used to link boundary
crossing probabilities with the heat equation. In Section 7, we find a fundamental solution to the
equation introduced in Section 4, and discuss its properties. We conclude in Section 8 with some
final remarks.
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2. The problem

Throughout this paper, B stands for a one-dimensional standard Brownian motion, and f (·) is a
real-valued function denoting a “moving boundary.” Moreover,

T := inf{t ≥ 0|Bt = f (t)} (2.1)

is the first time that B reaches the moving boundary f . The main motivation of this work is to
study the density of T . To be more precise, we consider the following problem.

Problem 2.1. Determine the density of T , given that, for a > 0

f (t) := a +
∫ t

0
f ′(u)du, f ′′(t) ≥ 0 and

∫ t

0
(f ′(u))2 du < ∞ (2.2)

for t > 0.

To analyze Problem 2.1, it is convenient to note that using (2.1) and setting

B̃t := Bt −
∫ t

0
f ′(u)du (2.3)

we obtain the following alternative representation of T :

T = inf

{
t ≥ 0

∣∣∣Bt = a +
∫ t

0
f ′(u)du

}

= inf

{
t ≥ 0

∣∣∣Bt −
∫ t

0
f ′(u)du = a

}
(2.4)

= inf{t ≥ 0|B̃t = a}.
Since our study will make use of Girsanov’s theorem (see, for instance, Section 3.5, Chapter 3 in
[8]), let us first introduce the heuristics that link these ideas.

2.1. Girsanov’s theorem and hitting time problems

Notice that if there exists a measure P̃ under which the process B̃ is a one-dimensional standard
Brownian motion, then for T as in (2.1) [or (2.4)] and B̃ as in (2.3), then

P̃(T < t) =
∫ t

0
h(s, a)ds, t > 0,

where

h(s, a) := |a|√
2πs3

exp

{
−a2

2s

}
, s > 0, a �= 0. (2.5)
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This function h is the hitting time density of Brownian motion reaching a fixed level a. Alterna-
tively, h is also referred to as the derived source solution of the heat equation (see, for instance,
[11]).

This last statement follows from observing, in (2.4), that the original problem is reduced to
that of hitting a ‘fixed’ boundary a.

Assuming such measure P̃ exists, how is it related to the original measure P? More explicitly,
what is the connection (if any) between P(T < t) and P̃(T < t)?

Remark (Exponential martingale and Novikov’s condition). Girsanov’s theorem states that the
process B̃ in (2.3) will be a one-dimensional standard Brownian motion under the measure P̃, as
long as the following exponential process

Zt := exp

{∫ t

0
f ′(u)dBu − 1

2

∫ t

0
(f ′(u))2 du

}
, 0 ≤ t < ∞, (2.6)

is a P-martingale. In turn, for this last statement to hold, a sufficient condition is Novikov’s
condition (see, for instance, Proposition 3.5.12 in [8]). Now, given the P-martingale Z in (2.6),
together with the P̃-martingale

Z̃t := exp

{
−

∫ t

0
f ′(u)dB̃u − 1

2

∫ t

0
(f ′(u))2 du

}
, 0 ≤ t < ∞, (2.7)

where B̃ is a Brownian motion under P̃, it follows from Girsanov’s theorem that the measures P

and P̃ are equivalent.

This sequence of ideas leads to the following representation.

Proposition 2.1. Given that T is as in (2.1) and condition (2.2) holds, the exponential process
Z̃ in (2.7) is a P̃-martingale. Furthermore, given the hitting time density h in (2.5), it follows

P(T < t) =
∫ t

0
e−f ′(s)a−(1/2)

∫ s
0 (f ′(u))2 du

Ẽ
[
e
∫ s

0 f ′′(u)B̃u du|T = s
]
h(s, a)ds (2.8)

for t ≥ 0.

Proof. The first claim is justified from (2.2) and Novikov’s condition. Next, from Girsanov’s
theorem, we have the following equality

P(T < t) = Ẽ
[
Z̃t I(T <t)

]
,

where Z̃ is as in (2.7).
From the fact that Z̃ is a P̃-martingale and I(T <t) is FT ∧t -measurable, it follows from the

Optional Sampling theorem that

P(T < t) = Ẽ
[
Ẽ(Z̃t |FT ∧t )I(T <t)

] = Ẽ
[
Z̃T ∧t I(T <t)

] = Ẽ
[
Z̃T I(T <t)

]
. (2.9)
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Finally, from (2.9) together with the integration by parts formula:

e− ∫ t
0 f ′(u)dB̃u−(1/2)

∫ t
0 (f ′(u))2 du = e−B̃t f

′(t)+∫ t
0 f ′′(u)B̃u du−(1/2)

∫ t
0 (f ′(u))2 du.

Then the terminal condition B̃T = a, and conditioning with respect to T under P̃ completes the
proof of the proposition. �

In view of (2.8), our study now focuses on the following expectation:

Ẽ
[
e
∫ s

0 f ′′(u)B̃u du|T = s
]
.

Thus, our next task is to understand the dynamics of the process B̃u (for 0 ≤ u ≤ s), which is
conditioned to hit the fixed level a for the first time at time s.

3. Three dimensional Bessel bridge

The first idea that comes to mind is that the conditioned process B̃u (for 0 ≤ u ≤ s) is a Brownian
bridge, since at t = 0, B̃0 = 0 and at time s, B̃s = a. However, this argument is flawed because,
in contrast to a Brownian bridge, the process B̃ can never be above level a before time s.

Elaborating on the heuristics, let us for the moment write the conditioned process as:
(B̂u)0≤u≤s . Alternatively, setting

X̃u := a − B̂u, 0 ≤ u ≤ s,

we shall analyze the dynamics of the process X̃:

X̃0 = a; X̃u > 0 for 0 < u < s; X̃s = 0. (3.1)

That is, X̃ is strictly positive (Bessel part), except at time s, when it is pinned down at zero
(bridge part). It may be formally proved that the process just described is in fact the follow-
ing.

Defintion 3.1. A 3-dimensional Bessel bridge is a stochastic process which has the following
dynamics:

dX̃t :=
[

1

X̃ t

− X̃t

(s − t)

]
dt + dWt, X̃0 = a ≥ 0, (3.2)

0 ≤ t ≤ s, and W is a one-dimensional standard Brownian motion. Furthermore, letting

k(σ, κ) := 1√
2πσ

exp

{
− κ2

2σ

}
, σ > 0, κ ∈ R, (3.3)
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also known as the source solution of the heat equation (see, for instance, [11]), the transition
probability of the process X̃ is:

G(t, x; τ, y) := P̃
t,x(X̃τ ∈ dy)

(3.4)

= y

x

s − t

s − τ

k(s − τ, y)

k(s − t, x)
[k(τ − t, y − x) − k(τ − t, x + y)]

for 0 ≤ t < τ ≤ s, and x, y ≥ 0.

3.1. Hitting problems and 3-dimensional Bessel bridges

From Proposition 2.1 and Definition 3.1, we are now able to represent a class of first-hitting time
problems in terms of a 3-dimensional Bessel process, namely the following.

Theorem 3.1. Given that h is as in (2.5), the process X̃ is a 3 dimensional Bessel bridge, Defi-
nition 3.1. Then, the distribution of T equals

P(T < t) =
∫ t

0
Ẽ

[
exp

{
−

∫ s

0
f ′′(u)X̃u du

}]
(3.5)

× exp

{
−1

2

∫ s

0
(f ′(u))2 du − f ′(0)a

}
h(s, a)ds

for t ≥ 0.

Proof. Directly verified from Proposition 2.1 and Definition 3.1. �

4. Feynman–Kac and 3 dimensional Bessel bridge

In this section, we will provide a Feynman–Kac representation (see for instance: Theorem 4.4.2
in [8]) of

v(t, a) = Ẽ

[
exp

{
−

∫ s

t

f ′′(u)X̃u du

}∣∣∣X̃t = a

]
,

where X̃ is the 3-dimensional Bessel bridge, equation (3.2), introduced in Definition 3.1.
The idea is to apply Ito’s rule to the process

v(y, X̃y) exp

{
−

∫ y

t

f ′′(u)X̃u du

}
, y ∈ [t, s],

given the following growth and/or boundary condition

0 ≤ v(t, a) ≤ 1, 0 ≤ t < s, a ≥ 0.
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We will also make use of the fact that f ′′(u)X̃u ≥ 0 for 0 ≤ u < s; that the process X̃ is con-
tinuous and strictly positive on u ∈ [0, s), and that the moments of the running maximum of the
process X̃ are known and finite.

Theorem 4.1. Suppose that v(t, a) : [0, s]×R
+ → R

+ is continuous, of class C
1,2([0, s)×R

+),

and satisfies the Cauchy problem

−∂v

∂t
+ f ′′(t)av = 1

2

∂2v

∂a2
+

(
1

a
− a

s − t

)
∂v

∂a
, [0, s) × R

+,

(4.1)
v(s, a) = 1, a ∈ R

+,

as well as

0 ≤ v(t, a) ≤ 1 ∀t, a ∈ R
+. (4.2)

Then v(t, a) admits the stochastic representation:

v(t, a) = E
t,a

[
exp

{
−

∫ s

t

f ′′(u)X̃u du

}]
.

Proof. We proceed as in the proof of Theorem 5.7.6, pages 366–367, [8]. �

Our next step is to relate Theorem 4.1 to two alternative, better known problems. Namely,
that of Schrödinger’s equation with linear potential. To this end, we first have the following
proposition.

Proposition 4.1. Let h, v, and w be of class C1,2. Suppose that v, w and h satisfy the following
identity

v(t, a) = w(t, a)

h(s − t, a)
(4.3)

and h �= 0 for some strip in R
+ × R. If h satisfies (2.5) and

−wt(t, a) + f ′′(t)aw(t, a) = 1
2waa(t, a), [0, s) × R

+, (4.4)

then (4.1) holds.

Proof. Setting

u(t, a) = 1/h(s − t, a)

and

v(t, a) := u(t, a)w(t, a), (4.5)
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we have that

ut (t, a) =
[

a2

2(s − t)2
− 3

2(s − t)

]
u(t, a),

ua(t, a) = −
[

1

a
− a

s − t

]
u(t, a),

uaa(t, a) =
[

2

a2
+ a2

(s − t)2
− 1

s − t

]
u(t, a).

Alternatively, from (4.5) it follows

vt = utw + uwt , va = uaw + uwa,

vaa = uaaw + 2uxww + uwaa.

Hence from (4.1) and (4.4), we conclude that
[
−ut − 1

2
uaa −

(
1

a
− a

s − t

)
ua

]
w =

[
ua +

(
1

a
− a

s − t

)
u

]
wa,

as claimed. �

The previous proposition may be generalized by first noting that
(

1

x
− x

s − t

)
= hx(s − t, x)

h(s − t, x)

for h as in (2.5). Second, recall that h is a solution to the heat equation

ht = 1

2
hxx.

This leads to the next proposition.

Proposition 4.2. If h, v, and w satisfy the following system of partial differential equations
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− 1

σt

· ht = 1

2
hxx, (a)

−vτ + k(τ, x)v = 1

2
vxx + hx

h
vx, (b)

−wτ + k(τ, x)w = 1

2
wxx, (c)

(4.6)

where σt is only a function of t , then they satisfy the identity:

v(τ, x) = w(τ, x)

h(τ, x)
, (4.7)
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where

τ :=
∫ t

s

σu du. (4.8)

Proof. Given τ is as in (4.8), it follows from the chain rule that

∂h

∂t
= ∂τ

∂t

∂h

∂τ
.

Next, given that v is as in (4.7) we will compute the following partial derivatives

vτ = wτh − whτ

h2
, vx = wxh − whx

h2
,

vxx = (wxxh − whxx)h
2 − 2hhx(wxh − whx)

h4
.

Substituting the previous identities in equation in (4.6.b), we have:

−wτh − whτ

h2
+ k

w

h
= 1

2

wxx

h
− 1

2

hxxw

h2

− hx(wxh − whx)

h3
+ hx

h

[
wxh − whx

h2

]
.

Observe that the last two terms on the right-hand side of the previous equality cancel out, hence

−wτh − whτ

h2
+ k

w

h
= 1

2

wxx

h
− 1

2

hxxw

h2
.

After rearranging terms

1

h

(
−wτ + k · w − 1

2
wxx

)
= w

h2

(
−hτ − 1

2
hxx

)
.

However, from (4.6.a) and (4.6.c) the previous identity equals zero as claimed. �

5. Schrödinger’s boundary value problems with linear potential

The main objective of Theorem 4.1 is to characterize the problem of finding the first hitting time
densities of Brownian motion in terms of the Cauhy problem (4.1). However, in this section, the
same problem is represented in terms of two different, but equivalent, Boundary value problems.

To this end, we will make use of the subsequent facts.

Remark 5.1 (On notation). Throughout this section, let functions v, w, and h satisfy the condi-
tions in Proposition 4.1. Furthermore, let v satisfy the growth condition

0 ≤ v(t, a) ≤ 1, 0 ≤ t ≤ s, a ∈ R
+, (5.1)
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introduced in Theorem 4.1.

Remark 5.2. Given the assumptions in Remark 5.1, it follows that

(a) Function w is nonnegative and bounded by h

0 ≤ w(t, a) ≤ h(s − t, a) ∀0 ≤ t ≤ s, a ∈ R
+. (5.2)

(b) Function h, defined in (2.5), (which can also be interpreted as the first hitting time density
of Brownian motion to a fixed level a) satisfies the following two boundary conditions

lim
t→s

h(s − t, a) = 0, (5.3)

lim
a→0

h(s − t, a) = δ(s). (5.4)

(c) From the terminal condition v(s, a) = 1, in Theorem 4.1, and equality (5.3) it follows that

lim
t→s

w(t, a) = 0

as well as

lim
a→0s

w(t, a) = δ(s).

Remark 5.3. Part (b) of Remark 5.2 should be interpreted in the following sense: Suppose
λ : R+ → R

+ is a C
1 function, then

lim
x→0

∫ s

0
h(s − t, x)λ(t)dt = λ(s), 0 ≤ t < s < ∞. (5.5)

First Schrödinger boundary value problem. From Remark 5.2, it follows that the Cauchy prob-
lem (4.1), stated in Theorem 4.1, is equivalent to the following Schrödinger boundary value
problem.

Problem 5.1. Let function w be the unique solution to

−∂w

∂t
(t, a) + f ′′(t)aw(t, a)

(5.6)

= 1

2

∂2w

∂a2
(t, a), t ∈ [0, s], a ∈ R

+,

with

lim
t→s

w(t, a) = 0,

lim
a→0

w(t, a) = δ(s),
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and the compatibility condition

lim
t→s

w(t, a)

h(s − t, a)
= 1.

For our second problem, we will make use of the following proposition.

Proposition 5.1. Let h, k, v and w be of class C1,2. Suppose that v, w and h satisfy the following
identity

v(τ, x) = w(τ, x)

h(τ, x)
,

where

τ :=
∫ t

s

σu du (5.7)

Then they also satisfy the following system of partial differential equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1

σt

· ht = 1

2
hxx,

−kτ = 1

2
kxx,

−vτ + σ(τ, x)v = 1

2
vxx + kx

k
vx,

−wτ +
[
σ(τ, x) +

(
kx

k
− hx

h

)
hx

h

]
w = 1

2
wxx + wx

(
kx

k
− hx

k

)
.

Proof. We proceed as in the proof of Proposition 4.2. �

Second Schrödinger problem. Given the fundamental or source solution of the heat equation
k, equation (3.3), we may relate v to another Schrödinger-type problem, by setting

v(t, a) = u(t, a)

k(s − t, a)

and making use of Proposition 5.1:

Problem 5.2. Let v be as in Theorem 4.1 and k as in equation (3.3), then the following relation-
ship holds:

v(t, a) = u(t, a)

k(s − t, a)
, t ∈ [0, s] × R

+.
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Furthermore, it follows from Proposition 5.1, that u is a solution to the Schrödinger equation
with linear potential:

−∂u

∂t
(t, a) +

[
− 1

(s − t)
+ f ′′(t)a

]
u(t, a)

(5.8)

= 1

2

∂2u

∂a2
(t, a) + 1

a

∂u

∂a
(t, a), t ∈ [0, s], a ∈ R

+,

satisfying the following boundary conditions:

lim
t→s

u(t, a) = δ(a),

lim
a→0

u(t, a) = 0,

as well as the compatibility condition

lim
t→s

u(t, a)

k(s − t, a)
= 1.

The boundary conditions of this second problem follow, once more, by using the growth con-
dition in Theorem 4.1, that is,

0 ≤ u(t, a) ≤ k(s − t, a) ∀t ∈ [0, s], a ∈ R.

We conclude this section by making a few remarks. First, note that the problem described in
Remark 5.2 is a Cauchy problem, the one appearing in Remark 5.1 is not.

We have introduced the consistency conditions in Remarks 5.1 and 5.2 in order to make them
compatible with Theorem 4.1. Boundary conditions for the density of T will be derived in the
following section.

The next observation is that for the equations (5.6) and (5.8) one may construct particular
solutions. There is in fact one solution of (5.6) which may be used to find a new set of solutions
of (5.8). To do so, one may use a technique introduced in [3]. However, solutions to the prob-
lems described in Remarks 5.1 and 5.2, for arbitrary bounds f – which do not involve integral
equations – have yet to be found.

This last remark will be clarified in the following section. The idea stems from the following
fact (yet to be shown): There is a particular set of solutions of either (5.6) and/or (5.8) which
transform our original problem – that is, finding the density of hitting times – into that of finding
particular solutions to the heat equation killed at a moving boundary! Unfortunately, in prac-
tice this is not very useful to us, since the problem leads back to Volterra integral equations as
described in [4].

A final curious remark is that equation (5.6) may be transformed into a non-homogeneous
Burgers’ equation. The homogeneity is only time dependent and it corresponds precisely to f ′′:

κt (t, a) + κ(t, a) · κa(t, a) − 1
2κaa(t, a) = f ′′(t). (5.9)
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Alternatively, κ and w – equation (5.6) – introduced in Remark 5.1, are related through:

κ(t, a) = − ∂

∂a
logw(t, a).

From Proposition 4.2, it follows the following.

Proposition 5.2. If h, v, w and u satisfy the following system of partial differential equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1

σt

· ht = 1

2
hxx,

−vτ + k(τ, x)v = 1

2
vxx + hx

h
vx,

−wτ + k(τ, x)w = 1

2
wxx,

−uτ + u · ux = 1

2
uxx + kx,

where σt is only a function of t , then they satisfy the identities:

v(τ, x) = w(τ, x)

h(τ, x)
, u = −wx

w
, w = e− ∫

udx,

where

τ :=
∫ t

s

σu du.

Of course, at first sight, this is not so surprising since this relationship is well known. The
possibly “interesting” part lies in the fact that so many probability-related papers have been
written regarding Burgers’ equation (5.9), see for instance [2] and references therein.

6. Particular solutions to Schrödinger’s equation with linear
potential (heat equation)

Particular solutions to Schrödinger’s equation with linear potential have been obtained, for in-
stance, by [5] an references therein.

The strategy employed in [5] is not only interesting but it is also useful. This follows since
it ultimately leads to heat equation problems. In this section, we propose yet another equivalent
approach using Fourier transforms:

Theorem 6.1. Solutions to (4.4) are given by

w(t, a) = e(1/2)
∫ s
t (f ′(u))2 du+af ′(t) 1

2π

∫ ∞

−∞
�(y)e−(1/2)y2(s−t)+iy(a+∫ s

t f ′(u)du) dy

(6.1)

= e(1/2)
∫ s
t (f ′(u))2 du+af ′(t)ω

(
s − t, a +

∫ s

t

f ′(u)du

)
,
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where ω is a solution to the heat equation and � is an arbitrary function, as long as the integral
is well defined.

Proof. Let

ŵ(t, λ) :=
∫ ∞

−∞
e−iλaw(t, a)da. (6.2)

Applying the Fourier transform to (4.4), we have

−ŵt (t, λ) + if ′′(t)ŵλ(t, λ) + 1
2λ2ŵ(t, λ) = 0, i := √−1.

Next, set y = λ + if ′(t) and ŵ(t, λ) = w̃(t, y), that is:

ŵt = w̃t + if ′′(t)w̃y, ŵλ = w̃y,

which after substitution in (6.2) leads to

−w̃t (t, y) + 1
2

(
y − if ′(t)

)2
w̃(t, y) = 0. (6.3)

Consequently, setting �(y) = w̃(0, y) it follows that

w̃(t, y) = �(y) exp

{
−1

2

∫ s

t

(
y − if ′(u)

)2 du

}
(6.4)

= �(y) exp

{
−1

2
y2(s − t) + iy

∫ s

t

f ′(u)du + 1

2

∫ s

t

(f ′(u))2 du

}
.

[Note that equation (6.4) will be a solution of (6.3) for arbitrary �.] Alternatively, this implies
that

w(t, a) = 1

2π

∫ ∞

−∞
�(y)e−(1/2)y2(s−t)+iy

∫ s
t f ′(u)du+(1/2)

∫ s
t (f ′(u))2 dueiλa dλ

= 1

2π

∫ ∞

−∞
�(y)e−(1/2)y2(s−t)+iy

∫ s
t f ′(u)du+(1/2)

∫ s
t (f ′(u))2 dueiya+af ′(t) dy

= e(1/2)
∫ s
t (f ′(u))2 du+af ′(t) 1

2π

∫ ∞

−∞
�(y)e−(1/2)y2(s−t)+iy(a+∫ s

t f ′(u)du) dy

as claimed. �

This leads to our already anticipated claim, that boundary crossing probabilities, are equivalent
to a set of heat equation problems.

Theorem 6.2. The density ϕ of the first passage time T defined in (2.1) is related to a solution
of the heat equation ω as follows

ϕ(s, a) = ω

(
s, a +

∫ s

0
f ′(u)du

)
,
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and it is bounded by

h(s, a)e−af ′(0)−(1/2)
∫ s

0 (f ′(u))2 du−∫ s
0 f ′′(u)Ẽa(X̃u)du

≤ ω

(
s, a +

∫ s

0
f ′(u)du

)

≤ h(s, a)e−af ′(0)−(1/2)
∫ s

0 (f ′(u))2 du

where h is as in (2.5).

Proof. It follows from Jensen’s inequality,

exp

{
−

∫ s

0
f ′′(u)Ẽt,a(X̃u)du

}
≤ Ẽ

t,a

[
exp

{
−

∫ s

0
f ′′(u)X̃u du

}]
≤ 1,

equation (4.3), and (6.1). �

As a corollary, we obtain the necessary boundary conditions for density ϕ.

Corollary 6.1. From the previous theorem, the following boundary conditions hold:

lim
a→0

ω

(
s, a +

∫ s

0
f ′(u)du

)
= δ(0),

(6.5)

lim
s→0

ω

(
s, a +

∫ s

0
f ′(u)du

)
= 0

and

1√
2πs3

e−(1/2)
∫ s

0 (f ′(u))2 du−2
√

2/π
∫ s

0 f ′′(u)
√

s−u
√

u/s du

≤ lim
a→0

ωa

(
s, a +

∫ s

0
f ′(u)du

)
≤ 1√

2πs3
e−(1/2)

∫ s
0 (f ′(u))2 du

or given the definition of Fractional Integral

Jαg(x) := 1

�(α)

∫ x

0
(x − y)α−1g(y)dy, x > 0, α ∈ R

+

we have

1√
2πs3

e−(1/2)
∫ s

0 (f ′(u))2 du−s−1/2J 3/2f ′′(s)
√

2s

≤ lim
a→0

ωa

(
s, a +

∫ s

0
f ′(u)du

)

≤ 1√
2πs3

e−(1/2)
∫ s

0 (f ′(u))2 du.
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That is, Theorem 6.2 together with Corollary 6.1 uniquely characterize the density of T . Al-
ternatively, from Theorem 6.2, we have obtained – for free – lower bounds for the problems
described in Remarks 5.1 and 5.2.

7. A Green’s function

In this section, we derive a fundamental solution of equation (4.1). To this end, let us first recall
the following.

Defintion 7.1 (See, for instance, Definition 5.7.9 in [8]). A fundamental solution of the second-
order partial differential equation

−∂u

∂t
+ ku = At u (7.1)

is a nonnegative function G(t, a; τ, b) defined for 0 ≤ t ≤ τ ≤ s, a ∈ R
+, b ∈ R

+ with the prop-
erty that for every f̃ ∈ C0(R

+), τ ∈ (0, s], the function

u(t, a) :=
∫ ∞

0
G(t, a; τ, b)f̃ (b)db; 0 ≤ t < τ, a ∈ R

+,

is bounded, of class C1,2, satisfies (7.1), and

lim
t↑τ

u(t, a) = f̃ (a), a ∈ R
+.

Theorem 7.1. For h as in (2.5), the following function, is a fundamental solution of (4.1):

G(t, a; τ, b) = h(s − τ, b)

h(s − t, a)
H(t, a; τ, b), 0 ≤ t < τ < s, (7.2)

where

H(t, a; τ, b) = 1√
2π(τ − t)

exp

{
1

2

∫ τ

t

(f ′(u))2 du − f ′(τ )b + f ′(t)a
}

×
[

exp

{
− (b − a − ∫ τ

t
f ′(u)du)2

2(τ − t)

}

− exp

{
− (b + a − ∫ τ

t
f ′(u)du)2

2(τ − t)

}]
.

Furthermore, it is also a solution to the forward Kolmogorov equation

∂ψ

∂τ
(τ, b) + f ′′(τ )bψ(τ, b) = 1

2

∂2ψ

∂b2
(τ, b) − ∂

∂b

[(
1

b
− b

s − τ

)
ψ(τ, b)

]

in the forward variables (τ, b) ∈ (t, s) × R
+.
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Proof. It follows by applying the same techniques as in the previous section. �

Remark 7.1. (a) When f ′ = 0, then G, in (7.2) is the transition density of a 3-dimensional Bessel
bridge. (b) Although G is a Green function of (4.1), and hence

v(t, a) =
∫ ∞

0
G(t, a; τ, b)db, (t, a) ∈ ×[0, τ ) × R

+,

is also a solution to (4.1), it is unbounded, and hence it can be the solution to our problem. This
last statement follows from taking the limit as a → 0.

8. Concluding remarks

As was already mentioned in the Introduction, the aim of this paper is not to provide a new set
of solutions to the problem of boundary crossing. Our goal is instead conceptual, in that we first
make use of Girsanov’s theorem to connect hitting time problems to Bessel bridges. We do so
by use of the Optional Sampling theorem. Next, we relate exponential functionals of 3 dimen-
sional Bessel bridges to Schrödinger’s equation with linear potential. This is done by uniquely
relating both problems through a Feynman–Kac representation. We conclude by characterizing
the density of T in terms of a heat-equation problem and/or two alternate Schrödinger-equation
problems.

Girsanov’s link is useful since it suggests how to extend this idea to higher dimensions or
more general diffusions. Alternatively, the construction of Bessel bridges points to the fact that
the concept can be extended. From the derivation of our Feynman–Kac representation we have
learned that in some particular cases, sufficient conditions can be relaxed. Finally, Schrödinger’s
equation with linear potential may be the way in which boundary crossing probabilities of some
“higher order” processes can be described. For example, instead of having a parabolic equation
– which describes the transition probability of Brownian motion – as in (5.6), it could be that a
process with transition probability

∂θ

∂t
(t, x) = α

∂nθ

∂xn
(t, x), [0,∞) × R, n ≥ 2,

has a first passage time probability which might be described by a Schrödinger type-problem:

∂w

∂t
(t, x) + xf ′′(t)w(t, x) = α

∂nw

∂xn
(t, x), [0,∞) × R.

In particular note that the techniques used in the proof of Theorem 6.2 still hold.
For further details see [7].
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