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This paper develops a framework for the estimation of the functional mean and the functional principal
components when the functions form a random field. More specifically, the data we study consist of curves
X(sk; t), t ∈ [0, T ], observed at spatial points s1, s2, . . . , sN . We establish conditions for the sample aver-
age (in space) of the X(sk) to be a consistent estimator of the population mean function, and for the usual
empirical covariance operator to be a consistent estimator of the population covariance operator. These
conditions involve an interplay of the assumptions on an appropriately defined dependence between the
functions X(sk) and the assumptions on the spatial distribution of the points sk . The rates of convergence
may be the same as for i.i.d. functional samples, but generally depend on the strength of dependence and
appropriately quantified distances between the points sk . We also formulate conditions for the lack of con-
sistency.

Keywords: consistency; estimation; functional data; functional principal components; spatial dependence;
spatial sampling design

1. Introduction

This paper develops aspects of theory for functional data observed at spatial locations. The data
consist of curves X(sk) = {X(sk; t), t ∈ [0, T ]}, observed at spatial points s1, s2, . . . , sN . Such
data structures are quite common, but often the spatial dependence and the spatial distribution
of the points sk are not taken into account. A well-known example is the Canadian temperature
and precipitation data used in Ramsay and Silverman [24]. The annual curves are available at
35 locations, some of which are quite close, and so the curves have very similar characteristics,
others are very remote with notably different curves.

There has not been much research on fundamental properties of spatially distributed functional
data. Delicado et al. [6] review recent contributions to the methodology for spatially distributed
functional data. For geostatistical functional data, several exploratory approaches to kriging have
been proposed. Typically fixed basis expansions are used, see Yamanishi and Tanaka [29] and
Bel et al. [1]. A general theoretical framework has to address several problems. The first issue is
the dimensionality of the index space. While in time series analysis, the process is indexed by an
equispaced scalar parameter, we need here a d-dimensional index space. For model building this
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makes a big difference since the dynamics and dependence of the process have to be described
in all directions, and the typical recurrence equations used in time series cannot be employed.
The model building is further complicated by the fact that the index space is often continuous
(geostatistical data). Rather than defining a random field {ξ(s); s ∈ R

d} via a specific model
equations, dependence conditions are imposed, in terms of the decay of the covariances or using
mixing conditions. Another feature peculiar to random field theory is the design of the sampling
points; the distances between them play a fundamental role. Different asymptotics hold in the
presense of clusters and for sparsely distributed points. At least three types of point distributions
have been considered (Cressie [5]): When the region RN where the points {si,N ;1 ≤ i ≤ N}
are sampled remains bounded, then we are in the so-called infill domain sampling case. Classical
asymptotic results, like the law of large numbers or the central limit theorem will usually fail, see
Lahiri [17]. The other extreme situation is described by the increasing domain sampling. Here a
minimum separation between the sampling points {si,N } ∈ RN for all i and N is required. This
is of course only possible if diam(RN) → ∞. We shall also explore the nearly infill situation
studied by Lahiri [18] and Park et al. [21]. In this case, the domain of the sampling region
becomes unbounded (diam(RN) → ∞), but at the same time the number of sites in any given
subregion tends to infinity, that is, the points become more dense. These issues are also studied
by Zhang [30], Loh [20], Lahiri and Zhu [19], Du et al. [7]. We formalize these concepts in
Section 2. Finally, the interplay of the geostatistical spatial structure and the functional temporal
structure must be cast into a workable framework.

The paper is organized as follows. Section 2 introduces the statistical setting. It also compares
our conditions to those typically assumed for scalar spatial processes. In Sections 3 and 4 we
establish consistency results, respectively, for the functional mean and the covariance operator.
Section 5 explains, by means of general theorems and examples, when the sample principal
components are not consistent. The proofs of the main results are collected in Section 6.

To make this presentation more streamlined, we have outsourced some proofs, further details
and several examples. They are available as supplemental material: Hörmann and Kokoszka [14].

2. Preliminaries and assumptions

We assume {X(s), s ∈ R
d} is a random field taking values in L2 = L2([0,1]), that is, each X(s)

is a square integrable function defined on [0,1]. The value of this function at t ∈ [0,1] is denoted
by X(s; t). With the usual inner product in L2, the norm of X(s) is

‖X(s)‖ =
{∫

X2(s; t)dt

}1/2

.

The mean function μ(s) = {EX(s; t), t ∈ [0,1]} and the covariance operator is then defined for
x ∈ L2 by

Cs,s(x) = E
[〈X(s) − μ(s), x〉(X(s) − μ(s)

)]
.

More generally, we define the cross-covariance operators

Cs1,s2(x) = E
[〈X(s1) − μ(s1), x〉(X(s2) − μ(s2)

)]
.
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For the existence of Cs1,s2 a minimal assumption is that the variables have finite second moments
in the sense that

E‖X(s)‖2 < ∞ ∀s. (1)

To think of our observations X(s) as curves in L2 is convenient and motivated this work, but
our propositions in Sections 3, 4 and 5 only require the general assumption that {X(s), s ∈ R

d} is
a field taking values in some separable Hilbert space. So particularly our results hold true when
L2 is replaced by R

p . To to the best of our knowledge, our results are new as well in the vector
case.

Our goal is to estimate the unknown mean curves and the principal components (FPC’s). FPC’s
are intimately connected with covariance operators, as we will describe in some detail in the
next section, and likewise estimation of FPC’s is based on estimation of covariance operators.
Thereby, we are estimating across space and not across time. A minimal requirement for this to
make sense is then that all locations share a common mean curve and that the covariance operator
is the same for all locations, respectively:

μ(s) = μ and Cs,s = C. (2)

Although (2) is apparently necessary and would also be quite natural if we were in time series
context, it may be not realistic in some spatial data situations. Let us briefly sketch how our
methods can still be useful by employing a spatio-temporal framework. In this case we suppose
to have for each location s a functional time series {Xi(s), i = 1,2, . . .}. To avoid confusion
between the time parameter i (i = 1,2,3, . . .) and the “intraday time” parameter t (t ∈ [0,1]),
we will employ for this paragraph the notation Xi(s; t). We then assume the following model

Xi(s; t) = α(s; t) + μi(t) + Yi(s; t), i = 1,2,3, . . . ,

where {Yi(s; t), t ∈ [0,1]} are curves at spatial locations which satisfy (2) with μ ≡ 0 and where
for each fixed s the functional time series {Xi(s; ·), i = 1,2,3, . . .} is stationary and weakly de-
pendent (e.g., as assumed in Hörmann and Kokoszka [13]). The random curves {μi(t), t ∈ [0,1]}
are zero mean curves and form a certain “basis level” shared by all curves {Xi(s; t), t ∈ [0,1]}
across space at time i. In our setup, the problem of interest is to determine for a given day i

the curve {μi(t), t ∈ [0,1]}. We might think of daily temperature curves measured across some
region. The curve {μi(t), t ∈ [0,1]} amounts to a general deviation from normal on day i which
persists over the whole region (e.g., on a hot day, it is not unlikely that all stations will show
curves above average). Due to geographical differences the mean curves α(s; t) might be differ-
ent at different locations, but they can be estimated individually by α̂(s; t) = 1

M

∑M
i=1 Xi(s; t),

when we have a sample of M days. So we can assume that we can detrended our data and then
work with new observations X′

i (s; t) = μi(t) + Yi(s; t), to which our theory applies, when now
i is fixed.

Besides (2), we don’t impose any further stationarity assumption on the field {X(s)}.
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2.1. Functional principal components

Functional principal components play a fundamental role in functional data analysis, much
greater than the usual multivariate principal components. This is mostly due to the fact that
the Karhunen–Loève expansion allows to represent functional data in a concise way. This prop-
erty has been extensively used and studied in various settings. To name only a few illustrative
references, we cite Hall and Hosseini-Nasab [12], Reiss and Ogden [25], Gabrys and Kokoszka
[10], Benko et al. [2], Paul and Peng [22], Jiang and Wang [16] and Gabrys et al. [9]. Depend-
ing on the structure of the data, theoretical analyses emphasize various aspects of the estimation
process, with smoothing in i.i.d. samples having being particularly carefully studied. This paper
focuses on the spatial dependence and distribution of the curves, which has received no attention
so far.

Suppose X1,X2, . . . ,XN are mean zero identically distributed elements of L2 such that
E‖X‖4 < ∞. The eigenfunctions of the covariance operator of X1 are the functional princi-
pal components, denoted vk . Up to a sign, they are estimated by the empirical FPC’s (EFPC’s),
denoted v̂k and defined as the eigenfunctions of the empirical covariance operator

ĈN (x) = 1

N

N∑
n=1

〈Xn,x〉Xn, x ∈ L2.

The distance between vk and v̂k is determined by the distance between C and ĈN . This fol-
lows from Lemma 1. Due to its importance in the exposition that follows, we provide a precise
statement. An analog of Lemma 1 has often been used for i.i.d. functions under more restrictive
assumptions. To state Lemma 1, consider two compact operators C and K with singular value
decompositions

C(x) =
∞∑

j=1

λj 〈x, vj 〉fj , K(x) =
∞∑

j=1

γj 〈x,uj 〉gj . (3)

Recall that a linear operator K in a separable Hilbert space H is said to be Hilbert–Schmidt, if
for some orthonormal basis {ei} of H

‖K‖2
S :=

∑
i≥1

‖K(ei)‖2
H < ∞.

Then ‖ · ‖S defines a norm on the space of all operators satisfying this condition. The norm is
independent of the choice of the basis. This space is again a Hilbert space with the inner product

〈K1,K2〉S =
∑
i≥1

〈K1(ei),K2(ei)〉.

Set

v′
j = ĉj vj , ĉj = sign(〈uj , vj 〉).
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Lemma 1. Suppose C,K ∈ L are two compact operators with singular value decomposi-
tions (3). If C is symmetric, fj = vj in (3), and its eigenvalues satisfy

λ1 > λ2 > · · · > λd > λd+1, (4)

then

‖uj − v′
j‖ ≤ 2

√
2

αj

‖K − C‖L, 1 ≤ j ≤ p,

where α1 = λ1 − λ2 and αj = min(λj−1 − λj ,λj − λj+1),2 ≤ j ≤ p.

Lemma 1 can be proven using Corollary 1.6 on page 99 of Gohberg et al. [11] and following
the lines of the proof of Lemma 4.3 of Bosq [4].

If the functional observations Xk, k = 1,2, . . . , are independent, then

lim sup
N→∞

NE‖ĈN − C‖2
S < ∞. (5)

Consequently, for such functional observations, under (4),

max
1≤k≤d

E‖ĉkv̂k − vk‖2 = O(N−1).

Hörmann and Kokoszka [13] showed that (5) continues to hold for weakly dependent time
series, in particular for m-dependent Xk . It is not difficult to show that if spatially distributed
functions are such that X(s) is independent of X(s′) if the distance between s and s′ is greater
than m, then (5) need not hold. It is even possible that EFPC’s v̂k do not converge at all. See
Section 5.

2.2. Dependence assumptions

To develop an estimation framework, we impose conditions on the decay of the cross–
covariances E[〈X(s1) − μ,X(s2) − μ〉], as the distance between s1 and s2 increases. We shall
use the distance function defined by the Euclidian norm in R

d , denoted ‖s1 − s2‖2, but other
distance functions can be used as well.

Assumption 1. The spatial process {X(s), s ∈ R
d} satisfies (1) and (2). In addition,

|E〈X(s1) − μ,X(s2) − μ〉| ≤ h(‖s1 − s2‖2), (6)

where h : [0,∞) → [0,∞) with h(x) ↘ 0, as x → ∞.

If {ej } is an orthonormal basis (ONB) of L2, then it can be easily seen that (6) is equivalent to∣∣∣∣∑
j≥1

〈Cs1,s2(ej ), ej 〉
∣∣∣∣ ≤ h(‖s1 − s2‖2). (7)
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For any such ONB a Fourier expansion of X(s) yields

X(s; t) = μ +
∞∑

j=1

ξj (s)ej (t), s ∈ R
d, t ∈ [0,1], (8)

where ξj (s) = 〈X(s) − μ,ej 〉. Using the relation

〈Cs1,s2(ej ), ej 〉 = E[ξj (s1)ξj (s2)],
the more specifical assumption

|E[ξj (s1)ξj (s2)]| ≤ φj (‖s1 − s2‖2), (9)

on the scalar fields, gives (6), if∑
j≥1

φj (‖s1 − s2‖2) ≤ h(‖s1 − s2‖2). (10)

Examples 1 and 2 consider typical spatial covariance functions, and show when condition (10)
holds with a function h as in Assumption 1.

Example 1. Suppose that the fields {ξj (s), s ∈ R
d}, j ≥ 1, are zero mean, strictly stationary and

α-mixing. That is

sup
(A,B)∈σ(ξj (s))×σ(ξj (s+h))

|P(A)P (B) − P(A ∩ B)| ≤ αj (h),

with αj (h) → 0 if ‖h‖2 → ∞. Let α′
j (h) = sup{αj (h): ‖h‖2 = h}. Then α∗

j (h) = sup{α′
j (x):

x ≥ h} ↘ 0 as h → ∞. Using stationarity and the main result in Rio [26] it follows that

|E[ξj (s1)ξj (s2)]| = |E[ξj (0)ξj (s2 − s1)]|

≤ 2
∫ 2αj (s2−s1)

0
Q2

j (u)du

≤ 2
∫ 2α∗

j (‖s2−s1‖2)

0
Q2

j (u)du

=: φj (‖s2 − s1‖2),

where Qj(u) = inf{t : P(|ξj (0)| > t) ≤ u} is the quantile function of |ξj (0)|. Note that αh(h) ≤
1/4 for any h, and thus φj (x) ≤ 2

∫ 1
0 Q2

j (u)du = 2E[ξ2
j (0)]. If

∑
j≥1 Eξ2

j (0) < ∞, then (6)
holds with h(x) = ∑

j≥1 φj (x). (Note that |h(x)| ↘ 0 follows from α∗
j (x) ↘ 0 and the monotone

convergence theorem.)
We note that α-mixing is one of the classical assumptions in random field literature to establish

limit theorems. It is in fact a much stronger assumption than ours and it is suitable if one needs
more delicate results, like a central limit theorem (see, e.g., Bolthausen [3]) or uniform laws of
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large numbers, see Jenish and Prucha [15]. Besides the restriction to scalar observations, many
papers restrict to the so-called “purely increasing domain sampling,” an assumption that we are
going to further relax in the following.

Example 2. Suppose (9) holds, and set h(x) = ∑
j≥1 φj (x). If each φj is a powered exponential

covariance function defined by

φj (x) = σ 2
j exp

{
−

(
x

ρj

)p}
.

Then h satisfies the conditions of Assumption 1 if∑
j≥1

σ 2
j < ∞ and sup

j≥1
ρj < ∞. (11)

Condition (11) is also sufficient if all φj are in the Matérn class, see Stein [27], with the same ν,
that is,

φj (x) = σ 2
j xνKν(x/ρj ),

because the modified Bessel function Kν decays monotonically and approximately exponentially
fast; numerical calculations show that Kν(s) practically vanishes if s > ν. Condition (11) is
clearly sufficient for spherical φj defined (for d = 3) by

φj (x) =
⎧⎨⎩σ 2

j

(
1 − 3x

2ρj

+ x3

2ρ3
j

)
, x ≤ ρj ,

0, x > ρj

because φj is decreasing on [0, ρj ].
Assumption 1 is appropriate when studying estimation of the mean function. For the estimation

of the covariance operator, we need to impose a different assumption. Recall that if z and y are
elements in some Hilbert space H with norm ‖ · ‖H , the operator z ⊗ y, is defined by z ⊗ y(x) =
〈z, x〉y. In the following assumption, we suppose that the mean of the functional field is zero.
This is justified by notational convenience and because we deal with the consistent estimation of
the mean function separately.

Assumption 2. The spatial process {X(s), s ∈ R
d} satisfies (2) with μ ≡ 0 and has 4 moments,

that is, E〈X(s), x〉 = 0, ∀x ∈ L2 and E‖X(s)‖4 < ∞. In addition,

|E〈X(s1) ⊗ X(s1) − C,X(s2) ⊗ X(s2) − C〉S | ≤ H(‖s1 − s2‖2), (12)

where H : [0,∞) → [0,∞) with H(x) ↘ 0, as x → ∞.

Assumption 2 cannot be verified using only conditions on the covariances of the scalar fields
ξj in (8) because these covariances do not specify the 4th order structure of the model. This can
be done if the random field is Gaussian or if additional structure is imposed. We discuss this As-
sumption 2 in more detail in supplemental material (Hörmann and Kokoszka, [14], Section S.2).
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2.3. Spatial distribution of the sampling points

As already noted, for spatial processes assumptions on the distribution of the sampling points are
as important as those on the covariance structure. To formalize the different sampling schemes
introduced in Section 1, we propose the following measure of “minimal dispersion” of some
point cloud S:

Iρ(s,S) = ∣∣{y ∈ S: ‖s − y‖2 ≤ ρ}∣∣/|S| and Iρ(S) = sup{Iρ(s,S), s ∈ S},
where |S| denotes the number of elements of S. The quantity Iρ(S) is the maximal fraction of
S-points in a ball of radius ρ centered at an element of S. Notice that 1/|S| ≤ Iρ(S) ≤ 1. We
call ρ �→ Iρ(S) the intensity function of S.

Definition 1. For a sampling scheme SN = {si,N ;1 ≤ i ≤ SN }, SN → ∞, we consider the fol-
lowing conditions:

(i) there is a ρ > 0 such that lim supN→∞ Iρ(SN) > 0;
(ii) for some sequence ρN → ∞ we have IρN

(SN) → 0;
(iii) for any fixed ρ > 0 we have SNIρ(SN) → ∞.

We call a deterministic sampling scheme SN = {si,N ;1 ≤ i ≤ SN }
Type A: if (i) holds;
Type B: if (ii) and (iii) hold;
Type C: if (ii) holds, but there is a ρ > 0 such that lim supN→∞ SNIρ(SN) < ∞.

If the sampling scheme is stochastic we call it Type A, B or C if relations (i), (ii) and (iii) hold
with Iρ(SN) replaced by EIρ(SN).

Type A sampling is related to purely infill domain sampling which corresponds to Iρ(SN) =
1 for all N ≥ 1, provided ρ is large enough. However, in contrast to the purely infill domain
sampling, it still allows for a non-degenerate asymptotic theory for sparse enough subsamples
(in the sense of Type B or C).

A brief reflection shows that assumptions (i) and (ii) are mutually exclusive. Combining (ii)
and (iii) implies that the points intensify (at least at certain spots) excluding the purely increasing
domain sampling. Hence, the Type B sampling corresponds to the nearly infill domain sampling.
If only (ii) holds, but (iii) does not (Type C sampling) then the sampling scheme corresponds to
purely increasing domain sampling.

Our conditions are more general than those proposed so far. We treat below two special cases
which are closely related to those considered by Lahiri [18]. The points are assumed to be on a
grid of an increasing size, or to have a density. We show how our more general assumptions look
in these special cases, and provide additional intuition behind the sampling designs formulated
in Definition 1. They also set a framework for some results of Sections 3 and 4.

2.4. Non-random regular design

Let Z(δ) be a lattice in R
d with increments δi in the ith direction. Let δ0 = min{δ1, . . . , δd}, �d =∏d

i=1 δi and let RN = αNR0, where R0 is some bounded Riemann measurable Borel-set in R
d
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containing the origin. A set is Riemann measurable if its indicator function is Riemann integrable.
This condition excludes highly irregular sets R0. The scaling parameters αN > 0 are assumed to
be non-decreasing and will be specified below in Lemma 2. We assume without loss of generality
that Vol(R0) = 1, hence Vol(RN) = αd

N . Typical examples are R0 = {x ∈ R
d : ‖x‖ ≤ z1,d}, with

z1,d equal to the radius of the d-dimensional sphere with volume 1, or R0 = [−1/2,1/2]d . The
sampling points SN are defined as {sk,N ,1 ≤ k ≤ SN } = Z(ηNδ) ∩ RN , where ηN is chosen
such that the sample size SN ∼ N . We remark that we only introduce SN as it is generally not
possible by the just described construction to define ηN such, that we would get exactly N points
on the grid to fall in RN . It is intuitively clear that Vol(RN) ≈ ηd

N�dSN , suggesting

ηN = αN

�N1/d
. (13)

A formal proof that ηN in (13) assures SN ∼ N is given in Section S.3 of the supplemental
material.

The following lemma, whose proof is also given in the supplemental material relates the non-
random regular design to Definition 1. We write aN � bN if lim supbN/aN < ∞.

Lemma 2. In the above described design, the following pairs of statements are equivalent:

(i) αN remains bounded ⇔ Type A sampling;
(ii) αN → ∞ and αN = o(N1/d) ⇔ Type B sampling;

(iii) αN � N1/d ⇔ Type C sampling.

2.5. Randomized design

Let {sk,1 ≤ k ≤ N} be i.i.d. random vectors with a density f (s) which has support on a Borel
set R0 ⊂ R

d containing the origin and satisfying Vol(R0) = 1. Again we assume Riemann mea-
surability for R0 to exclude highly irregular sets. For the sake of simplicity, we shall assume that
on R0 the density is bounded away from zero, so that we have 0 < fL ≤ infx∈R0 f (x). The point
set {sk,N ,1 ≤ k ≤ N} is defined by sk,N = αN sk for k = 1, . . . ,N . For fixed N , this is equivalent
to: {sk,N ,1 ≤ k ≤ N} is an i.i.d. sequence on RN = αNR0 with density α−d

N f (α−1
N s).

We cannot expect to obtain a full analogue of Lemma 2 in the randomized setup. For Type C
sampling, the problem is much more delicate, and a closer study shows that it is related to the os-
cillation behavior of multivariate empirical processes. While Stute [28] gives almost sure upper
bounds, we would need here sharp results on the moments of the modulus of continuity of multi-
variate empirical process. Such results exist, see Einmahl and Ruymgaart [8], but are connected
to technical assumptions on the bandwidth for the modulus (here determined by αN ) which are
not satisfied in our setup. Hence, a detailed treatment would go beyond the scope of this paper.
We thus state here the following lemma whose proof is given in the supplemental material.

Lemma 3. In the above described sampling scheme the following statements hold:

(i) αN remains bounded ⇒ Type A sampling;
(ii) αN → ∞ and αN = o(N1/d) ⇒ Type B sampling.
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3. Consistency of the sample mean function

We start with a general setup, and show that the rates can be improved in special cases. The
proofs of the main results, Propositions 1, 2, 3, are collected in Section 6.

For independent or weakly dependent functional observations Xk ,

E

∥∥∥∥∥ 1

N

N∑
k=1

Xk − μ

∥∥∥∥∥
2

= O(N−1). (14)

Proposition 1 shows that for general functional spatial processes, the rate of consistency may
be much slower than O(N−1); it is the maximum of h(ρN) and IρN

(SN) with ρN from (ii)
of Definition 1. Intuitively, the sample mean is consistent if there is a sequence of increasing
balls which contain a fraction of points which tends to zero, and the decay of the correlations
compensates for the increasing radius of these balls.

Proposition 1. Let Assumption 1 hold, and assume that SN defines a non-random design of
Type A, B or C. Then for any ρN > 0,

E

∥∥∥∥∥ 1

N

N∑
k=1

X(sk,N ) − μ

∥∥∥∥∥
2

≤ h(ρN) + h(0)IρN
(SN). (15)

Hence, under the Type B or Type C non-random sampling, with ρN as in (ii) of Definition 1, the
sample mean is consistent.

Example 3. Assume that N points {sk,N ,1 ≤ k ≤ N} are on a regular grid in αN [−1/2,1/2]d .
Then, as we have seen in Section 2.4, Iρ(SN) is proportional to (ρ/αN)d .

For example, if h(x) = 1/(1 + x)2, then choosing ρN = α
d/(d+2)
N we obtain that

h(ρN) + h(0)IρN
(SN) � α

−2d/(d+2)
N ∨ N−1.

(Recall that IρN
(SN) ≥ N−1.)

In Hörmann and Kokoszka [14], Section S.4, we show that bound (15) is optimal, in the sense
that under the assumptions of Proposition 1 it is always possible to find an example where the
rate in (15) is precise and cannot be improved. This of course doesn’t mean that the obtained rate
is uniformly optimal. If we impose a more regular sampling design, we can get better rates.

Proposition 2. Assume the sampling design of Section 2.4. Let Assumption 1 hold with h such
that xd−1h(x) is monotone on [b,∞), b > 0. Then under Type B sampling

E

∥∥∥∥∥ 1

SN

SN∑
k=1

X(sk,N ) − μ

∥∥∥∥∥
2

(16)

≤ 1

αd
N

{
d(3�)d

∫ KαN

0
xd−1h(x)dx + o(1) sup

x∈[0,KαN ]
xd−1h(x)

}
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for some large enough constant K which is independent of N . Under Type C sampling 1/αd
N in

(16) is replaced by O(N−1).

The technical assumptions on h pose no practical problem, they are satisfied for all important
examples, see Example 2. A common situation is that xd−1h(x) is increasing on [0, b] and de-
creasing thereafter. We recall again that SN ∼ N and that SN = N usually cannot be achieved
due to the construction of the sampling design.

Our next example shows that under nearly infill domain sampling the rate of consistency may
be much slower than for the i.i.d. case, if the size of the domain does not increase fast enough.

Example 4. Suppose the functional spatial process has representation (8), and (9) holds with
the covariance functions φj as in Example 2 (powered exponential, Matérn or spherical). Define
h(x) = ∑

j≥1 φj (x), and assume that condition (11) holds. Assumption 1 is then satisfied and∫ ∞

0
xd−1h(x)dx < ∞ and sup

x∈R

xd−1h(x) < ∞. (17)

Therefore, for the sampling design of Section 2.4,

E

∥∥∥∥∥ 1

SN

SN∑
k=1

X(sk,N ) − μ

∥∥∥∥∥
2

=
{

O(α−d
N ∨ N−1), under Type B sampling,

O(N−1), under Type C sampling.
(18)

The next example shows that formula (18) is far from universal, and that the rate of consistency
may be even slower if the covariances decay slower than exponential.

Example 5. Consider the general setting of Example 4, but assume that each covariance function
φj has the quadratic rational form

φj (x) = σ 2
j

{
1 +

(
x

ρj

)2}−1

.

Condition (11) implies that h(x) = ∑
j≥1 φj (x) satisfies Assumption 1, but now h(x) ∼ x−2, as

x → ∞. Because of this rate, condition (17) holds only for d = 1 (and so for this dimension (18)
also holds). If d ≥ 2, (17) fails, and to find the rate of the consistency, we must use (16) directly.
We focus only on Type B sampling, and assume implicitly that the rate is slower than N−1. We
assume (11) throughout this example.

If d = 2, ∫ KαN

0
xd−1h(x)dx =

∑
j

σ 2
j

∫ KαN

0
x

{
1 +

(
x

ρj

)2}−1

dx

=
∑
j

σ 2
j ρ2

j O

(∫ KαN

1
x−1 dx

)
= O(lnαN)
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and similarly supx∈[0,KαN ] xd−1h(x) = O(1).

If d ≥ 3, the leading term is ∫ KαN

0
xd−1h(x)dx = O(αd−3

N ).

We summarize these calculations as

E

∥∥∥∥∥ 1

SN

SN∑
k=1

X(sk,N ) − μ

∥∥∥∥∥
2

=

⎧⎪⎨⎪⎩
O(α−1

N ), if d = 1,
O(α−2

N ln(αN)), if d = 2,
O(α−2

N ), if d ≥ 3

for Type B sampling scheme (provided the rate is slower than N−1).

The last example shows that for very persistent spatial dependence, the rate of consistency can
be essentially arbitrarily slow.

Example 6. Assume that h(x) decays only at a logarithmic rate, h(x) = {log(x ∨ e)}−1. Then,
for any d ≥ 1, the left-hand side in (16) is � (logαN)−1.

We now turn to the case of the random design.

Proposition 3. Assume the random sampling design of Section 2.5. If the sequence {sk,N } is
independent of the process X, and if Assumption 1 holds, then we have for any εN > 0

E

∥∥∥∥∥ 1

N

N∑
k=1

X(sk,N ) − μ

∥∥∥∥∥
2

≤ 6h(0) sup
s∈R0

f 2(s)εd
N + h(αNεN) + h(0)

N
.

Choosing εN such that εN → 0 and αNεN → ∞, it follows that under Type B or Type C sam-
pling, the sample mean is consistent.

The bound in Proposition 3 can be easily applied to any specific random sampling design
and any model for the functions φj in (8). It nicely shows that what matters for the rate of
consistency is the interplay between the rate of growth of the sampling domain and the rate of
decay of dependence.

Let us explain in slightly more detail a Type C sampling situation. Here, typically we have
αN = N1/d . Then taking εN = aN−1/d logN , a > 0, we see that the rate of consistency is
h(a logN) ∨ N−1. For typical covariance functions φj , like powered exponential, Matérn or
spherical, h(a logN) decays faster than N−1. In such cases, the rate of consistency is, up to
some logarithmic factor, the same as for an i.i.d. sample. For ease of reference, we formulate the
following corollary, which can be used in practical applications.

Corollary 1. Assume the random sampling design of Section 2.5 with the sequence {sk,N } inde-
pendent the process X. Suppose that X(s) has representation (8) and that (9) holds with the φj
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in one of the families specified in Example 2. If Condition (11) holds, and αN ≥ N1/d then (14)
holds up to some multiplicative logarithmic factor.

4. Consistency of the empirical covariance operator

In Section 3, we found the rates of consistency for the functional sample mean. We now turn to
the rates for the sample covariance operator. Assuming the functional observations have mean
zero, the natural estimator of the covariance operator C is the sample covariance operator given
by

ĈN = 1

N

N∑
k=1

X(sk) ⊗ X(sk).

In general, the sample covariance operator is defined by

�̂N = 1

N

N∑
k=1

(
X(sk) − X̄N

) ⊗ (
X(sk) − X̄N

)
,

where

X̄N = 1

N

N∑
k=1

X(sk).

Both operators are implemented in statistical software packages, for example in the popular R
package FDA and in a similar MATLAB package, see Ramsay et al. [23]. The operator �̂N is
used to compute the EFPC’s for centered data, while ĈN for data without centering.

We first derive the rates of consistency for ĈN assuming EX(s) = 0. Then we turn to the
operator �̂N . The proofs are obtained by applying the technique developed for the estimation
of the functional mean. It is a general approach based on the estimation of the second moments
of an appropriate norm (between estimator and estimand) so that the conditions in Definition 1
can come into play. It is broadly applicable to all statistics obtained by simple averaging of
quantities defined at single spatial location. The proofs are thus similar to those presented in the
simplest case in Section 6, but the notation becomes more cumbersome because of the increased
complexity of the objects to be averaged. To conserve space, these proofs are not included.

We begin by observing that

E‖ĈN − C‖2
S = E〈ĈN − C, ĈN − C〉S

= 1

N2

N∑
k=1

N∑
�=1

E〈X(sk) ⊗ X(sk) − C,X(s�) ⊗ X(s�) − C〉S .

It follows that under Assumption 2

E‖ĈN − C‖2
S ≤ 1

N2

N∑
k=1

N∑
�=1

H(‖sk − s�‖2). (19)
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Relation (19) is used as the starting point of all proofs, cf. the proof of Proposition 1 in Section 3.
Modifying the proofs of Section 3, we arrive at the following results.

Proposition 4. Let Assumption 2 hold, and assume that SN defines a non-random design of
Type A, B or C. Then for any ρN > 0

E‖ĈN − C‖2
S ≤ H(ρN) + H(0)IρN

(SN).

Hence under the Type B or Type C non-random sampling, with ρN as in (ii) of Definition 1, the
empirical covariance operator is consistent.

Proposition 5. Assume the sampling design of Section 2.4. Let Assumption 2 hold, with some
function H such that xd−1H(x) is monotone on [b,∞), b > 0. Then under Type B sampling

E‖ĈN − C‖2
S ≤ 1

αd
N

{
d(3�)d

∫ KαN

0
xd−1H(x)dx + o(1) sup

x∈[0,KαN ]
xd−1H(x)

}
for some large enough constant K which is independent of N . Under Type C sampling, the factor
1/αd

N is replaced by O(N−1).

Proposition 6. Assume the random sampling design of Section 2.5. If the sequence {sk,N } is
independent of the process X and if Assumption 2 holds, then we have for any εN > 0,

E‖ĈN − C‖2 ≤ 6H(0) sup
s∈R0

f 2(s)εd
N + H(αNεN) + H(0)

N
.

It follows that under Type B or Type C sampling the sample covariance operator is consistent.

Introducing the (unobservable) operator

�̃N = 1

N

N∑
k=1

(
X(sk) − μ

) ⊗ (
X(sk) − μ

)
,

we see that

�̃N − �̂N = (X̄N − μ) ⊗ (X̄N − μ).

Therefore,

E‖�̂N − C‖2
S ≤ 2E‖�̃N − C‖2

S + 2E‖(X̄N − μ) ⊗ (X̄N − μ)‖2
S .

The bounds in Propositions 4, 5 and 6 apply to E‖�̃N − C‖2
S . Observe that

E‖(X̄N − μ) ⊗ (X̄N − μ)‖2
S = E‖X̄N − μ‖4.

If X(s) are bounded variables, that is, supt∈[0,1] |X(s; t)| ≤ B < ∞ a.s., then ‖X̄N − μ‖4 ≤
4B2‖X̄N − μ‖2. It follows that under Assumption 1 we obtain the same order of magni-
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tude for the bounds of E‖X̄N − μ‖4 as we have obtained in Propositions 1, 2 and 3 for
E‖X̄N − μ‖2. In general E‖X̄N − μ‖4 can neither be bounded in terms of E‖X̄N − μ‖2 nor
with E‖ĈN − C‖2

S . To bound fourth order moments, conditions on the covariance between the
variables Zk,� := 〈X(sk,N ) − μ,X(s�,N ) − μ〉 and Zi,j for all 1 ≤ i, j, k, � ≤ N are unavoid-
able. However, a simpler general approach is to require higher order moments of ‖X(s)‖. More
precisely, we notice that for any p > 1, by the Hölder inequality,

E‖X̄N − μ‖4 ≤ (E‖X̄N − μ‖2)1/p
(
E‖X̄N − μ‖(4p−2)/(p−1)

)(p−1)/p
.

Thus as long as E‖X(s)‖(4p−2)/(p−1) < ∞, we conclude that, by stationarity,

E‖X̄N − μ‖4 ≤ M(p)(E‖X̄N − μ‖2)1/p,

where M(p) depends on the distribution of X(s) and on p, but not on N . It is now evident how
the results of Section 3 can be used to obtain bounds for E‖�̂N −C‖2

S . We state in Proposition 7
the version for the general non-random design. The special cases follow, and the random designs
are treated analogously. It follows that if Assumptions 1 and 2 hold, then E‖�̂N − C‖2

S → 0,
under Type B or C sampling, provided E‖X(s)‖4+δ < ∞.

Proposition 7. Let Assumptions 1 and 2 hold and assume that for some δ > 0 we have
E‖X(s)‖4+δ < ∞. Assume further that SN defines a non-random design of Type A, B or C.
Then for any ρN > 0 we have

E‖�̂N − C‖2
S ≤ 2{H(ρN) + H(0)IρN

(SN)} + 2K(δ){h(ρN) + h(0)IρN
(SN)}δ/(2+δ), (20)

where K(δ) depends only on δ.
If X(s1) is a.s. bounded by some finite constant B , then we can formally let δ in (20) go to ∞,

with K(∞) = 4B2.

5. Inconsistent empirical functional principal components

We define X� = 〈X(0), ·〉X(0). Observe that X�(X(0)) = ‖X(0)‖2X(0). Thus, ‖X(0)‖2 =∑∞
j=1 ξ2

j (0) is an eigenvalue of X�. Note also that for x ∈ L2,

X�(x)(t) =
(∫

X(0;u)x(u)du

)
X(0; t) =

∫
c�(t, u)x(u)du,

where

c�(t, u) = X(0; t)X(0;u).

Since

E

∫ ∫
(c�(t, u))2 dt du = E‖X(0)‖4 < ∞,

the operator X� is Hilbert–Schmidt almost surely.
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Proposition 8. Suppose representation (8) holds with stationary mean zero Gaussian processes
ξj such that

E[ξj (s)ξj (s + h)] = λjρj (h), h = ‖h‖,
where each ρj is a continuous correlation function, and

∑
j λj < ∞. Assume the processes ξj

and ξi are independent if i �= j . If SN = {s1, s2, . . . , sN } ⊂ R
d with sN → 0, then

lim
N→∞E‖ĈN − X�‖2

S = 0. (21)

Proposition 8 is proven in Section 6. Since the eigenvalues of X� are random they cannot be
close to any of the λj . The eigenfunctions of ĈN are also close to random functions in L2, and
do not converge to the FPC’s ej .

We now present a very specific example that illustrates Proposition 8.

Example 7. Suppose

X(s; t) = ζ1(s)e1(t) + √
λζ2(s)e2(t), (22)

where the ζ1 and ζ2 are i.i.d. processes on the line, and 0 < λ < 1. Assume that the processes ζ1
and ζ2 are Gaussian with mean zero and covariances E[ζj (s)ζj (s + h)] = exp{−h2}, j = 1,2.
Thus, each Zj := ζj (0) is standard normal. Rearranging the terms, we obtain

X�(x) = (
Z2

1〈x, e1〉 + √
λZ1Z2〈x, e2〉

)
e1 + (√

λZ1Z2〈x, e1〉 + λZ2
2〈x, e2〉

)
e2.

The matrix [
Z2

1

√
λZ1Z2√

λZ1Z2 λZ2
2

]
has only one positive eigenvalue Z2

1 + λZ2
2 = ‖X(0)‖2. A normalized eigenfunction associated

with it is

f := X(0)

‖X(0)‖ = [Z2
1 + λZ2

2]−1/2(Z1e1 + √
λZ2e2

)
. (23)

Denote by v̂1 a normalized eigenfunction corresponding to the largest eigenvalue of ĈN . By
Lemma 1, v̂1 is close in probability to sign(〈v̂1, f 〉)f . It is thus not close to sign(〈v̂1, e1〉)e1.

Ten simulated v̂1 are shown in Figure 1. To compute each v̂1, we simulated curves X(sn) given
by (22) with with e1(t) = √

2 sin(2πt), e2(t) = √
2 cos(2πt), λ = 0.5. We set sn = n−1, n =

1,2, . . . ,N,N = 100. The random vectors [ζj (s1), ζj (s2), . . . , ζj (sN)]T were generated using
the R function rmvnorm which uses the singular value decomposition to simulate Gaussian
vectors with predetermined covariances (in our case, Cov(ζj (sk), ζj (s�)) = exp{−|k−1 − �−1|}).

The EFPC v̂1 is a linear combination of e1 and e2 with random weights. As formula (23)
suggests, the function e1 is likely to receive a larger weight. The weights, and so the simulated
v̂1, cluster because both Z1 and Z2 are standard normal.

We now state a general result showing that Type A sampling generally leads to inconsistent
estimators if the spatial dependence does not vanish.
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Figure 1. Ten simulated EFPC’s v̂1 for process (22) with λ = 0.5 and e1(t) = √
2 sin(2πt),

e2(t) = √
2 cos(2πt) (N = 100). The dotted line is the population eigenfunction.

Proposition 9. Assume that E〈X(s1) − μ,X(s2) − μ〉 ≥ b(‖s1 − s2‖2) > 0, where b(x) is non-
increasing. Then under Type A sampling the sample mean X̄N is not a consistent estimator of μ.
Similarly, if EX(s) = 0 and

E〈X(s1) ⊗ X(s1) − C,X(s2) ⊗ X(s2) − C〉S ≥ B(‖s1 − s2‖2) > 0, (24)

where B(x) is nonincreasing, then under Type A sampling the sample covariance ĈN is not a
consistent estimator of C.

We illustrate Proposition 9 with a further example that complements Proposition 8 in a sense
that in Proposition 8 the functional model was complex, but the spatial distribution of the sk

simple. In Example 8, we allow a general Type A distribution, but consider the simple model (22).

Example 8. We focus on condition (24) for the FPC’s. For the general model (8), the left-hand
side of (24) is equal to

κ(s1, s2) =
∑
i,j≥1

Cov(ξi(s1)ξj (s1), ξi(s2)ξj (s2)).

If the processes ξj satisfy the assumptions of Proposition 8, then, by Lemma 4,

Cov(ξi(s1)ξj (s1), ξi(s2)ξj (s2)) = λ2
i ri + λ2

j rj + λiλj

ri + rj

2
− (λ

3/2
i ri + λ

3/2
j rj )

√
λi + λj ,
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where ri = ρi(‖s1 − s2‖).
To calculate κ(s1, s2) in a simple case, corresponding to (22), suppose

λ1 = 1, λ2 = λ, 0 < λ < 1, λi = 0, i > 2 and ρ1 = ρ2 = ρ. (25)

Then,

κ(s1, s2) = f (λ)ρ(‖s1 − s2‖),
where

f (λ) = (
3 − 2

√
2
)
(1 + λ2) + 2[1 + λ + λ2 − (1 + λ3/2)(1 + λ)1/2].

The function f increases from about 0.17 at λ = 0 to about 0.69 at λ = 1.
We have verified that if the functional random field (8) satisfies the assumptions of Proposi-

tion 8 and (25), then ĈN is an inconsistent estimator of C under Type A sampling, whenever
ρ(h) is a nonincreasing function of h.

6. Proofs of the results of Sections 3, 4 and 5

We will use the following well-known lemma.

Lemma 4. Suppose X and Y are jointly normal mean zero random variables such that EX2 =
σ 2,EY 2 = ν2,E[XY ] = ρσν. Then

Cov(X2, Y 2) = 2ρ2σ 2ν2.

Proof of Proposition 1. By Assumption 1, we have

E

∥∥∥∥∥ 1

N

N∑
k=1

X(sk,N ) − μ

∥∥∥∥∥
2

= 1

N2

N∑
k=1

N∑
�=1

E〈X(sk,N ) − μ,X(s�,N ) − μ〉

≤ 1

N2

N∑
k=1

N∑
�=1

h(‖sk,N − s�,N‖2)

≤ 1

N2

N∑
k=1

N∑
�=1

(
h(ρN)I {‖sk,N − s�,N‖2 ≥ ρN } + h(0)I {‖sk,N − s�,N‖2 ≤ ρN })

≤ h(ρN) + h(0)IρN
(SN). �

The following lemma is a simple calculus problem and will be used in the proof of Proposi-
tion 2.
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Lemma 5. Assume that f is a nonnegative function which is monotone on [0, b] and on [b,∞).
Then

L∑
k=0

f

(
k

N

)
1

N
≤

∫ L/N

0
f (x)dx + 2

N
sup

x∈[0,L/N ]
|f (x)|.

Proof of Proposition 2. By Assumption 1,

E

∥∥∥∥∥ 1

SN

SN∑
k=1

X(sk,N ) − μ

∥∥∥∥∥
2

≤ 1

S2
N

SN∑
k=1

SN∑
�=1

h(‖sk,N − s�,N‖2).

Let a = (a1, . . . , ad) and b = (b1, . . . , bd) be two elements on Z(δ). We define d(a,b) =
min1≤i≤d vi(a,b), where vi(a,b) is the number of edges between ai and bi . For any two points
sk,N and s�,N , we have

d(sk,N , s�,N ) = m from some m ∈ {0, . . . ,KN1/d}, (26)

where K depends on diam(R0). It is easy to see that the number of points on the grid having
distance m from a given point is less than 2d(2m + 1)d , m ≥ 0. Hence, the number of pairs for
which (26) holds is < 2d(2m + 1)d−1N . On the other hand, if d(sk,N , s�,N ) = m, then ‖sk,N −
s�,N‖2 ≥ mδ0ηN . Let us assume without loss of generality that δ0 = 1. Noting that there is no
loss of generality if we assume that xδ−1h(x) is also monotone on [0, b], we obtain by Lemma 5
for large enough N and K < K ′ < K ′′

1

S2
N

SN∑
k=1

SN∑
�=1

h(‖sk,N − s�,n‖2)

≤ 2d

K ′N1/d∑
m=1

(2m + 1)d−1

N
h(mηN) + 2h(0)

N

≤ 2d

(
3

ηN

)d−1 K ′N1/d+1∑
m=0

(
m

N
NηN

)d−1

h

(
m

N
NηN

)
1

N
+ 2h(0)

N

≤ 2d

(
3

ηN

)d−1(∫ K ′′N1/d−1

0
(NηNx)d−1h(NηNx)dx

+ 2

N
sup

x∈[0,K ′′αN/�]
xd−1h(x)

)
+ 2h(0)

N

= (3�)dd

αd
N

∫ K ′′αN/�

0
xd−1h(x)dx

+ 4d(3�)d−1

αd−1
N N1/d

sup
x∈[0,K ′′αN/�]

xd−1h(x) + 2h(0)

N
.
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By Lemma 2, Type B sampling implies αN → ∞ and αN = o(N1/d). This shows (16). Under
Type C sampling 1/αd

N � 1/N . The proof is finished. �

Proof of Proposition 3. This time we have

E

∥∥∥∥∥ 1

N

N∑
k=1

X(sk,N ) − μ

∥∥∥∥∥
2

≤ 1

N2

N∑
k=1

N∑
�=1

Eh(‖sk,N − s�,N‖2)

≤ α−2d
N

∫
RN

∫
RN

h(‖s − r‖2)f (α−1
N s)f (α−1

N r)ds dr + h(0)

N

=
∫

R0

∫
R0

h(αN‖s − r‖2)f (s)f (r)ds dr + h(0)

N
.

Furthermore, for any εN > 0,∫
R0

∫
R0

h(αN‖s − r‖2)f (s)f (r)ds dr

≤ h(0)

∫
R0

∫
R0

f (s)f (r)I {‖s − r‖2 ≤ εN }ds dr + h(αNεN)

≤ h(0) sup
s∈R0

f 2(s) ×
∫

R0

∫
R0

I {‖s − r‖2 ≤ εN }ds dr + h(αNεN).

Now for fixed r it is not difficult to show that
∫
R0

I {‖s − r‖2 ≤ εN }ds ≤ 6εd
N . (The constant 6

could be replaced with πd/2/�(d/2 + 1)). �

Proof of Proposition 8. Observe that

‖ĈN − X�‖2
S =

∫ ∫ {
1

N

N∑
n=1

[X(sn; t)X(sn;u) − X(0; t)X(0;u)]
}2

dt du.

Therefore,

‖ĈN − X�‖2
S ≤ 2I1(N) + 2I2(N),

where

I1(N) =
∫ ∫ {

1

N

N∑
n=1

X(sn; t)
(
X(sn;u) − X(0;u)

)}2

dt du

and

I2(N) =
∫ ∫ {

1

N

N∑
n=1

X(0;u)
(
X(sn; t) − X(0; t))}2

dt du.
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We will show that EI1(N) → 0. The argument for I2(N) is the same. Observe that

I1(N) = 1

N2

N∑
k,�=1

∫ ∫
X(sk; t)

(
X(sk;u) − X(0;u)

)
X(s�; t)

(
X(s�;u) − X(0;u)

)
dt du

= 1

N2

N∑
k,�=1

∫
X(sk; t)X(s�; t)dt

∫ (
X(sk;u) − X(0;u)

)(
X(s�;u) − X(0;u)

)
du.

Thus,

EI1(N) ≤ 1

N2

N∑
k,�=1

{
E

(∫
X(sk; t)X(s�; t)dt

)2}1/2{
E

(∫
Yk(u)Y�(u)du

)2}1/2

,

where

Yk(u) = X(sk;u) − X(0;u).

We first deal with the integration over t :

E

(∫
X(sk; t)X(s�; t)dt

)2

≤ E

∫
X2(sk; t)dt

∫
X2(s�; t)dt = E[‖X(sk)‖2‖X(s�)‖2]

≤ {E‖X(sk)‖4}1/2{E‖X(s�)‖4}1/2 = E‖X(0)‖4.

We thus see that

EI1(N) ≤ {E‖X(0)‖4}1/2 1

N2

N∑
k,�=1

{
E

(∫
Yk(u)Y�(u)du

)2}1/2

≤ {E‖X(0)‖4}1/2 1

N2

N∑
k,�=1

{
E

(∫
Y 2

k (u)du

)2}1/4{
E

(∫
Y 2

� (u)du

)2}1/4

= {E‖X(0)‖4}1/2

[
1

N

N∑
k=1

{
E

(∫
Y 2

k (u)du

)2}1/4
]2

.

Consequently, to complete the verification of (21), it suffices to show that

lim
N→∞

1

N

N∑
k=1

{
E

(∫
Y 2

k (u)du

)2}1/4

= 0.

The above relation will follow from

lim
k→∞E

(∫
Y 2

k (u)du

)2

= 0. (27)
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To verify (27), first notice that, by the orthonormality of the ej ,∫
Y 2

k (u)du =
∞∑

j=1

(
ξj (sk) − ξj (0)

)2
.

Therefore, by the independence of the processes ξj ,

E

(∫
Y 2

k (u)du

)2

=
∞∑

j=1

E
(
ξj (sk) − ξj (0)

)4

+
∑
i �=j

E
(
ξi(sk) − ξi(0)

)2
E

(
ξj (sk) − ξj (0)

)2
.

The covariance structure was specified so that

E
(
ξj (sk) − ξj (0)

)2 = 2λj

(
1 − ρj (‖sk‖)

)
,

so the normality yields

E

(∫
Y 2

k (u)du

)2

≤ 12
∞∑

j=1

λ2
j

(
1 − ρj (‖sk‖)

)2

+ 4

{ ∞∑
j=1

λj

(
1 − ρj (‖sk‖)

)}2

.

The right-hand side tends to zero by the Dominated Convergence theorem. This establishes (27),
and completes the proof of (21). �

Proof of Proposition 9. We only check inconsistency of the sample mean. In view of the proof
of Proposition 1, we have now the lower bound

E

∥∥∥∥∥ 1

N

N∑
k=1

X(sk,N ) − μ

∥∥∥∥∥
2

≥ 1

N2

N∑
k=1

N∑
�=1

b(‖sk,N − s�,N‖2)

≥ b(ρ)I 2
ρ (SN),

which is by assumption bounded away from zero for N → ∞. �
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Supplementary Material

Supplement to “Consistency of the mean and the principal components of spatially dis-
tributed functional data” (DOI: 10.3150/12-BEJ418SUPP; .pdf). We provide additional ex-
amples, some remarks concerning Assumption 2 and the regular sampling design as well as a
remark on the sharpness of our bounds.
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