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Motivated by applications to goodness of fit testing, the empirical likelihood approach is generalized to
allow for the number of constraints to grow with the sample size and for the constraints to use estimated
criteria functions. The latter is needed to deal with nuisance parameters. The proposed empirical likelihood
based goodness of fit tests are asymptotically distribution free. For univariate observations, tests for a spec-
ified distribution, for a distribution of parametric form, and for a symmetric distribution are presented. For
bivariate observations, tests for independence are developed.
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1. Introduction

The empirical likelihood approach was introduced by Owen [13,16] to construct confidence in-
tervals in a nonparametric setting, see also Owen [15]. As a likelihood approach possessing
nonparametric properties, it does not require us to specify a distribution for the data and often
yields more efficient estimates of the parameters. It allows data to decide the shape of confi-
dence regions and is Bartlett correctable (DiCiccio, Hall and Romano [4]). The approach has
been developed to various situations, for example, to generalized linear models (Kolaczyk [9]),
local linear smoother (Chen and Qin [2]), partially linear models (Shi and Lau [21], Wang and
Jing [24]), parametric and semiparametric models in multiresponse regression (Chen and Van
Keilegom [3]), linear regression with censored data (Zhou and Li [25]), and plug-in estimates
of nuisance parameters in estimating equations in the context of survival analysis (Qin and Jing
[19], Wang and Jing [23], Li and Wang [10]). Algorithms, calibration and higher-order precision
of the approach can be found in Hall and La Scala [6], Emerson and Owen [5] and Liu and Chen
[11] among others. It is especially convenient to incorporate side information expressed through
equality constraints. Qin and Lawless [20] linked empirical likelihood with finitely many esti-
mating equations. These estimating equations serve as finitely many equality constraints.

In semiparametric settings, information on the model can often be expressed by means of in-
finitely many constraints which may also depend on parameters of the model. In goodness of fit
testing, the null hypothesis can typically be expressed by infinitely many such constraints. This
is the case when testing for a fixed distribution (see Example 1 below), when testing for a given
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parametric model (Example 2), when testing for symmetry about a fixed point (Example 3), and
when testing for independence (Example 4). Modeling conditional expectations can also be done
by means of infinitely many constraints. This has applications to heteroscedastic regression mod-
els (Section 3) and to conditional moment restriction models treated by Tripathi and Kitamura
[22] using a smoothed empirical likelihood approach.

Recently Hjort, McKeague and Van Keilegom [7] extended the scope of the empirical method.
In particular, they developed a general theory for constraints with nuisance parameters and con-
sidered the case with infinitely many constraints. Their results for infinitely many constraints,
however, do not allow for nuisance parameters. In this paper we will fill this gap and in the pro-
cess improve on their results. Let us now discuss some of our results in the following special case.

Let Z1, . . . ,Zn be independent copies of a random vector Z with distribution Q. Let u1, u2, . . .

be orthonormal elements of

L2,0(Q) =
{
u ∈ L2(Q):

∫
udQ = 0

}
.

Then the random variables u1(Z),u2(Z), . . . have mean zero, variance one and are uncorrelated.
Now consider the empirical likelihood based on the first m of these functions,

Rn = sup

{
n∏

j=1

nπj : π ∈ Pn,

n∑
j=1

πjuk(Zj ) = 0, k = 1, . . . ,m

}
,

where Pn = {π = (π1, . . . , πn)
� ∈ [0,1]n: π1 + · · · + πn = 1} denotes the closed probability

simplex in dimension n. For fixed m, it follows from Owen’s work that −2 logRn has asymptot-
ically a chi-square distribution with m degrees of freedom. In other words,

P
(−2 logRn > χ2

1−α(m)
) → α, 0 < α < 1, (1.1)

where χ2
β(m) denotes the β-quantile of the chi-square distribution with m degrees of freedom.

Hjort et al. [7] have shown that (1.1) holds under some additional assumptions even if m tends
to infinity with n by proving the asymptotic normality result

(−2 logRn − m)/
√

2m �⇒ N(0,1). (1.2)

This result requires higher moment assumptions on the functions u1, u2, . . . and restrictions on
the rate at which m can tend to infinity. For example, if the functions u1, u2, . . . are uniformly
bounded, then the rate m3 = o(n) suffices for (1.2). They also state in their Theorem 4.1, that if
supk

∫ |uk|q dQ is finite for some q > 2, then m3+6/(q−2) = o(n) suffices for (1.2). A gap in their
argument was fixed by Peng and Schick [18]. We shall show that larger m are allowed in some
cases. In particular, for q = 4, it suffices that m4 = o(n) holds (instead of their m6 = o(n)) and
if q = 3, then m6

n = o(n) is enough (instead of their m9
n = o(n)), see our Theorems 7.2 and 7.3

below.
Our rate m4 = o(n) for q = 4 matches the rate given in Theorem 2 of Chen, Peng and Qin [1].

These authors obtain asymptotic normality for m larger than in Hjort et al. [7] by imposing
additional structural assumptions. These assumptions, however, are typically not met in the ap-
plications we have in mind.
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One of the key points in our proof is a simple condition for the convex hull of some vectors
x1, . . . , xn to have the origin as an interior point. Our condition is that the smallest eigenvalue
of

∑n
i=1 xix

�
i exceeds 5|∑n

i=1 xi |max1≤j≤n |xj |. Here, |x| denotes the euclidean norm of a
vector x. This sufficient condition ties in nicely with the other requirements used to establish the
asymptotic behavior of the empirical likelihood and is typically implied by these. For example,
conditions (A1)–(A3) in Theorem 2.1 of Hjort et al. [7] already imply their (A0). Thus, the
conclusion of their theorem is valid under (A1)–(A3) only, see our Theorem 6.1.

Let us now look at the case when the functions u1, u2, . . . are unknown. Then we can work
with the empirical likelihood

R̂n = sup

{
n∏

j=1

nπj : π ∈ Pn,

n∑
j=1

πj ûk(Zj ) = 0, k = 1, . . . ,m

}
,

where ûk is an estimator of uk such that

m∑
k=1

1

n

n∑
j=1

(
ûk(Zj ) − uk(Zj )

)2 = op

(
m−1). (1.3)

Now, we have the conclusion (−2 log R̂n − m)/
√

2m �⇒ N(0,1) under the condition

m∑
k=1

(
n−1/2

n∑
j=1

(
ûk(Zj ) − uk(Zj )

))2

= op(1) (1.4)

and mild additional conditions such as

(i) |ûk| + |uk| ≤ B for some constant B and all k and m3 = o(n), or
(ii)

∑m
k=1

∫
u4

k dQ = O(m2) and m4
n = o(n).

Our results, however, go beyond this simple result. If (1.4) is replaced by

m∑
k=1

(
n−1/2

n∑
j=1

(
ûk(Zj ) − uk(Zj ) + E

[
uk(Z)ψ�(Z)

]
ψ(Zj )

))2

= op(1) (1.5)

with ψ a measurable function into R
q which is standardized under Q in the sense that

E[ψ(Z)] = 0 and E[ψ(Z)ψ�(Z)] = Iq , the q × q identity matrix, then the conclusion
(−2 log R̂n − (m − q))/

√
2(m − q) �⇒ N(0,1) holds under (i) or (ii).

Our paper is organized as follows. In Section 2, we give four examples that motivate our re-
search. The emphasis in these examples is on goodness of fit testing. The proposed empirical
likelihood based goodness of fit tests are asymptotically distribution free. For univariate obser-
vations, tests for a specified distribution, for a distribution of parametric form, and for a symmet-
ric distribution are presented. For bivariate observations, tests for independence are discussed.
Another example is given in Section 3 with a small simulation study. This example considers
tests for the regression parameters in simple linear heteroscedastic regression. The simulations
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compare our new procedure based on infinitely many constraints with the classical empirical
likelihood procedure and illustrate improvements by the new procedures. In Section 4, we intro-
duce notation and recall some results on the spectral norm of matrices. In Section 5, we derive
a lemma that extracts the essence from the proofs of Owen ([15], Chapter 11) and also obtains
the aforementioned sufficient condition for a convex hull of vectors to contain the origin as inte-
rior point. The results are derived for non-stochastic vectors and formulated as inequalities. The
inequalities are used in Section 6 to obtain the behavior of the empirical likelihood with random
vectors whose dimension may increase. The results are formulated abstractly and do not require
independence. In Section 7, we specialize our results to the case of independent observations
with infinitely many constraints, both known and unknown. We also briefly discuss the behavior
under contiguous alternatives. The details for our examples are given in Section 8.

2. Motivating examples

In this section, we give examples that motivated the research in this paper.

Example 1 (Testing for a fixed distribution). Let X1, . . . ,Xn be independent copies of a random
variable X. Suppose we want to test whether their common distribution function F equals a
known continuous distribution function F0. Under the null hypothesis, we have E[h(X)] = 0 for
every h ∈ L2,0(F0), and F0(X) has a uniform distribution. An orthonormal basis of L2,0(F0) is
thus given by v1 ◦F0, v2 ◦F0, . . . for any orthonormal basis v1, v2, . . . of L2,0(U), where U is the
uniform distribution on (0,1). We shall work with the trigonometric basis φ1, φ2, . . . defined by

φk(x) = √
2 cos(kπx), x ∈ [0,1], k = 1,2, . . . , (2.1)

as these basis functions are uniformly bounded by
√

2. As test statistic, we take

Rn(F0) = sup

{
n∏

j=1

nπj : π ∈ Pn,

n∑
j=1

πjφk

(
F0(Xj )

) = 0, k = 1, . . . ,m

}

which uses the first m of the trigonometric functions. Under the null hypothesis, we have
P(−2 logRn(F0) > χ2

1−α(m)) → α for every 0 < α < 1 as both m and n tend to infinity and
m3/n tends to zero. Thus, the test 1[−2 logRn(F0) > χ2

1−α(m)] has asymptotic size α. Here, we
are still in the framework of Hjort et al. [7] with infinitely many known constraints.

Example 2 (Testing for a parametric model). Let X1, . . . ,Xn be again independent and iden-
tically distributed random variables. But now suppose we want to test whether their com-
mon distribution function F belongs to a model F = {Fϑ : ϑ ∈ 	} indexed by an open sub-
set 	 of R

q . Suppose that the distribution functions Fϑ have densities fϑ such that the map
ϑ 
→ sϑ = √

fϑ is continuously differentiable in L2 with derivative ϑ 
→ ṡϑ and the matrix
J (ϑ) = 4

∫
ṡϑ (x)ṡϑ (x)� dx is invertible for each ϑ ∈ 	. In this case we set 
̇ϑ = 2ṡϑ /sϑ . Let
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now θ̂ be an estimator of the parameter in the model. We require it to satisfy the stochastic
expansion

θ̂ = θ + 1

n

n∑
j=1

J (θ)−1
̇θ (Xj ) + oPθ

(
n−1/2) (2.2)

for each θ ∈ 	, where Pθ is the measure for which F = Fθ . Such estimators are efficient in
the parametric model. Candidates are maximum likelihood estimators. As test statistic we take
Rn(Fθ̂

), the test statistic from the previous example with F0 replaced by F
θ̂
. Here, we are no

longer in the framework of Hjort et al. [7] as we now have infinitely many unknown constraints.
We shall show that under the null hypothesis P(−2 logRn(Fθ̂

) > χ2
1−α(m − q)) → α for every

0 < α < 1 as both m and n tend to infinity and lognm3/n tends to zero. In view of this result,
the test 1[−2 logRn(Fθ̂

) > χ2
1−α(m − q)] has asymptotic size α. It is crucial for our result that

we have chosen an estimator θ̂ satisfying (2.2).

Example 3 (Testing for symmetry). Let X1, . . . ,Xn be independent copies of a random variable
X with a continuous distribution function F . We want to test whether F is symmetric about
zero in the sense that F(t) = 1 − F(−t) for all real t . Under the null hypothesis of symmetry,
the random variables sign(X) and |X| are independent, and sign(X) takes values −1 and 1 with
probability one half. This is equivalent to E[sign(X)v(|X|)] = 0 for every v ∈ L2(H), where H

is the distribution function of |X|. Since H is continuous, an orthonormal system of L2(H) is
given by φ0 ◦ H,φ1 ◦ H, . . . where φ0 = 1 and φ1, φ2, . . . are given in (2.1). This suggests the
test statistic

Rn = sup

{
n∏

j=1

nπj : π ∈ Pn,

n∑
j=1

πj sign(Xj )φk(Rj ) = 0, k = 0, . . . ,m

}
,

where Rj = H(|Xj |) and H is the empirical distribution function based on |X1|, . . . , |Xn|.
We shall show that under symmetry one has P(−2 logRn > χ2

1−α(m + 1)) → α for every
0 < α < 1 as m and n tend to infinity and m3/n tends to zero. From this, we derive that the
test 1[−2 logRn > χ2

1−α(m + 1)] has asymptotic size α.

Example 4 (Testing for independence). Let (X1, Y1), . . . , (Xn,Yn) be independent copies
of a bivariate random vector (X,Y ). We assume that the marginal distribution functions F

and G are continuous. We want to test whether X and Y are independent. Independence is
equivalent to E[a(X)b(Y )] = 0 for all a ∈ L2,0(F ) and b ∈ L2,0(G) and thus equivalent to
E[φk(F (X))φl(G(Y ))] = 0 for all positive integers k and l.

(a) Assume first that F and G are known. This is for example the case in an actuarial setting
where X and Y denote residual lifetimes and their distribution functions are available from life
tables. Motivated by the above, we take as test statistics

Rn(F,G) = sup

{
n∏

j=1

nπj : π ∈ Pn,

n∑
j=1

πjφk

(
F(Xj )

)
φl

(
G(Yj )

) = 0, k, l = 1, . . . , r

}
.
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Under the null hypothesis, one has P(−2 logRn(F,G) > χ2
1−α(r2)) → α for every 0 < α < 1

as r and n tend to infinity and r6/n tends to zero. Here, we are in the framework of Hjort,
McKeague and Van Keilegom [7]. The above shows that the test 1[−2 logRn(F,G) > χ2

1−α(r2)]
has asymptotic size α.

(b) Now assume that F and G are unknown. In this case, we replace both marginal distribution
functions by their empirical distribution functions. The resulting test statistic is Rn(F,G), where
F denotes the empirical distribution based on X1, . . . ,Xn and G the one based on Y1, . . . , Yn.
We shall show that under the null hypothesis P(−2 logRn(F,G) > χ2

1−α(r2)) → α for every
0 < α < 1 as r and n tend to infinity and r6/n tends to zero. Thus the test 1[−2 logRn(F,G) >

χ2
1−α(r2)] has asymptotic size α.

Remark 2.1. Suppose that (X,Y ) form a simple linear homoscedastic regression model, Y =
β1 + β2X + ε, with X and ε independent. We can use the test statistic from case (b) to test the
hypothesis whether the slope parameter β2 is zero. Indeed, β2 = 0 is equivalent to the indepen-
dence of X and Y .

Remark 2.2. The asymptotic distributions of the above tests under contiguous alternatives are
linked to non-central chi-square distributions; see Remark 7.3 for details. As the non-centrality
parameters are bounded, the local asymptotic power along such a contiguous alternative coin-
cides with the level. Our tests are asymptotically equivalent to Neyman’s smooth tests [12] with
increasing dimensions. In view of the optimality results of Inglot and Ledwina [8], for those tests
under moderate deviations, we expect similar results for our tests. Of course, this needs to be
explored more carefully.

3. Another example and simulations

Let (X1, Y1), . . . , (Xn,Yn) be independent copies of (X,Y ), where Y = β1 + β2X + ε, with
E[ε|X] = 0, σ 2(X) = E[ε2|X] bounded and bounded away from zero, and E[ε4] < ∞. Assume
that X has a finite variance and a continuous distribution function G. We are interested in testing
whether the regression parameter β = (β1, β2)

� equals some specific value θ . We could pro-
ceed as in Owen [14] and use the test δ0 = 1[−2 logRn0(θ) > χ2

1−α(2)] based on the empirical
likelihood

Rn0(θ) = sup

{
n∏

j=1

nπj : π ∈ Pn,

n∑
j=1

πj

(
1

Xj

)
(Yj − θ1 − θ2Xj) = 0

}
.

But this empirical likelihood does not use all the information of the model. Here we have
E[a(X)ε] = 0 for every a ∈ L2(G). Since G is continuous (but unknown), we work with the
empirical likelihood

R̂n1(θ) = sup

{
n∏

j=1

nπj : π ∈ Pn,

n∑
j=1

πjur

(
G(Xj )

)
(Yj − θ1 − θ2Xj) = 0

}
,
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Table 1. Simulated powers of the tests δ0 and δ1

t (3) Ex(5)

β1 β2 0 2 3 4 5 0 2 3 4 5

N(0,1) 0.6 2.3 0.71 0.88 0.86 0.85 0.84 0.38 0.37 0.39 0.40 0.41
0.8 1.5 0.68 0.82 0.84 0.83 0.83 0.95 0.99 0.99 0.99 0.99
1.0 2.0 0.13 0.09 0.10 0.12 0.13 0.12 0.07 0.09 0.12 0.14
1.2 2.2 0.37 0.42 0.43 0.43 0.44 0.51 0.54 0.52 0.50 0.52
1.4 1.7 0.71 0.88 0.87 0.86 0.86 0.37 0.34 0.37 0.40 0.44

L(0,0.5) 0.6 2.3 0.89 0.98 0.99 0.98 0.98 0.61 0.64 0.68 0.71 0.74
0.8 1.5 0.84 0.96 0.98 0.98 0.98 0.93 1.00 1.00 1.00 1.00
1.0 2.0 0.14 0.10 0.14 0.17 0.21 0.13 0.10 0.11 0.14 0.17
1.2 2.2 0.57 0.70 0.70 0.70 0.74 0.68 0.84 0.84 0.82 0.83
1.4 1.7 0.89 0.99 0.99 0.99 0.99 0.62 0.67 0.72 0.73 0.76

where ur = (1, φ1, . . . , φr)
� and G is the empirical distribution function based on the co-

variate observations X1, . . . ,Xn. It follows from Corollary 7.6 and Lemma 8.1 below that
P(−2 log R̂n1(θ) > χ2

1−α(1+r)) → α if r4 = o(n). The resulting test is δ1 = 1[−2 log R̂n1(θ) >

χ2
1−α(r + 1)]. Both tests have asymptotic size α.
We performed a small simulation study to compare the procedures. For our simulation, we

chose α = 0.05 and n = 100 and took θ = (1,2)�. We modeled the error ε as s(X)η, with s(X) =
min(

√
1 + X2,100) and η independent of X. As distributions for X, we chose the exponential

distribution with mean 5 (Ex(5)) and the t -distribution with three degrees of freedom (t (3)), while
for η we chose the standard normal distribution (N (0, 1)) and the double exponential distribution
with location 0 and scale 0.5 (L(0, 0.5)).

Table 1 reports simulated powers of the tests δ0 and δ1 (with several choices of r) and for some
values of θ . The reported values are based on 1000 repetitions. The column labeled 0 corresponds
to Owen’s test δ0, while the columns labeled 2, 3, 4, 5 correspond to our tests δ1 with r =
2,3,4,5, respectively. Clearly our new test is more powerful than the traditional test. The values
in the rows corresponding to the parameter values (1.0,2.0) are the observed significance levels
of the nominal significance level 0.05. Our new test overall has closer observed significance
levels than the traditional one except for r = 5.

4. Notation

In this section, we introduce some of the notation we use throughout. We write |A| for the eu-
clidean norm and |A|o for the operator (or spectral) norm of a matrix A which are defined by

|A|2 = trace
(
A�A

) =
∑
i,j

A2
ij and |A|o = sup

|u|=1
|Au| = sup

|u|=1

(
u�A�Au

)1/2
.
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In other words, the squared euclidean norm |A|2 equals the sum of the eigenvalues of A�A,
while the squared operator norm |A|2o equals the largest eigenvalue of A�A. Consequently, the
inequality |A|o ≤ |A| holds. Thus, we have

|Ax| ≤ |A|o|x| ≤ |A||x|
for compatible vectors x. We should also point out the identity

|A|o = sup
|u|=1

sup
|v|=1

u�Av.

If A is a nonnegative definite symmetric matrix, this simplifies to

|A|o = sup
|u|=1

u�Au.

Using this and the Cauchy–Schwarz inequality, we obtain∣∣∣∣
∫

fg� dμ

∣∣∣∣
2

o

≤
∣∣∣∣
∫

ff � dμ

∣∣∣∣
o

∣∣∣∣
∫

gg� dμ

∣∣∣∣
o

, (4.1)

∣∣∣∣
∫

ff � dμ

∣∣∣∣
o

≤
∫

|f |2 dμ, (4.2)

whenever μ is a measure and f and g are measurable functions into R
s and R

t such that∫ |f |2 dμ and
∫ |g|2 dμ are finite. As a special case, we derive the inequality

|Sx+y − Sx |o ≤ |Sy |o + 2|Sx |1/2
o |Sy |1/2

o

and therefore

|Sx+y − Sx |o ≤ 1

n

n∑
j=1

|yi |2 + 2|Sx |1/2
o

(
1

n

n∑
j=1

|yi |2
)1/2

(4.3)

with

Sx+y = 1

n

n∑
j=1

(xj + yj )(xj + yj )
�, Sx = 1

n

n∑
j=1

xjx
�
j , Sy = 1

n

n∑
j=1

yjy
�
j

for vectors x1, y1, . . . , xn, yn of the same dimension.

5. A maximization problem

Let x1, . . . , xn be m-dimensional vectors. Set x∗ = max1≤j≤n |xj |,

x̄ = 1

n

n∑
j=1

xj , S = 1

n

n∑
j=1

xjx
�
j , x(ν) = sup

|u|=1

∣∣∣∣∣1

n

n∑
j=1

(
u�xj

)ν

∣∣∣∣∣, ν = 3,4,
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and let λ and � denote the smallest and largest eigenvalue of the matrix S,

λ = inf|u|=1
u�Su and � = sup

|u|=1
u�Su.

Using Lagrange multipliers, Owen [15,16] obtained the identity

R = sup

{
n∏

j=1

nπj : π ∈ Pn,

n∑
j=1

πjxj = 0

}
=

n∏
j=1

1

1 + ζ�xj

if there exists a ζ in R
m such that 1 + ζ�xj > 0, j = 1, . . . , n, and

n∑
j=1

xj

1 + ζ�xj

= 0. (5.1)

He also showed that such a vector ζ exists and is unique if (i) the origin is an interior point of the
convex hull of x1, . . . , xn and (ii) the matrix S is invertible. Let us now show that the inequality
λ > 5x∗|x̄| implies these two conditions. Indeed, the matrix S is then positive definite and hence
invertible as its smallest eigenvalue λ is positive. To show (i), we will rely on the following
lemma.

Lemma 5.1. A random variable Y with E[Y ] = 0 and P(|Y | ≤ K) = 1 for some positive K

obeys the inequality

P(Y > a) ≥ E[Y 2] − 2Ka

2K2
, 0 ≤ a < K.

Proof. Fix a in [0,K). By the properties of Y , we obtain 2K2P(Y > a) ≥ 2KE[Y1[Y > a]] ≥
2KE[Y1[Y > 0]] − 2Ka and 2KE[Y1[Y > 0]] = KE[|Y |] ≥ E[Y 2]. �

The origin is an interior point of the convex hull of x1, . . . , xn if for every unit vector u ∈ R
m

there is at least one j ∈ {1, . . . , n} such that u�xj > 0. This latter condition is equivalent to

N = inf|u|=1

n∑
j=1

1
[
u�xj > 0

] ≥ 1.

For a unit vector u, we have −u�x̄ ≤ |x̄| and thus

n∑
j=1

1
[
u�xj > 0

] ≥
n∑

j=1

1
[
u�(xj − x̄) > |x̄|] = N(u).

It follows from the triangle inequality that |xj − x̄| ≤ |xj | + |x̄| ≤ 2x∗ for j = 1, . . . , n. Note
that x∗ is positive if S is positive definite. Thus, Lemma 5.1 yields the lower bound N(u)/n ≥
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(σ 2(u) − 4x∗|x̄|)/(8x2∗) with

σ 2(u) = 1

n

n∑
j=1

(
u�(xj − x̄)

)2 = uT Su − (
u�x̄

)2 ≥ λ − |x̄|2 ≥ λ − x∗|x̄|.

Thus, we have N ≥ n(λ − 5|x̄|x∗)/(8x2∗). This shows that the inequality λ > 5|x̄|x∗ implies
N ≥ 1 and hence the desired condition (i).

Assume now that the inequality λ > 5x∗|x̄| holds. We proceed as on page 220 of Owen [15].
Let u be a unit vector such that ζ = |ζ |u. Then we have the identity

0 = 1

n

n∑
j=1

u�xj (1 + ζ�xj − ζ�xj )

1 + ζ�xj

= u�x̄ − |ζ |1

n

n∑
j=1

(u�xj )
2

1 + ζ�xj

and the inequality

λ ≤ u�Su = 1

n

n∑
j=1

(
u�xj

)2 ≤ 1

n

n∑
j=1

(u�xj )
2(1 + |ζ |x∗)

1 + ζ�xj

.

Consequently, we find λ|ζ | ≤ (1 + |ζ |x∗)u�x̄ ≤ (1 + |ζ |x∗)|x̄| and obtain the bound

|ζ | ≤ |x̄|
λ − |x̄|x∗

. (5.2)

From this, one immediately derives

|ζ |x∗ ≤ |x̄|x∗
λ − |x̄|x∗

<
1

4
, (5.3)

max
1≤j≤n

1

1 + ζ�xj

≤ 1

1 − |ζ |x∗
<

4

3
, (5.4)

1

n

n∑
j=1

(
ζ�xj

)2 = ζ�Sζ ≤ �|ζ |2 ≤ �|x̄|2
(λ − |x̄|x∗)2

. (5.5)

The identity 1/(1 + d) − 1 + d = d2 − d3/(1 + d) and (5.4) yield∣∣∣∣∣1

n

n∑
j=1

(
rj

1 + ζ�xj

− rj + rj x
�
j ζ

)∣∣∣∣∣ ≤
∣∣∣∣∣1

n

n∑
j=1

rj
(
ζ�xj

)2

∣∣∣∣∣ + 4

3

1

n

n∑
j=1

|rj |
∣∣ζ�xj

∣∣3

for vectors r1, . . . , rn of the same dimension. Taking rj = S−1xj , we derive with the help of (5.1)

∣∣ζ − S−1x̄
∣∣ ≤

∣∣∣∣∣1

n

n∑
j=1

S−1xj

(
ζ�xj

)2

∣∣∣∣∣ + 4

3

1

n

n∑
j=1

∣∣S−1xj

∣∣∣∣ζ�xj

∣∣3
.
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Using |x| = sup|v|=1 v�x, the Cauchy–Schwarz inequality, (5.3) and (5.5) we bound the square
of the first summand of the right-hand side by

1

n

n∑
j=1

(
ζ�xj

)4 sup
|v|=1

v�S−1v ≤ 1

λ
|ζ |4x(4)

and the square of the second summand by

16

9λ2
x2∗ζ�Sζ

1

n

n∑
j=1

(
ζ�xj

)4 ≤ �

9λ2
|ζ |4x(4).

Combining the above, we obtain

∣∣ζ − S−1x̄
∣∣2 ≤ 2

(
1

λ
+ �

9λ2

)
|ζ |4x(4). (5.6)

Using the inequality |2 log(1 + t) − 2t + t2 − 2t3/3| ≤ |t |4/(2(1 − |t |)4) valid for |t | < 1, and
then (5.4) we derive∣∣∣∣∣2

n∑
j=1

log
(
1 + ζ�xj

) − 2nζ�x̄ + nζ�Sζ

∣∣∣∣∣ ≤ 2

3

∣∣∣∣∣
n∑

j=1

(
ζ�xj

)3

∣∣∣∣∣ + 1

2

(
4

3

)4 n∑
j=1

∣∣ζ�xj

∣∣4
.

With � = ζ −S−1x̄, we can write ζ�Sζ = ζ�x̄ +ζ�S� and ζ�x̄ = x̄�S−1x̄ +��x̄, and obtain
the identity 2ζ�x̄ − ζ�Sζ = x̄S−1x̄ − ��S�. Using this and (5.6), we arrive at the bound∣∣∣∣∣2

n∑
j=1

log
(
1 + ζ�xj

) − nx̄�S−1x̄

∣∣∣∣∣ ≤ n|ζ |3x(3) + n

(
16

9
+ 2�

λ
+ 2�2

9λ2

)
|ζ |4x(4).

In view of (5.2) and � ≥ λ, this becomes∣∣∣∣∣2
n∑

j=1

log
(
1 + ζ�xj

) − nx̄�S−1x̄

∣∣∣∣∣ ≤ n|x̄|3x(3)

(λ − |x̄|x∗)3
+ �2

λ2

4n|x̄|4x(4)

(λ − |x̄|x∗)4
. (5.7)

If we bound x(3) by x∗� and x(4) by x2∗� and use (5.3), we obtain the bound∣∣∣∣∣2
n∑

j=1

log
(
1 + ζ�xj

) − nx̄�S−1x̄

∣∣∣∣∣ ≤
(

� + �3

λ2

)
nx∗|x̄|3

(λ − |x̄|x∗)3
. (5.8)

Thus, we have proved the following result.

Lemma 5.2. The inequality λ > 5|x̄|x∗ implies that there is a unique ζ in R
m satisfying 1 +

ζ�xj > 0, j = 1, . . . , n, and (5.1) to (5.8).
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6. Applications with random vectors

We shall now discuss implications of Lemma 5.2 to the case when the vectors xj are replaced
by random vectors. We are interested in the case when the dimension of the random vectors
increases with n.

Let Tn1, . . . , Tnn be mn-dimensional random vectors. With these random vectors we associate
the empirical likelihood

Rn = sup

{
n∏

j=1

nπj : π ∈ Pn,

n∑
j=1

πjTnj = 0

}
.

To study the asymptotic behavior of Rn, we introduce

T ∗
n = max

1≤j≤n
|Tnj |, T̄n = 1

n

n∑
j=1

Tnj , T (ν)
n = sup

|u|=1

∣∣∣∣∣1

n

n∑
j=1

(
u�Tnj

)ν

∣∣∣∣∣, ν = 3,4

and the matrix

Sn = 1

n

n∑
j=1

TnjT
�
nj ,

and let λn and �n denote the smallest and largest eigenvalues of Sn,

λn = inf|u|=1
u�Snu and �n = sup

|u|=1
u�Snu.

We say a sequence Wn of mn × mn dispersion matrices is regular if the following condition
holds,

0 < inf
n

inf|u|=1
u�Wnu ≤ sup

n
sup
|u|=1

u�Wnu < ∞.

We impose the following conditions.

(A1) m
1/2
n T ∗

n = op(n1/2).
(A2) n|T̄n|2 = Op(mn).
(A3) There is a regular sequence of dispersion matrices Wn such that |Sn − Wn|o =

op(m
−1/2
n ).

(A4) mnT
(3)
n = op(n1/2) and m

3/2
n T

(4)
n = op(n).

The first two conditions imply T ∗
n |T̄n| = op(1), the third condition implies that there are pos-

itive numbers a < b such that P(a ≤ λn ≤ �n ≤ b) → 1. Thus, all three conditions imply that
the probability of the event {λn > 5T ∗

n |T̄n|} tends to one. Consequently, by Lemma 5.2, there
exists an mn-dimensional random vector ζ̂n which is uniquely determined on this event by the
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properties 1 + ζ̂�
n Tnj > 0, j = 1, . . . , n, and

1

n

n∑
j=1

Tnj

1 + ζ̂�
n Tnj

= 0. (6.1)

On this event, we have −2 logRn = 2
∑n

j=1 log(1 + ζ̂�
n Tnj ). It follows from (A3) that Sn is

invertible except on an event whose probability tends to zero. It follows from (A2) and (A4) that

n|T̄n|3T (3)
n = op

(
m

1/2
n

)
and n|T̄n|4T (4)

n = op

(
m

1/2
n

)
.

Thus, under (A1)–(A4), the following expansion follows from (5.7)

−2 logRn = nT̄ �
n S−1

n T̄n + op

(
m

1/2
n

)
. (6.2)

From (A3), we can also derive the rate |S−1
n − W−1

n |o = op(m
−1/2
n ). Thus, if (A1)–(A4) hold,

then (6.2) holds with Sn replaced by Wn,

−2 logRn = nT̄ �
n W−1

n T̄n + op

(
m

1/2
n

)
. (6.3)

In view of the inequalities T
(3)
n ≤ �nT

∗
n and T

(4)
n ≤ �n(T

∗
n )2, a sufficient condition for (A1) and

(A4) is given by

mnT
∗
n = op

(
n1/2). (B1)

In view of the bound (T
(3)
n )2 ≤ �nT

(4)
n , which is a consequence of the Cauchy–Schwarz inequal-

ity, a sufficient condition for (A4) is given by

m2
nT

(4)
n = op(n). (B2)

We first treat the case when the dimension mn does not increase with n. In this case, (B1) and
(A2) are implied by T ∗

n = op(n1/2) and T̄n = Op(n−1/2), and (A3) is implied by the condition:
Sn = W + op(1) for some positive definite matrix W . Thus, we have the following result.

Theorem 6.1. Let mn = m for all n. Suppose

T ∗
n = op

(
n1/2), n1/2T̄n �⇒ N(0,V ) and Sn = W + op(1)

for dispersion matrices V and W , with W positive definite. Then −2 logRn converges in distri-
bution to Z�V 1/2W−1V 1/2Z, where the m-dimensional random vector Z is standard normal.
For V = W , the limiting distribution is a chi-square distribution with m degrees of freedom.

If we replace n1/2T̄n �⇒ N(0,V ) by n1/2T̄n �⇒ U for some random variable U , then the
conclusion becomes −2 logRn converges in distribution to U�W−1U . This version of the theo-
rem yields Theorem 2.1 of Hjort et al. [7] without their (A0).
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Theorem 6.1 does not require the independence of the random vectors Tn,1, . . . , Tn,n. This is
important when dealing with estimated constraint functions as we shall see below.

Suppose the condition in the theorem hold with V = W . Under a contiguous alternative, one
typically has n1/2T̄n �⇒ N(μ,V ) for some μ different from zero, but retains the other condi-
tions. In this case, −2 logRn has a limiting chi-square distribution with m degrees of freedom
and non-centrality parameter |V −1/2μ|.

Let us address some applications of Theorem 6.1. For this discussion, we let Z1, . . . ,Zn be
independent copies of a k-dimensional random vector Z with distribution Q and let w be a mea-
surable function from R

k into Rm such that E[w(Z)] = ∫
w dQ = 0 and W = E[w(Z)w�(Z)] =∫

ww� dQ is positive definite. Let us first look at the empirical likelihood

Rn1 = sup

{
n∏

j=1

nπj : π ∈ Pn,

n∑
j=1

πjw(Zj ) = 0

}
.

It follows from Owen that −2 logRn1 has a limiting chi-square distribution with m degrees
of freedom. This also follows from Theorem 6.1 applied with Tnj = w(Zj ). Indeed, the first
condition follows from the inequality

P
(

max
1≤j≤n

∣∣w(Zj )
∣∣ > εn1/2

)
≤ 1

ε2
E

[∣∣w(Z)
∣∣21

[∣∣w(Z)
∣∣ > εn1/2]] (6.4)

and the Lebesgue dominated convergence theorem; the central limit theorem yields the second
condition with V = W ; the third condition

1

n

n∑
j=1

w(Zj )w
�(Zj ) = W + op(1) (6.5)

follows from the weak law of large numbers. This shows that Owen’s result is a special case of
our result.

Now consider the empirical likelihood

R̂n1 = sup

{
n∏

j=1

nπj : π ∈ Pn,

n∑
j=1

πj ŵ(Zj ) = 0

}
,

where ŵ is an estimator of w based on the observations Z1, . . . ,Zn which is consistent in the
following sense,

1

n

n∑
j=1

∣∣ŵ(Zj ) − w(Zj )
∣∣2 = op(1). (6.6)

Then −2 log R̂n1 has a limiting chi-square distribution with m degrees of freedom if also

n−1/2
n∑

j=1

ŵ(Zj ) = n−1/2
n∑

j=1

w(Zj ) + op(1) (6.7)
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holds. To see this, we verify the assumptions of Theorem 6.1 with Tnj = ŵ(Zj ). The first condi-
tion follows from (6.4), (6.6) and the inequality

T ∗
n ≤ max

1≤j≤n

∣∣w(Zj )
∣∣ +

(
n∑

j=1

∣∣ŵ(Zj ) − w(Zj )
∣∣2

)1/2

.

The central limit theorem, Slutsky’s theorem and (6.7) yield the second condition with V = W .
The third condition follows from (6.5), (6.6) and the inequality (4.3).

The requirement (6.7) is rather strong. One often only derives

n−1/2
n∑

j=1

ŵ(Zj ) = n−1/2
n∑

j=1

v(Zj ) + op(1) (6.8)

for some function v satisfying E[v(Z)] = 0 and E[|v(Z)|2] < ∞. Under (6.6) and (6.8),
−2 log R̂n1 has limiting distribution as given in Theorem 6.1 with V the dispersion matrix of
v(Z). This follows from Theorem 6.1 whose assumptions are now verified as above.

In situations when w(Z) = u(Z,η) for some q-dimensional nuisance parameter η and ŵ(Z) =
u(Z, η̂) for some estimator η̂ of η, one typically has v(Z) = w(Z) + Dψ(Z), where the m × q

matrix D is the derivative of the map t 
→ E[u(Z,η+ t)] at t = 0, and ψ is the influence function
of η̂.

We now address the case when mn increases with the sample size.

Theorem 6.2. Let (A1)–(A4) hold. Suppose that mn increases with n to infinity and that there
are mn × mn dispersion matrices Vn such that mn/ trace(V 2

n ) = O(1) and

(
nT̄ �

n W−1
n T̄n − trace(Vn)

)
/

√
2 trace

(
V 2

n

) �⇒ N(0,1). (6.9)

Then we have (−2 logRn − trace(Vn)
)
/

√
2 trace

(
V 2

n

) �⇒ N(0,1). (6.10)

Proof. We have already seen that (A1)–(A4) imply (6.3). It follows from (6.3) and mn/ trace(V 2
n )

= O(1) that the difference of the left-hand sides of (6.9) and (6.10) converge to zero in probabil-
ity. Thus, the desired (6.10) follows from (6.9) and Slutsky’s theorem. �

Of special interest is the case when Vn is the mn × mn identity matrix Imn . Then trace(Vn) =
trace(V 2

n ) = mn and (6.10) simplifies to (1.2). Sufficient conditions for (6.9) are given by Peng
and Schick [18].

7. Main results

In this section, we assume that (Z,S) is a measurable space, that Z1, . . . ,Zn are independent
copies of the Z -valued random variable Z with distribution Q, and that mn is a positive integer
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that tends to infinity with n. We let wn denote a measurable function from Z to R
mn such that∫

wn dQ = 0 and
∫ |wn|2 dQ is finite.

We first study

Rn = sup

{
n∏

j=1

nπj : π ∈ Pn,

n∑
j=1

πjwn(Zj ) = 0

}
.

Our goal is to show (1.2). To this end, we set

w̄n = 1

n

n∑
j=1

wn(Zj ), W̄n = 1

n

n∑
j=1

wn(Zj )w
�
n (Zj ), Wn =

∫
wnw

�
n dQ

and introduce the following condition.

(C1) The sequence Wn is regular.

Motivated by the results in Peng and Schick [18], we call a sequence vn of measurable func-
tions from Z to R Lindeberg if∫

|vn|21
[|vn| > ε

√
n
]

dQ → 0, ε > 0. (7.1)

The following are easy to check. If the sequences un and vn are Lindeberg, so are the sequences
max{|un|, |vn|} and un + vn. If the sequence vn is Lindeberg and |un| ≤ |vn|, then the sequence
un is also Lindeberg. We also need the following properties.

(L1) If vn is Lindeberg, then one has the rate max1≤j≤n |vn(Zj )| = op(n1/2).

(L2) If
∫ |vn|r dQ = o(nr/2−1) for some r > 2, then vn is Lindeberg.

The first statement follows from an inequality similar to (6.4), the second from Remark 1 in Peng
and Schick [18].

To show (1.2), we apply Theorem 6.2 with Tnj = wn(Zj ). In the presence of (C1), the condi-
tions (6.9) and (A1)–(A4) of this theorem are implied by(

nw̄�
n W−1

n w̄n − mn

)
/
√

2mn �⇒ N(0,1), (D0)

max
1≤j≤n

m
1/2
n

∣∣wn(Zj )
∣∣ = op

(
n1/2), (D1)

n|w̄n|2 = Op(mn), (D2)

|W̄n − Wn|o = op

(
m

−1/2
n

)
, (D3)

sup
|u|=1

m2
n

n

n∑
j=1

∣∣u�wn(Zj )
∣∣4 = op(n). (D4)

By part (c) of Corollary 3 in Peng and Schick [18], (D0) follows if the function |W−1/2
n wn| is

Lindeberg. In the presence of (C1), the latter condition is equivalent to |wn| being Lindeberg.
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By (L1), a sufficient condition for (D1) is that m
1/2
n |wn| is Lindeberg. It follows from (C1) that

trace(Wn) ≤ Bmn for some constant B . Thus (C1) implies E[n|w̄n|2] = trace(Wn) = O(mn) and
hence (D2). In view of (C1), a sufficient condition for (D3) is that mn|wn| is Lindeberg. To see
this, fix ε > 0 and let W̄n,1 and W̄n,2 be the matrices obtained by replacing in the definition of W̄n

the function wn by vn = wn1[|mnwn| ≤ ε
√

n] and wn −vn = wn1[|mnwn| > ε
√

n], respectively.
Then we find

nE
[∣∣W̄n,1 − E[W̄n,1]

∣∣2] ≤ E
[|vn|4(Z)

] ≤ ε2n

m2
n

E
[|wn|2(Z)

] ≤ ε2nBmn

m2
n

,

P (W̄n,2 �= 0) ≤ P
(

max
1≤j≤n

∣∣mnwn(Zj )
∣∣ > ε

√
n
)

→ 0

and using (4.2) ∣∣E[W̄n,2]
∣∣
o
≤ E

[|wn|2(Z)1
[∣∣mnwn(Z)

∣∣ > ε
√

n
]] = o

(
m−2

n

)
.

The above inequalities show that (C1) and mn|wn| is Lindeberg imply statement (D3). The latter
condition also implies (B1) and hence (D1) and (D4), the latter in the presence of (C1). Thus, we
have the following result.

Theorem 7.1. Suppose (C1) holds and the sequence mn|wn| is Lindeberg. Then (1.2) holds as
mn tends to infinity with n.

From this, simple calculations and the property (L2) we immediately derive the following
corollaries.

Corollary 7.1. Suppose (C1) holds and |wn| ≤ √
mnB for some constant B . Then (1.2) holds if

m3
n = o(n).

Corollary 7.2. Suppose (C1) holds and
∫ |wn|r dQ = O(m

r/2
n ) for some r > 2. Then (1.2) holds

if m
3r/(r−2)
n = o(n).

These two corollaries give the conclusions in Theorem 4.1 in Hjort et al. [7] under slightly
weaker conditions in the case of Corollary 7.2. We now present some additional results that al-
low for larger mn if r is small. For example, if r = 4, Corollary 7.2 requires m6

n = o(n), while
Theorem 7.2 below allows m4

n = o(n). For r = 3, Corollary 7.2 requires m9
n = o(n), while The-

orem 7.3 below allows m6
n = o(n).

Theorem 7.2. Suppose (C1) holds and
∫ |wn|4 dQ = O(m2

n). Then (1.2) holds if m4
n = o(n).

Proof. Using (L2) and m4
n = o(n) we derive that m

1/2
n |wn| is Lindeberg. This latter condition

and (C1) imply (D1)–(D2) as shown prior to Theorem 7.1. Next we calculate nE[|W̄n −Wn|2] ≤
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E[|wn|4(Z)] = O(m2
n). This yields (D3) in view of |W̄n − Wn|o ≤ |W̄n − Wn| = Op(mn/

√
n)

and m4
n = o(n). Finally, we have (D4) as the left-hand side of (D4) is bounded by

m2
n

n

n∑
j=1

∣∣w(Zj )
∣∣4 = Op

(
m4

n

) = op(n).

Thus, (D0)–(D4) hold and we obtain the desired result from Theorem 6.2. �

Theorem 7.3. Suppose (C1) holds and
∫ |wn|r dQ = O(m

r/2
n ) for some 2 < r < 4. Then (1.2)

holds if m
2r/(r−2)
n = o(n).

Proof. There is a constant B such that
∫ |wn|r dQ ≤ Bm

r/2
n . In view of (L2) and the properties of

mn, we derive that m
1/2
n |wn| is Lindeberg. This condition and (C1) imply (D0)–(D2). It follows

from (D1), the moment condition on wn, and the properties of mn that

m2
n

n

n∑
j=1

∣∣w(Zj )
∣∣4 ≤ m2

n

n

n∑
j=1

∣∣w(Zj )
∣∣r max

1≤j≤n

∣∣wn(Zj )
∣∣4−r

= op

(
m2

nm
r/2
n (n/mn)

(4−r)/2) = op

(
mr

nn
(4−r)/2) = op(n).

This establishes (D4). Finally, (D3) follows as we have |W̄n − Wn|o = op(m−1
n ). To prove the

latter, we mimic the argument prior to Theorem 7.1 used to verify (D3) if mn|wn| is Lindeberg.
But now |wn|1[m1/2

n |wn| ≤ √
n] plays the role of vn. For the corresponding matrices W̄n1 and

W̄n2, we have

m2
nE

[∣∣W̄n1 − E[W̄n1]
∣∣2] ≤ m2

n

n

(
n

mn

)(4−r)/2

Bm
r/2
n ≤ Bmr

n

nr/2−1
→ 0,

P (W̄n2 �= 0) ≤ P
(

max
1≤j≤n

m
1/2
n

∣∣wn(Zj )
∣∣ > n1/2

)
→ 0,

mn

∣∣E[W̄n,2]
∣∣
o

≤
∫

m
r/2
n |wn|r

n(r−2)/2
dQ ≤ Bmr

n

nr/2−1
→ 0.

Consequently, (D0)–(D4) hold and the desired result follows. �

Now, we study

R̂n = sup

{
n∏

j=1

nπj : π ∈ Pn,
1

n

n∑
j=1

πj ŵn(Zj ) = 0

}
,

where ŵn is an estimator of wn. Let us set

Ŵn = 1

n

n∑
j=1

ŵn(Zj )ŵ
�
n (Zj ).
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Theorem 7.4. Suppose (C1) holds and assume we have the expansions

mn max
1≤j≤n

∣∣ŵn(Zj )
∣∣ = op

(
n1/2), (7.2)

|Ŵn − Wn|o = op

(
m

−1/2
n

)
, (7.3)

1

n

n∑
j=1

ŵn(Zj ) = 1

n

n∑
j=1

vn(Zj ) + op

(
n−1/2) (7.4)

for some measurable function vn from S into R
mn such that

∫
vn dQ = 0 and |vn| is Lindeberg.

Furthermore, assume that the dispersion matrix

Un = W
−1/2
n

∫
vnv

�
n dQW

−1/2
n

of W
−1/2
n vn(Z) satisfies |Un|o = O(1) and mn/ trace(U2

n ) is bounded. Then, as mn tends to
infinity with n, (−2 log R̂n − trace(Un))/

√
2 trace(U2

n ) is asymptotically standard normal.

Proof. Set ξnj = W
−1/2
n vn(Zj ), and introduce the averages v̄n = 1

n

∑n
j=1 vn(Zj ) and T̄n =

1
n

∑n
j=1 ŵn(Zj ). It follows from (C1) that |W 1/2

n |o + |W−1/2
n |o = O(1). Using this and the Lin-

deberg property of |vn|, we derive

Ln(ε) = E
[|ξn,1|21

[|ξn,1| > ε
√

n
]] → 0, ε > 0. (7.5)

We have trace(Un)/ trace(U2
n ) ≤ |Un|omn/ trace(U2

n ) = O(1). From mn/ trace(U2
n ) = O(1) we

conclude trace(U2
n ) → ∞. Thus, Theorem 2 in Peng and Schick [18] yields that (nv̄nW

−1
n v̄n −

trace(Un))/
√

2 trace(U2
n ) is asymptotically standard normal. From this, (C1), trace(Un) = O(mn)

and trace(U2
n ) ≤ |Un|20mn we conclude n|v̄n|2 = Op(mn). With the help of (7.4) and the as-

sumption mn/ trace(U2
n ) = O(1), we then derive n|T̄n|2 = Op(mn) and that (nT̄nW

−1
n T̄n −

trace(Un))/
√

2 trace(U2
n ) is asymptotically standard normal. Thus in view of (B1), conditions

(A1)–(A4) hold with Tnj = ŵn(Zj ), and the desired result follows from Theorem 6.2. �

Let us first mention the special case when vn = wn. In this case, Un equals Imn and trace(Un) =
trace(U2

n ) = mn.

Corollary 7.3. Suppose (C1), (7.2) and (7.3) hold, |wn| is Lindeberg, and the following expan-
sion is valid,

1

n

n∑
j=1

ŵn(Zj ) = 1

n

n∑
j=1

wn(Zj ) + op

(
n−1/2). (7.6)

Then (−2 log R̂n − mn)/
√

2mn is asymptotically standard normal.

Next, we treat vn = wn − Anψ with An and ψ as in the next condition.
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(C2) There is a measurable function ψ from Z into R
q satisfying

∫
ψ dQ = 0 and∫

ψψ� dQ = Iq such that, with An = ∫
wnψ

� dQ, the expansion,

1

n

n∑
j=1

ŵn(Zj ) = 1

n

n∑
j=1

wn(Zj ) − Anψ(Zj ) + op

(
n−1/2),

and the convergence, trace(A�
n W−1

n An) → q , hold.

Corollary 7.4. Suppose (C1), (C2), (7.2) and (7.3) hold, and |wn| is Lindeberg. Then
(−2 log R̂n − mn + q)/

√
2(mn − q) is asymptotically standard normal.

Remark 7.1. Suppose that wn is the vector formed by the first mn elements of an orthonormal
basis u1, u2, . . . for L2,0(Q). Then the νth column of the matrix An is formed by the first mn

Fourier coefficients of the νth component of ψ with respect to this basis. In this case, we have
the identity

trace
(
A�

n W−1
n An

) = trace
(
A�

n An

) =
q∑

ν=1

mn∑
k=1

(∫
ψνuk dQ

)2

and obtain under the assumptions
∫

ψ dQ = 0 and
∫

ψψ� dQ = Iq the convergence

trace
(
A�

n W−1
n An

) →
∫

|ψ |2 dQ = q.

In our goodness-of-fit examples, the following condition holds.

(C3) There is a constant B such that |wn| ≤ B
√

mn and |ŵn| ≤ B
√

mn.

Under this condition, the rate m3
n/n → 0 implies (7.2), the Lindeberg property of mn|wn|, and

(D3). Sufficient conditions for (7.3) can now be given directly or by verifying

|Ŵn − W̄n|o = op

(
m

−1/2
n

)
. (7.7)

In view of the inequality (4.3), a sufficient condition for the latter is

Dn = 1

n

n∑
j=1

∣∣ŵn(Zj ) − wn(Zj )
∣∣2 = op

(
m−1

n

)
. (7.8)

Thus, we have the following results.

Corollary 7.5. Suppose (C1), (C3), m3
n = o(n), and one of (7.3), (7.7), (7.8) hold. Then (i) (7.6)

implies that (−2 log R̂n −mn)/
√

2mn is asymptotically standard normal, while (ii) (C2) implies
that (−2 log R̂n − mn + q)/

√
2(mn − q) is asymptotically standard normal.
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Remark 7.2. The conditions in Theorem 7.4 are based on the sufficient condition (B1) for (A1)
and (A4). Working with (A1) and (B2) instead, we see that (7.2) can be replaced by the condi-
tions,

m
1/2
n max

1≤j≤n

∣∣ŵn(Zj )
∣∣ = op

(
n1/2) and

m2
n

n

n∑
j=1

∣∣ŵn(Zj )
∣∣4 = op(n).

With Dn as in (7.8), we derive the bounds

max
1≤j≤n

∣∣ŵn(Zj )
∣∣ ≤ max

1≤j≤n

∣∣wn(Zj )
∣∣ + (nDn)

1/2,

m2
n

n

n∑
j=1

∣∣ŵn(Zj )
∣∣4 ≤ 8m2

n

n

n∑
j=1

∣∣wn(Zj )
∣∣4 + 8m2

nnD2
n.

Here we used that (a+b)4 ≤ 8(a4 +b4) for nonnegative a and b. Assume now that
∫ |wn|4 dQ =

O(m2
n) and that m4

n/n → 0. Then we have (D1) and (D3) as shown in the proof of Theorem 7.2
and obtain the above two conditions and (7.3) from (7.8).

Corollary 7.6. Suppose (C1), (7.8),
∫ |wn|4 dQ = O(m2

n) and m4
n = o(n) hold. Then (i) (7.6)

implies that (−2 log R̂n −mn)/
√

2mn is asymptotically standard normal, while (ii) (C2) implies
that (−2 log R̂n − mn + q)/

√
2(mn − q) is asymptotically standard normal.

Remark 7.3. Let us now describe the behavior of −2 log R̂n under a local alternative. For this,
we follow Remarks 6 and 7 in Peng and Schick [18]. As there let h be a measurable function
satisfying

∫
hdQ = 0 and

∫
h2 dQ < ∞ and let Qn,h be a distribution satisfying∫ ∣∣n1/2(

√
dQn,h − √

dQ) − (1/2)h
√

dQ
∣∣2 → 0. (7.9)

Then the product measures Qn
n,h and Qn are mutually contiguous. All results in this section

obtain the expansion

−2 log R̂n −
∣∣∣∣∣n−1/2

n∑
j=1

un(Zj )

∣∣∣∣∣
2

= op

(
m

1/2
n

)
(7.10)

for some measurable function un from Z into R
mn with the properties

∫
un dQ = 0,

∫ |un|2 dQ =
O(mn), |un| is Lindeberg, and the matrix Un = ∫

unu
�
n dQ satisfies |Un|o = O(1) and

mn/ trace(U2
n ) = O(1). For example, in Theorem 7.4 one has un = W

−1/2
n vn. By contiguity,

one has the expansion (7.10) even if Z1, . . . ,Zn are independent with distribution Qn,h. Under
this distributional assumption, one has

(∣∣∣∣∣n−1/2
n∑

j=1

un(Zj )

∣∣∣∣∣
2

− ∣∣μn(h)
∣∣2 − trace(Un)

)/√
2 trace

(
U2

n

) �⇒ N(0,1)
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with μn(h) = ∫
unhdQ. Thus, under the local alternative Qn,h one has

(−2 log R̂n − ∣∣μn(h)
∣∣2 − trace(Un)

)
/

√
2 trace

(
U2

n

) �⇒ N(0,1).

If Un = Imn , this simplifies to (−2 log R̂n − |μn(h)|2 − mn)/
√

2mn �⇒ N(0,1) and may be
interpreted as −2 logRn being approximately a non-central chi-square random variable with mn

degrees of freedom and non-centrality parameter |μn(h)|.

8. Details for the examples

In this section, we use the results of the previous section to provide the details for the examples
of Sections 2. In all examples, the components of wn are orthonormal and uniformly bounded,
so that (C1) and (C3) hold with Wn = Imn . We begin with a technical lemma.

Lemma 8.1. Let (S1, T1), . . . , (Sn, Tn) be independent copies of the bivariate random vector
(S,T ), where T has a continuous distribution function H and E[S|T ] = 0 and σ 2(T ) = E[S2|T ]
is bounded (by say B) and bounded away from zero (by say b), Let H denote the empirical distri-
bution function based on T1, . . . , Tn. Set ur = (1, φ1, . . . , φr)

�, Dj = ur(H(Tj )) − ur(H(Tj )),
and M = E[S2ur(H(T ))u�

r (H(T )]. Then we have the following inequalities

b ≤ v�Mv ≤ B, v ∈ R
1+r , |v| = 1, (8.1)

∣∣∣∣∣1

n

n∑
j=1

ur

(
H(Tj )

)
u�

r

(
H(Tj )

) − I1+r

∣∣∣∣∣
2

≤ 16π2r2(1 + r)2

n2
a.s., (8.2)

1

n

n∑
j=1

E
[|SjDj |2

] ≤ 1

n

n∑
j=1

BE
[|Dj |2

] ≤ Bπ2r3

n
, (8.3)

E

[∣∣∣∣∣n−1/2
n∑

j=1

SjDj

∣∣∣∣∣
2]

≤ 2Bπ2r3

n
. (8.4)

Moreover, if E[S4] is finite, then we have the bound

E
[
S4

∣∣ur

(
H(T )

)∣∣4) ≤ (1 + 2r)2E
[
S4].

Proof. The last inequality follows from the bound |ur |2 ≤ 1 + 2r . The inequality (8.1) is an
easy consequence of b ≤ σ 2(T ) ≤ B . Conditioning on T1, . . . , Tn shows that the left-hand side
of (8.4) is bounded by the left-hand side of (8.3) and yields the first inequality in (8.3). Since
|φ′

k| ≤ √
2πk, we obtain |Dj |2 ≤ 2πr3(H(Tj ) − H(Tj ))

2. It is easy to check that E[(H(Tj ) −
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H(Tj ))
2] ≤ 1/n. This proves (8.3) and (8.4). Next, we have almost surely,

1

n

n∑
j=1

ur

(
H(Tj )

)
u�

r

(
H(Tj )

) = 1

n

n∑
j=1

ur(j/n)u�
r (j/n).

For a function h defined on [0,1] with Lipschitz constant L, we have

∣∣∣∣∣1

n

n∑
j=1

h(j/n) −
∫ 1

0
h(u)du

∣∣∣∣∣ ≤ 1

n

n∑
j=1

sup
j−1≤nu≤j

∣∣h(j/n) − h(u)
∣∣ ≤ L/n.

Since the function φkφl is Lipschitz with Lipschitz constant 2π(k + l), we derive the desired
bound (8.2). �

Details for Example 2. Let X1, . . . ,Xn be independent copies of a random variable X that has
distribution function Fθ and density fθ for some θ in the open subset 	 of R

q . Recall we assumed
in Example 2 that the map ϑ 
→ sϑ = √

fϑ is continuously differentiable in L2 with derivative
ϑ 
→ ṡϑ and that the information matrix J (ϑ) = 4

∫
ṡϑ (x)ṡϑ (x)� dx is invertible for each ϑ in 	.

Thus, we have

ρ(τ) =
∫ (

sθ+τ (x) − sθ (x) − τ�ṡθ (x)
)2 dx = o

(|τ |2). (8.5)

Recall also that 
̇θ = 2ṡθ /sθ denotes the score function. By the properties of the densities, there
is a δ > 0 and a constant K such that∫

|fϑ1(x) − fϑ2(x)|dx ≤ K|ϑ1 − ϑ2|, |ϑ1 − θ | < δ, |ϑ2 − θ | < δ. (8.6)

As a consequence, we have

sup
x∈R

∣∣Fϑ1(x) − Fϑ2(x)
∣∣ ≤ K|ϑ1 − ϑ2|, |ϑ1 − θ | < δ, |ϑ2 − θ | < δ. (8.7)

Let m = mn → ∞ and log(n)m3
n = o(n). It suffices to show

(−2 logRn(Fθ̂
) − mn + q

)
/
√

2(mn − q) �⇒ N(0,1).

For this, we take wn = qn ◦ Fθ and ŵn = qn ◦ F
θ̂

with qn = (φ1, . . . , φmn)
� and verify (7.7) and

(C2) with ψ = J (θ)−1/2
̇θ . The desired result then follows from (ii) of Corollary 7.5.
We have Wn = Imn = ∫

ŵnŵ
�
n dF

θ̂
and obtain

∣∣∣∣
∫

ŵnŵ
�
n dFθ − Wn

∣∣∣∣ ≤ 2mn

∫ ∣∣f
θ̂
(x) − fθ (x)

∣∣dx = op

(
m

−1/2
n

)
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in view of (8.6) and (2.2). Thus, (7.7) follows if we verify

∣∣∣∣Ŵn − W̄n −
∫

ŵnŵ
�
n dFθ + Wn

∣∣∣∣
2

= op

(
m−1

n

)
. (8.8)

Note that ψ has mean 0 and identity dispersion matrix under Fθ and that Anψ equals
DnJ(θ)−1
̇θ , with Dn = ∫

wn
̇
�
θ dFθ . Thus, (C2) follows from Remark 7.1,

1

n

n∑
j=1

ŵn(Xj ) − wn(Xj ) + Dn(θ̂ − θ) = op

(
n−1/2), (8.9)

the stochastic expansion (2.2), and the fact that |Dn|o is bounded.
We are left to verify (8.8) and (8.9). For this, we set

Unk(t) = 1

n

n∑
j=1

[
φk

(
Fθ+n−1/2t (Xj )

) − φk

(
Fθ(Xj )

)]
,

Vnkl(t) = 1

n

n∑
j=1

[
(φkφl)

(
Fθ+n−1/2t (Xj )

) − (φkφl)
(
Fθ(Xj )

)]
,

and note that D�
n = (d1, . . . , dmn) with dk = ∫

φk(Fθ )
̇θ dFθ . The statements (8.8) and (8.9)
follow if we show that, for each finite C,

Tn1(C) = sup
|t |≤C

mn∑
k=1

mn∑
l=1

(
Vnkl(t) − E

[
Vnkl(t)

])2 = op

(
m−1

n

)
,

Tn2(C) = sup
|t |≤C

mn∑
k=1

(
Unk(t) − E

[
Unk(t)

])2 = op

(
n−1),

Tn3(C) = sup
|t |≤C

mn∑
k=1

(
E

[
Unk(t)

] + n−1/2d�
k t

)2 = o
(
n−1).

The first two statements can be verified using the exponential inequality given in Lemma 5.2 in
Peng and Schick [17]. This requires the fact that (logn)m3

n/n → 0.
The identity fθ+τ − fθ − 
̇�

θ τfθ = 2sθ (sθ+τ − sθ − ṡ�
θ τ ) + (sθ+τ − sθ )

2 and the definition of
dk yield the formula

∫
φk

(
Fθ(x)

)(
fθ+τ (x) − fθ (x)

)
dx = d�

k τ +
∫

φk

(
Fθ(x)

)(
sθ+τ (x) − sθ (x)

)2 dx

+ 2
∫

φk

(
Fθ(x)

)
sθ (x)

(
sθ+τ (x) − sθ (x) − ṡ�

θ (x)τ
)

dx.
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In view of this and the fact that
∫

φk(Fϑ)dFϑ = 0 for all ϑ , we have the identity

E
[
Unk(t)

] + d�
k tn−1/2 =

∫ (
φk

(
Fθ(x)

) − φk

(
Fθ+n−1/2t (x)

))(
fθ+n−1/2t (x) − fθ (x)

)
dx

−
∫

φk

(
Fθ(x)

)(
sθ+n−1/2t (x) − sθ (x)

)2
dx

− 2
∫

φk

(
Fθ(x)

)
sθ (x)

(
sθ+n−1/2t (x) − sθ (x) − n−1/2t�ṡθ (x)

)
dx.

Using (8.6), (8.7) and the orthonormality of the the functions sθφk ◦ Fθ , k = 1,2, . . . , in L2,
Tn3(C) can be bounded by

6π2m3
nK

4C4

n2
+ 6mn

(∫ (
sθ+n−1/2t (x) − sθ (x)

)2 dx

)2

+ 12 sup
|t |≤C

ρ
(
n−1/2t

)
.

The desired statement Tn3(C) = o(n−1) now follows from (8.5) and m3
n = o(n). This completes

the proof of (7.4).

Details for Example 3. Assume that the distribution function of X is symmetric and continuous.
Then S = sign(X) and T = |X| are independent, S has mean zero and variance 1, and T has a
continuous distribution function H . Let Rn be defined as in Example 3 with as r = rn → ∞ and
r3
n = o(n). It suffices to show that (−2 logRn − (1 + rn))/

√
2(1 + rn) is asymptotically standard

normal. This follows from Corollary 7.5 if we verify (7.3) and (7.6). These conditions follow
from Lemma 8.1 applied with Sj = sign(Xj ) and Tj = |Xj |. Indeed, in view of the properties of
rn, (7.3) is a consequence of (8.2) and (7.6) of (8.4).

Details for Example 4. Assume that X and Y are independent. Part (a) is an immediate conse-
quence of Corollary 7.1. Part (b) follows if we show (−2 logRn(F,G) − r2

n)/
√

2rn is asymptot-
ically standard normal. We shall use Corollary 7.5 to conclude this. Here mn equals r2

n and thus
satisfies m3

n = o(n). We shall now verify (7.8) and (7.6). Let us set

Dklj = φk

(
F(Xj )

)
φl

(
G(Yj )

) − φk

(
F(Xj )

)
φl

(
G(Yj )

)
,

�kj = φk

(
F(Xj )

) − φk

(
F(Xj )

)
and �lj = φl

(
G(Yj )

) − φl

(
G(Yj )

)
.

In view of the inequality |Dklj | ≤
√

2|�kj |+
√

2|�lj |, we obtain with the help of (8.3) the bound

rn∑
k=1

rn∑
l=1

1

n

n∑
j=1

E
[|Dklj |2

] ≤ 8π2r4
n

n
.

From this and r6
n = o(n), we conclude (7.8).
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In view of the identity Dklj = φk(F (Xj ))�lj + φl(G(Yj ))�kj + �kl�jl , (7.6) follows if we
verify

Tn1 =
rn∑

k=1

rn∑
l=1

(
n−1/2

n∑
j=1

φk

(
F(Xj )

)
�lj

)2

= op(1),

Tn2 =
rn∑

k=1

rn∑
l=1

(
n−1/2

n∑
j=1

�kjφl

(
G(Yj )

))2

= op(1),

Tn3 =
rn∑

k=1

rn∑
l=1

(
n−1/2

n∑
j=1

�kj�lj

)2

= op(1).

Applications of (8.4) with Sj = φk(F (Xj )) yield the bound E[Tn1] ≤ π2r4
n/n, and this proves

Tn1 = op(1). The proof of Tn2 = op(1) is similar. To deal with Tn3, we set

H(k, l) =
n∑

j=1

�k,j�lj , �̄k = 1

n

n∑
j=1

�kj and �̄l = 1

n

n∑
j=1

�lj .

Note that Rj = nF(Xj ) is the rank of Xj . Given Y1, . . . , Yn and the order statistics X(1), . . . ,X(n),
the sum H(k, l) is a simple linear rank statistic with scores a(j) = φk(j/n) − φk(F (X(j)) and
coefficients Glj and consequently has (conditional) mean n�̄k�̄l and (conditional) variance

1

n − 1

n∑
j=1

(�kj − �̄k)
2

n∑
j=1

(�li − �̄l)
2 ≤ n

n − 1

1

n

n∑
j=1

�2
kj

1

n

n∑
j=1

�2
lj .

In view of this bound, we derive the inequality

E[Tn3] ≤ n

n − 1

n∑
k=1

E

[
1

n

n∑
j=1

�2
kj

]
rn∑

l=1

E

[
1

n

n∑
j=1

�2
lj

]
+ n

rn∑
k=1

E
[
�̄2

k

] rn∑
l=1

E
[
�̄2

l

]
.

We have

E[�̄2
k ) = E

[
�̄2

l

] = 1

n
+

(
1

n

n∑
j=1

φk(j/n)

)2

≤ 1

n
+ 2π2k2

n2
.

Using this and (8.3), we obtain E[Tn3] = O(r6
nn−2) = o(1) and thus Tn3 = op(1).
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