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In this paper, we investigate first the asymptotics of the minima of elliptical triangular arrays. Motivated
by the findings of Kabluchko (Extremes 14 (2011) 285–310), we discuss further the asymptotic behaviour
of the maxima of elliptical triangular arrays with marginal distribution functions in the Gumbel or Weibull
max-domain of attraction. We present an application concerning the asymptotics of the maximum and the
minimum of independent spherical processes.
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1. Introduction

It is well known that the maxima of Gaussian random vectors have asymptotically independent
components, a result going back to Sibuya [27]. Recently, Kabluchko [22] shows that the minima
of the absolute values of Gaussian random vectors have also asymptotically independent com-
ponents. The Gaussian framework is appealing from both theoretical and applied point of view.
In order to still consider Gaussian random vectors for modelling asymptotically dependent risks,
triangular arrays of Gaussian random vectors with increasing dependence should be considered
– this approach is suggested in Hüsler and Reiss [20]. As shown in the aforementioned paper,
the maxima of Gaussian triangular arrays can be attracted by some max-stable distribution func-
tion with dependent components which is referred to as the Hüsler–Reiss distribution function.
In fact, the Hüsler–Reiss copula is a particular case of the Brown–Resnick copula; a canonical
example of a max-stable Brown–Resnick process is first presented in Brown and Resnick [4] in
the context of the asymptotics of the maximum of Brownian motions. See Kabluchko et al. [23]
for the main properties of Brown–Resnick processes. Kabluchko [22] discusses a more general
asymptotic framework analysing the maximum of independent Gaussian processes showing that
the Brown–Resnick process appears as the limit process if the underlying covariance functions
satisfy a certain asymptotic condition. Additionally, the aforementioned paper investigates the
asymptotics of the minimum of the absolute value of independent Gaussian processes extending
some previous results of Penrose [26].

Indeed, Gaussian random vectors are a canonical example of elliptically symmetric (for short
elliptical) random vectors. Therefore, it is natural to consider Kabluchko’s findings in the frame-
work of elliptical random vectors and spherical processes. Belonging to the class of conditional
Gaussian processes, spherical processes appear naturally in diverse applications, see, for exam-
ple, Falk et al. [10], or Hüsler et al. [18,19].
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As shown in Hashorva [11,16] the maxima and the minima (of absolute values) of elliptical
random vectors have asymptotically independent components. Elliptical random vectors are de-
fined by the marginal distribution functions and some nonnegative definite matrix �, see (2.1)
below. If �n,n ≥ 1 are k × k correlation matrices pertaining to an elliptical triangular array, the
crucial condition for the asymptotic behaviour of both maxima and minima is

lim
n→∞ cn

(
11� − �n

) = � =: (γij )i,j≤k with γij ∈ (0,∞), i �= j, i, j ≤ k, (1.1)

where cn, n ≥ 1 is a sequence of positive constants determined by a marginal distribution function
of the elliptical random vectors, and 1 = (1, . . . ,1)� ∈ Rk (here � stands for the transpose sign).

In Theorem 3.1, we specify the constants cn such that the minima of absolute values of tri-
angular arrays are attracted by some min-infinitely divisible distribution function in Rk ; the de-
pendence function of the limiting distribution function is indirectly determined by the marginal
distribution functions of the triangular array. Utilising Kabluchko’s approach, we reconsider the
aforementioned results for the maxima deriving some new representations for the limiting distri-
butions under the assumptions that the marginals of the elliptical random vectors have distribu-
tion function in the Gumbel or Weibull max-domain of attraction (MDA).

A direct application of our result concerns the asymptotics of maximum and minimum (of
absolute values) of independent spherical processes. It turns out that the limiting process of the
normalised maximum of spherical processes is the same as that of Gaussian processes discussed
in Kabluchko [22], namely the max-stable Brown–Resnick process. However, the norming con-
stants are necessarily different. One important consequence of our findings is that the Brown–
Resnick process is shown to be also the limit of the maximum of non-Gaussian processes. When
instead of maximum the minimum of absolute values of Gaussian processes is considered, from
the aforementioned reference, we know that the limiting process is min-stable; we refer to that
process as Penrose–Kabluchko process. As demonstrated in our application, Penrose–Kabluchko
processes can be retrieved in the limit in the more general framework of spherical processes.

The paper is organised as follows: Section 2 introduces our notation and presents some pre-
liminary results. In Section 3, we deal with the asymptotics of minima of absolute values of
elliptical triangular arrays. Section 4 investigates the maxima of triangular arrays with marginal
distribution functions in the MDA of the Gumbel or the Weibull distribution. The applications
mentioned above are presented in Section 5. Proofs of all the results are relegated to Section 6.

2. Preliminaries

Let in the following I, J be two non-empty disjoint index sets such that I ∪J = {1, . . . , k}, k ≥ 2,

and define for x = (x1, . . . , xk)
� ∈ Rk the subvector of x with respect to I by xI = (xi, i ∈ I )�.

If � ∈ Rk×k is a square matrix, then the matrix �IJ is obtained by retaining both the rows and
the columns of � with indices in I and in J , respectively; similarly we define �JI ,�JJ ,�II .
Given x,y ∈ Rk write

x > y if xi > yi,∀i = 1, . . . , k,

x + y = (x1 + y1, . . . , xk + yk)
�, cx = (cx1, . . . , cxk)

�, c ∈ R.
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The notation Ba,b, a, b > 0 stands for a beta random variable with probability density function

�(a + b)

�(a)�(b)
xa−1(1 − x)b−1, x ∈ (0,1),

where �(·) is the Euler Gamma function; Y ∼ F means that the random vector Y has distribution
function F .

Throughout this paper, U is a k-dimensional random vector uniformly distributed on the
unit sphere (with respect to the L2-norm) Sk of Rk being further independent of Rk > 0 and
A,An,n ≥ 1 are k-dimensional square matrices such that � = AA� and �n = AnA

�
n are posi-

tive definite correlation matrices (all entries in the main diagonal are equal to 1). We write Um

if m < k to mean again that Um has the uniform distribution on Sm. The distribution function of
Rk, k ≥ 1 will be denoted by Hk , whereas the distribution function of RkU1 will be denoted by
G; ω ∈ (0,∞] is their common upper endpoint.

Let X = (X1, . . . ,Xk)
�, k ≥ 2 be an elliptically symmetric random vector with stochastic

representation

X d= RkAU, (2.1)

where
d= stands for equality of the distribution functions. As shown in Cambanis et al. [5]

S d= RkU is a spherically symmetric random vector with tractable distributional properties. For

instance (S1, . . . , Sm)� d= RmUm,m < k with positive random radius Rm such that

R2
m

d= R2
k Bm/2,(k−m)/2, (2.2)

with Bm/2,(k−m)/2 independent of Rk . Equation (2.2) can be written iteratively as

R2
m

d= R2
m+1 Bm/2,1/2, m = 1, . . . , k − 1, (2.3)

where R2
m+1 and Bm/2,1/2 are independent. Note that if R2

k is chi-square distributed with k de-
grees of freedom (abbreviate this by R2

k ∼ χ2
k ), then (2.3) holds for any m ∈ N with R2

m ∼ χ2
m.

Another interesting result of Cambanis et al. [5] is that μ�S d= √
μ�μS1 for any μ ∈ Rk .

Consequently, the assumption that � is a correlation matrix yields

Xi
d= X1

d= RkU1, 1 ≤ i ≤ k.

We call a positive random variable Z ∼ F regularly varying at 0 with index γ ∈ [0,∞] if

lim
s↓0

F(st)

F (s)
= tγ ∀t > 0, (2.4)

which is abbreviated as Z ∈ RVγ or F ∈ RVγ . Condition (2.4) is equivalent with 1/Z (or its
survival function) being regularly varying at infinity with index −γ . When γ = −∞, then the



Extremes of elliptical arrays 889

survival function of 1/Z is called rapidly varying at infinity. See Jessen and Mikosch [21] or
Omey and Segers [25] for details on regular variation.

Central for our results is an interesting fact discovered by Kabluchko [22] pointing out the
importance of the incremental variance matrix (function) for the properties of the Brown–Resnick
process. Given a k-dimensional Gaussian random vector X this k × k matrix is denoted by � =
(γij )i,j≤k, where γij = Var{Xi − Xj }. The covariance matrix � of X is related to � by

� = AA� = (
θ1� + 1θ� − �

)
/2, θ = (

Var{X1}, . . . ,Var{Xk}
)�

. (2.5)

If {Z(t), t ∈ T } is a mean-zero Gaussian process with variance function σ 2(·), we define similarly
to the discrete case the incremental variance function � by

�(t1, t2) = Var
{
Z(t2) − Z(t1)

}
, t1, t2 ∈ T .

By Theorem 4.1 of Kabluchko [22], the stochastic process

η�(t) = min
i≥1

∣∣ϒi + Zi(t)
∣∣, t ∈ R (2.6)

is the limit of the minima of absolute values of independent Gaussian processes, if additionally

L = ∑∞

i=1 εϒi
is a Poisson point process on R with points ϒ1,ϒ2, . . . and intensity measure

given by the Lebesgue measure being further independent of the Gaussian processes {Zi(t), t ∈
R}, i ≥ 1. Here εx denotes the Dirac measure at x; εx(B) = 1 if x ∈ B ⊂ R, and εx(B) = 0 when
x /∈ B .

In the sequel, for given θ ∈ (0,∞)k, k ≥ 2 and A,�,� satisfying (2.5) we write X �

E[θ ,�;Hk] if X d= RkAU,Rk ∼ Hk . We write simply X � E[�;Hk] if the specification of θ

is not necessary for the stated result, meaning that the result holds for any θ ∈ (0,∞)k . Further,
if R2

k ∼ χ2
k we write X � Gauss[�], with X a mean-zero Gaussian random vector with incre-

mental variance matrix �.

3. Minima of elliptical triangular arrays

Let X(i)
n

d= RkAnU,1 ≤ i ≤ n,n ≥ 1 be k-dimensional independent elliptical random vectors,
where the square matrix An is such that �n = AnA

�
n , n ≥ 1 is a correlation matrix. Next, we

discuss the asymptotic behaviour of Ln = (Ln1, . . . ,Lnk)
�, n ≥ 1 defined by

Lnj = min
1≤i≤n

∣∣X(i)
nj

∣∣, j = 1, . . . , k, n ≥ 1.

We have

X
(i)
nj

d= X
(1)
11 =: X11, Lnj

d= Ln1, j = 1, . . . , k,2 ≤ i ≤ n

and |X11|2 d= R2
k B1/2,(k−1)/2.
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Next, we assume that Rk ∈ RVγ with index γ ∈ (0,1], which in view of Lemma 6.1 implies
|X11| ∈ RVγ ; note that the converse holds if γ ∈ (0,1). Define a sequence of constants an,n ≥ 1
by

P
{
a−1
n ≥ X11 > 0

} = 1/n. (3.1)

For such constants, we have the convergence in distribution (n → ∞)

anLnj
d→ Lj ∼ Gγ , j = 1, . . . , k,

with distribution function Gγ given by

Gγ (x) = 1 − exp
(−2xγ

)
, x > 0. (3.2)

In view of Hashorva [16], if �n has all off-diagonal elements bounded by some constant c ∈
(0,1), then

anLn
d→ L = (L1, . . . , Lk)

�, n → ∞ (3.3)

holds with L1, . . . , Lk being mutually independent. By allowing the off-diagonal elements of �n

to converge to 1 as n → ∞ with a certain speed, it is possible that the random vector L has
dependent components. If Hi, i ≤ k is the distribution function of Ri in (2.3) it turns out that
Rm,m ≤ k − 1 with distribution function

Hm(z) =
∫ z

0

1

rE{1/Rm+1} dHm+1(r), z > 0 (3.4)

determine the distribution function of L (assuming E{1/Rk} < ∞). For the derivation of this

result, we shall define an elliptical random vector ZK;j d= Rm−1�m,KUm with

�m,K(�m,K)� = (
1��

Kj ,J + �Kj ,J 1� − �Kj ,Kj

)
/2,

1 = (1, . . . ,1)� ∈ Rm−1,Kj = K \ J,J = {j},
where K ⊂ {1, . . . , k} has m ≥ 2 elements, and � is the matrix in (1.1).

Theorem 3.1. Let X(i)
n ,1 ≤ i ≤ n,n ≥ 1 be a triangular array of k-dimensional elliptical

random vectors with correlation matrices �n,n ≥ 1 as above, and Rk ∼ Hk . Suppose that
|X(1)

11 | ∈ RVγ ,γ ∈ (0,1] and E{1/Rk} < ∞.
If condition (1.1) is satisfied for cn = 2a2

n with an determined by (3.1), then (3.3) holds and for
all x ∈ (0,∞)k

P{L > x} = exp

(
k∑

m=1

(−1)m
∑

|K|=m

∫ x
γ
j

−x
γ
j

P
{∣∣sign(y)|y|1/γ + Z

K;j
i

∣∣
(3.5)

≤ xi, i ∈ K \ {j}, j ∈ K
}

dy

)
,
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where the summation above runs over all non-empty index sets K with |K| = m elements and j

is some index in K . Set the integral in (3.5) equal to 2x
γ

j if K = {j}.
Remarks.

(a) The result of Theorem 3.1 can be extended for � with off-diagonal elements equal to 0.
For instance when � = 00� with 0 = (0, . . . ,0)�, then it follows that

P{L > x} = 1 − Gγ

(
min

1≤i≤k
xi

)
, x ∈ (0,∞)k.

(b) In view of (3.5) the random vector (Ld, Ll ), d �= l has joint distribution function depend-
ing on the element γdl of �.

Example 1. Let X(i)
n ,1 ≤ i ≤ n,n ≥ 1 be a triangular array of k-dimensional mean-zero Gaus-

sian random vectors with covariance matrix �n,n ≥ 1. Since R2
m ∼ χ2

m,m ≤ k, then an defined
by (3.1) satisfies

an = (
1 + o(1)

) n√
2π

, n → ∞.

Hence, when (1.1) is valid with cn = 2a2
n, then (3.5) holds with ZK;j a mean-zero Gaussian

random vector with covariance matrix �m,K(�m,K)�.

Next, we extend Theorem 3.1 imposing a smoothness assumption on Rk , namely that (2.3)
holds also for m = k.

Theorem 3.2. Under the assumptions and notation of Theorem 3.1, if further (2.3) holds for
m = k with Rk+1 ∼ Hk+1, then

P{L > x} = exp

(
−

∫
R

P
{∃i ≤ k:

∣∣sign(y)|y|1/γ + Zi

∣∣ ≤ xi

}
dy

)
, x ∈ (0,∞)k, (3.6)

with Z � E[�; Hk] and Hk defined by (3.4).

Remark. The assumption (2.3) is satisfied for m = k, provided that X(i)
n , i ≤ n is a subvector of

an elliptical random vector, see Cambanis et al. [5]. In particular, it holds if Rk
d= SR̃k with S a

positive random variable independent of R̃2
k ∼ χ2

k .

Example 2. Let X(i)
n ,1 ≤ i ≤ n,n ≥ 1 be as in Example 1. Next, define

Y(i)
n = SnX(i)

n , 1 ≤ i ≤ n,n ≥ 1,

with S,Sn,n ≥ 1 independent positive random variables with distribution function F being fur-
ther independent of X(i)

n ,1 ≤ i ≤ n. If F ∈ RVγ ,γ ∈ (0,1], then by Lemma 6.1 |Y (1)
n1 | ∈ RVγ .

Define constants an,n ≥ 1 such that P{0 < SX11(1) ≤ 1/an} = 1/n holds for all large n. If fur-
ther (1.1) is satisfied with cn = 2a2

n, then (3.6) holds. Note in passing that Hk satisfies (3.4) with
R2

k+1 ∼ χ2
k+1,Rk+1 > 0.
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4. Maxima of elliptical triangular arrays

With the same notation as above we consider again the triangular array X(i)
n ,1 ≤ i ≤ n,n ≥

1 of k-dimensional independent elliptical random vectors with stochastic representation (2.1)
and �n = AnA

�
n , n ≥ 1 given correlation matrices. Define the componentwise maxima Mn =

(Mn1, . . . ,Mnk)
� by

Mnj = max
1≤i≤n

X
(i)
nj , j = 1, . . . , k, n ≥ 1.

The asymptotic behaviour of the maxima of elliptical triangular arrays is discussed in Hashorva
[12] assuming that the random radius Rk has distribution function Hk in the Gumbel MDA. A
canonical example of such triangular arrays is that of the Gaussian arrays for which the limit
distribution of the maxima is the Hüsler–Reiss copula which is a particular case of the Brown–
Resnick copula. When Hk is in the Weibull MDA the limit distribution of the maxima is a max-
infinitely divisible distribution function, see Hashorva [11].

We reconsider the findings of the aforementioned papers showing novel representations of
the limit distributions given in terms of the distribution of the maxima of some point processes
shifted by elliptical random vectors. For the derivation of the next results, we impose asymptotic
assumptions on either the marginal distribution functions or on the associated random radius Rk ,
which is of some interest for statistical applications where some data might be missing, or some
component of the random vector might be unobservable, and therefore the random radius itself
cannot be estimated.

4.1. Gumbel max-domain of attraction

The main assumption in this section is that the marginal distribution functions of the elliptical
triangular array are in the Gumbel MDA. A univariate distribution function G is in the Gumbel
MDA (abbreviated G ∈ GMDA(w)) if for any x ∈ R

lim
t↑ω

1 − G(t + x/w(t))

1 − G(t)
= exp(−x), ω = sup

{
t : G(t) < 1

}
, (4.1)

with w(·) some positive scaling function. If ω = ∞, an important property for the distribution
function G satisfying (4.1) is a key finding of Davis and Resnick [6], namely by Proposition 1.1
therein (see also Embrechts et al. [9], page 586) for any μ ∈ R, τ > 1 we have

lim
x→∞

(
xw(x)

)μ 1 − G(τx)

1 − G(x)
= 0. (4.2)

Indeed (4.2), which we refer to as the Davis–Resnick tail property is crucial for several asymp-
totic approximations.



Extremes of elliptical arrays 893

Theorem 4.1. Let R ∼ Hk,X(i)
n ,1 ≤ i ≤ n,�n,n ≥ 1 be as in Theorem 3.1. If either G ∈

GMDA(w) or Hk ∈ GMDA(w) and condition (1.1) is satisfied with

cn = 2
bn

an

, bn = G−1(1 − 1/n), an = 1/w(bn), n > 1, (4.3)

then for any x ∈ Rk and Z � Gauss[�] we have

lim
n→∞ P

{
(Mn − bn1)/an ≤ x

}
(4.4)

= Q�(x) = exp

(
−

∫
R

P{∃i ≤ k: Zi > xi − y + θi/2} exp(−y)dy

)
,

where θi = Var{Zi}, i ≤ k.

Since the above result holds for Gaussian triangular arrays with scaling function w(x) = x, the
distribution function Q� is the multivariate max-stable Hüsler–Reiss distribution function. For
a particular choice of a Gaussian process {Z(t), t ∈ R} this distribution has the Brown–Resncik
copula; in fact it can be directly defined by Brown–Resnick processes βR;� with independent
Gaussian points ξi(t) := Zi(t) − σ 2(t)/2, i ≥ 1 given as

βR;�(t) = max
i≥1

[
ϒi + ξi(t)

]
, t ∈ R. (4.5)

Here 
 = ∑∞
i=1 εϒi

is a Poisson point process with intensity measure exp(−x)dx being inde-
pendent of {Zi(t), t ∈ R}, i ≥ 1. In view of our result, the Brown–Resnick process with Gaussian
points does not depend on the variance function, which is already established in Theorem 2.1 of
Kabluchko et al. [23].

4.2. Weibull max-domain of attraction

The unit Weibull distribution with index α ∈ (0,∞) is �α(x) = exp(−|x|α), x < 0. In view of
Hashorva and Pakes [17] the distribution function G is in the Weibull MDA if Hk is in the
Weibull MDA. We assume for simplicity that Hk has upper endpoint equal to 1. By definition,
Hk is in the MDA of �α (for short Hk ∈ WMDA(α)) if for any x ∈ (0,∞)

lim
n→∞Hn

k

(
1 − a(n)x

) = �α(x), an = 1 − H−1
k (1 − 1/n). (4.6)

If Hk ∈ WMDA(α), with some index α ∈ (0,∞) and Hk has upper endpoint equal to 1, then
by Theorem 2.1 in Hashorva [13]

lim
n→∞ P

{
(Mn − 1)/an ≤ x

} = Q̃�,α(x) ∀x ∈ (−∞,0)k, (4.7)

with Q̃�,α a max-infinitely divisible distribution function, provided that (1.1) holds with cn =
2/an, an = 1 − G−1(1 − 1/n),n > 1.
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In the next theorem, we show that (4.7) holds if either G or Hk is in the Weibull MDA.
Furthermore, we give a new representation for the limit distribution function Q̃�,α .

Theorem 4.2. Let R ∼ Hk,X(i)
n ,1 ≤ i ≤ n,�n,n ≥ 1 be as in Theorem 3.1, and assume that

G has upper endpoint 1. If either G ∈ WMDA(α + (k − 1)/2), or Hk ∈ WMDA(α), with α ∈
(0,∞), then (4.7) holds where

Q̃�,α(x) = exp

(
−

∫ ∞

0
P{∃i ≤ k:

√
2yZi > xi + y + θi/2}dyα+(k−1)/2

)
, (4.8)

with Z � E[�;Hk], θ ∈ (0,∞)k and H̃α the distribution function of R̃α > 0 which satisfies

R̃α
2 d= Bk/2,α .

We remark that Q̃�,α has Weibull marginal distributions �α+(k−1)/2. It follows from our result

that Q̃�,α is determined by � and α but not by the vector θ , and further Q̃�,α is not a max-stable
distribution function; clearly, it is a max-infinitely divisible distribution function.

5. Results for spherical processes

It is well-known that spherical random sequences are mixtures of Gaussian random sequences.
Specifically, if the random variables Xi, i ≥ 1 with some common non-degenerate distribution
function G are such that (X1, . . . ,Xk) is centered and spherically distributed for any k ≥ 1,

then Xi
d= SX∗

i , i ≥ 1 with X∗
i , i ≥ 1 is a sequence of independent standard Gaussian ran-

dom variables being further independent of S > 0. Consequently, a spherical random process
{X(t), t ∈ R} such that X(t) has distribution function G for any t ∈ R can be expressed as
{X(t) = SY (t), t ∈ R} with Y(t) a mean-zero Gaussian process and S a positive random vari-
able independent of {Y(t), t ∈ R}; see Theorem 7.4.4 in Bogachev [2] for a general result on
spherically symmetric measures. We note in passing that {X(t), t ∈ T } is a particular instance of
Gaussian processes with random variance, see Hüsler et al. [19] for recent results on extremes of
those processes.

We shall discuss first the asymptotic behaviour of the maximum of independent spherical
processes. Then we shall briefly investigate the asymptotics of the minima of absolute values of
those processes.

Model A: Assume that S has an infinite upper endpoint such that for given constants α1 ∈ R

and C1,L1,p1 ∈ (0,∞)

P{S > x} = (
1 + o(1)

)
C1x

α1 exp
(−L1x

p1
)
, x → ∞ (5.1)

is valid. We abbreviate (5.1) as S ∈ W (C1, α1,L1,p1).
Model B: Consider S with upper endpoint equal to 1 such that

lim
u→∞

P{S > 1 − x/u}
P{S > 1 − 1/u} = xγ , x ∈ (0,∞), (5.2)
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with γ ∈ [0,∞) some constant.
Since for S = 1 almost surely, the spherical process is simply a Gaussian one (which is cov-

ered by Model B for γ = 0) intuitively, we expect that under the Model B the maximum of in-
dependent elliptical processes will behave asymptotically as the maximum of independent Gaus-
sian processes. This intuition is confirmed by Theorem 5.1 below. In fact, it turns out that the
limit process of the maximum of independent spherical processes is in both models the Brown–
Resnick process. Next, if �(·, ·) is a negative definite kernel in R2 we define as previously the
Brown–Resnick stochastic process with Gaussian points as

βR;�(t) = max
i≥1

(
ϒi + Zi(t) − σ 2(t)/2

)
, t ∈ T ⊂ R, (5.3)

with {Zi(t), t ∈ T } independent Gaussian processes with incremental variance function �, vari-
ance function σ 2(·) being further independent of the point process 
 with points ϒi, i ≥ 1 ap-
pearing in (4.5). For simplicity, we deal below with the case T = R establishing weak conver-
gence of finite-dimensional distributions (denoted below as �⇒).

Theorem 5.1. Let {Yni(t), t ∈ R},1 ≤ i ≤ n,n ≥ 1 be independent Gaussian processes with
mean-zero, unit variance function and correlation function ρn(s, t), s, t ∈ R. Let S,Sni, n ≥ 1 be
independent and identically distributed positive random variables. Set {Xni(t) = SniYni(t), t ∈
R}, n ≥ 1, and let G be the distribution function of X11(1). Suppose that

lim
u→∞ cn

(
1 − ρn(t1, t2)

) = �(t1, t2) ∈ (0,∞), t1 �= t2 ∈ R, (5.4)

where cn = 2bn/an and an = 1/w(bn), bn = G−1(1 − 1/n) with G−1 the inverse of G.

(A) If (5.1) holds, then as n → ∞
1

an

[
max

1≤i≤n
Xni(t) − bn

]
�⇒ βR;�(t), t ∈ R, (5.5)

where �⇒ means the weak convergence of the finite-dimensional distributions, and

bn

an

= (
1 + o(1)

)2p1 lnn

2 + p1
, bn = (

1 + o(1)
)( lnn

L1A−p1 + A2/2

)(2+p1)/(2p1)

,

A = (p1L1)
1/(2+p1).

(B) If (5.2) holds with γ ∈ [0,∞), then (5.5) is satisfied and limn→∞ bn/
√

2 lnn =
limn→∞ an

√
2 lnn = 1.

Next, we discuss the asymptotic behaviour of the minimum of absolute values in the frame-
work of independent spherical processes.

Theorem 5.2. Let {Yni(t),Zi(t), t ∈ R},1 ≤ i ≤ n,n ≥ 1 be as in Theorem 5.1, and let
{Sni(t), t ∈ R}, n ≥ 1 be independent copies of {S(t), t ∈ R}, being further independent of the
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Gaussian processes. Define the spherical processes {Xni(t) = Sni(t)Yni(t), t ∈ R}, n ≥ 1, and
suppose that S(t) > κ, t ∈ R almost surely for some positive constant κ . If an = n/

√
2π and

(5.4) holds with cn = 2a2
n, then as n → ∞

min
1≤i≤n

an

∣∣Xni(t)
∣∣ �⇒ min

i≥1
Si(t)

∣∣ϒi + Zi(t)
∣∣ = ζ�,S(t), t ∈ R, (5.6)

where ϒi, i ≥ 1 are the points of 
 defined in (4.5) being independent of both Zi(t), Si(t), t ∈
R, i ≥ 1.

Remarks.

(a) In Theorem 5.2, we can relax the assumption that S(t) is bounded from below by assuming
instead E{[S(t)]−1−ε} < ∞ for some ε > 0.

(b) The process {ζ�,S(t), t ∈ R} is defined by � and {S(t), t ∈ R} but does not depend on the
variance function σ 2(·). The processes ζ�,1 appears first in Penrose [26] and recently in
Kabluchko [22]. We refer to {η�,S(t), t ∈ R} as Penrose–Kabluchko process.

6. Further results and proofs

Lemma 6.1. Let X d= RAU be an elliptical random vector in Rk, k ≥ 2 with A such that AA�
is a positive definite correlation matrix and R > 0.

(a) If for some γ ∈ [0,∞] we have R ∈ RVγ , then |X1| ∈ RVγ ∗ with γ ∗ = min(γ,1).
Conversely, if |X1| ∈ RVγ ∗ with γ ∗ ∈ (0,1), then R ∈ RVγ ∗ .

(b) If E{R−1−ε} < ∞ for some ε > 0, then |X1| ∈ RV1.

Proof. (a) If γ ∈ [0,∞) the proof follows from Theorem 4.1 in Hashorva [16]. When γ = ∞,
then 1/R is rapidly varying at infinity. Hence from Theorem 5.4.1 of de Haan and Ferreira [8]
E{R−p} < ∞ for any p ∈ (0,∞), and thus the claim follows once the statement (b) is proved.
Statement (b) can be directly established by applying Breiman’s lemma (see Breiman [3], Davis
and Mikosch [7]), and thus the proof is complete. �

Proof of Theorem 3.1. By the relation between the minima and maxima, in view of Lemma 4.1.3
in Falk et al. [10] the proof follows if

lim
n→∞nP

{
an|Xni | ≤ xi, i ∈ K

} = LK(xK), x ∈ (0,∞)k (6.1)

holds for any non-empty index set K ⊂ {1, . . . , k} with m ≥ 2 elements, and LK(·) some right-
continuous functions. In the sequel, we write simply Xn instead of X(1)

n ; the subvector (Xn)K
is an elliptical random vector with associated random radius Rm ∼ Hm satisfying (2.3). By
Lemma 6.1, Hk ∈ RVγ ,γ ∈ (0,1] implies Hm ∈ RVγ ,1 ≤ m ≤ k − 1. Consequently, it suffices
to show (6.1) for the case m = k. Since the distribution function of Xn depends on �n and not
on An, and further �n is positive definite, we can assume that An is a lower triangular matrix.
Define qn(y) = y/an, y ∈ R and recall that G denotes the distribution function of X11. It follows



Extremes of elliptical arrays 897

that conditioning on Xnk = qn(y) with y �= 0 such that G(|y|/an) ∈ (0,1), n ≥ 1 we have the
stochastic representation (set I = {1, . . . , k − 1}, J = {k})

(Xn)I |Xnk = qn(y)
d= Ry,n,k−1BnkUk−1 + (�n)IJ qn(y), n ≥ 1, (6.2)

where Bnk is a lower triangular matrix satisfying BnkB
�
nk = (�n)II − (�n)IJ (�n)JI . In view of

Cambanis et al. [5], Uk−1 is independent of Ry,n,k−1, n ≥ 1 which has survival function Qy,n,k−1
given by

Qy,n,k−1(z) =
∫ ω

((y/an)2+z2)1/2(r
2 − (y/an)

2)(k−1)/2−1r−k+2 dHk(r)∫ ω

y/an
(r2 − (y/an)2)(k−1)/2−1r−k+2 dHk(r)

,

(6.3)
z ∈ (

0,

√
ω2 − y2/a2

n

)
.

Clearly, limn→∞ an = ∞ and the monotone convergence theorem implies the convergence in
distribution

Ry,n,k−1
d→ Rk−1, n → ∞,

where Rk−1 ∼ Hk−1 with

Hk−1(z) = 1 −
∫ ω

z
r−1 dHk(r)

E{1/Rk} , z ∈ (0,ω). (6.4)

In view of relation (2.2) and since for any integer m ≥ 2 we have E{1/Bm/2,(k−m)/2} < ∞ the
assumption E{1/Rk} < ∞ implies E{1/Rm} < ∞. Hence, the above convergence holds also for
the omitted case k = m. Next, by (1.1) and the fact that BnkB

�
nk (and not the matrix Bnk) defines

the conditional distribution in (6.2) we can choose Bnk such that limn→∞ anBnk = Bk with

BkB
�
k = (

1θ� + θ1� − �II

)
/2, θ = �IJ .

Hence, for any x ∈ (0,∞)k utilising further (6.2) and the fact that G is symmetric about 0 we
obtain (set Gn(y) = G(y/an), n ≥ 1 and K = {1, . . . , k})

P
{
an|Xni | ≤ xi,∀i = 1, . . . , k

}
=

∫
R

P
{
an|Xni | ≤ xi,∀i ∈ I |Xnk = y

}
dG(y)

=
∫ xk

−xk

P
{
an|Xni | ≤ xi,∀i ∈ I |Xnk = y/an

}
dGn(y)

=
∫ xk

0

[
P
{
an|Xni | ≤ xi,∀i ∈ I |Xnk = y/an

}
+ P

{
an|Xni | ≤ xi,∀i ∈ I |Xnk = −y/an

}]
dGn(y)

=
∫ xk

0

[
P
{
an|Zni + dniy/an| ≤ xi, i ∈ I

} + P
{
an|Zni − dniy/an| ≤ xi,∀i ∈ I

}]
dGn(y),
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with Zn = Ry,n,k−1BnkUk−1 and dni the ith component of (�n)IJ . By the construction we have
the convergence in distribution (n → ∞)

Ry,n,k−1(anBnk)Uk−1
d→ Rk−1BkUk−1 =: (Z1, . . . ,Zk−1)

�.

Further, by the regular variation at 0 of the distribution function of |X11|, the fact that X11 is
symmetric about 0, and the choice of an,n ≥ 1 we have

lim
n→∞n

[
Gn(t) − Gn(s)

] = tγ − sγ ∀s, t ∈ (0,∞). (6.5)

Consequently, since limn→∞ dni = 1

lim
n→∞nP

{
an|Xni | ≤ xi,∀i = 1, . . . , k

}
=

∫ xk

0

[
P
{|Zi + y| ≤ xi, i ∈ I

}
dyγ + P

{|Zi − y| ≤ xi, i ∈ I
}]

dyγ

=
∫ x

γ
k

0

[
P
{∣∣Zi + y1/γ

∣∣ ≤ xi, i ∈ I
}

dy + P
{∣∣Zi − y1/γ

∣∣ ≤ xi, i ∈ I
}]

dy

=
∫ x

γ
k

−x
γ
k

P
{∣∣Zi + sign(y)|y|1/γ

∣∣ ≤ xi, i ∈ I
}

dy,

hence the proof follows. �

Proof of Theorem 3.2. First, we show that Xn = X(1)
n , n ≥ 1 is the k-dimensional marginal

of some (k + 1)-dimensional elliptical random vector. Define therefore a new random vector
Yn, n ≥ 1 with stochastic representation

Yn
d= Rk+1A

∗
nUk+1,

where Uk+1 is uniformly distributed on Sk+1 independent of Rk+1 ∼ Hk+1, and A∗
n is a non-

singular (k + 1)-dimensional square matrix. Choose A∗
n, n ≥ 1 such that �∗

n = A∗
n(A

∗
n)

� is again
a correlation matrix satisfying(

�∗
n

)
II

= �n, I = {1, . . . , k}, J = {k + 1},
and

lim
n→∞a2

n

(
11� − �∗

n

) = �∗ ∈ (0,∞)(k+1)×(k+1),
(
�∗)

II
= �,1 ∈ Rk+1.

Since �n,�
∗
n are positive definite, by condition (1.1) this construction is possible. Note that �∗

n

satisfies (1.1) with cn = 2bn/an and limit matrix �∗ ∈ [0,∞)(k+1)×(k+1). We write for nota-
tional simplicity (�∗)IJ = θ/2 and assume that θ has positive components. It is well-known (see
Cambanis [5]) that

Uk+1
d= (

UW,
√

1 − W 2 J
)
,
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with W a positive random variable such that W 2 d= Bk/2,1/2, and J a Bernoulli random vari-
able taking values −1,1 with equal to probability 1/2. Furthermore J ,U, and W are mutually
independent.

By the assumption, R2
k

d= (Rk+1)
2 Bk/2,1/2 with Rk+1 ∼ Hk+1 independent of Bk/2,1/2, im-

plying Yn,I
d= Xn. Since the distribution function of Xn depends on �n and not on An, and

further �n is positive definite we can assume that An is a lower triangular matrix. We construct
A∗

n to be also a non-singular lower triangular matrix. With the same notation as in the proof of
Theorem 3.1 we have

(Yn)I |Yn,k+1 = qn(y)
d= Ry,n,kBnU + (

�∗
n

)
IJ

qn(y), n ≥ 1, (6.6)

where Bn is a lower triangular matrix satisfying BnB
�
n = �n − (�∗

n)IJ (�∗
n)J I , and Ry,n,k , n ≥ 1

(being independent of U) has survival function Qy,n,k+1 given by (6.4). As in the proof of The-
orem 3.1

Ry,n,k
d→ Rk ∼ Hk, n → ∞.

By (1.1) and the fact that BnB
�
n (and not the matrix Bn) defines the conditional distribution we

can choose Bn such that limn→∞ anBn = B with BB� = (1θ� + θ1� − �)/2. Hence, for any
x ∈ (0,∞)k utilising further (6.6) we obtain

lim
n→∞ P{anLn > x}

= lim
n→∞ P{∀i ≤ k: anLni > xi}

= lim
n→∞ P

{∀i ≤ k: an|Xni | > xi

}n

= exp
(
− lim

n→∞nP
{∃i ≤ k: an|Xni | ≤ xi

})
= exp

(
− lim

n→∞n

[∫ ∞

0
P
{∃i ≤ k: an|Yni | ≤ xi |Yn,k+1 = y/an

}
dGn(y)

+
∫ 0

−∞
P
{∃i ≤ k: an|Yni | ≤ xi |Yn,k+1 = y/an

}
dGn(y)

])
= exp

(
− lim

n→∞n

∫ ∞

0

[
P
{∃i ≤ k: an|Yni | ≤ xi |Yn,k+1 = y/an

}
+ P

{∃i ≤ k: an|Yni | ≤ xi |Yn,k+1 = −y/an

}]
dGn(y)

)
= exp

(
− lim

n→∞n

∫ ∞

0

[
P
{∃i ≤ k: an|Zni + dniy/an| ≤ xi

}
+ P

{∃i ≤ k: an|Zni − dniy/an| ≤ xi

}]
dGn(y)

)
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= exp

(
−

∫ ∞

0

[
P
{∃i ≤ k: |Zi + y| ≤ xi

} + P
{∃i ≤ k: |Zi − y| ≤ xi

}]
dyγ

)
= exp

(
−

∫ ∞

0

[
P
{∃i ≤ k:

∣∣Zi + y1/γ
∣∣ ≤ xi

} + P
{∃i ≤ k:

∣∣Zi − y1/γ
∣∣ ≤ xi

}]
dy

)
= exp

(
−

∫
R

P
{∃i ≤ k:

∣∣Zi + sign(y)|y|1/γ
∣∣ ≤ xi

}
dy

)
,

with (Z1, . . . ,Zk)
� = RkBU, and thus the claim follows. �

Proof of Theorem 4.1. By Theorem 4.1 in Hashorva and Pakes [17], H ∈ GMDA(w) is equiv-
alent with G ∈ GMDA(w). Let Bn,Yn, n ≥ 1 be as in the proof of Theorem 3.2 and adopt below
the same notation as therein. Conditioning on Yn,k+1 = qn(y) = any + bn, with y ∈ R such that
G(qn(y)) ∈ (0,1), n ≥ 1 we have that (6.6) holds, with Ry,n,k independent of U satisfying (see
Hashorva [15])

1√
anbn

Ry,n,k
d→ R, n → ∞,

where R2 ∼ χ2
k+1, and Rk > 0. Next, G ∈ GMDA(w), (1.1) and the choice of Bn imply for any

x ∈ Rk (omitting some details)

lim
n→∞ P{Mn ≤ anx + bn1}

= lim
n→∞

[
1 − P

{∃i ≤ k: Xni > qn(xi)
}]n

= exp
(
− lim

n→∞nP
{∃i ≤ k: Xni > qn(xi)

})
= exp

(
− lim

n→∞n

∫
R

P
{∃i ≤ k: Yni > qn(xi)|Yn,k+1 = qn(y)

}
dG

(
qn(y)

))
= exp

(
− lim

n→∞n

∫
R

P
{
∃i ≤ k:

1√
anbn

Ry,n,k

([√bn/anBn]U
)
i

> xi − ydni + [1 − dni]bn/an

}
dG

(
qn(y)

))
= exp

(
−

∫
R

P{∃i ≤ k: Zi > xi − y + θi/2} exp(−y)dy

)
,

with Z � Gauss[�]. Recall RkU is a k-dimensional Gaussian random vector with independent
components, and further note that the choice of θi above is arbitrary. The assumption that (2.3)
holds also for m = k needed to define Yn can now be dropped since the limit distribution is inde-
pendent of that assumption, and further the convergence in distribution holds without imposing
that assumption, hence the proof is complete. �
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Proof of Theorem 4.2. First note that Theorem 4.5 in Hashorva [17] states that H ∈
WMDA(α),α > 0 is equivalent with G ∈ WMDA(α + (k − 1)/2). We proceed as in the proof of
Theorem 4.1 (keeping the same notation). Conditioning on the event Yn,k+1 = qn(y) = 1 − any,

with y such that G(qn(y)) ∈ (0,1), n ≥ 1 and constants an defined in (3.1) we have that again
(6.6) holds. In view of Hashorva [15] for any y > 0

1√
an

Ry,n,k
d→ √

2yR̃α, n → ∞,

with R̃α ∼ H̃α where H̃α(0) = 0 and R̃α
2 d= Bk/2,α . Furthermore

lim
u→∞

1 − G(1 − x/u)

1 − G(1 − 1/u)
= xα+(k−1)/2 ∀x ∈ (0,∞)

holds. Hence for any x ∈ (−∞,0)k , we obtain (set Gn(y) = G(1 − any))

lim
n→∞ P{Mn ≤ 1 + anx}

= exp

(
− lim

n→∞n

∫ ∞

0
P
{
∃i ≤ k:

1√
an

Ry,n,k

(
Bn√
an

U
)

i

> xi + ydni + [1 − dni]/an

}
dGn(y)

)
= exp

(
−

∫ ∞

0
P
{∃i ≤ k: Zi > [xi + y + θi/2]/√2y

}
dyα+(k−1)/2

)
,

with Z � E[�; H̃α], and thus the proof is complete. �

Proof of Theorem 5.1.

(A) Let G denote the distribution function of S1Y11(1), and let � denote the standard Gaus-
sian distribution function on R. The Mills ratio asymptotics (see, e.g., Lu and Li [24]) implies
Y11(1) ∈ W (1/

√
2π,−1,1/2,2). Consequently, by Lemma 2.1 in Arendarczyk and Dȩbicki [1]

1 − G(x) = (
1 + o(1)

)( 2π

2 + p1

)1/2
C1√
2π

A−α1x(α1(p1−1)+p1)/(2+p1)

× exp
(−(

L1A
−p1 + A2/2

)
x2p1/(2+p1)

)
= (

1 + o(1)
) C1√

2 + p1
A−α1x(α1(p1−1)+p1)/(2+p1) exp

(
Bx2p1/(2+p1)

)
, x → ∞,

with A = (p1L1)
1/(2+p1),B = L1A

−p1 + A2/2 > 0. Hence G ∈ GMDA(w) with

w(x) = B
2p1

2 + p1
x(p1−2)/(2+p1), x > 0.



902 E. Hashorva

Set bn = G−1(1 − 1/n),n > 1 with G−1 the generalised inverse of G. Now, by (4.2)

lim
n→∞

bn

b∗
n

= 1, (6.7)

where b∗
n = �−1(1 − 1/n),n > 1 and � is some distribution function satisfying

1 − �(x) = (
1 + o(1)

)
exp

(−Bx2p1/(2+p1)
)
, x → ∞.

The above asymptotics implies

lim
n→∞n

(
1 − G(anx + bn)

) = exp(−x) ∀x ∈ R, (6.8)

with

bn = (
1 + o(1)

)( lnn

B

)(2+p1)/(2p1)

, an = 1

w(bn)
= (2 + p1)b

(2−p1)/(2+p1)
n

2p1B
, n → ∞.

Consequently, as n → ∞
bn

an

= (
1 + o(1)

) 2p1

2 + p1
lnn,

hence (5.5) follows by Theorem 3.1 of Kabluchko [22] and Theorem 4.1.
(B) Since � ∈ GMDA(w) with scaling function w(x) = x, x > 0 Theorem 3 in Hashorva [14]

implies

1 − G(x) = (
1 + o(1)

)
�(α + 1)P

{
S > 1 − 1/

(
xw(x)

)}
P
{
Y11(1) > x

}
, x → ∞

and thus G ∈ GMDA(w). If an, bn,n ≥ 1 are defined by (6.8), then Theorem 3.1 in Kabluchko
[22] and Theorem 4.1 establishes (5.5). By the form of w(·) we have limn→∞ anbn = 1, and
further (6.7) holds with b∗

n = �−1(1 − 1/n),n > 1. Consequently, bn = (1 + o(1))
√

2 lnn for all
large n, and thus the result follows. �

Proof of Theorem 5.2. Let S(i)
n and X(i)

n , i ≤ n,n ≥ 1 be such that S
(i)
nj = Sni(tj ), tj ∈ R, j ≤ k

and X(i)
n , i ≤ n are independent copies of the Gaussian random vector Xn1(tj ),1 ≤ j ≤ k. By

the assumptions of the theorem, the proof follows if we show that the limit of the minima of the
absolute values for the triangular array S(i)

n X(i)
n , i ≤ n,n ≥ 1 converges to the random vector L

such that

P{L > x} = exp

(
−

∫
R

P
{∃i ≤ k: Si |y + Zi | ≤ xi

}
dy

)
, x ∈ (0,∞)k,

where S := S(1)
1 is independent centered Gaussian random vector Z with incremental variance

matrix � which has components γij = �(ti, tj ). The proof follows with similar arguments as that

of Theorem 3.2 since S(i)
n is, by the assumption, independent of X(i)

n . �
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