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We consider the problem of nonparametric quantile regression for twice censored data. Two new estimates
are presented, which are constructed by applying concepts of monotone rearrangements to estimates of
the conditional distribution function. The proposed methods avoid the problem of crossing quantile curves.
Weak uniform consistency and weak convergence is established for both estimates and their finite sample
properties are investigated by means of a simulation study. As a by-product, we obtain a new result regarding
the weak convergence of the Beran estimator for right censored data on the maximal possible domain, which
is of its own interest.
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1. Introduction

Quantile regression offers great flexibility in assessing covariate effects on event times. The
method was introduced by [28] as a supplement to least squares methods focussing on the estima-
tion of the conditional mean function and since this seminal work it has found numerous applica-
tions in different fields (see [26]). Recently, [29] have proposed quantile regression techniques as
an alternative to the classical Cox model for analyzing survival times. These authors argued that
quantile regression methods offer an interesting alternative, in particular if there is heteroscedas-
ticity in the data or inhomogeneity in the population, which is a common phenomenon in sur-
vival analysis (see [39]). Unfortunately, the “classical” quantile regression techniques cannot be
directly extended to survival analysis, because for the estimation of a quantile one has to estimate
the censoring distribution for each observation. As a consequence, rather stringent assumptions
are required in censored regression settings. Early work by [40,41], requires that the censoring
times are always observed. Moreover, even under this rather restrictive and – in many cases –
not realistic assumption the objective function is not convex, which results in some computa-
tional problems (see, e.g., [19]). Even worse, recent research indicates that using the information
contained in the observed censored data actually reduces the estimation accuracy (see [27]).

Because in most survival settings the information regarding the censoring times is incom-
plete several authors have tried to address this problem by making restrictive assumptions on
the censoring mechanism. For example, [48] assumed that the responses and censoring times are
independent, which is stronger than the usual assumption of conditional independence. Refer-
ence [47] proposed a method for median regression under the assumption of i.i.d. errors, which
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is computationally difficult to evaluate and cannot be directly generalized to the heteroscedastic
case. Recently, [39] suggested a recursively re-weighted quantile regression estimate under the
assumption that the censoring times and responses are independent conditionally on the predictor.
This estimate adopts the principle of self consistency for the Kaplan–Meier statistic (see [17])
and can be considered as a direct generalization of this classical estimate in survival analysis.
Reference [37] pointed out that the large sample properties of this recursively defined estimate
are still not completely understood and proposed an alternative approach, which is based on mar-
tingale estimating equations. In particular, they proved consistency and asymptotic normality of
their estimate.

While all of the cited literature considers the classical linear quantile regression model with
right censoring, less results are available for quantile regression in a nonparametric context. Some
results on nonparametric quantile regression when no censoring is present can be found in [8] and
[49,50]. References [9] and [16] pointed out that many of the commonly proposed parametric or
nonparametric estimates lead to possibly crossing quantile curves and modified some of these
estimates to avoid this problem. Results regarding the estimation of the conditional distribution
function from right censored data can be found in [10,11] or [31]. The estimation of conditional
quantile functions in the same setting is briefly stressed in [10] and further elaborated in [12],
while [18] proposed a quantile regression procedure for right censored and dependent data. On
the other hand, the problem of nonparametric quantile regression for censored data where the
observations can be censored from either left or right does not seem to have been considered in
the literature.

This gap can partially be explained by the difficulties arising in the estimation of the condi-
tional distribution function with two-sided censored data. The problem of estimating the (un-
conditional) distribution function for data that may be censored from above and below has been
considered by several authors. For an early reference, see [43]. More recent references are [6,
7,24] and [36]. On the other hand- to their best knowledge- the authors are not aware of litera-
ture on nonparametric conditional quantile regression, or estimation of a conditional distribution
function, for left and right censored data when the censoring is not always observed and only the
conditional independence of censoring and lifetime variables is assumed.

In the present paper, we consider the problem of nonparametric quantile regression for twice
censored data. We consider a censoring mechanism introduced by [36] and propose an estimate
of the conditional distribution function in several steps. On the basis of this estimate and the
preliminary statistics which are used for its definition, we construct two quantile regression es-
timates using the concept of simultaneous inversion and isotonization (see [14]) and monotone
rearrangements (see [15], [9] or [3] among others). In Section 2, we introduce the model and the
two estimates, while Section 3 contains our main results. In particular, we prove uniform con-
sistency and weak convergence of the estimates of the conditional distribution function and its
quantile function. As a by-product, we obtain a new result on the weak convergence of the Beran
estimator on the maximal possible interval, which is of independent interest. In Section 4, we
illustrate the finite sample properties of the proposed estimates by means of a simulation study.
Finally, all proofs and technical details are deferred to the Appendix.
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2. Model and estimates

We consider independent identically distributed random vectors (Ti,Li,Ri,Xi), i = 1, . . . , n,
where Ti are the variables of interest, Li and Ri are left and right censoring variables, respec-
tively, and the R

d -valued random variables Xi denote the covariates. We assume that the distri-
butions of the random variables Li,Ri and Ti depend on Xi and denote by FL(t |x) := P(L ≤
t |X = x) the conditional distribution function of L given X = x. The conditional distribution
functions FR(·|x) and FT (·|x) are defined analogously.

Additionally, we assume that the random variables Ti,Li,Ri are almost surely nonnegative
and independent conditionally on the covariate Xi . Our aim is to estimate the conditional quantile
function F−1

T (·|x). However, due to the censoring, we can only observe the triples (Yi,Xi, δi)

where Yi = max(min(Ti,Ri),Li) and the indicator variables δi are defined by

δi :=
{0, Li < Ti ≤ Ri ,

1, Li < Ri < Ti ,
2, Ti ≤ Li < Ri or Ri ≤ Li .

(2.1)

Remark 2.1. An unconditional version of this censoring mechanism was introduced by [36].
Examples of situations where this kinds of data occur can, for example, be found in chapter 15
of [34]. This model also is closely related to the double censoring model, see [43] for the case
without covariates. In that setting, the assumption of independence between the random variables
L,R,T is replaced by the assumption that T is independent of the pair (R,L) and additionally
P(L < R) = 1. Note that none of the two assumptions is strictly more or less restrictive than
the other. Rather the two models describe different situations. Moreover, since L,T ,R are never
observed simultaneously, it is not possible to test based on the data which of the models is most
appropriate. Instead, an understanding of the underlying data generation process is crucial to
identify the right model. A more detailed comparison of the two models can be found in [35] and
[36] for the case without covariates.

Roughly speaking, the construction of an estimate for the conditional quantile function of T

can be accomplished in three steps. First, we define the variables Si := min(Ti,Ri) and con-
sider the model Yi = max(Si,Li), which is a classical right censoring model. In this model, we
estimate the conditional distribution FL(·|x) of L. In a second step, we use this information to
reconstruct the conditional distribution of T (see Section 2.1). Finally, the concept of simultane-
ous isotonization and inversion (see [14]) and the monotone rearrangements, which was recently
introduced by [15] in the context of monotone estimation of a regression function, are used to
obtain two estimates of the conditional quantile function (see Section 2.2).

2.1. Estimation of the conditional distribution function

To be more precise, let H denote the conditional distribution of Y . We introduce the notation
Hk(A|x) = P(A ∩ {δ = k}|X = x) and obtain the decomposition H = H0 + H1 + H2 for the
conditional distribution of Yi . The sub-distribution functions Hk (k = 0,1,2) can be represented
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as follows

H0(dt |x) = FL(t − |x)
(
1 − FR(t − |x)

)
FT (dt |x), (2.2)

H1(dt |x) = FL(t − |x)
(
1 − FT (t |x)

)
FR(dt |x), (2.3)

H2(dt |x) = {
1 − (

1 − FT (t |x)
)(

1 − FR(t |x)
)}

FL(dt |x) = FS(t |x)FL(dt |x). (2.4)

Note that the conditional (sub-)distribution functions Hk and H can easily be estimated from the
observed data by

Hk,n(t |x) :=
n∑

i=1

Wi(x)I{Yi≤t,δi=k}, Hn(t |x) :=
n∑

i=1

Wi(x)I{Yi≤t}, (2.5)

where the quantities Wi(x) denote local weights depending on the covariates X1, . . . ,Xn, which
will be specified below. We will use the representations (2.2)–(2.4) to obtain an expression for
FT in terms of the functions H,Hk and then replace the distribution functions H,Hk by their
empirical counterparts Hn,Hk,n, respectively. We begin with the reconstruction of FL. First, note
that

M−
2 (dt |x) := H2(dt |x)

H(t |x)
= FS(t |x)FL(dt |x)

FL(t |x)FS(t |x)
= FL(dt |x)

FL(t |x)
(2.6)

is the predictable reverse hazard measure corresponding to FL and hence we can reconstruct FL

using the product-limit representation

FL(t |x) =
∏

(t,∞]

(
1 − M−

2 (ds|x)
)

(2.7)

(see, e.g., [36]). Now having a representation for the conditional distribution function FL we can
define in a second step

�−
T (dt |x) := H0(dt |x)

FL(t − |x) − H(t − |x)
= H0(dt |x)

FL(t − |x)(1 − FS(t − |x))

= H0(dt |x)

FL(t − |x)(1 − FR(t − |x))(1 − FT (t − |x))
(2.8)

= FL(t − |x)(1 − FR(t − |x))FT (dt |x)

FL(t − |x)(1 − FR(t − |x))(1 − FT (t − |x))
= FT (dt |x)

1 − FT (t − |x)
,

which yields an expression for the predictable hazard measure of FT . Finally, FT can be recon-
structed by using the product-limit representation

1 − FT (t |x) =
∏
[0,t]

(
1 − �−

T (ds|x)
)

(2.9)

(see, e.g., [23]). Note that formula (2.9) yields an explicit representation of the conditional distri-
bution function FT (·|x) in terms of the quantities H0,H1,H2,H , which can be estimated from
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the data [see equation (2.5)]. The estimate of the conditional distribution function is now defined
as follows. First, we use the representation (2.7) to obtain an estimate of FL(·|x), that is,

FL,n(t |x) =
∏

(t,∞]

(
1 − M−

2,n(ds|x)
)
, (2.10)

where

M−
2,n(ds|x) = H2,n(ds|x)

Hn(s|x)
. (2.11)

Second, after observing (2.8) and (2.9), we define

FT,n(t |x) = 1 −
∏
[0,t]

(
1 − �−

T ,n(ds|x)
)
, (2.12)

where

�−
T ,n(ds|x) = H0,n(ds|x)

FL,n(s − |x) − Hn(s − |x)
. (2.13)

In Section 3, we will analyse the asymptotic properties of these estimates, while in the following
Section 2.2 these estimates are used to construct nonparametric and noncrossing quantile curve
estimates.

Remark 2.2. Throughout this paper, we will adopt the convention ‘0/0 = 0.’ This means that if,
for example, H0,n(dt |x) = 0 and FL,n(t − |x) − Hn(t − |x) = 0, the contribution of

H0,n(dt |x)

FL,n(t − |x) − Hn(t − |x)

in (2.13) will be interpreted as zero.

2.2. Non-crossing quantile estimates by monotone rearrangements

In practice, nonparametric estimators of a conditional distribution function F(·|x) are not nec-
essarily increasing for finite sample sizes (see, e.g., [50]). Although this problem often vanishes
asymptotically, it still is of great practical relevance, because in a concrete application it is not
completely obvious how to invert a non-increasing function. Trying to naively invert such esti-
mators may lead to the well-known problem of quantile crossing (see [26] or [50]) which poses
some difficulties in the interpretation of the results. In this paper, we will discuss the following
two possibilities to deal with this problem:

1. Use a procedure developed by [16] which is based on a simultaneous isotononization and
inversion of a nonincreasing distribution function. As a by-product, this method yields non-



Quantile regression for twice censored data 753

crossing quantile estimates. To be precise, we consider the operator

� :

⎧⎨
⎩

L∞(J ) → L∞(R),

f �→
(

y �→
∫

J

I{f (u)≤y} du

)
,

(2.14)

where L∞(I ) denotes the set of bounded, measurable functions on the set I and J denotes
a bounded interval. Note that for a strictly increasing function f this operator yields the
right continuous inverse of f , that is, �(f ) = f −1 [here and in what follows, f −1 will
denote the generalized inverse, i.e., f −1(t) := sup{s :f (s) ≤ t}]. On the other hand, �(f )

is always isotone, even in the case where f does not have this property. Consequently, if f̂

is a not necessarily isotone estimate of an isotone function f , the function �(f̂ ) could be
regarded as an isotone estimate of the function f −1. Therefore, the first idea to construct
an estimate of the conditional quantile function consists in the application of the operator
� to the estimate FT,n defined in (2.12), that is,

q̂(τ |x) = �
(
FT,n(·|x)

)
(τ ). (2.15)

However, note that formally the mapping � operates on functions defined on bounded
intervals. More care is necessary if the operator has to be applied to a function with an un-
bounded support. A detailed discussion and a solution of this problem can be found in [16].
In the present paper, we use different approach which is a slightly modified version of the
ideas from [3]. To be precise, note that estimators of the conditional distribution function
F(·|x) [in particular those of the form (2.5), which will be used later] often are constant
outside of the compact interval J := [j1, j2] = [mini Yi,maxi Yi]. Now the structure of
the estimator FT,n(·|x) implies that FT,n(·|x) will also be constant outside of J . We thus
propose to consider the modified operator �̃J defined as

�̃J :

⎧⎨
⎩

L∞(R) → L∞(R),

f �→
(

y �→ j1 +
∫

J

I{f (u)≤y} du

)
.

(2.16)

Consequently, the first estimator of the conditional quantile function is given by

q̂(τ |x) = �̃J

(
FT,n(·|x)

)
(τ ). (2.17)

2. Use the concept of increasing rearrangements (see [15] and [9] for details) to construct
an increasing estimate of the conditional distribution function, which is then inverted in a
second step. More precisely, we define the operator

� :

{
L∞(J ) → L∞(R),

f �→ (
y �→ (

�f (·))−1
(y)

)
,

(2.18)

where � is introduced in (2.14). Note that for a strictly increasing right continuous function
f this operator reproduces f , that is, �(f ) = f . On the other hand, if f is not isotone,
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�(f ) is an isotone function and the operator preserves the Lp-norm, that is,∫
J

∣∣�(
f (u)

)∣∣p du =
∫

J

∣∣f (u)
∣∣p du.

Moreover, the operator also defines a contraction, that is,∫
J

∣∣�(f1)(u) − �(f2)(u)
∣∣p du ≤

∫
J

|f1 − f2|2 du ∀p ≥ 1

(see [25] or [32]). This means if f̂ (=f1) is a not necessarily isotone estimate of the isotone
function f (=f2), then the isotonized estimate �(f̂ ) is a better approximation of the isotone
function f than the original estimate f̂ with respect to any Lp-norm [note that �(f ) = f

because f is assumed to be isotone]. For a general discussion of monotone rearrangements
and the operators (2.14) and (2.18), we refer to [4], while some statistical applications can
be found in [15] and [9].

The idea is now to use rearranged estimators of Hi(·|x) and H(·|x) in the representations
(2.6)–(2.9). For this purpose, we need to modify the operator � so that it can be applied to
functions of unbounded support. We propose to proceed as follows:

• Define the operator �̃J indexed by the compact interval J = [j1, j2] as

�̃J :

⎧⎪⎨
⎪⎩

L∞(R) → L∞(R),

f �→ (
y �→ I{y<j1}f (j1−)

+ (
�̃J f (·))−1

(y)I{j1≤y≤j2} + I{y>j2}f (j2)
)
.

(2.19)

• Truncate the estimator Hn(·|x) for values outside of the interval [0,1], that is,

H̃n(t |x) := Hn(t |x)I{Hn(t |x)∈[0,1]} + I{Hn(t |x)>1}

[note that in general estimators of the form (2.5) do not necessarily have values in the
interval [0,1] since the weights Wi(x) might be negative].

• Use the statistic H IP
n (t |x) := �̃JY

(H̃n(·|x))(t) as estimator for H(t |x).
• Observe that the estimator H IP

n (t |x) is by construction an increasing step function
which can only jump in the points t = Yi , that is, it admits the representation

H IP
n (t |x) =

∑
i

W IP
i (x)I{Yi≤t} (2.20)

with weights W IP
i (x) ≥ 0. Based on this statistic, we define estimators H IP

k,n of the
subdistribution functions Hk as follows

H IP
k,n(t |x) =

∑
i

W IP
i (x)I{Yi≤t}I{δi=k}, k = 0,1,2. (2.21)

In particular, such a definition ensures that H IP(t |x) = H IP
0,n(t |x) + H IP

1,n(t |x) +
H IP

2,n(t |x).
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So far we have obtained increasing estimators of the quantities H and Hi . The next step in
our construction is to plug these estimates in representation (2.6) to obtain:

M̃−
2,n(dt |x) = H IP

2,n(dt |x)

H IP
n (t |x)

, (2.22)

which defines an increasing function with jumps of size less or equal to one. This implies
that F̃L,n(t |x) = ∏

(t,∞](1−M̃−
2,n(ds|x)) is also increasing. For the rest of the construction,

observe the following lemma which will be proved at the end of this section.

Lemma 2.3. Assume that Yi 
= Yj for i 
= j . Then the function

�̃−
T ,n(dt |x) := H IP

0,n(dt |x)

F̃L,n(t − |x) − H IP
n (t − |x)

(2.23)

is nonnegative, increasing and has jumps of size less or equal to one.

This in turn yields the estimate

F IP
T ,n(t |x) = 1 −

∏
[0,t]

(
1 − �̃−

T ,n(ds|x)
)
. (2.24)

In the final step, we now simply invert the resulting estimate of the conditional distribu-
tion function F IP

T ,n since it is increasing by construction. We denote this estimator of the
conditional quantile function by

q̂IP(t |x) := sup
{
s :F IP

T ,n(s|x) ≤ t
}
. (2.25)

In the next section, we will discuss asymptotic properties of the two proposed estimates q̂ and
q̂IP of the conditional quantile curve.

Remark 2.4. In the classical right censoring case, there is no uniformly good way to define the
Kaplan–Meier estimator beyond the largest uncensored observation (see, e.g., [20], page 105).
Typical approaches include setting it to unity, to the value at the largest uncensored observation,
or to consider it unobservable within certain bounds (for more details, see the discussion in [20],
page 105 and [2], page 260). When censoring is light, the first of the above mentioned approaches
seems to yield the best results (see [2], page 260).

When the data can be censored from either left or right, the situation becomes even more com-
plicated since now we also have to find a reasonable definition below the smallest uncensored
observation. From definitions (2.6)–(2.9), it is easy to see that FT,n equals zero below the small-
est uncensored observation with non-vanishing weight and is constant at the largest uncensored
observation and above. In practice, the latter implies that the estimators q̂(τ |x) and q̂IP(τ |x) are
not defined as soon as supt FT ,n(t |x) < τ or supt F

IP
T ,n(t |x) < τ , respectively. A simple ad-hoc

solution to this problem is to define the estimator FT,n or F IP
T ,n as 1 beyond the last observation

with non-vanishing weight or to locally increase the bandwidth. A detailed investigation of this
problem is postponed to future research.
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We conclude this section with the proof of Lemma 2.3.

Proof of Lemma 2.3. In order to see that �̃−
T ,n(dt |x) is increasing, we note that

H IP
n (t − |x) =

∏
[t,∞)

(
1 − H IP

n (ds|x)

H IP
n (s|x)

)

=
∏

[t,∞)

(
1 − H IP

2,n(ds|x)

H IP
n (s|x)

− H IP
0,n(ds|x) + H IP

1,n(ds|x)

H IP
n (s|x)

)

≤
∏

[t,∞)

(
1 − H IP

2,n(ds|x)

H IP
n (s|x)

)
= F̃L,n(t − |x).

Thus, F̃L,n(t − |x) − H IP
n (t − |x) ≥ 0 and the nonnegativity of �̃−

T ,n(dt |x) is established. In

order to prove the inequality �̃−
T ,n(dt |x) ≤ 1, we assume without loss of generality that Y1 <

Y2 < · · · < Yn. Observe that as soon as δk = 0 we have for k ≥ 2

F̃L,n(Yk − |x) − H IP
n (Yk − |x)

=
[

1 −
∏

[Yk,∞)

(
1 − H IP

0,n(ds|x) + H IP
1,n(ds|x)

H IP
n (s|x)

)] ∏
[Yk,∞)

(
1 − H IP

2,n(ds|x)

H IP
n (s|x)

)

(∗)=
[

1 −
∏

j≥k,δj 
=2

(
1 − �H IP

0,n(Yj |x) + �H IP
1,n(Yj |x)

H IP
n (Yj |x)

)] ∏
j≥k+1,δj =2

(
1 − �H IP

2,n(Yj |x)

H IP
n (Yj |x)

)

=
[

1 −
∏

j≥k,δj 
=2

(
H IP

n (Yj−1|x)

H IP
n (Yj |x)

)] ∏
j≥k+1,δj =2

(
H IP

n (Yj−1|x)

H IP
n (Yj |x)

)

(∗∗)=
[

1 − H IP
n (Yk−1|x)

H IP
n (Yk|x)

∏
j≥k+1,δj 
=2

(
H IP

n (Yj−1|x)

H IP
n (Yj |x)

)] ∏
j≥k+1,δj =2

(
H IP

n (Yj−1|x)

H IP
n (Yj |x)

)

≥
[

1 − H IP
n (Yk−1|x)

H IP
n (Yk|x)

] ∏
j≥k+1

(
H IP

n (Yj−1|x)

H IP
n (Yj |x)

)

=
[
H IP

n (Yk|x) − H IP
n (Yk−1|x)

H IP
n (Yk|x)

]
H IP

n (Yk|x)

H IP
n (Yn|x)

= �H IP
n (Yk|x),

where the equalities (∗) and (∗∗) follow from δk = 0. An analogous result for k = 1 follows by
simple algebra. Hence, we have established that for δk = 0 we have ��̃−

T ,n(Yk|x) ≤ 1, and all the
other cases need not be considered since we adopted the convention ‘0/0 = 0.’ Thus, the proof
is complete. �
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3. Main results

The results stated in this section describe the asymptotic properties of the proposed estimators.
In particular, we investigate weak convergence of the processes {Hk,n(t |x)}t , {FT,n(t |x)}t , etc.,
where the predictor x is fixed. Our main results deal with the weak uniform consistency and
the weak convergence of the process {FT,n(t |x) − FT (t |x)}t and the corresponding quantile
processes obtained in Section 2. In order to derive the process convergence, we will assume
that it holds for the initial estimates Hn,Hk,n and give sufficient conditions for this property in
Lemma 3.3. In a next step, we apply the delta method (see [22]) to the map (H,H2) �→ M−

2
defined in (2.6) and the product-limit maps defined in (2.7) and (2.9). Note that the product limit
maps are Hadamard differentiable on the set of cadlag functions with total variation bounded by
a constant (see Lemma A.1 on page 42 in [35]), and hence the process convergence of M−

2,n and

�−
T ,n will directly entail the weak convergence results for FL,n and FT,n, respectively. However,

the Hadamard differentiability of the map (H2,H) �→ M−
2 only holds on domains where H(t) >

ε > 0, and hence more work is necessary to obtain the corresponding weak convergence results
on the interval [t00,∞] if H(t00|x) = 0, where

t00 := inf
{
t :H0(t |x) > 0

}
. (3.1)

This situation occurs, for example, if FR(t00|x) = 0, which is quite natural in the context consid-
ered in this paper because R is the right censoring variable.

For the sake of a clear representation and for later reference, we present all required tech-
nical conditions for the asymptotic results at the beginning of this section. We assume that the
estimators of the conditional subdistribution functions are of the form (2.5) with weights Wj(x)

depending on the covariates X1, . . . ,Xn but not on Y1, . . . , Yn or δ1, . . . , δn. The first set of con-
ditions concerns the weights that are used in the representation (2.5). Throughout this paper,
denote by ‖ · ‖ the maximum norm on R

d .

(W1) With probability tending to one, the weights in (2.5) can be written in the form

Wi(x) = Vi(x)∑n
j=1 Vj (x)

,

where the real-valued functions Vj (j = 1, . . . , n) have the following properties:

(1) There exist constants 0 < c < c < ∞ such that for all n ∈ N and all x we have either
Vj (x) = 0 or c/nhd ≤ Vj (x) ≤ c/nhd .

(2) If ‖x − Xj‖ ≤ Ch for some constant C < ∞, then Vj (x) 
= 0 and Vj (x) = 0 for
‖x − Xj‖ ≥ cn for some sequence (cn)n∈N such that cn = O(h). Without loss of
generality, we will assume that C = 1 throughout this paper.

(3)
∑

i Vi(x) = C(x)(1 + oP (1)) for some positive function C.
(4) supt‖

∑
i Vi(x)(x − Xi)I{Yi≤t}‖ = oP (1/

√
nhd).

Here (and throughout this paper), h denotes a smoothing parameter converging to 0 with
increasing sample size.
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(W2) We assume that the weak convergence√
nhd

(
H0,n(·|x) − H0(·|x),H2,n(·|x) − H2(·|x),Hn(·|x) − H(·|x)

) ⇒ (G0,G2,G)

holds in D3[0,∞], where the limit denotes a centered Gaussian process which has a
version with a.s. continuous sample paths and a covariance structure of the form

Cov
(
Gi(s|x),Gi(t |x)

) = b(x)
(
Hi(s ∧ t |x) − Hi(s|x)Hi(t |x)

)
,

Cov
(
G(s|x),G(t |x)

) = b(x)
(
H(s ∧ t |x) − H(s|x)H(t |x)

)
,

Cov
(
Gi(s|x),G(t |x)

) = b(x)
(
Hi(s ∧ t |x) − Hi(s|x)H(t |x)

)
for some function b(x). Here and throughout this paper, weak convergence is under-
stood as convergence with respect to the sigma algebra generated by the closed balls in
the supremum norm (see [38]).

(W3) The estimators Hk,n(·|x) (k = 0,1,2) and Hn(·|x) are weakly uniformly consistent on
the interval [0,∞).

Remark 3.1. It will be shown in Lemma 3.3 below that, under suitable assumptions on the
smoothing parameter h, important examples for weights satisfying conditions (W1)–(W3) are
given by the Nadaraya–Watson weights

WNW
i (x) = (

∏d
k=1 Kh((x − Xi)k))/(nhd)

(
∑

j

∏d
k=1 Kh((x − Xi)k))/(nhd)

=: V NW
i (x)∑

j V NW
j (x)

(3.2)

or (in one dimension) by the local linear weights

WLL
i (x) = Kh(x − Xi)(Sn,2 − (x − Xi)Sn,1)/(nh)

Sn,2Sn,0 − S2
n,1

(3.3)

= Kh(x − Xi)(1 − (x − Xi)Sn,1/Sn,2)/(nh)

(
∑

j Kh(x − Xj)(1 − (x − Xj)Sn,1/Sn,2))/(nh)
=: V LL

i (x)∑
j V LL

j (x)
,

where Kh(·) := K(·/h), Sn,k := 1
nh

∑
j Kh(x − Xj)(x − Xj)

k and the kernel satisfies the fol-
lowing condition.

(K1) The kernel K in (3.2) and (3.3) is a symmetric density of bounded total variation with
compact support, say [−1,1], which satisfies c1 ≤ K(x) ≤ c2 for all x with K(x) 
= 0
for some constants 0 < c1 ≤ c2 < ∞.

For the distributions of the random variables (Ti,Li,Ri,Xi), we assume that for some ε > 0
with Uε(x) := {y : |y − x| < ε}:

(D1) The conditional distribution function FR fulfills FR(t00|x) < 1.
(D2) For i = 0,1,2, we have limy→x supt |Hi(t |y) − Hi(t |x)| = 0.
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(D3) The conditional distribution functions FL(·|x),FR(·|x),FT (·|x) have densities, say
fL(·|x), fR(·|x), fT (·|x), with respect to the Lebesque measure.

(D4)
∫ ∞
t00

fL(u|x)

F 2
L(u|x)FS(u|x)

du < ∞.

(D5) supk=1,...,d

∫ ∞
t00

1
FL(u|x)FS(u|x)

|∂xk

fL(u|x)
FL(u|x)

|du < ∞.

(D6) supk,j=1,...,d sup(t,z)∈(t00,∞)×Uε(x) |∂zk
∂zj

fL(t |z)
FL(t |z) | < ∞.

(D7) The functions Hk(t |x) (k = 0,1,2) are twice continuously differentiable with respect
to the second component in some neighborhood Uε(x) of x and for k = 0,1,2 we have

sup
k,j=1,...,d

sup
t

sup
|y−x|<ε

∣∣∂yk
∂yj

Hk(t |y)
∣∣ < ∞.

(D8) The distribution function FX of the covariates Xi is twice continuously differentiable
in Uε(x). Moreover, FX has a uniformly continuous density fX such with fX(x) 
= 0.

(D9) There exists a constant C > 0 such that H(t |y) ≥ CH(t |x) for all (t, y) ∈ [t00, t00 +
ε) × I where I is a set with the property

∫
I∩Uδ(x)

fX(s)ds ≥ cδd for some c > 0 and
all 0 < δ ≤ ε.

(D10) fL(t |y)
FL(t |y)

= fL(t |x)
FL(t |x)

(1 + o(1)) uniformly in t ∈ [t00, t00 + ε) as y → x.
(D11) For τT ,0(x) := inf{t :FT (t |x) > 0}, we have infy∈Uε(x) FL(τT ,0(y)|y) > 0.

Remark 3.2. From the definition of t00 and H0, we immediately see that under condition (D1)
we have t00 = τT ,0(x) ∨ τL,0(x) where we use the notation τL,0(x) := inf{t :FL(t |x) > 0}. In
particular, this implies that under either of the assumptions (D4) or (D11) the equality t00 =
τT ,0(x) holds.

Finally, we make some assumptions for the smoothing parameter:

(B1) nhd+4 logn = o(1) and nh −→ ∞.
(B2) h → 0 and nhd/ logn −→ ∞.

Some important practical examples for weights satisfying conditions (W1)–(W3) include
Nadaraya–Watson and local linear weights. This is the assertion of the next lemma.

Lemma 3.3.

1. Conditions (W1)(1) and (W1)(2) are fulfilled for the Nadaraya–Watson weights WNW
i with

a Kernel K satisfying condition (K1). If the density fX is continuous at the point x, condi-
tion (W1)(3) also holds. Finally, if the function x �→ fX(x)FY (t |x) is continuously differ-
entiable in a neighborhood of x for every t with uniformly (in t ) bounded first derivative
and (B1) is fulfilled, condition (W1)(4) holds.

If additionally to these assumptions d = 1 and the density fX of the covariates X is
continuously differentiable at x with bounded derivative, condition (W1) also holds for the
local linear and rearranged local linear weights WLL

i and WLLI
i defined in (3.3) and (2.20),

(2.21), respectively, provided that the corresponding kernel fulfills condition (K1).
2. If under assumptions (D7), (D8) and (B1) the density fX is twice continuously differen-

tiable with uniformly bounded derivative, condition (W2) holds for the Nadaraya–Watson
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(d arbitrary), local linear (d = 1) or rearranged local linear (d = 1) weights based on a
positive, symmetric kernel with compact support.

3. If under assumptions (B2), (D2), (D3) the density fX is twice continuously differentiable
with uniformly bounded derivative, condition (W3) holds for the Nadaraya–Watson weights
Wi based on a positive, symmetric kernel with compact support (d arbitrary). If addition-
ally d = 1 and the density fX of the covariates X is continuously differentiable at x with
bounded derivative, condition (W3) also holds for local linear or rearranged local linear
weights.

The proof of this lemma is standard but tedious. Because of space considerations, we do not
include it in the present paper, a detailed proof can be found in the technical report [45].

Note that the assumption (B1) does not allow to choose h ∼ n−1/(d+4), which would be the
MSE-optimal rate for Nadaraya–Watson or local linear weights and functions with two contin-
uous derivatives with respect to the predictor. This assumption has been made for the sake of
a transparent presentation and implies that the bias of the estimates is negligible compared to
the stochastic part. Such an approach is standard in nonparametric estimation for censored data,
see [10] or [31]. In principle, most results of the present paper can be extended to bandwidths
h ∼ n−1/(d+4) if a corresponding bias term is subtracted.

Another useful property of estimators constructed from weights satisfying condition (W1) is
that they are increasing with probability tending to one.

Lemma 3.4. Under condition (W1)(1), we have

P
(
“The estimates Hn(·|x),H0n(·|x),H1n(·|x),H2n(·|x) are increasing”

) n→∞−→ 1.

The lemma follows from the relation{
“The estimates Hn(·|x),H0n(·|x),H1n(·|x),H2n(·|x) are increasing”

} ⊇ {
Wi(x) ≥ 0 ∀i

}
and the fact that under assumption (W1) the probability of the event on the right-hand side con-
verges to one. We will use Lemma 3.4 for the analysis of the asymptotic properties of the condi-
tional quantile estimators in Section 3.2. One noteworthy consequence of the lemma is the fact
that

P
(
q̂IP(·|x) ≡ q̂(·|x)

) → 1,

which follows because the mappings � and the right continuous inversion mapping coincide on
the set of nondecreasing functions. In particular, this indicates that, from an asymptotic point
of view, it does not matter which of the estimators q̂, q̂IP is used. The difference between both
estimators will only be visible in finite samples – see Section 4. In fact, it can only occur if one
of the estimators Hn,Hk,n is decreasing at some point.

3.1. Weak convergence of the estimate of the conditional distribution

We are now ready to describe the asymptotic properties of the estimates defined in Section 2. Our
first result deals with the weak uniform consistency of the estimate FT,n(·|x) under some rather
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weak conditions. In particular, it does neither require the existence of densities of the conditional
distribution functions [see (D3)] nor integrability conditions like (D4).

Theorem 3.5. If conditions (D1), (D3), (D11), (W1)(1), (W1)(2) and (W3) are satisfied, then
the following statements are correct.

1. The estimate FT,n(·|x) defined in (2.12) is weakly uniformly consistent on the interval [0, τ ]
for any τ such that FS(τ |x) < 1.

2. If additionally FS(τT ,1(x)|x) = 1, where

τT ,1(x) := sup
{
t :FT (t |x) < 1

}
,

and FT,n(·|x) is increasing and takes values in the interval [0,1], the weak uniform consis-
tency of the estimate FT,n(·|x) holds on the interval [0,∞).

The next two results deal with the weak convergence of FT,n and require additional assump-
tions on the censoring distribution. We begin with a result for the estimator FL,n, which is com-
puted in the first step of our procedure by formulas (2.6) and (2.7).

Theorem 3.6.

1. Let the weights used for H2,n and Hn in the definition of the estimate M−
2,n in (2.11) satisfy

conditions (W1) and (W2). Moreover, assume that conditions (B1), (D1) and (D3)–(D10)
hold. Then we have as n → ∞√

nhd
(
Hn − H,H0,n − H0,M

−
n,2 − M−

2

) ⇒ (G,G0,GM)

in D3([t00,∞]), where (G,G0,GM) denotes a centered Gaussian process with a.s. con-
tinuous sample paths and GM(t) = A(t) − B(t) is defined by

A(t) =
∫ ∞

t

dG2(u)

H(u|x)
, B(t) :=

∫ ∞

t

G(u)

H 2(u|x)
H2(du|x). (3.4)

Here the process (G0,G2,G) is specified in assumption (W2) and the integral with respect
to the process G2(t) is defined via integration-by-parts.

2. Under the conditions of the first part, we have√
nhd(Hn − H,H0,n − H0,FL,n − FL) ⇒ (G,G0,G3)

in D3([t00,∞]), where the process (G0,G2,G) is specified in assumption (W2) and G3 is
a centered Gaussian process with a.s. continuous sample paths which is defined by

G3(t) = FL(t |x)GM(t).

Remark 3.7. The value of the process GM at the point t00 is defined as its path-wise limit. The
existence of this limit follows from assumption (D4) and the representation

E
[
GM(s)GM(t)

] = b(x)

∫ ∞

s∨t

1

H(u|x)
M−

2 (du|x)
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for the covariance structure of GM , which can be derived by computations similar to those
in [35].

Theorem 3.8. Assume that the conditions of Theorem 3.6 and condition (D11) are satisfied.
Moreover, let t00 < τ such that FS([0, τ ]|x) < 1. Then we have the following weak convergence:

1. √
nhd

(
�−

T ,n − �−
T

) ⇒ V

in D([0, τ ]), where

V (t) :=
∫ t

0

G0(du)

(FL − H)(u − |x)
−

∫ t

0

G3(u−) − G(u−)

(FL − H)2(u − |x)
H0(du|x)

is a centered Gaussian process with a.s. continuous sample paths and the integral with
respect to G0 is defined via integration-by-parts.

2. √
nhd(FT,n − FT ) ⇒ W

in D([0, τ ]), where

W(t) := (
1 − FT (t |x)

)
V (t)

is a centered Gaussian process with a.s. continuous sample paths.

Note that the second part of Theorem 3.8 follows from the first part using the representation
(2.13) and the delta method.

3.2. Weak convergence of conditional quantile estimators

In this subsection, we discuss the asymptotic properties of the two conditional quantile estimates
q̂ and q̂IP defined in (2.17) and (2.25), respectively. As an immediate consequence of Theo-
rem 3.5 and the continuity of the quantile mapping (see [22], Proposition 1), we obtain the weak
consistency result.

Theorem 3.9. If the assumptions of the first part of Theorem 3.5 are satisfied and additionally
the conditions FS(F−1

T (τ |x)|x) < 1 and infε≤t≤τ fT (t |x) > 0 hold some some ε > 0, then the
estimators q̂(·|x) and qIP(·|x) defined in (2.17) and (2.25) are weakly uniformly consistent on
the interval [ε, τ ].

The compact differentiability of the quantile mapping and the delta method yield the following
result.
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Theorem 3.10. If the assumptions of Theorem 3.8 are satisfied, then we have for any ε > 0 and
τ > 0 with FS(F−1

T (τ |x)|x) < 1 and infε≤t≤τ fT (t |x) > 0

√
nhd

(
q̂(·|x) − F−1

T (·|x)
) ⇒ Z(·) on D

([ε, τ ]),√
nhd

(
q̂IP(·|x) − F−1

T (·|x)
) ⇒ Z(·) on D

([ε, τ ]),
where Z is a centered Gaussian process defined by

Z(·) = − W ◦ F−1
T (·|x)

fT (·|x) ◦ F−1
T (·|x)

and the centered Gaussian process W is defined in part 2 of Theorem 3.8.

The proofs Theorems 3.5–3.10 are presented in Appendix A and require several separate steps.
A main step in the proof is a result regarding the weak convergence of the Beran estimator on
the maximal possible domain in the setting of conditional right censorship. We were not able to
find such a result in the literature. Because this question is of independent interest, it is presented
separately in the following subsection.

3.3. A new result for the Beran estimator

We consider the common conditional right censorship model (see [10] for details). Assume that
our observations consist of the triples (Xi,Zi,�i) where Zi = min(Bi,Di),�i = I{Zi=Di }, the
random variables Bi,Di are independent conditionally on Xi and nonnegative almost surely.
The aim is to estimate the conditional distribution function FD of Di . Following [5], this can be
done by estimating FZ , the conditional distribution function of Z, and πk(t |x) := P(Zi ≤ t,�i =
k|X = x) (k = 0,1) through

FZ,n(t |x) := Wi(x)I{Zi≤t}, πk,n(t |x) := Wi(x)I{Zi≤t,�i=k} (k = 0,1) (3.5)

and then defining an estimator for FD as

FD,n(t |x) := 1 −
∏
[0,t]

(
1 − �−

D,n(ds|x)
)
, (3.6)

where the quantity �−
D,n(ds|x) is given by

�−
D,n(ds|x) := π0,n(ds|x)

1 − FZ,n(s − |x)
, (3.7)

and the Wi(x) denote local weights depending on X1, . . . ,Xn (see also the discussion at the
beginning of Section 3).
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The weak convergence of the process
√

nhd(FD,n(t |x) − FD(t |x))t in D([0, τ ]) with
π0(τ |x) < 1 was first established by [10]. An important problem is to establish conditions that
ensure that the weak convergence can be extended to D([0, t0]) where t0 := sup{s :π0(s|x) < 1}.

In the unconditional case, such conditions were derived by [21] who used counting process
techniques. A generalization of this method to the conditional case was first considered by [33]
and later exploited by [13] and [31]. However, none of those authors considered weak conver-
gence on the maximal possible interval [0, t0]. The following theorem provides sufficient condi-
tions for the weak convergence on the maximal possible domain.

Theorem 3.11. Assume that for some ε > 0:

(R1) The conditional distribution functions FD(·|x) and FB(·|x) have densities, say fD(·|x)

and fB(·|x), with respect to the Lebesque measure,
(R2)

∫ t0
0

λD(t |x)
1−FZ(t−|x)

dt < ∞,

(R3) supk=1,...,d

∫ t0
0

|∂xk
λD(t |x)|

1−FZ(t−|x)
dt < ∞,

(R4) supj,k=1,...,d sup(t,y)∈(0,t0)×Uε(x) |∂yk
∂yj

λD(t |y)| < ∞,
(R5) 1 − FZ(t |y) ≥ C(1 − FZ(t |x)) for all (t, y) ∈ (t0 − ε, t0] × I where I is a set with the

property
∫
I∩Uδ(x)

fX(s)ds ≥ cδd for some c > 0 and all 0 < δ ≤ ε,
(R6) λD(t |y) = λD(t |x)(1 + o(1)) uniformly in t ∈ (t0 − ε, t0] as y → x.

Moreover, let the weights in (3.5) satisfy condition (W1) and let the weak convergence√
nhd

(
FZ,n(·|x) − FZ(·|x),π0,n(·|x) − π0(·|x)

) ⇒ (G,G0) on D
([0,∞)

)
to a centered Gaussian process (G,G0) with covariance structure given by

Cov
(
G0(s|x),G0(t |x)

) = b(x)
(
π0(s ∧ t |x) − π0(s|x)π0(t |x)

)
,

Cov
(
G(s|x),G(t |x)

) = b(x)
(
FZ(s ∧ t |x) − FZ(s|x)FZ(t |x)

)
,

Cov
(
G0(s|x),G(t |x)

) = b(x)
(
π0(s ∧ t |x) − π0(s|x)FZ(t |x)

)
for some function b(x) hold (this is the case for Nadaraya–Watson or local linear weights, see
Lemma 3.3). Then under assumption (B1)√

nhd
(
FD,n(·|x) − FD(·|x)

)
t
⇒ GD(·) in D

([0, t0]
)
, (3.8)

where GD denotes a centered Gaussian process with covariance structure taking the form

Cov
(
GD(t),GD(s)

) = b(x)
(
1 − FD(s|x)

)(
1 − FD(t |x)

) ∫ s∧t

0

�D(du|x)

1 − FZ(u|x)
.

4. Simulation results

We have performed a small simulation study in order to investigate the finite sample properties
of the proposed estimates. An important but difficult question in the estimation of the condi-
tional distribution function from censored data is the choice of the smoothing parameter. For
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conditional right censored data, some proposals regarding the choice of the bandwidth have been
made by [13] and [30]. In order to obtain a reasonable bandwidth parameter for our simula-
tions, we used a modification of the cross validation procedure proposed by [1] in the context of
nonparametric quantile regression. To address the presence of censoring in the cross validation
procedure, we proceeded as follows:

1. Divide the data in blocks of size K with respect to the (ordered) X-components. Let
{(Yjk,Xjk, δjk)|j = 1, . . . , Jk} denote the points among {(Yi,Xi, δi)|i = 1, . . . , n} which
fall in block k (k = 1, . . . ,K). For our simulations, we used K = 25 blocks.

2. In each block, estimate the distribution function FT as described in Section 2.1. Denote the
sizes of the jumps at the j th uncensored observation in the kth block by wjk .

3. Define

h := arg min
α

K∑
k=1

Jk∑
j=1

wjkρτ

(
Yjk − q̃j,k

α (τ |Xjk)
)
,

where ρτ denotes the check function and q̃
j,k
α is either the estimator q̂IP or q̂ with

bandwidth α based on the sample {(Yi,Xi, δi)|i = 1, . . . , n} without the observation
(Yjk,Xjk, δjk).

For a motivation of the proposed procedure, observe that the classical cross validation is based
on the fact that each observation is an unbiased ‘estimator’ for the regression function at the
corresponding covariate. In the presence of censoring, such an estimator is not available. There-
fore, the cross validation criterion discussed above tries to mimic this property by introducing
the weights wjk . A deeper investigation of the theoretical properties of the procedure is beyond
the scope of the present paper and postponed to future research. In order to save computing time,
the bandwidth that we used for our simulations is an average of 100 cross validation runs in each
scenario.

For the calculation of the estimators of the conditional sub-distribution functions, we chose
local linear weights (see Remark 3.1) with a truncated version of the Gaussian Kernel, that is,

K(x) = φ(x)I{φ(x)>0.001},

where φ denotes the density of the standard normal distribution.
We investigate the finite sample properties of the new estimators in a similar scenario as

model 2 in [49] (note that we additionally introduce a censoring mechanism). The model is
given by

(model 1)

⎧⎪⎨
⎪⎩

Ti = 2.5 + sin(2Xi) + 2 exp
(−16X2

i

) + 0.5N (0,1),

Li = 2.6 + sin(2Xi) + 2 exp
(−16X2

i

) + 0.5
(

N (0,1) + q0.1
)
,

Ri = 3.4 + sin(2Xi) + 2 exp
(−16X2

i

) + 0.5
(

N (0,1) + q0.9
)
,

where the covariates Xi are uniformly distributed on the interval [−2,2] and qp denotes the
p-quantile of a standard normal distribution. This means that about 10% of the observations are
censored by type δ = 1 and δ = 2, respectively. For the sample size, we use n = 100,250,500. In



766 S. Volgushev and H. Dette

Figure 1. Mean squared error curves of the estimates of the quantile curves in model 1 for different sam-
ple sizes: n = 100 (dotted line); n = 250 (dashed line); n = 500 (solid line). Left panel: estimates of the
25%-quantile curves; middle panel: estimates of the 50%-quantile curves; right panel: estimates of the
75%-quantile curves. 10% of the observations are censored by type δ = 1 and δ = 2, respectively.

Figures 1 and 2, we show the mean conditional quantile curves and corresponding mean squared
error curves for the 25%, 50% and 75% quantile based on 5000 simulation runs. The cases
where the q̂IP(τ |x) is not defined are omitted in the estimation of the mean squared error and
mean curves (this phenomenon occurred in less than 3% of the simulation runs). Only results
for the the estimator q̂IP are presented because it shows a slightly better performance than the
estimator q̂ . We observe no substantial differences in the performance of the estimates for the
25%, 50% and 75% quantile curves with respect to bias. On the other hand, it can be seen from
Figure 1 that the estimates of the quantile curves corresponding to the 25% and 75% quantile
have larger variability. In particular, the mse is large at the point 0, where the quantile curves
attain their maximum.
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Figure 2. Mean (dashed lines) and true (solid lines) quantile curves for model 1 for different sample sizes:
n = 100 (left column), n = 250 (middle column) and n = 500 (right column). Upper row: estimates of the
25% quantile curves; middle row: estimates of the 50% quantile curves; lower row: estimates of the 75%
quantile curves. 10% of the observations are censored by type δ = 1 and δ = 2, respectively.

Appendix A: Proofs

Remark A.1. Before we begin with the proof of Theorem 3.5, we observe that condition (W1)
implies that we can write the weights Wi(x) in the estimates (2.5) in the form

Wi(x) = W
(1)
i (x)IAn + W

(2)
i (x)IAC

n
,
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where An is some event with P(An) → 1, W(1)
i (x) = Vi(x)/

∑
j Vj (x) and W

(2)
i (x) denote some

other weights. If we now define modified weights

W̃i(x) := W
(1)
i (x)IAn + WNW

i (x)IAC
n
,

where WNW
i (x) denote Nadaraya–Watson weights, we obtain: P(∃i ∈ 1, . . . , n : W̃i 
= Wi) → 0,

that is, any estimator constructed with the weights W̃i(x) will have the same asymptotic prop-
erties as an estimator based on the original weights Wi(x). Thus, we may confine ourselves to
the investigation of the asymptotic distribution of estimators constructed from the statistics in
(2.5) that are based on the weights W̃i(x). In order to keep the notation simple, the modified
estimates are also denoted by Hn,Hk,n, etc. Finally, observe that we have the representation

W̃i(x) = Ṽi (x)∑
j Ṽj (x)

with Ṽi := ViIAn + V NW
i (x)IAC

n
. Note that by construction, the random vari-

ables Ṽi satisfy conditions (W1)(1)–(W1)(4) if the kernel in the definition of WNW
i (x) satisfies

assumption (K1).

Proof of Theorem 3.5. The uniform consistency of FL,n(·|x) on [t00 + ε,∞) with ε > 0 ar-
bitrary can be obtained from the continuity of the maps (H2(·|x),H(·|x)) �→ M−

2 (·|x) and
M−

2 (·|x) �→ FL(·|x) on suitable spaces of functions, see [45] for more details.
In the next step, we consider the map

(
H0,n(·|x),Hn(·|x),FL,n(·|x)

) �→ �T,n(·|x) =
∫ .

0

H0,n(dt |x)

FL,n(t − |x) − Hn(t − |x)

and split the range of integration into the intervals [0, t00 + ε) and [t00 + ε, t). The continuity of
the integration and fraction mappings yields the uniform convergence

sup
t∈[t00+ε,τ )

∣∣∣∣
∫

[t00+ε,t)

H0,n(dt |x)

FL,n(t − |x) − Hn(t − |x)
(A.1)

−
∫

[t00+ε,t)

H0(dt |x)

FL(t − |x) − H(t − |x)

∣∣∣∣ P−→ 0

for any τ with FS(τ |x) < 1 [note that inft∈[t00+ε,τ ) FL(t − |x) − H(t − |x) > 0 since FL(t −
|x) − H(t − |x) = FL(t − |x)(1 − FS(t − |x)) and FL(t00 − |x) > 0 by assumption (D11) and
continuity of the conditional distribution function FL(·|x)]. We now will show that the integral
over the interval [0, t00 + ε) can be made arbitrarily small by an appropriate choice of ε. To
this end, denote by W1(x,n), . . . ,Wk(x,n) those values of Y1, . . . , Yn, whose weights fulfill
Wi(x) 
= 0 and by W(1)(x, n), . . . ,W(k)(x, n) the corresponding increasingly ordered values. By
Lemma B.1 in Appendix B, we can find an ε > 0 such that∫

[W(2)(x,n),t00+ε)

H0,n(ds|x)

FL,n(s − |x) − Hn(s − |x)
≤ H0,n(t00 + ε|x)OP (1).

The integral
∫
[0,W(2)(x,n))

H0,n(ds|x)

FL,n(s−|x)−Hn(s−|x)
can be bounded by separately considering

�H0,n(W(1)(x, n)|x) = 0 (in this case, the integral vanishes) and �H0,n(W(1)(x, n)|x) > 0 [in
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this case FL,n(s|x) = FL,n(W(2)(x, n)|x) for all s ∈ [0,W(2)(x, n))]. Summarizing, we have
obtained the estimate∫

[0,t00+ε)

H0,n(ds|x)

FL,n(s − |x) − Hn(s − |x)
≤ H0,n(t00 + ε|x)OP (1) = H0(t00 + ε|x)OP (1),

where the last equality follows from the uniform consistency of H0,n and the remainder OP (1)

does not depend on ε. Moreover, since the function �T,n(·|x) is increasing (see Lemma 2.3), the
inequality

sup
t≤t00+ε

∣∣�T,n(t |x)
∣∣ =

∫
[0,t00+ε)

H0,n(ds|x)

FL,n(s − |x) − Hn(s − |x)
≤ H0(t00 + ε|x)OP (1) (A.2)

follows. Now for any δ > 0, we can choose an εδ > 0 such that H0(t00 + εδ|x) < δ [recall the
definition of t00 in (3.1)] and together with (A.2) we obtain for any τ with FS(τ |x) < 1

P
(

sup
t∈[0,τ )

∣∣�T,n(t |x) − �T (t |x)
∣∣ > 4α

)
≤ P

(
sup

t∈[t00+εδ,τ )

∣∣�T,n(t |x) − �T (t |x)
∣∣ > 2α

)

+ P
(
OP (1) > α/δ

)
,

and by choosing δ appropriately the right-hand side can be made arbitrarily small for n → ∞.
Thus, we obtain limn→∞ P(supt∈[0,τ )|�T,n(t |x) − �T (t |x)| > 4α) = 0, which implies the

weak uniform consistency of �T,n(·|x) on the interval [0, τ ).
Finally, the continuity of the mapping �T �→ FT (see the discussion in [2] following Propo-

sition II.8.7) yields the weak uniform consistency of the estimate FT,n and the first part of the
theorem is established.

For a proof of the second part, we use an idea from [46]. Note that, as soon as FT,n(·|x) is
increasing and bounded by 1 from above, we have

sup
t≥0

∣∣FT,n(t |x) − FT (t |x)
∣∣ ≤ 2 sup

0≤t≤a

∣∣FT,n(t |x) − FT (t |x)
∣∣ + 2

(
1 − FT (a|x)

)
,

and by assumption and part one of the theorem we can make 1 − FT (a|x) arbitrarily small with
uniform consistency on the interval [0, a] still holding. Consequently, we obtain the uniform
consistency on [0,∞), which completes the proof of Theorem 3.5. �

Proof of Theorem 3.6. The second part follows from the first one by the Hadamard differen-
tiability of the map A �→ ∏

(t,∞](1 − A(ds)) in definition (2.10) (see [35], Lemma A.1) and the
delta method [22]. Note that these results require a.s. continuity of the sample paths which fol-
lows from the fact that the process GM defined in the first part of the Theorem has a.s. continuous
sample paths together with the continuity of FL(·|x).

The proof will now proceed in two steps: first, we will show that weak convergence holds in
D3([σ,∞]) for any σ > t00 and secondly we will extend this convergence to D3([t00,∞]). Note
that from condition (D4) we obtain FL(t00|x) > 0, and the continuity of FL(·|x) yields t00 > 0.

For the first step, note that σ > t00 implies H(σ |x) > ε for some ε > 0. The weak convergence
in D3([σ,∞]) essentially follows by an application of the delta method (see [22], Theorem 3) to
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the map (H,H0,H2) �→ (H,H0,M
−
2 ) which is Hadamard differentiable on a suitable domain as

noted by [35]. More details can be found in [45].
To obtain the weak convergence in D3([t00,∞]), we apply a lemma from [38], page 70, Ex-

ample 11. First, define GM as the path-wise limit of GMσ (σ ) for σ ↓ t00, the existence of this
limit is discussed in Remark 3.7. Note that there exist versions of GM,G,G0 with a.s. continu-
ous paths (this holds for G and G0 by assumption, whereas the paths of GM are obtained from
those of G2,G by a transformation that preserves continuity [see equation (3.4)]), and hence the
condition on the limit process in the lemma is fulfilled.

Hereby, we have obtained a Gaussian process GM on the interval [t00,∞] and have taken care
of condition (iii) in the lemma in [38]. For arbitrary positive ε and δ, we now have to find a
σ = σ(δ, ε) > t00 such that

P
(

sup
t00<t≤σ

∣∣GM(t)
∣∣ ≥ δ

)
< ε, (A.3)

lim sup
n→∞

P
(

sup
t00<t≤σ

√
nhd

∣∣(M−
2,n − M−

2

)
(σ − |x) − (

M−
2,n − M−

2

)
(t − |x)

∣∣ ≥ δ
)

< ε. (A.4)

Note that once we have found a σ such that (A.4) holds, we can make σ smaller until (A.3) is
fulfilled with (A.4) still holding. This is possible because the distribution of GM(t) corresponds
to that of a time-transformed Brownian motion.

In order to prove the existence of a constant σ that ensures (A.4), we reverse time and trans-
form our problem into the setting of conditional right censorship (see Section 3.3). To be more
precise, define the function a(t) := 1

t
which is strictly decreasing and maps the interval [0,∞]

onto itself and consider the random variables Bi := a(Si), Di := a(Li), Zi := Bi ∧ Di and
�i := I{Di≤Bi } = I{Si≤Li }. It now can be seen that assertion (A.4) follows from (A.6) which is
established in the proof of Theorem 3.11 (note that the assumptions (R2)–(R6) can be directly
identified with the assumptions of Theorem 3.6). See [45] for more details. �

Proof of Theorem 3.8. First of all, note that the a.s. continuity of the sample paths of the pro-
cesses V (·) and W(·) follows because these processes are constructed from processes which
already have a.s. continuous sample paths in a way that preserves continuity. Thus, it remains to
verify the weak convergence. From Theorem 3.6, we obtain√

nhd(Hn − H,H0,n − H0,FL,n − FL) ⇒ (G,G0,G3) (A.5)

in D3([t00,∞]). Now from FL(s − |x) − H(s − |x) = FL(s − |x)(1 − FS(s − |x)) and the
definition of τ , it follows that

FL(s − |x) − H(s − |x) ≥ ε > 0 ∀s ∈ [t00, τ ]
[note that the inequality FL(t00 − |x) > 0 was derived at the beginning of the proof of Theo-
rem 3.6]. For positive numbers δ, define the event

An(δ) :=
{

inf
t∈[t00,τ )

(
FL,n(t |x) − Hn(t |x)

)
> δ

}
.
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Because of (A.5) [which implies the uniform consistency of FL,n(·|x) and Hn(·|x)], we have

that for δ < ε P (IAn(δ) 
= 1)
n→∞−→ 0. Define H̃n := HnIAn(δ), H̃0,n := H0,nIAn(δ) and F̃L,n :=

FL,nIAn(δ) + IAC
n (δ), then it follows from (A.5)

√
nhd

(
F̃L,n − FL − (H̃n − H), H̃0,n − H0

) ⇒ (G3 − G,G0) in D3([t00, τ ]).
Moreover, we have (H̃0,n, F̃L,n − H̃n) ∈ {(A,B) ∈ BV 2

1 ([t00, τ ]) :A ≥ 0,B ≥ δ > 0}. Since the

map (A,B) �→ ∫ t

t00

dA(s)
B(s)

is Hadamard differentiable on this set (see [2], page 113), the delta
method (see [22]) yields

√
nhd

(∫ .

t00

H0,n(ds|x)

FL,n(s − |x) − Hn(s − |x)
− �−

T (·|x)

)
⇒ V (·)

in D([t00, τ ]]. Finally, observe that for t ≥ t00 we have

�−
T ,n(t |x) =

∫ t

t00

H0,n(ds|x)

FL,n(s − |x) − Hn(s − |x)
+

∫
[0,t00)

H0,n(ds|x)

FL,n(s − |x) − Hn(s − |x)
,

and thus it remains to prove that the second term in this sum is of order oP (1/
√

nhd). By the
same arguments as in the proof of Theorem 3.5, one can obtain the bound∫

[0,t00)

H0,n(ds|x)

FL,n(s − |x) − Hn(s − |x)
≤ H0,n(t00|x)OP (1).

Standard arguments yield the estimate H0,n(t00|x) = oP (1/
√

nhd) and thus the proof is com-
plete. �

Proof of Theorem 3.9. Note that the estimator F IP
T ,n(·|x) is nondecreasing by construction. The

assertion for q̂IP(·|x) now follows from the Hadamard differentiability of the inversion mapping
tangentially to the space of continuous functions (see Proposition 1 in [22]), the continuity of
FT (·|x) and the weak uniform consistency of F IP

T ,n(·|x) on the interval [0, τ ]. The corresponding
result for the estimator q̂(·|x) follows from the convergence P(q̂IP(·|x) ≡ q̂(·|x)) → 1 (see the
discussion after Lemma 3.4). �

Proof of Theorem 3.10. Observe that the estimator F IP
T ,n(·|x) is nondecreasing by construction

and that Theorem 3.8 yields
√

nhd(F IP
T ,n(·|x) − FT (·|x)) ⇒ W(·) on D([0, τ + α]) for some

α > 0 where the process W has a.s. continuous sample paths. Note that the convergence holds
on D([0, τ + α]). This follows from the continuity of FS(·|x) and F−1

T (·|x) at τ which implies
FS(F−1

T (τ +α|x)|x) < 1 for some α > 0. By the same arguments fT (·|x) ≥ δ > 0 on the interval
[ε − α, τ + α] if we choose α sufficiently small. Thus, Proposition 1 from [22] together with the
delta method yield the weak convergence of the process for q̂IP(·|x). The corresponding result
for q̂(·|x) follows from the fact that P(q̂IP(·|x) ≡ q̂(·|x)) → 1. �
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Proof of Theorem 3.11. By the delta method [22], formula (3.6), and the Hadamard dif-
ferentiability of the product-limit mapping [2] it suffices to verify the weak convergence of√

nhd(�−
D,n(t |x) − �−

D(t |x))t on D([0, t0]). The corresponding result on D([0, τ ]) with τ < t0
follows from the delta method and the Hadamard differentiability of the mapping (π0,n,FZ,n) �→
�−

D,n. For the extension of the convergence to D([0, t0]), it suffices to establish the following as-
sertion

lim sup
n→∞

P
(

sup
σ≤t<t0

√
nhd

∣∣(�−
D,n − �−

D

)
(t |x) − (

�−
D,n − �−

D

)
(σ − |x)

∣∣ > δ
)

< ε (A.6)

(this follows by arguments similar to those in the proof of Theorem 3.6). Define the random
variable U as the largest Zi corresponding non-vanishing weight W̃i(x), that is,

U = U(x) := max
{
Zi : W̃i(x) 
= 0

}
.

Note that for t ≥ U we have FZ,n(t |x) = 1 for the corresponding estimate of FZ(·|x). We write

�−
D,n(y − |x) =

n∑
i=1

∫
[0,y)

d(W̃i(x)I{Zi≤t,�i=1})∑n
j=1 W̃j (x)I{Zj ≥t}

=
n∑

i=1

∫
[0,y)

Ci(x, t)I{1−FZ,n(t−|x)>0} dNi(t)

for the plug-in estimator of �−
D(·|x), where

Ci(x, t) := W̃i(x)I{Zi≥t}∑n
j=1 W̃j (x)I{Zj ≥t}

= Ṽi (x)I{Zi≥t}∑n
j=1 Ṽj (x)I{Zj ≥t}

,

and the quantity Ni(t) is defined as Ni(t) := I{Zi≤t,�i=1}. In what follows, we will use the nota-
tion G(A) = ∫

A
G(du) for a distribution function G and a Borel set A. With the definition

�̂−
D,n(y − |x) :=

n∑
i=1

∫
[0,y)

Ci(x, t)I{1−FZ,n(t−|x)>0}�−
D(dt |Xi)

we obtain the decomposition∣∣(�−
D,n − �−

D

)(
(σ, t]|x)∣∣ ≤ ∣∣(�−

D,n − �̂−
D,n

)(
(σ,U ∧ t]|x)∣∣ + ∣∣(�−

D,n − �̂−
D,n

)(
(U ∧ t, t]|x)∣∣

+ ∣∣(�̂D,n − �−
D

)(
(σ, t]|x)∣∣.

Observing that �−
D,n((U ∧ t, t]) = �̂−

D,n((U ∧ t, t]) = 0 it follows that

∣∣(�−
D,n − �̂−

D,n

)(
(U ∧ t, t]|x)∣∣ = 0,∣∣(�̂−

D,n − �−
D

)(
(σ, t]|x)∣∣ ≤ ∣∣(�̂−

D,n − �−
D

)(
(σ,U ∧ t]|x)∣∣ + �−

D

(
(U ∧ t, t]|x)

,

sup
σ≤t<t0

∣∣(�̂−
D,n − �−

D

)(
(σ, t ∧ U ]|x)∣∣ ≤ sup

σ≤t≤U∧t0

∣∣(�̂−
D,n − �−

D

)(
(σ, t]|x)∣∣,
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where we set the supremum over the empty set to zero. Hence, assertion (A.6) can be obtained
from the statements

√
nhd sup

σ≤t<t0

�−
D

(
(U ∧ t, t]|x) P−→ 0, (A.7)

√
nhd sup

σ≤t≤U∧t0

∣∣(�̂−
D,n − �−

D

)(
(σ, t]|x)∣∣ P−→ 0, (A.8)

lim sup
n→∞

P
(√

nhd sup
σ≤t<U∧t0

∣∣(�−
D,n − �̂−

D,n

)(
(σ,U ∧ t]|x)∣∣ > δ

)
< ε/2, (A.9)

which will be shown separately.

Proof of (A.7). For a proof of (A.7), note that �−
D((U ∧ t, t]|x) = �−

D((U, t]|x)I {U < t} and
�−

D((U, t]|x) ≤ �−
D((U ∧ t0, t0]|x) whenever U < t ≤ t0. Hence, the supremum in (A.7) can be

bounded by [note that by (R2) we have FD([t0,∞]|x) > 0]

sup
σ≤t<t0

�−
D

(
(U ∧ t, t]|x) ≤ �−

D

(
(U ∧ t0, t0]|x

) ≤
∫

(U∧t0,t0]
FD(dt |x)

FD([t0,∞]|x)

= FD((U ∧ t0, t0]|x)

FD([t0,∞]|x)
.

Thus, it suffices to verify the convergence
√

nhdFD((U ∧ t0, t0]|x)
P−→ 0. For this purpose, we

introduce the notation

uα
n = uα

n(x) := inf
{
s :

√
nhdFD

(
(s, t0]|x

) ≤ α
}

(note that uα
n ≤ t0). Assume that the interval I in condition (R5) contains the set [x, x + β) for

some β > 0 [the other case (x − β,x] ⊆ I can be treated analogously]. Then we obtain for any
fixed α > 0 and sufficiently large n (see [45] for more details)

P
(√

nhdFD

(
(U ∧ t0, t0]|x

)
> α

)
≤ E[I{U∧t0<uα

n }] = E
[
E[I{U∧t0<uα

n }|X1, . . . ,Xn]
]

≤ E

[
E

[
n∏

j=1

{1 − I{Zj ≥uα
n }I{W̃i (x)
=0}}|X1, . . . ,Xn

]]

≤ E

[
n∏

j=1

{
1 − E[I{Zj ≥uα

n }|Xj ]I{‖Xj −x‖≤cn}
}]

≤
(

1 − C
α2

n

FB([uα
n,∞]|x)

FD([uα
n, t0)|x)

fX(x)
(
1 + o(1)

))
.
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Now we have

FD([uα
n, t0)|x)

FB([uα
n,∞]|x)

≤
∫

[uα
n,t0)

FD(ds|x)

FB((s,∞]|x)

≤
∫

[uα
n,t0)

�−
D(ds|x)

FZ((s,∞]|x)
−→ 0

by (R2) (note that uα
n → t0 if n → ∞) and hence the proof of (A.7) is complete.

Proof of (A.8). For fixed σ ≤ s ≤ U ∧ t0 and sufficiently small h combining Taylor expansions
and (R4) yields

∣∣(�̂−
D,n − �−

D

)(
(σ, s]|x)∣∣

≤
∣∣∣∣∣
∫ s

σ

n∑
i=1

Ci(x, t)(x − Xi)
′∂xλD(t |x)dt

∣∣∣∣∣
+

∫ s

σ

n∑
i=1

Ci(x, t)(x − Xi)
2 C

2
dt

with some positive constant C (here, ∂xλD is interpreted as the vector of partial derivatives with
respect to the components of x). Noting that Ci(x, t) ≥ 0 and

∑
i Ci(x, t) = 1 we see that the

second term in the above expression is of order O(h2) = o((nhd)−1/2) uniformly in s ∈ [σ, t0].
For the first term can be represented as

Rn =
∣∣∣∣∣ 1∑n

k=1 Ṽk(x)

∫ s

σ

n∑
i=1

Ṽi (x)I{Zi≥t}
(

1 − FZ(t − |x)

1 − FZ,n(t − |x)

)
(x − Xi)

′ ∂xλD(t |x)

1 − FZ(t − |x)
dt

∣∣∣∣∣.
Using conditions (W1)(3), (W1)(4), (R3) and Lemma B.2 in Appendix B, we obtain Rn =
oP (1/

√
nhd) uniformly in s ∈ [σ, t0], and hence assertion (A.8) is established.

Proof of (A.9). Observe that |(�−
D,n − �̂−

D,n)((σ,U ∧ t0]|x)| ≤ |D1(U ∧ t0) − D1(σ )|,
where we defined D1(t) := ∑n

i=1

∫
[0,t] Ci(x, t)I{1−FZ,n(t−|x)>0} dMi(t) and Mi(t) := Ni(t) −∫ t

0 I{Zi≥s}�−
D(ds|Xi). Setting Ft := σ(Xi, I{Zi≤t,�i=1}, I{Zi≤t,�i=0} : i = 1, . . . , n), classical ar-

guments from counting process theory (see [45] for more details) show that for t ∈ [σ, t0]
D1(t) − D1(σ ) is a locally bounded martingale with respect to Ft . Its predictable variation
is given by Pt = ∫

[σ,U∧t]
∑n

i=1 C2
i (x, s)�−

D(ds|Xi). Hence from a version Lenglart’s inequality

(see [42], page 893, Example 1), we obtain

P
(

sup
σ≤t≤U∧t0

nhd
(
D1(t) − D1(σ )

)2 ≥ ε
)

≤ η

ε
+ P

(
nhdPt0 ≥ η

)
. (A.10)
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If σ is sufficiently close to t0 it follows

nhdPt0 = nhd

∫
[σ,U∧t0]

n∑
i=1

C2
i (x, t)�−

D(dt |Xi)

≤ nhd supj Ṽj (x)∑n
k=1 Ṽk(x)

∫
[σ,U∧t0]

n∑
i=1

Ci(x, t)�−
D(dt |Xi)

(1 − FZ,n(t − |x))

(∗)= OP (1)

∫
[σ,U∧t0]

n∑
i=1

Ci(x, t)λD(t |x)

(1 − FZ,n(t − |x))
dt

(
1 + oP (1)

)

= OP (1)

∫
[σ,U∧t0]

λD(t |x)

1 − FZ(t − |x)
dt,

where we have used (R6), (W1)(1) and (W1)(3) in equality (∗) [note that the (1 + oP (1)) holds
uniformly in i and t ] and Lemma B.2 in the last equality. Now we obtain from (R2) the a.s.

convergence
∫
[σ,U∧t0]

λD(t |x)
1−FZ(t−|x)

dt
σ→t0−→ 0 and hence assertion (A.9) is established [first choose

η in (A.10) small enough to make η/ε small and then choose σ close enough to t0].
Thus, we have established (A.7)–(A.9) and the proof of the theorem is complete. �

Appendix B: Auxiliary results: Technical details

Lemma B.1. Assume that conditions (D3) and (D11) hold. Denote by W1(x,n), . . . ,Wk(x,n)

those values of Y1, . . . , Yn, whose weights fulfill Wi(x) 
= 0 and by W(1)(x, n), . . . ,W(k)(x, n) the
corresponding increasingly ordered values. Assume that the estimators FL,n and Hn are based
on weights Wi(x) = Vi(x)/

∑
j Vj (x) with Vi(x) satisfying the conditions (W1)(1) and (W1)(2),

that FS,n(r|x) := Hn(r|x)/FL,n(r|x) is consistent for some r > t00 with FS(r|x) < 1 and that
all the observations Yi are distinct. Then we have for any b < r :

sup
b≥s≥W(2)(x,n)

1

FL,n(s − |x) − Hn(s − |x)
= OP (1).

Proof. Because of space considerations, we only sketch the main arguments, a much more de-
tailed proof can be found in [45]. As in the proof of Theorem 3.6, we reverse the time and use the
same notation. Write Vx := a(W(2)(x, n)), v = a(r), w = a(b), then the statement of the lemma
can be reformulated as

sup
w≤s≤Vx

1

1 − FD,n(s|x) − (1 − FZ,n(s|x))
= OP (1).

With the notation FB,n(s|x) := 1 − (1 − FZ,n(s|x))/(1 − FD,n(s|x)), the denominator in this
expression can be rewritten as 1−FD,n(s|x)−(1−FZ,n(s|x)) = (1−FD,n(s|x))FB,n(s|x) [note
that FB,n(v|x) = 1 − FS,n(r − |x)]. Since FB,n(s|x) is increasing in s and consistent at some
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point v ≤ w with FB,n(v|x) > 0, we only need to worry about finding a bound in probability for
the term 1/(1 − FD,n(s|x)). Noting that 1 − FD,n(t |x) = ∏

[0,t](1 − �−
D,n(ds|x)) and applying

exactly the same arguments as given in the proof of Lemma 6 in [23] gives

1 − FD,n(t |x) ≥ exp
(−C1�

−
D,n(t |x)

)
a.s.

for some finite constant C1. The bound supt≤Vx
�−

D,n(t |x) = OP (1) can be used by exploiting

the martingale structure of �−
D,n(t ∧Vx |x)− �̂−

D,n(t ∧Vx |x) and applying Doob’s submartingale
inequality. �

Lemma B.2. Let (X1, Y1), . . . , (Xn,Yn) denote i.i.d. random variables with F(y|x) := P(Y1 ≤
y|X1 = x). Define F̂ (y|x) := ∑

i

Vi (x)I{Yi≤y}∑
j Vj (x)

, which is an estimator of the conditional distribution

function F(y|x) and assume that the weights weights Vi(x) satisfy conditions (W1)(1)–(W1)(3),
the bandwidth h fulfills nhd → ∞, h → 0 and that additionally the following conditions hold:

1. F(t |x) is continuous at (t0, x0),
2. there exist constants C > 0, δ > 0 such that 1 − F(t |y) ≥ C(1 − F(t |x)) for all (t, y) ∈

(t0 − δ, t0] × I where I is a set with the property
∫
I∩Uδ(x)

fX(s)ds ≥ cδd for some c > 0
and all 0 < δ ≤ ε,

3. F(t0 − δ|z) is continuous in the second component at the point z = x,
4. the distribution function G of the random variables Xi has a continuous density g with

g(x) > 0.

Then, with the notation U := max{Yi :Vj (x) 
= 0}, we have for n → ∞

sup
0≤y≤t0∧U

1 − F(y − |x)

1 − F̂n(y − |x)
= OP (1).

Proof. Define

F̄n(y|x) :=
∑n

i=1 F(y|Xi)I{‖x−Xi‖≤h}∑n
i=1 I{‖x−Xi‖≤h}

and observe the representation (see [45] for details)

1 − F(y − |x)

1 − F̂n(y − |x)
= 1 − F̄n(y − |x)

1 − F̂n(y − |x)

1 − F(y − |x)

1 − F̄n(y − |x)
= 1 − F̄n(y − |x)

1 − F̂n(y − |x)
OP (1),

where the OP (1) is uniform over 0 ≤ y ≤ t0. Next, observe that

1 − F̂ (y − |x) =
∑

i

Vi(x)(1 − I{Yi<y})∑
j Vj (x)

≤ cfX(x)
1 + oP (1)

C(x)

∑
i I{‖x−Xi‖≤h}(1 − I{Yi≤y})∑

j I{‖x−Xj ‖<h}
,

uniformly in y. The fraction (1 − F̄n(y − |x))
∑

j I{‖x−Xj ‖<h}/
∑

i I{‖x−Xi‖≤h}(1 − I{Yi≤y}) can
be bounded by applying the results from [44] conditionally on Xi , see [45] for more details. This
completes the proof. �
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