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Consider a random vector (X′, Y )′, where X is d-dimensional and Y is one-dimensional. We assume that Y

is subject to random right censoring. The aim of this paper is twofold. First, we propose a new estimator of
the joint distribution of (X′, Y )′. This estimator overcomes the common curse-of-dimensionality problem,
by using a new dimension reduction technique. Second, we assume that the relation between X and Y is
given by a mean regression single index model, and propose a new estimator of the parameters in this
model. The asymptotic properties of all proposed estimators are obtained.

Keywords: curse-of-dimensionality; dimension reduction; multivariate distribution; right censoring;
semiparametric regression; survival analysis

1. Introduction and model

Consider a random vector (X′, Y )′, where X = (X(1), . . . ,X(d))′ is d-dimensional and Y is one-
dimensional. We assume that Y is subject to random right censoring, that is, instead of observing
(X′, Y )′, we observe the triplet (X′, T , δ)′, where T = Y ∧C, δ = 1Y≤C , and the random variable
C is the censoring variable. Typically, Y is (a transformation of) the survival time (whose range
can span the whole real line), and X is a vector of characteristics. The data consist of n i.i.d.
replications (X′

i , Ti, δi)
′ of (X′, T , δ)′.

Under this setting, the purpose of this paper is twofold. First, we propose a new estimator
of the joint distribution F(x, y) = P(X ≤ x,Y ≤ y) of X and Y (where X ≤ x means that
X(j) ≤ x(j) for j = 1, . . . , d). Second, we assume that the relation between X and Y is given
by a single index mean regression model (as in, e.g., Härdle and Stoker [12], Powell, Stock and
Stoker [25], Ichimura [16], Härdle, Hall and Ichimura [11], Klein and Spady [17], Horowitz
and Härdle [14], Hristache, Juditsky and Spokoiny [15]), and we propose new estimators of the
parameters under this model. These estimators will be constructed under the following funda-
mental model assumption on the relation between Y and C, which we impose throughout this
paper:
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(A0) There exists a function g : Rd → R, such that:
(i) Y and C are independent, conditionally on g(X)

(ii) P(Y ≤ C|X,Y) = P(Y ≤ C|g(X),Y ).

Note that assumption (A0) holds in the particular case where L(C|X,Y) = L(C|g(X)). By
assuming that the censoring variable depends on X only through a one-dimensional variable
g(X), we avoid the curse-of-dimensionality problems which strike regression approaches where
X is multivariate and Y is independent of C conditionally on X, and at the same time the depen-
dence of C on X is not too restrictive. A related dimension reduction model assumption for the
censoring time has been considered in Section 4 of Li, Wang and Chen [18].

The function g will be unknown in general. When g is known, assumption (A0) has been
proposed by Lopez [19]. The assumption is needed for identifying the model. In the literature on
nonparametric censored regression, alternatives to assumption (A0) have been proposed. There
are basically two alternatives, which can be regarded as limiting cases of assumption (A0), and
in that sense our assumption is a trade-off between these two. The first alternative has been used
by, for example, Akritas [1] and Van Keilegom and Akritas [33], among many others. They
assume that Y is independent of C, conditionally on X, and propose kernel type estimators of
the distribution F(x, y) under this assumption. This assumption is a particular case of (A0) by
taking g(X) ≡ X. Their estimators are however restricted to the case where d = 1. Although they
could in principle be extended to higher dimensions, this is not recommended in practice, since
they will suffer from the curse-of-dimensionality and higher order kernels will need to be used.
The second alternative to assumption (A0) has been proposed by Stute [28,29]. He assumes that
Y is independent of C, and that P(Y ≤ C|X,Y) = P(Y ≤ C|Y). This is again a particular case of
(A0), by taking g(X) ≡ 1. Although his estimator can be used for any d ≥ 1, it has the drawback
that it assumes that the censoring variable C depends on X in a very particular way. This type of
dependence might hold true when the censoring is purely ‘administrative’ (censoring at the end
of the study), but when the censoring can be caused by other factors (like death due to another
disease, change of treatment, . . . ), then less restrictive assumptions on the censoring mechanism
are required.

Our assumption (A0) balances somewhere in between these two extreme assumptions. By
imposing assumption (A0), we propose a new dimension reduction technique, which overcomes
the drawbacks of these two classical sets of assumptions, by allowing for d ≥ 1 without assuming
the complete independence between Y and C.

In some cases, the function g will be known exactly from some a priori information. For ex-
ample, we might know that the censoring only depends on one component of X, for example,
g(X) = X(1). Lopez [19] proposed an estimator of the joint distribution F(x, y) when g is sup-
posed to be known. However, in many other cases, g will be unknown and needs to be estimated.
Throughout this paper, we will assume that

g ∈ G, where G = {
x → λ(θ, x): θ ∈ �

}
, (1.1)

where λ is a known function, and � is a compact parameter set in R
k . The true (but unknown)

value of θ will be denoted by θ0. This semiparametric assumption on the conditional distribution
of C allows to avoid the curse of dimensionality that would have stroke our approach if no
restriction on the censoring time would have been made.
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Throughout the paper, we will assume that we know some root-n consistent estimator θ̂ of θ0,

that satisfies the following:

(C0) The estimator θ̂ satisfies:

θ̂ − θ0 = 1

n

n∑
i=1

μ(Ti, δi,Xi) + oP

(
n−1/2),

with E[μ(T , δ,X)] = 0 and E[μ(T , δ,X)2] < ∞.

Hence, the set � can from now on be an arbitrarily small environment of θ0.
To illustrate the nature of assumptions (A0) and (C0), consider the function g(x) = θ ′

0x, and
the case where C follows a Cox regression model given X, in the sense that the conditional
hazard h(·|x, y) of C given X = x and Y = y satisfies

h(c|x, y) = h0(c) exp
(
θ ′

0x
)

for some baseline function h0 only depending on c. This model assumption on C seems real-
istic since often the censoring variable C represents itself a lifetime, like the time until a pa-
tient dies from a disease other than the disease under study. Under this model, we clearly have
L(C|X,Y) = L(C|θ ′

0X), and the estimator θ̂ proposed by Andersen and Gill [3] satisfies condi-
tion (C0), with

μ(t, δ, x) = �−1
(

(1 − δ)φ(x, t) −
∫

φ(x,u)1t>u

[
1 − G(u − |x)

]−1 dG(u|x)

)
,

where the matrix � is defined by condition D in Andersen and Gill [3],

φ(x, t) = x − E[Xeθ ′
0X(1 − H(t |X))]

E[eθ ′
0X(1 − H(t |X))] ,

with H(t |x) = P(T ≤ t |X = x) and G(c|x) = P(C ≤ c|X = x). See also Gorgens and Horowitz
[10] for regression models more general than Cox in which L(C|X,Y) = L(C|θ ′

0X). Alterna-
tively, one could also assume that C = r(θ ′

0X) + U , where r(·) is given, E(U) = 0, and U is
independent of X and Y . For the estimation of θ0 and the verification of condition (C0) under
this model, see, for example, Akritas and Van Keilegom [2] and Heuchenne and Van Keilegom
[13].

The purpose of this paper is twofold. The first contribution of this paper consists in proposing
and studying a new nonparametric estimator of the joint distribution of X and Y under assump-
tion (A0). Under different sets of assumptions on the relation between X, Y and C, this distribu-
tion has been the object of study of many papers in the past. See, for example, Akritas [1], Stute
[28,29], Van Keilegom and Akritas [33], among others. As mentioned before, assumption (A0)
allows to avoid the curse-of-dimensionality problem present in some of these contributions, and
the heavy assumptions on the relation between C and X, which are present in many others.

The second contribution of this paper is the estimation of a semiparametric single index regres-
sion model for the censored response Y given X under assumption (A0). The proposed estimator
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is based on a two-step procedure, in which first a preliminary (consistent) estimator is obtained,
which is then used to build a least squares criterion that defines our new semiparametric estimator
in order to achieve n1/2-consistency. Both steps heavily rely on the estimator of F(x, y) studied
before. Note that in this second contribution two dimension reduction techniques are used: the
first one comes from assumption (A0), which is concerned with the relation between Y and C,
and the second one comes from the single index model, which is making an hypothesis on the
relation between Y and X.

Single index regression models are now a common semiparametric multivariate explanatory
approach, see for instance Delecroix, Hristache and Patilea [5] for a review. However, the litera-
ture on single index models with a censored response variable is rather poor. To the best of our
knowledge, the only contribution that allows for a general relationship between the censoring
variable and the covariates is Li, Wang and Chen [18] and it is based on sliced inverse regression
(SIR). However, it is well known that the SIR approach requires a linear conditional expectation
condition among the covariates, which may be restrictive in applications, see equation (2.3) in
Li, Wang and Chen [18].

Lopez [20] proposed a semiparametric least squares estimator for the single index regression
in the particular case where g(X) ≡ 1 in assumption (A0). A similar procedure was introduced
by Wang et al. [34] under the stronger assumption that C is independent of (X′, Y )′. See also
Lu and Cheng [23]. Lu and Burke [22] used the same more restrictive condition to define an
average derivative estimator of the index. It is worthwhile to notice that these three contributions
involve a Kaplan–Meier estimate of the censoring distribution, while in general assumption (A0)
requires a nonparametric estimate of the conditional distribution of C given g(X).

This paper is organized as follows. In the next section, the estimators of the joint distribution
and of the parameters in the single index model are explained in detail. Section 3 is devoted
to the presentation of the asymptotic results of the proposed estimators, while in Section 4 we
compare our estimator with an existing estimator in the literature. Finally, Appendix A contains
the assumptions under which the results of Section 3 are valid, while Appendix B contains some
technical lemmas and the proofs of the main results.

2. The estimators

2.1. Estimation of the distribution F(x,y)

We first explain how to estimate the joint distribution F(x, y) of X and Y . For an arbitrary value
of θ , let

Gθ(t |z) = P
(
C ≤ t |λ(θ,X) = z

)
, (2.1)

and define

Ĝθ (t |z) = 1 −
∏
Ti≤t

(
1 − wθ

in(z)∑n
j=1 wθ

jn(z)1Tj ≥Ti

)1−δi

, (2.2)
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where

wθ
in(z) = K

(
λ(θ,Xi) − z

an

)/ n∑
j=1

K

(
λ(θ,Xj ) − z

an

)
.

Here, an is a bandwidth sequence converging to zero as n tends to infinity, and K is a probability
density function (kernel). Note that Ĝθ (t |z) reduces to the estimator proposed by Beran [4] when
λ(θ,X) is equal to X.

With at hand the estimator θ̂ introduced in condition (C0), and the corresponding estimator
ĝ(x) = λ(θ̂, x) of g(x), we now define the following estimator of F(x, y):

F̂ĝ(x, y) = 1

n

n∑
i=1

δi1Ti≤y,Xi≤x

1 − Ĝ
θ̂
(Ti − |ĝ(Xi))

. (2.3)

Note that this estimator is in the same spirit as the estimator proposed by Stute [28,29], but
the denominators of the two estimators are different, because of the different sets of underlying
assumptions. See also Fan and Gijbels [9] for a similar weighting scheme in a nonparametric
regression framework. Also note that when g would be known, this estimator equals the estimator
proposed and studied in Lopez [21].

In Section 3.1, we will study the asymptotic properties of the estimator F̂ĝ(x, y).

2.2. Estimation of the single index model

We first need to introduce some notations. For θ ∈ �, let Zθ = λ(θ,X), and let Zθ ⊂ R be the
support of the variable Zθ . We assume that Zθ is compact for all θ ∈ �. Also, define Hθ(t |z) =
P(T ≤ t |Zθ = z) and let τHθ ,z = inf{t : Hθ(t |z) = 1}.

We assume that the following single index mean regression model is valid: for some β0 ∈ B ⊂
R

d, with, say, first component β
(1)
0 = 1,

E[Y |X,Y ≤ τ ] = E
[
Y |β ′

0X,Y ≤ τ
] = m

(
β ′

0X
)
, (2.4)

where m is an unknown function, and where τ is some fixed truncation point, satisfying

τ < inf
θ∈�

inf
z∈Zθ

τHθ ,z.

Let f (t;β) = E[Y |β ′X = t, Y ≤ τ ]. Then, f (·;β0) = m(·). Also, let B = {1} × B̃, where B̃ is
a compact subset of R

d−1, and denote by X the support of the covariate vector X, which is a
compact subset of R

d .
The truncation at τ in model (2.4) is very common in the context of regression with right

censored observations, and is caused by the lack of information in the right tail of the conditional
distribution of Y given X. See, for example, Akritas [1] and Akritas and Van Keilegom [2] for
similar truncation mechanisms. Note that when L(Y |X) = L(Y |β ′

0X), that is, when the whole
distribution of Y given X only depends on X via β ′

0X, then model (2.4) is satisfied for any value
of τ .
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The estimation of β0 consists of several steps. We first explain these steps in an informal,
intuitive way to outline the main ideas behind the proposed method, and we next work out each
of these steps in a rigorous way.

1. Estimate f (t;β) using some nonparametric estimator f̂ (t;β).
2. Construct a preliminary consistent estimator βn of β0.
3. Use βn to compute a trimming function that helps to avoid technical problems caused by

denominators close to zero in the nonparametric estimation of f (t;β).
4. Construct a second semi-parametric estimator β̂ of β0 by using the trimming function of

the preceding step.

2.2.1. Estimation of f (t;β)

One possible estimator of f (t;β) is

f̂ (t;β) =
∫

K̃

(
β ′x − t

h

)
y1y≤τ dF̂ĝ(x, y)

/(∫
K̃

(
β ′x − t

h

)
1y≤τ dF̂ĝ(x, y)

)
, (2.5)

where h = hn is a second bandwidth sequence, possibly different from the bandwidth an used to
estimate the joint distribution F(x, y), and where K̃ is a kernel function. However, other estima-
tors may be used, for example, [F̂β(τ |t)]−1

∫
y1y≤τ dF̂β(y|t), where F̂β(y|t) denotes Beran’s

[4] estimator of P(Y ≤ y|β ′X = t).
In what follows, we do not specify the choice of estimator of f (t;β). Instead we will work

with a generic estimator f̂ (t;β) that satisfies certain conditions that need to be fulfilled in order
to obtain the asymptotic normality of β̂ , and we will prove in Section 3.2 that the estimator in
(2.5) satisfies these conditions.

2.2.2. Preliminary estimation of β0

We assume that we know some set B such that

inf
β∈B,x∈B

f τ
β

(
β ′x

) = c > 0,

where the function f τ
β denotes the density of β ′X, conditionally on Y ≤ τ . Define the following

preliminary trimming function:

J̃ (x) = 1x∈B. (2.6)

Let M(β,f, J̃ ) = E[(Y − f (β ′X;β))21Y≤τ J̃ (X)], and note that this is minimized as a function
of β when β = β0. Motivated by this fact, we define the preliminary estimator βn of β0 by
replacing all unknown quantities in M(β,f, J̃ ) by appropriate estimators, that is,

βn = arg min
β∈B

∫ (
y − f̂

(
β ′x;β))21y≤τ J̃ (x)dF̂ĝ(x, y)

(2.7)
= arg min

β∈B
Mn(β, f̂ , J̃ ).
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Note that other criterion functions can be used, based on M or L-estimating functions. We do not
consider them here, since their analysis is very similar to the one for the least squares criterion
function.

2.2.3. New trimming function

We will now refine the definition of the trimming function, by using the preliminary estimator
βn. Define

J (x) = 1f τ
βn

(β ′
nx)>c, (2.8)

so instead of requiring that f τ
β (β ′x) > c for all β , we now only consider β = βn, which will be

satisfied for many more x-values, and hence this new function J (x) is trimming much less than
the preliminary naive trimming function J̃ (x).

To simplify our discussion, we will directly consider that the true function f τ
βn

is used in the
definition of J . In practice, the trimming function can be estimated by 1

f̂ τ
βn

(β ′
nx)>c

, where

f̂ τ
β (t) = 1

nbnP(Y ≤ τ)

n∑
i=1

δi1Ti≤τ

1 − Ĝ
θ̂
(Ti − |ĝ(Xi))

K

(
β ′Xi − t

bn

)
,

and where bn → 0 is a bandwidth parameter. In applications, c1 = cP(Y ≤ τ) can be chosen arbi-
trarily small by the statistician. Considering f τ

βn
or f̂ τ

βn
does not change anything asymptotically

speaking, see the arguments in Delecroix, Hristache and Patilea [5], see also Step 0 in the proof
of Theorem 3.5 below. By similar arguments, the estimator of β0 obtained with 1

f̂ τ
βn

(β ′
nx)>c

is

asymptotically equivalent to the ‘ideal’ estimator obtained with the trimming function

J0(x) = 1f τ
β0

(β ′
0x)>c, (2.9)

as long as βn is a consistent estimator of β0. Let us point out that J0 only depends on β ′
0x and, in

view of equation (A.14) in the proof of Theorem 3.5, this property will be essential for achieving√
n-asymptotic normality of our estimator β̂ defined below.

2.2.4. Estimation of β0

With at hand this new trimming function, we can now define a new semi-parametric least squares
estimator of β0:

β̂ = arg min
β∈Bn

∫ (
y − f̂

(
β ′x;β))21y≤τ J (x)dF̂ĝ(x, y)

(2.10)
= arg min

β∈Bn

Mn(β, f̂ , J ),

where Bn is a set shrinking to {β0}, which is computed from the preliminary step. The proof of
the asymptotic normality of β̂ will be carried out in two steps. We will first show that minimizing
Mn(β, f̂ , J ) is asymptotically equivalent to minimizing Mn(β,f,J0). This then brings back the
minimization problem to a fully parametric one.
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3. Asymptotic properties

3.1. Estimation of the distribution F(x,y)

Let us first introduce a few notations. Denote H(t) = P(T ≤ t), Hθ(t |z) = P(T ≤ t |Zθ = z),
Hθ,0(t |z) = P(T ≤ t, δ = 0|Zθ = z), and Hθ,1(t |z) = P(T ≤ t, δ = 1|Zθ = z). For any function
L(u), let ∇uL(u) (resp., ∇2

u,uL(u)) denote the vector (resp., matrix) of partial derivatives of
order 1 (resp., order 2) of L(u) with respect to u. In particular, denote by ∇θGθ (t |λ(θ, x)) the
vector of partial derivatives of the function Gθ(t |λ(θ, x)) with respect to all occurrences of θ .
Let us point out that, in general, the vector valued function ∇θGθ (t |λ(θ, x)) depends on x, and
not only on λ(θ, x). Finally, for any matrix A of dimensions k × 
 (where k, 
 ≥ 1) we denote
|A| = [trace(A′A)]1/2.

We further need to introduce two (intermediate) estimators of F(x, y):

F̃g(x, y) = 1

n

n∑
i=1

δi1Ti≤y,Xi≤x

1 − Gθ0(Ti − |g(Xi))
, (3.1)

F̂g(x, y) = 1

n

n∑
i=1

δi1Ti≤y,Xi≤x

1 − Ĝθ0(Ti − |g(Xi))
. (3.2)

In the following result, we consider integrals of the form
∫

φ(x, y)dF̂g(x, y) with φ belonging
to some class of functions F , and we state that this class of integrals is Glivenko–Cantelli and ad-
mits an i.i.d. representation uniformly over all φ ∈ F . The proof can be found in Lopez [21]. For
a completely nonparametric estimator of F(x, y) that is not based on model assumption (A0),
Sánchez-Sellero, González-Manteiga and Van Keilegom [26] obtained a similar uniform consis-
tency and convergence result. The assumptions mentioned below can be found in Appendix A.

Theorem 3.1. (i) Under Assumptions 1 and 3, for an → 0 and nan → ∞, and for a class F
satisfying Condition 1, we have

sup
φ∈F

∣∣∣∣
∫

φ(x, y)d[F̂g − F ](x, y)

∣∣∣∣ →a.s. 0.

(ii) For Zi = λ(θ0,Xi), define

Mi(t) = (1 − δi)1Ti≤t −
∫ t

−∞
1Ti≥y dGθ0(y|Zi)

1 − Gθ0(y − |Zi)
,

which is a continuous time martingale with respect to the natural filtration σ({Zi1Ti≤t , Ti1Ti≤t ,

δi1Ti≤t , i = 1, . . . , n}). Under Assumptions 1–4 and for a class F satisfying Conditions 2 and 3,

∫
φ(x, y)d[F̂g − F̃g](x, y) = 1

n

n∑
i=1

∫
φ̄(Zi, s)dMi(s)

[1 − F(s − |Zi)][1 − Gθ0(s|Zi)] + Rn(φ),
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where supφ∈F |Rn(φ)| = oP (n−1/2), φ̄ is defined above Condition 3, and F(s|z) = P(Y ≤
s|Zθ0 = z).

The following theorem provides the behavior of the difference between integrals with respect
to F̂ĝ and integrals with respect to F̂g .

Theorem 3.2. (i) Under Assumptions 1, 3 and 5, for an → 0 and nan → ∞, and for a class F
satisfying Condition 1, we have

sup
φ∈F

∣∣∣∣
∫

φ(x, y)d[F̂ĝ − F̂g](x, y)

∣∣∣∣ = oP (1).

(ii) Under Assumptions 1–3 and 5, for an → 0 and na3
n(logn)−1 → ∞, and for a class F

whose envelope is as in Condition 1,∫
φ(x, y)d[F̂ĝ − F̂g](x, y)

= −E

(
φ(X,Y ){∇θGθ0(Y − |λ(θ0,X))}′

1 − Gθ0(Y − |g(X))

)
1

n

n∑
i=1

μ(Ti, δi,Xi) + R̃n(φ),

where the function μ is defined in (C0), and where supφ∈F |R̃n(φ)| = oP (n−1/2).

3.2. Estimation of the single index model

We now return to the single index model (2.4) and to the estimators βn and β̂ defined in (2.7)
and (2.10). We start with stating the asymptotic consistency of the estimator βn. Note that the
estimator β̂ is by construction consistent, since it is defined on a shrinking neighborhood of β0.

Theorem 3.3. Let J̃ be defined as in (2.6). Under Assumptions 1, 3, 5, 7, and 9 – (A.1), and for
an → 0 and nan → ∞, we have

sup
β∈B

∣∣Mn(β, f̂ , J̃ ) − M(β,f, J̃ )
∣∣ → 0,

in probability. Consequently, βn → β0 in probability.

The next lemma is an important property in the literature on single index models. In the clas-
sical uncensored single index regression model, the property E[∇βf (β ′

0X;β0)|β ′
0X] = 0 plays

a major role in proving the asymptotic normality of M-estimators. See Delecroix, Hristache and
Patilea [5]. The next lemma shows that in our context, where we have to truncate at τ because
of censoring in the data, the analogous truncated version of this property holds true without any
further model conditions.
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Lemma 3.4. Assume that the derivative ∇βf (β ′
0·;β0) exists and is bounded. Then, for any β0

satisfying condition (2.4),

E
[∇βf

(
β ′

0X;β0
)
1Y≤τ |β ′

0X
] = 0.

This lemma is crucial for obtaining our i.i.d. representation and the asymptotic normality of β̂ ,
which we state in the next theorem. We denote by ∇β̃f (β ′

0·;β0) the vector of partial derivatives
with respect to the last d − 1 components of β .

Theorem 3.5. Let φ(x, y) = (y − f (β ′
0x;β0))∇β̃f (β ′

0x;β0)1y≤τ J0(x). Under Assumptions
1–11, we have

ˆ̃
β − β̃0 = �−1

[∫
φ(x, y)d

(
F̃g(x, y) − F(x, y)

)

+ 1

n

n∑
i=1

∫
φ̄(g(Xi), s)dMi(s)

[1 − F(s − |g(Xi))][1 − Gθ0(s|g(Xi))]

− E

(
φ(X,Y ){∇θGθ0(Y − |λ(θ0,X))}′

1 − Gθ0(Y − |g(X))

)
1

n

n∑
i=1

μ(Ti, δi,Xi)

]
(3.3)

+ oP

(
n−1/2)

= �−1

[
1

n

n∑
i=1

η(Ti, δi ,Xi)

]
+ oP

(
n−1/2),

where the function μ is defined in (C0), and where

� = E
[
1Y≤τ J0(X)∇β̃f

(
β ′

0X;β0
)∇β̃f

(
β ′

0X;β0
)′]

.

Hence,

n1/2(
ˆ̃
β − β̃0)

d→ N
(
0,�−1E

[
η(T , δ,X)η(T , δ,X)′

]
�−1).

If we wish to estimate the asymptotic variance in Theorem 3.5, we see that we need to estimate
the variance of �−1η. However, one can consistently estimate � by

�̂ = 1

n

n∑
i=1

1Yi≤τ J (Xi)∇β̃ f̂
(
β̂ ′Xi; β̂

)∇β̃ f̂
(
β̂ ′Xi; β̂

)′
.

Similarly, when it comes to estimate the covariance matrix of η, one can proceed by taking the
empirical variance of a random vector (η̂(Ti, δi ,Xi))1≤i≤n, where η̂ denotes an estimated version
of η in which we replaced each unknown quantity by its empirical counterpart (f replaced by f̂ ,

β0 by β̂, F by F̂ , . . .).
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We end this section with the verification of Assumptions 9–11 for the estimator f̂ (t;β) defined
in (2.5). Define the (uncomputable) kernel estimator based on F̃g,

f ∗(t;β) =
∫

K̃

(
β ′x − t

h

)
y1y≤τ dF̃g(x, y)

/(∫
K̃

(
β ′x − t

h

)
1y≤τ dF̃g(x, y)

)
. (3.4)

The advantage of F̃g , and hence of f ∗, is that it is composed of sums of i.i.d. terms. Classical
arguments show that f ∗ satisfies Assumptions 9 to 11. This is shown in Proposition 3.6 below.
On the other hand, Proposition 3.7 shows that the difference between f̂ and f ∗ is sufficiently
small so that f̂ also satisfies these assumptions.

Proposition 3.6. Assume that

(i) K̃ is a symmetric density function with compact support, and with two continuous deriva-
tives of bounded variation;

(ii) f (·;β0) ∈ H0
1 and ∇βf (β ′

0·;β0) ∈ H0
2, with H0

1 and H0
2 defined in (A.4) and (A.5);

(iii) nh5(logn)−1/2 → ∞, and nh8 → 0.

Then, f ∗ satisfies Assumptions 9–11.

Proposition 3.7. Under the assumptions of Theorem 3.2, we have

sup
β∈B,x∈X

∣∣f ∗(β ′x;β) − f̂
(
β ′x;β)∣∣ = OP

(
(logn)1/2n−1/2a

−1/2
n

)
,

sup
β∈B,x∈X

∣∣∇βf ∗(β ′x;β) − ∇βf̂
(
β ′x;β)∣∣ = OP

(
(logn)1/2h−1n−1/2a

−1/2
n

)
,

sup
β∈B,x∈X

∣∣∇2
β,βf ∗(β ′x;β) − ∇2

β,β f̂
(
β ′x;β)∣∣ = OP

(
(logn)1/2h−2n−1/2a

−1/2
n

)
,

where f̂ is the estimator defined in (2.5). Moreover, ∇βf̂ (β ′
0x;β0) = xm̂1(β

′
0x) + m̂2(β

′
0x),

with, for j = 1,2,

sup
x∈X

∣∣m̂j

(
β ′

0x
) − m∗

j

(
β ′

0x
)∣∣ = OP

(
(logn)1/2h−1n−1/2a

−1/2
n

)
,

sup
u∈β ′

0 X

∣∣m̂′
j (u) − m∗′

j (u)
∣∣ = OP

(
(logn)1/2h−2n−1/2a

−1/2
n

)
,

where the functions m∗
j are defined in (A.15), and where m′ denotes the derivative of the univari-

ate function β ′
0 X � u → m(u).

Note that f̂ ′(u;β0) = m̂1(u) (resp., f ∗′(u;β0) = m∗
1(u)). Combine Propositions 3.6 and

3.7 and deduce that f̂ satisfies Assumptions 9–11 if nh8 → 0, nanh
4(logn)−1 → ∞ and

ha
−1/2
n (logn)1/2 → 0. In the case where an = n−1/[4−δ] for some δ ∈ (0,1), these conditions

are satisfied if nh4(4−δ)/(3−δ)(logn)−(4−δ)/(3−δ) → ∞ and nh8−2δ(logn)4−δ → 0.



732 O. Lopez, V. Patilea and I. Van Keilegom

4. Simulation study

To investigate the small sample behavior of our procedure, we carry out a small simulation study
in which we consider two models. In the first model, the regression function is given by

m1
(
β ′

0x
) = β ′

0x − 0.5
(
β ′

0x
)2

,

and in the second

m2
(
β ′

0x
) = log

(
1 + 0.5β ′

0x
)
,

with β0 = (1,0.75,0.25,−0.5). We consider residuals ε = Y − mj(β
′
0X) (for j = 1,2) that are

Gaussian variables N (0,1) independent of X. The covariates are composed of 4 independent
components, following an uniform distribution on [0,1].

The censoring variable C follows an exponential distribution with mean γ exp(θ ′
0X) condi-

tional on the covariate Xi , where θ0 = (−0.1,−0.2,0.1,−0.3), and γ is a parameter that allows
us to modify the average proportion of censored responses. The parameter θ0 is estimated by
maximizing the Cox pseudo-likelihood, since the regression model on C is a proportional haz-
ards model.

We consider 10,000 replications of this simulation scheme for n = 200. For each simulated
sample j , we compute the resulting estimator β̂(j) of β0 and compute ‖β̂(j) − β0‖2

2. We then
deduce an estimator of the mean squared error (MSE) E[‖β̂ − β0‖2

2]. We take an = 2 for the
bandwidth involved in Beran’s estimator. Since the procedure is more sensitive to the choice of
the second bandwidth h, we consider a set of bandwidths hj = 0.5 + j0.1, for j = 1, . . . ,10,

and for each sample, we take the bandwidth that gives the lowest value of Mn(β, f̂ , J ) defined
in (2.10). In Table 1, we compare the MSE of the estimator that we propose to the MSE of an
estimator based on Kaplan–Meier weights, that is if we replace Beran’s estimator in our approach
by a standard Kaplan–Meier estimator. This alternative estimator is the one defined in Lopez [20].
As for our approach, this estimator puts more weights to the largest uncensored observations
caused by censoring. Nevertheless this alternative procedure is not adapted to Assumption (A0)
that we use herein. Hence, the estimator of Lopez [20] is expected to fail in our simulation setting.

As expected, our estimator based on the conditional Kaplan–Meier weighting outperforms the
estimator of Lopez [20] in the different situations we consider. It is also natural to observe that
the MSE of our β̂ increases with the proportion of censoring.

Table 1. Comparison of the MSE of the proposed estimator β̂ (columns CKM) with the MSE of the esti-
mator based on Kaplan–Meier weights (columns KM) for different proportions of censoring

Proportion of censoring

15% 30% 50%

Regression model CKM KM CKM KM CKM KM

m1 1.022 1.463 1.147 1.279 1.619 1.728
m2 0.580 1.480 1.290 1.613 1.407 1.633
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Appendix A: Assumptions and conditions

We split the assumptions in three parts, namely those required for the estimation of F(x, y), the
estimation of β0, and the estimation of f (·;β).

Assumptions needed for the estimation of F(x,y)

The asymptotic results related to the estimator F̂ĝ(x, y) will be valid under the following as-
sumptions and conditions.

Assumption 1. The distribution P(Zθ ≤ z) has three uniformly bounded derivatives for z ∈ Zθ

and θ ∈ �, and the densities fZθ (z) satisfy infθ∈� infz∈Zθ
fZθ (z) > 0.

For any function J (t |z) we will denote by Jc(t |z) the continuous part, and Jd(t |z) = J (t |z) −
Jc(t |z). Assumption 2 below has been introduced by Du and Akritas [7] to obtain their asymp-
totic i.i.d. representation of the conditional Kaplan–Meier estimator.

Assumption 2. (i) Let L(y|z) denote Hθ0(y|z) or Hθ0,0(y|z). Then, ∇zL(y|z) and ∇2
z,zL(y|z)

exist, are continuous with respect to z, and are uniformly bounded as functions of (z, y).
(ii) For some positive nondecreasing bounded (on [−∞; τ ]) functions L1, L2, L3, we have,

for all z ∈ Zθ0 , ∣∣Hθ0c(t1|z) − Hθ0c(t2|z)
∣∣ ≤ ∣∣L1(t1) − L1(t2)

∣∣,∣∣∇zHθ0c(t1|z) − ∇zHθ0c(t2|z)
∣∣ ≤ ∣∣L2(t1) − L2(t2)

∣∣,∣∣∇zHθ0,0c(t1|z) − ∇zHθ0,0c(t2|z)
∣∣ ≤ ∣∣L3(t1) − L3(t2)

∣∣,
the last two assumptions implying the same kind for ∇zH1c .

(iii) The jumps of Fg(·|z) and Gθ0(·|z) are the same for all z ∈ Zθ0 . Let (d1, d2, . . .) be the
atoms of G.

(iv) Fg(·|z) and Gθ0(·|z) have two derivatives with respect to z, with the first derivatives
uniformly bounded (on [−∞; τ ]). The variation of the functions ∇zFg(·|z) and ∇2

z,zFg(·|z) on
[−∞; τ ] is bounded by a constant not depending on z.

(v) For all di , define

si = sup
z∈Zθ0

∣∣Fg(di − |z) − Fg(di |z)
∣∣,

s′
i = sup

z∈Zθ0

∣∣∇zFg(di − |z) − ∇zFg(di |z)
∣∣,

ri = sup
z∈Zθ0

∣∣Gθ0(di − |z) − Gθ0(di |z)
∣∣,

r ′
i = sup

z∈Zθ0

∣∣∇zGθ0(di − |z) − ∇zGθ0(di |z)
∣∣.
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Then,
∑

di≤τ (si + s′
i + ri + r ′

i ) < ∞.

Assumption 3. The kernel K is a symmetric probability density function with compact support,
and K has bounded second derivative.

Assumption 4. The bandwidth an satisfies (logn)n−1a−3
n → 0 and na4

n → 0.

Assumption 5. The function (x, t, θ) �→ Gθ(t |λ(θ, x)) is differentiable with respect to θ , and the
vector ∇θGθ (t |λ(θ, x)) is uniformly bounded in (x, t, θ).

The class of functions F considered in Section 3.1 should satisfy the following conditions,
which are taken over from Lopez [21]. The conditions make use of concepts from the context of
empirical processes, which can be found, for example, in Van der Vaart and Wellner [32].

Condition 1. Let p0(x, y, c) = 1y≤c[1 − Gθ0(y − |g(x))]−1. The class p0 F is P(X,Y,C)-
Glivenko–Cantelli, and has an integrable envelope �0 satisfying �0(x, y, c) = 0 for y > τ .

Condition 2. The covering number N(ε, F ,L2(P(X,Y ))) is bounded by Aε−V for ε > 0 and for
some A,V > 0, and F has a square integrable envelope � satisfying �(x,y) = 0 for y > τ .

Let Z = Zθ0 = g(X), let Fz(x, y) = P(X ≤ x,Y ≤ y|Z = z), and for any function φ(x, y),
define φ̄(z, s) = ∫

1s≤yφ(x, y)dFz(x, y). Let Zθ0,η be the set of all points at a distance at least
η > 0 from the complementary of Zθ0 .

Condition 3. For all φ ∈ F , φ̄ is twice differentiable with respect to z, and

sup
s≤τ,z∈Zθ0,η

{∣∣∇zφ̄(z, s)
∣∣ + ∣∣∇2

z,zφ̄(z, s)
∣∣} ≤ M < ∞

for some constant M not depending on φ. Moreover, �̄ is bounded on Zθ0,η ×]−∞; τ ], and has
bounded partial derivatives with respect to z, where � is the envelope function of Condition 2.

The reason for introducing the set Zθ0,η is to prevent us from boundary effects coming from
kernel estimators. See Lopez [21] for a detailed discussion on this issue.

Assumptions needed for the estimation of β0

We next state the additional assumptions needed for the asymptotic results concerning the esti-
mation of the parameters in the single index model.

Assumption 6. There exist 0 < c0 < c1 < ∞ and η > 0 such that, for each c ∈ [c0, c1] and
x ∈ X ,

1f τ
β0

(β ′
0x)>c = 1 �⇒ g(x) ∈ Zθ0,η.
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Moreover, assume that ∣∣f τ
β1

(
β ′

1x
) − f τ

β2

(
β ′

2x
)∣∣ ≤ C‖β1 − β2‖α

for some positive constant C and some α > 0.

Assumption 7. (i) E(|Y |3) < ∞;
(ii) E[{f (β ′X;β) − f (β ′

0X;β0)}21Y≤τ ] = 0 �⇒ β = β0;
(iii) β0 = (1, β̃ ′

0)
′ with β̃0 an interior point of B̃;

(iv) The class {(x, y) → f (β ′x;β)1y≤τ : β ∈ B} satisfies Condition 1 for a continuous inte-
grable envelope � .

Assumption 8. The classes {x → ∇βf (β ′x;β): β ∈ B} and {x → ∇2
β,βf (β ′x;β): β ∈ B} are

VC-classes of continuous functions for a uniformly bounded envelope.

Assumptions needed for the estimation of f (·;β)

The last group of assumptions is required for the generic estimator f̂ (·;β). They are verified in
Section 3.2 for the estimator defined in (2.5).

Assumption 9. For all c > 0,

sup
β∈B,x∈X

∣∣f̂ (
β ′x;β) − f

(
β ′x;β)∣∣1f τ

β (β ′x)>c = oP (1), (A.1)

sup
β∈B,x∈X

∣∣∇βf̂
(
β ′x;β) − ∇βf

(
β ′x;β)∣∣1f τ

β (β ′x)>c = oP (1), (A.2)

sup
β∈B,x∈X

∣∣∇2
β,β f̂

(
β ′x;β) − ∇2

β,βf
(
β ′x;β)∣∣1f τ

β (β ′x)>c = oP (1). (A.3)

Assumption 10. There exist Donsker classes H1 and H2 such that f (·;β0) ∈ H1 and
∇βf (β ′

0·;β0) ∈ H2, and such that with probability tending to one, f̂ (·;β0) ∈ H1 and ∇βf̂ (β ′
0·;

β0) ∈ H2.

Typical examples of such kind of Donsker classes are classes of regular functions. Let T =
{β ′

0x: x ∈ X } ⊂ R and let C 1

 (T ,M) = {h : T �→ R


: supt∈T {|h(t)| + |h′(t)|} ≤ M} for 
 ≥ 1
and for some M < ∞. Define

H0
1 = C 1

1(T ,M), (A.4)

H0
2 = {

h : X �→ R
d : x �→ xh1

(
β ′

0x
) + h2

(
β ′

0x
)
: h1 ∈ C 1

1(T ,M),h2 ∈ C 1
d(T ,M)

}
. (A.5)

The class H0
2 is a Donsker class, which follows from stability properties of Donsker classes (see,

e.g., Examples 2.10.7 and 2.10.10 in Van der Vaart and Wellner [32]).



736 O. Lopez, V. Patilea and I. Van Keilegom

Assumption 11. For all c > 0,

sup
x∈X

∣∣f̂ (
β ′

0x;β0
) − f

(
β ′

0x;β0
)∣∣1f τ

β0
(β ′

0x)>c = OP (εn),

sup
x∈X

∣∣∇βf̂
(
β ′

0x;β0
) − ∇βf

(
β ′

0x;β0
)∣∣1f τ

β0
(β ′

0x)>c = OP

(
ε′
n

)
,

where εn and ε′
n satisfy εnε

′
n = o(n−1/2), a

−1/2
n (logn)1/2εn → 0 and a

−1/2
n (logn)1/2ε′

n → 0.

Appendix B: Technical lemmas and proofs

We start this Appendix with two technical lemmas, needed in the proofs of the main results. The
first technical lemma gives a concentration inequality for the convergence rate of semi-parametric
estimators.

Let bn be a sequence of real numbers tending to zero, and let {ζα: α ∈ A} be a family of
uniformly bounded functions, where A is a compact subset of R

p (with p ≥ 1). Consider the
class of functions

G =
{
(u, z, t, δ) �→ gα,x,v(u, z, t, δ)

(A.6)

= K0
(

ψ(α,u) − ψ(α,x)

bn

)
ζα(x,u, z, t, δ)ξ(t)1t≤v : α ∈ A,x ∈ X , v ∈ R

}
,

where K0, ψ and ξ are fixed functions, X ⊂ R
d is a compact set, and t ∈ R, and consider the

process (in α, x and v)

νn(gα,x,v) =
n∑

i=1

(
gα,x,v(Xi,Zi, Ti, δi) − E

[
gα,x,v(X,Z,T , δ)

])
.

Typically, K0 denotes either a kernel or its derivative of order 1 or 2.

Lemma A.1. Assume that the class of functions{
(u, z, t, δ) → K0

(
ψ(α,u) − ψ(α,x)

bn

)
ζα(x,u, z, t, δ): α ∈ A, x ∈ X

}
(A.7)

is a VC-class of functions for a constant envelope, assume that E[|ξ(T )|3] < ∞, and that
nb3

n/(logn) → ∞. Then,

n−1/2b
−1/2
n

[
log(1/bn)

]−1‖νn‖G = OP (1),

where ‖ · ‖G denotes the uniform norm over all maps in G .
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The proof of Lemma A.1 is a consequence of Proposition 1 in Einmahl and Mason [8]
and Talagrand’s inequality [30], and it is available from the long version of this paper, see
arXiv:1111.6232.

Remark. Note that if K0 is of bounded variation with compact support, and if ψ(α,x) = α′x,

then (A.7) holds, see Nolan and Pollard [24].

The second technical lemma shows the consistency of the estimator Ĝθ (t |λ(θ, x)) and its
vector of partial derivatives, uniformly in t, θ and x, and it also establishes the rate of convergence
of the estimator Ĝ

θ̂
(t |ĝ(x)), uniformly in t and x.

Lemma A.2. Under the assumptions of Theorem 3.2, we have

sup
t≤τ,θ∈�,x∈X

∣∣Ĝθ

(
t |λ(θ, x)

) − Gθ

(
t |λ(θ, x)

)∣∣ = oP (1), (A.8)

sup
t≤τ,θ∈�,x∈X

∣∣∇θ Ĝθ

(
t |λ(θ, x)

) − ∇θGθ

(
t |λ(θ, x)

)∣∣ = oP (1), (A.9)

sup
t≤τ

sup
x:g(x)∈Zθ0,η

∣∣Ĝ
θ̂

(
t |ĝ(x)

) − Gθ0

(
t |g(x)

)∣∣ = OP

(
n−1/2a

−1/2
n (logn)1/2). (A.10)

Proof. For the first part, with probability tending to 1, for t ≤ τ, 1 − Ĝ(t |λ(θ, x)) > 0. Taking
the logarithm, one obtains

log
(
1 − Ĝ

(
t |λ(θ, x)

)) =
n∑

i=1

(1 − δi)1Ti≤t log
(
1 − Wn,i(x, θ)

)
,

where

Wn,i(x, θ) = Wn(Xi, Ti;x, θ)

= K

(
λ(θ,Xi) − λ(θ, x)

an

)/(
n∑

j=1

1Tj ≥Ti
K

(
λ(θ,Xj ) − λ(θ, x)

an

))
.

A Taylor expansion leads to

log
(
1 − Ĝ

(
t |λ(θ, x)

)) = −
n∑

i=1

(1 − δi)Wn,i(x, θ)1Ti≤t + OP

(
n−1a−2

n

)
,

where the order of the remainder term is uniform in t, θ, x, as

sup
i:Ti≤τ

sup
x,θ

∣∣Wn,i(x, θ)
∣∣ = OP

(
n−1a−1

n

)
.

http://arxiv.org/abs/1111.6232
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The remainder term is oP (1) if na2
n → ∞. Rewrite

n∑
i=1

(1 − δi)1Ti≤tWn,i(x, θ) = 1

nan

n∑
i=1

(1 − δi)1Ti≤tK

(
λ(θ,Xi) − λ(θ, x)

an

)
Sθ

(
λ(θ, x), Ti

)−1

+ 1

nan

n∑
i=1

(1 − δi)1Ti≤tK

(
λ(θ,Xi) − λ(θ, x)

an

)

× Ŝθ (λ(θ, x), Ti) − Sθ (λ(θ, x), Ti)

Sθ (λ(θ, x), Ti)Ŝθ (λ(θ, x), Ti)
,

where

Sθ

(
λ(θ, x), y

) = [
1 − Hθ

(
y|λ(θ, x)

)]
fZθ

(
λ(θ, x)

)
,

Ŝθ

(
λ(θ, x), y

) = 1

nan

n∑
j=1

1Tj ≥yK

(
λ(θ,Xj ) − λ(θ, x)

an

)
.

Apply Lemma A.1 to obtain the uniform convergence of Ŝθ towards Sθ , and to show that

sup
x,θ∈�,t≤τ

∣∣∣∣∣ 1

nan

n∑
i=1

(1 − δi)1Ti≤tK

(
λ(θ,Xi) − λ(θ, x)

an

)
Sθ

(
λ(θ, x), Ti

)−1

−
∫ t

−∞
dHθ,0(s|λ(θ, x))

1 − Hθ(s − |λ(θ, x))

∣∣∣∣∣ = oP (1).

Since Sθ is uniformly bounded away from zero for y ≤ τ, see Assumption 1, the result follows
from

exp

[
−

∫ t

−∞
dHθ,0(s|λ(θ, x))

1 − Hθ(s − |λ(θ, x))

]
= 1 − Gθ

(
t |λ(θ, x)

)
.

For the gradient, we have

∇θ Ĝθ

(
t |λ(θ, x)

) = (
1 − Ĝθ

(
t |λ(θ, x)

)) n∑
i=1

(1 − δi)1Ti≤t

∇θWn,i(x, θ)

1 − Wn,i(x, θ)
.

From this, we deduce that the convergence of ∇θ Ĝθ follows from the convergence of Ĝθ , of Ŝθ

and of

1

na2
n

n∑
i=1

(1 − δi)1Ti≤t∇θλ(θ, x)K ′
(

λ(θ,Xi) − λ(θ, x)

an

)
,
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and

1

na2
n

n∑
i=1

1Ti≤t∇θλ(θ, x)K ′
(

λ(θ,Xi) − λ(θ, x)

an

)
.

These two quantities can be studied using Lemma A.1, which shows that their centered versions
converge uniformly with rate (na3

n)
−1/2 logn, while the bias term is of order a2

n.

The third result can be deduced from a Taylor expansion, Assumption 5 and Proposition 4.3
in Van Keilegom and Akritas [33]. Indeed, we can deduce that

sup
t≤τ

sup
x:g(x)∈Zθ0,η

∣∣Ĝ
θ̂

(
t |ĝ(x)

) − Gθ0

(
t |g(x)

)∣∣
≤ sup

t≤τ
sup

x:g(x)∈Zθ0,η

∣∣Ĝθ0

(
t |g(x)

) − Gθ0

(
t |g(x)

)∣∣ + OP

(‖θ̂ − θ0‖
)
.

�

We are now ready to give the proofs of the main results.

Proof of Theorem 3.2. Part (i) of the theorem can be easily derived by replacing the differen-
tiability condition in Assumption 5 by a uniform continuity condition on Gθ with respect to θ,

and equation (A.8) in Lemma A.2.
For part (ii), a Taylor expansion with respect to θ leads to

∫
φ(x, y)d[F̂ĝ − F̂g](x, y) = −1

n

n∑
i=1

δiφ(Xi, Ti)∇θ Ĝθn(Ti − |λ(θn,Xi))(θ̂ − θ0)

[1 − Ĝθn(Ti − |λ(θn,Xi))]2

for some θn between θ̂ and θ0. From the convergence of θ̂ towards θ0, it follows that θn tends to
θ0. Moreover, applying equation (A.8) and (A.9) in Lemma A.2, we obtain that

∫
φ(x, y)d[F̂ĝ − F̂g](x, y) = −1

n

n∑
i=1

δiφ(Xi, Ti)∇θGθ0(Ti − |λ(θ0,Xi))(θ̂ − θ0)

[1 − Gθ0(Ti − |g(Xi))]2

+ Rn(φ),

= Un(φ) + Rn(φ),

with supφ |Rn(φ)| ≤ |Rn(�)| = oP (n−1/2), and

Un(φ) =
{

−1

n

n∑
i=1

δiφ(Xi, Ti)∇θGθ0(Ti − |λ(θ0,Xi))

[1 − Gθ0(Ti − |g(Xi))]2

}{
1

n

n∑
j=1

μ(Tj , δj ,Xj )

}
+ R′

n(φ),

with supφ |R′
n(φ)| ≤ |R′

n(�)| = oP (n−1/2). Centering the first sum in Un(φ) and applying a
uniform central limit theorem (see, e.g., Van der Vaart and Wellner [32]), we obtain the stated
representation. �



740 O. Lopez, V. Patilea and I. Van Keilegom

Proof of Theorem 3.3. Consider the difference∣∣Mn(β, f̂ , J̃ ) − Mn(β,f, J̃ )
∣∣

≤ 2
∫

|y|1y≤τ dF̂ĝ(x, y) sup
x:J̃ (x)=1,β∈B

∣∣f̂ (
β ′x;β) − f

(
β ′x;β)∣∣

+
∫

1y≤τ

∣∣f̂ (
β ′x;β) + f

(
β ′x;β)∣∣dF̂ĝ(x, y) sup

x:J̃ (x)=1,β∈B

∣∣f̂ (
β ′x;β) − f

(
β ′x;β)∣∣.

The first term on the right-hand side converges uniformly to zero by Assumption 9 and the law
of large numbers for F̂ĝ (see Theorem 3.1 and Theorem 3.2). The integral in the second term can
be bounded by (

1 + oP (1)
) ×

∫
2�(x)dF̂ĝ(x, y),

where oP (1) is uniform in β, by Assumption 7 and 9 – (A.1). Now we have to show that
Mn(β,f,J ∗) converges to M(β,f,J ∗) uniformly in β. For this, apply Theorem 3.1 and The-
orem 3.2 using Assumption 7. By usual arguments for proving consistency (see, e.g., Van der
Vaart [31], Theorem 5.7), the consistency of βn follows. �

Proof of Lemma 3.4. The proof is somewhat similar to the proof of Lemma 5A in Dominitz
and Sherman [6]. First, observe that

f
(
β ′X;β) = E

[
Y |β ′X,Y ≤ τ

] = E
[
f

(
β ′

0X;β0
)|β ′X,Y ≤ τ

] = E[f (β ′
0X;β0)1Y≤τ |β ′X]

P(Y ≤ τ |β ′X)
.

Let α(X,β) = β ′
0X − β ′X. Define

�X(β1, β2) = E
[
f

(
α(X,β1) + β ′

2X;β0
)
1Y≤τ |β ′

2X
]
,

and note that f (β ′X;β) = �X(β,β)/P(Y ≤ τ |β ′X). Then,

∇β1�X(β0, β0) = −f ′(β ′
0X;β0

)
E

[
XP(Y ≤ τ |X)|β ′

0X
]
,

∇β2�X(β0, β0) = f ′(β ′
0X;β0

)
XP

(
Y ≤ τ |β ′

0X
) + f

(
β ′

0X;β0
)∇βh(X,β0),

where h(x,β) = P(Y ≤ τ |β ′X = β ′x). It follows that

∇βf
(
β ′

0x;β0
)

= f ′(β ′
0x;β0){xP(Y ≤ τ |β ′

0X = β ′
0x) − E[XP(Y ≤ τ |X)|β ′

0X = β ′
0x]}

P(Y ≤ τ |β ′
0X = β ′

0x)
(A.11)

+ ∇βh(x,β0)f (β ′
0x;β0)

P(Y ≤ τ |β ′
0X = β ′

0x)
− ∇βh(x,β0)f (β ′

0x;β0)E[1Y≤τ |β ′
0X = β ′

0x]
P(Y ≤ τ |β ′

0X = β ′
0x)2

:= xm1
(
β ′

0x
) + m2

(
β ′

0x
)
.
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Therefore,

E
[∇βf

(
β ′

0X;β0
)
1Y≤τ |β ′

0X
]

= E[f ′(β ′
0X;β0){XP(Y ≤ τ |β ′

0X) − E[XP(Y ≤ τ |X)|β ′
0X]}1Y≤τ |β ′

0X]
P(Y ≤ τ |β ′

0X)

= 0. �

Proof of Theorem 3.5. The proof consists of three steps:
Step 0: Replace J by J0. For any Bn a sequence of shrinking neighborhoods of β0,

sup
β∈Bn

∣∣Mn(β, f̂ , J ) − Mn(β, f̂ , J0)
∣∣ ≤ oP

(
Mn(β, f̂ , J0) + n−1).

See Delecroix, Hristache and Patilea [5], page 738. Similar arguments apply also when the trim-
ming J is defined with f̂ τ

βn
(β ′

nx) justifying the practical implementation of the trimming func-
tion.

Step 1: Bring the problem back to the parametric case.
For notational simplicity, we work with ∇βf instead of ∇β̃f . Note that ∇βf = (0,∇′

β̃
f )′. We

will show that, on Bn,

Mn(β, f̂ , J0) = Mn(β,f,J0) + oP

(‖β − β0‖√
n

)
+ oP

(‖β − β0‖2) + C′
n,

where C′
n does not depend on β. Decompose

Mn(β, f̂ , J0) = Mn(β,f,J0)

− 2

n

n∑
i=1

δiJ0(Xi)(Ti − f (β ′Xi;β))1Ti≤τ

1 − Ĝ
θ̂
(Ti − |ĝ(Xi))

[
f̂

(
β ′Xi;β

) − f
(
β ′Xi;β

)]

+ 1

n

n∑
i=1

δiJ0(Xi)1Ti≤τ

1 − Ĝ
θ̂
(Ti − |ĝ(Xi))

[
f̂

(
β ′Xi;β

) − f
(
β ′Xi;β

)]2

= Mn(β,f,J0) − 2A1n + B1n.

Step 1.1: Study of A1n.

A1n can be expressed as

A1n = 1

n

n∑
i=1

δiJ0(Xi)(Ti − f (β ′
0Xi;β0))1Ti≤τ

1 − Ĝ
θ̂
(Ti − |ĝ(Xi))

[
f̂

(
β ′

0Xi;β0
) − f

(
β ′

0Xi;β0
)]

+ 1

n

n∑
i=1

δiJ0(Xi)1Ti≤τ (f (β ′
0Xi;β0) − f (β ′Xi;β))

1 − Ĝ
θ̂
(Ti − |ĝ(Xi))

× [
f̂

(
β ′Xi;β

) − f
(
β ′Xi;β

) − f̂
(
β ′

0Xi;β0
) + f

(
β ′

0Xi;β0
)]
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+ 1

n

n∑
i=1

δiJ0(Xi)1Ti≤τ (f (β ′
0Xi;β0) − f (β ′Xi;β))

1 − Ĝ
θ̂
(Ti − |ĝ(Xi))

[
f̂

(
β ′

0Xi;β0
) − f

(
β ′

0Xi;β0
)]

+ 1

n

n∑
i=1

δiJ0(Xi)(Ti − f (β ′
0Xi;β0))1Ti≤τ

1 − Ĝ
θ̂
(Ti − |ĝ(Xi))

× [
f̂

(
β ′Xi;β

) − f
(
β ′Xi;β

) − f̂
(
β ′

0Xi;β0
) + f

(
β ′

0Xi;β0
)]

= A2n + A3n + A4n + A5n.

A2n does not depend on β. For A3n, observe that, for any β ∈ Bn, we can replace J0(Xi) by
1f τ

β (β ′Xi)>c/2 using Assumption 6. As ∇βf (β ′x;β) is a bounded function of x and β (Assump-
tion 8, since the class of functions has a bounded envelope), and using the uniform convergence
of ∇βf̂ (β ′x;β) (Assumption 9), we can obtain from a first order Taylor expansion applied twice
(for f (β ′x;β) and for f̂ (β ′x;β) − f (β ′x;β) around β0), that A3n = oP (‖β − β0‖2).

For A4n, first replace Ĝ
θ̂

with Gθ0 . For this, note that [1−Gθ0(Ti −|g(Xi))] is bounded away
from zero with probability tending to 1 for Ti ≤ τ, and that

sup
t≤τ,x:J0(x)=1

∣∣Ĝ
θ̂

(
t |ĝ(x)

) − Gθ0

(
t |g(x)

)∣∣∣∣f̂ (
β ′

0x;β0
) − f

(
β ′

0x;β0
)∣∣ = oP

(
n−1/2) (A.12)

using part 2 of Assumption 11, and Lemma A.2. A first order Taylor expansion for f (β ′x;β) −
f (β ′

0x;β0) and property (A.12) lead to

A4n = 1

n

n∑
i=1

δiJ0(Xi)1Ti≤τ (f (β ′
0Xi;β0) − f (β ′Xi;β))

1 − Gθ0(Ti − |g(Xi))

[
f̂

(
β ′

0Xi;β0
) − f

(
β ′

0Xi;β0
)]

+ oP

(‖β − β0‖√
n

)
.

Next, a second order Taylor development shows that the first term above can be rewritten as

(β − β0)
′

n

n∑
i=1

δiJ0(Xi)1Ti≤τ∇βf (β ′
0Xi;β0)

1 − Gθ0(Ti − |g(Xi))

[
f

(
β ′

0Xi;β0
) − f̂

(
β ′

0Xi;β0
)]

(A.13)
+ oP

(‖β − β0‖2).
To show that this term is negligible, we will use empirical process theory. We have that f ∈ H1,

where H1 is the Donsker class defined in Assumption 10, and f̂ ∈ H1 with probability tending
to 1. Consequently, the class of functions

H′
1 =

{
(y, c, x, t) → 1y≤c1y≤τ∇βf (β ′

0x;β0)J0(t)φ(β ′
0t)

1 − Gθ0(y ∧ c − |g(x))
: φ ∈ H1

}
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is a Donsker class, see Example 2.10.8 in Van der Vaart and Wellner [32]. Furthermore, for all
φ ∈ H1,

E

[
δJ0(X)∇βf (β ′

0X;β0)φ(β ′
0X)1T ≤τ

1 − Gθ0(T − |g(X))

]
= E

[∇βf
(
β ′

0X;β0
)
φ
(
β ′

0X
)
J0(X)1Y≤τ

]
(A.14)

= 0,

since E[∇βf (β ′
0X,β0)1Y≤τ |β ′

0X] = 0 (see Lemma 3.4), and since J0(X) is a function of β ′
0X

alone. Deduce that, since H′
1 is a Donsker class, and since f̂ tends uniformly to f, that the first

term in (A.13) is of order oP (‖β − β0‖n−1/2). See the asymptotic equicontinuity of Donsker
classes, cf. Van der Vaart and Wellner [32], Section 2.1.2.

For A5n, apply a second order Taylor expansion. Using that ∇2
β,βf is bounded, and that ∇2

β,β f̂

converges uniformly to ∇2
β,βf, we obtain

A5n = (β − β0)
′

n

n∑
i=1

δiJ0(Xi)1Ti≤τ (Ti − f (β ′
0Xi;β0))[∇βf (β ′

0Xi;β0) − ∇βf̂ (β ′
0Xi;β0)]

1 − Ĝ
θ̂
(Ti − |ĝ(Xi))

+ oP

(‖β − β0‖2).
Proceed as for A4n to replace Ĝ and ĝ by G and g, using part 3 of Assumption 11. The same
arguments as for A4n can then be used, but considering instead the Donsker class

H′
2 =

{
(y, c, x) → 1y≤cJ0(x)1y≤τ (y − f (β ′

0x;β0))φ(x)

1 − Gθ0(y − |g(x))
: φ ∈ H2

}
,

where H2 is defined in Assumption 10, and observing that, for any function φ,

E

[
δJ0(X)φ(X)(Y − f (β ′

0X;β0))1T ≤τ

1 − Gθ0(T − |g(X))

]

= E
[
E

[(
Y − f

(
β ′

0X;β0
))

1Y≤τ |X
]
J0(X)φ(X)

] = 0,

by the definition of our regression model. Deduce that A5n = oP (‖β − β0‖n−1/2 + ‖β − β0‖2).
Step 1.2: Study of B1n.

Rewrite B1n as

B1n = 1

n

n∑
i=1

δiJ0(Xi)1Ti≤τ

1 − Ĝ
θ̂
(Ti − |ĝ(Xi))

× [
f̂

(
β ′Xi;β

) − f
(
β ′Xi;β

) − f̂
(
β ′

0Xi;β0
) + f

(
β ′

0Xi;β0
)]2

+ 1

n

n∑
i=1

δiJ0(Xi)1Ti≤τ

1 − Ĝ
θ̂
(Ti − |ĝ(Xi))

[
f̂

(
β ′

0Xi;β0
) − f

(
β ′

0Xi;β0
)]2
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+ 2

n

n∑
i=1

δiJ0(Xi)1Ti≤τ

1 − Ĝ
θ̂
(Ti − |ĝ(Xi))

[
f̂

(
β ′

0Xi;β0
) − f

(
β ′

0Xi;β0
)]

× [
f̂

(
β ′Xi;β

) − f
(
β ′Xi;β

) − f̂
(
β ′

0Xi;β0
) + f

(
β ′

0Xi;β0
)]

= B2n + B3n + 2B4n.

Observe that, for any β ∈ Bn, we can replace J0(Xi) by 1f τ
β (β ′Xi)>c/2 using Assumption 8.

Next, by a Taylor expansion and the uniform convergence of ∇βf̂ , we have that B2n = oP (‖β −
β0‖2). The term B3n does not depend on β. For B4n, a second order Taylor expansion leads to

B4n = (β − β0)
′

n

n∑
i=1

δiJ0(Xi)[f̂ (β ′
0Xi;β0) − f (β ′

0Xi;β0)]
1 − Ĝ

θ̂
(Ti − |ĝ(Xi))

× [∇βf̂
(
β ′

0Xi;β0
) − ∇βf

(
β ′

0Xi;β0
)] + oP

(‖β − β0‖2).
Replace Ĝ by G and use Assumption 11, part 1, to conclude.

Step 2: Study of Mn(β,f,J0).

Observe that, on oP (1)-neighborhoods of β0, from a Taylor expansion,

Mn(β̃, f, J0) − Mn(β̃0, f, J0)

= (β̃ − β̃0)
′∇β̃Mn(β̃0, f, J0) + (β̃ − β̃0)

′∇2
β̃,β̃

Mn(β̃0, f, J0)(β̃ − β̃0) + oP

(‖β̃ − β̃0‖2),
and apply Theorem 1 and 2 of Sherman [27] to conclude. �

Proof of Proposition 3.6. The uniform convergence results in Assumptions 9 and 11 can be de-
duced from studying the uniform convergence rate of the numerator and the denominator in (3.4)
(and their derivatives) separately. This is a consequence of Lemma A.1. Since the other terms
can be studied in a similar way, we only consider the case of the denominator and its derivatives
in (3.4). In each case, the bias part can be dealt with uniformly with classical kernel arguments,
and is of order h2. For the centered version of f ∗, the result can be deduced from the study of
the uniform convergence rate of empirical processes indexed by some class of functions as the
one defined in (A.6), with

ζβ(x,X,Z,T , δ) = δ(x − X)j

1 − Gθ0(T − |Z)
,

where j = 0 (resp., 1, 2) for f ∗ (resp., ∇βf ∗, ∇2
β,βf ∗), and ξ(T ) = T . The kernel K0 in (A.6) is

either K̃ or K̃ ′ or K̃ ′′, and ψ(β,x) = β ′x. It follows from the conditions on K̃ and from Nolan
and Pollard [24] that the class of functions{

x → K0
(

β ′x − β ′u
h

)
: u ∈ X , h > 0, β ∈ B

}
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is a VC-class of functions. Moreover, u → (x − u)j (j = 0,1,2) is also a VC-class of bounded
functions using permanence properties of VC-classes, see Lemma 2.6.18 in Van der Vaart and
Wellner [32]. Finally, since 1 − Gθ0(T − |Z) is bounded away from zero, (A.7) holds. Now
applying Lemma A.1, we get

sup
β,x

∣∣f ∗(β ′x;β) − f
(
β ′x;β)∣∣ = OP

(
(logn)1/2n−1/2h−1/2 + h2),

sup
β,x

∣∣∇βf ∗(β ′x;β) − ∇βf
(
β ′x;β)∣∣ = OP

(
(logn)1/2n−1/2h−3/2 + h2),

sup
β,x

∣∣∇2
β,βf ∗(β ′x;β) − ∇2

β,βf
(
β ′x;β)∣∣ = OP

(
(logn)1/2n−1/2h−5/2 + h2),

where h2 comes from the bias term. Hence, Assumption 9 holds if h → 0 and nh5(logn)−1/2 →
∞. Assumption 11 holds if (logn)−1n1/2a

1/2
n h → ∞, and nh8 → 0.

The first part of Assumption 10 follows directly from the uniform convergence of f ∗. Ele-
mentary algebra shows that the gradient of f ∗ can be written as

∇βf ∗(β ′
0x;β0

) = xm∗
1

(
β ′

0x
) + m∗

2

(
β ′

0x
)
. (A.15)

Using the same arguments as above, these two functions converge uniformly to m1(β
′
0x) and

m2(β
′
0x), respectively, where ∇βf (β ′

0x;β0) = xm1(β
′
0x) + m2(β

′
0x), see equation (A.11), and

Assumption 10 follows. �

The proof of Proposition 3.7 is a direct consequence of Lemma A.2, equation (A.10), and the
fact that

sup
β

[
(nh)−1

n∑
i=1

∣∣K̃(j)
∣∣(β ′x − β ′Xi

h

)
|Ti |k

]
= OP (1),

and hence will be omitted.
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