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Given a finite class of functions F , the problem of aggregation is to construct a procedure with a risk as
close as possible to the risk of the best element in the class. A classical procedure (PAC-Bayesian statistical
learning theory (2004) Paris 6, Statistical Learning Theory and Stochastic Optimization (2001) Springer,
Ann. Statist. 28 (2000) 75–87) is the aggregate with exponential weights (AEW), defined by

f̃ AEW =
∑
f ∈F

θ̂(f )f, where θ̂ (f ) = exp(−(n/T )Rn(f ))∑
g∈F exp(−(n/T )Rn(g))

,

where T > 0 is called the temperature parameter and Rn(·) is an empirical risk.
In this article, we study the optimality of the AEW in the regression model with random design and in

the low-temperature regime. We prove three properties of AEW. First, we show that AEW is a subopti-
mal aggregation procedure in expectation with respect to the quadratic risk when T ≤ c1, where c1 is an
absolute positive constant (the low-temperature regime), and that it is suboptimal in probability even for
high temperatures. Second, we show that as the cardinality of the dictionary grows, the behavior of AEW
might deteriorate, namely, that in the low-temperature regime it might concentrate with high probability
around elements in the dictionary with risk greater than the risk of the best function in the dictionary by
at least an order of 1/

√
n. Third, we prove that if a geometric condition on the dictionary (the so-called

“Bernstein condition”) is assumed, then AEW is indeed optimal both in high probability and in expectation
in the low-temperature regime. Moreover, under that assumption, the complexity term is essentially the
logarithm of the cardinality of the set of “almost minimizers” rather than the logarithm of the cardinality of
the entire dictionary. This result holds for small values of the temperature parameter, thus complementing
an analogous result for high temperatures.

Keywords: aggregation; empirical process; Gaussian approximation; Gibbs estimators

1. Introduction and main results

In this note we study the problem concerning the optimality of the AEW in the regression model
with random design. To formulate the problem, we need to introduce several definitions.

Let Z and X be two measure spaces, and set Z and Z1, . . . ,Zn to be n + 1 i.i.d. random
variables with values in Z . From a statistical standpoint, D = (Z1, . . . ,Zn) is the set of given
data at our disposal. The risk of a measurable real-valued function f defined on X is given by

R(f ) = EQ(Z,f ),
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where Q : Z × L(X ) �→ R is a non-negative function, called the loss function and L(X ) is the
set of all real-valued measurable functions defined on X . If f̂ is a statistic constructed using the
data D, then the risk of f̂ is the random variable

R(f̂ ) = E[Q(Z, f̂ )|D].
Throughout this article, we restrict our attention to functions f , loss functions Q, and random
variables Z for which |Q(Z,f )| ≤ b almost surely. (Note that some results have been obtained
in the same setup for unbounded loss functions in [7,13,32], and [4].) The loss function on which
we focus throughout most of the article is the quadratic loss function, defined when Z = (X,Y )

by Q((X,Y ),f ) = (Y − f (X))2.
In the aggregation framework, one is given a finite set F of real-valued functions defined

on X , usually called a dictionary. The problem of aggregation (see, e.g., [7,10], and [31]) is to
construct a procedure, usually called an aggregation procedure, that produces a function with
a risk as close as possible to the risk of the best element in F . Keeping this in mind, one can
define the optimal rate of aggregation [16,26], which is the smallest price, as a function of the
cardinality of the dictionary M and the sample size n, that one has to pay to construct a function
with a risk as close as possible to that of the best element in the dictionary. We recall the definition
for the “expectation case;” a similar definition for the “probability case” can be formulated as
well (see, e.g., [16]).

Definition 1.1 ([26]). Let b > 0. We say that (ψn(M))n,M∈N∗ is an optimal rate of aggregation
in expectation when there exist two positive constants, c0 and c1, depending only on b, for which
the following holds for any n ∈ N

∗ and M ∈ N
∗:

1. There exists an aggregation procedure f̃n such that for any dictionary F of cardinality M

and any random variable Z satisfying |Q(Z,f )| ≤ b almost surely for all f ∈ F , one has

ER(f̃n) ≤ min
f ∈F

R(f ) + c0ψn(M); (1.1)

2. For any aggregation procedure f̄n, there exists a dictionary F of cardinality M and a
random variable Z such that |Q(Z,f )| ≤ b almost surely for all f ∈ F and

ER(f̄n) ≥ min
f ∈F

R(f ) + c1ψn(M).

In our setup, one can show (cf. [26]) that in general, an optimal rate of aggregation (in the sense
of [26] [optimality in expectation] and of [16] [optimality in probability]) is lower-bounded by
(logM)/n. Thus, procedures satisfying an exact oracle inequality like (1.1)—that is, an oracle in-
equality with a factor of 1 in front of minf ∈F R(f )—with a residual term of ψn(M) = (logM)/n

are said to be optimal. Only a few aggregation procedures have been shown to achieve this op-
timal rate, including the exponential aggregating schemes of [2,3,7,13,31], the the “empirical
star algorithm” in [3], and the “preselection/convexification algorithm” in [16]. For a survey on
optimal aggregation procedures, see the HDR dissertation of J.-Y. Audibert.

Our main focus here is on the problem of the optimality of the aggregation procedure with
exponential weights (AEW). This procedure originate from the thermodynamic standpoint of
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learning theory (see [8] for the state of the art in this direction). AEW can be viewed as a relaxed
version of the trivial aggregation scheme, which is to minimize the empirical risk

Rn(f ) = 1

n

n∑
i=1

Q(Zi, f ) (1.2)

in the dictionary F .
A procedure that minimizes (1.2) is called empirical risk minimization (ERM). It is well known

that ERM generally cannot achieve the optimal rate of (logM)/n, unless one assumes that the
given class F has certain geometric properties, which we discuss below (see also [13,18,21]). To
have any chance of obtaining better rates, one has to consider aggregation procedures that take
values in larger sets than F . The most natural set is the convex hull of F . AEW is a very popular
candidate for the optimal procedure, and it was one of the first procedures to be studied in the
context of the aggregation framework [2,4,7,9,13,15,20,31]. It is defined by the following convex
sum:

f̃ AEW =
M∑

j=1

θ̂j fj , where θ̂j = exp(−(n/T )Rn(fj ))∑M
k=1 exp(−(n/T )Rn(fk))

(1.3)

for the dictionary F = {f1, . . . , fM}. The parameter T > 0 is called the temperature.1

Thus far, there have been three main results concerning the optimality of the AEW. The first
of these is that the progressive mixture rule is optimal in expectation for T larger than some
parameters of the model (see [4,7,13,30,32] and [3]), and under certain convexity assumption on
the loss function Q. This procedure is defined by

f̄ = 1

n

n∑
k=1

f̃ AEW
k , (1.4)

where f̃ AEW
k is the function generated by AEW (with a common temperature parameter T )

associated with the dictionary F and constructed using only the first k observations Z1, . . . ,Zk .
(See [3] for more details and for other procedures related to the progressive mixture rule.)

Second, the optimality in expectation of AEW was obtained by [9] for the regression model
Yi = f (xi) + εi with a deterministic design x1, . . . , xn ∈ X with respect to the risk ‖g − f ‖2

n =
n−1∑n

i=1(g(xi) − f (xi))
2 (with its empirical version being Rn(g) = n−1∑n

i=1(Yi − g(xi))
2).

That is, it was shown that for T ≥ c max(b, σ 2), where σ 2 is the variance of the noise ε,

E‖f̃ AEW − f ‖2
n ≤ min

g∈F
‖g − f ‖2

n + T logM

n + 1
. (1.5)

Finally, [1,2], and [8] proved that in the high-temperature regime, AEW can achieve the optimal
rate (logM)/n under the Bernstein assumption, recalled below in Definition 1.3 in expectation
and in high probability. This result is discussedin more detail later.

1This terminology comes from thermodynamics, since the weights (θ̂1, . . . , θ̂M) can be seen as a Gibbs measure with
temperature T on the dictionary F .
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Despite the long history of AEW, the literature contains no results on the optimality (or subop-
timality) of AEW in the regression model with random design in the general case (when the dic-
tionary does not necessarily satisfy the Bernstein condition). In this article, we address this issue
and complement the results (assuming the Bernstein condition) of [1,2,8] for the low-temperature
regime by proving the following:

- AEW is suboptimal for low temperatures T ≤ c1 (where c1 is an absolute positive constant),
both in expectation and in probability, for the quadratic loss function and a dictionary of
cardinality 2 (Theorem A).

- AEW is suboptimal in probability for some large dictionaries (of cardinality M ∼ √
n logn)

and small temperatures T ≤ c1 (Theorem B).
- AEW achieves the optimal rate (logM)/n for low temperatures under the Bernstein con-

dition on the dictionary (Theorem C). Together with the high-temperature results of [1,
2] and [8], this proves that the temperature parameter has almost no impact (as long as
T = O(1)) on the performance of the AEW under this condition, with a residual term of
the order of ((T + 1) logM)/n for every T > 0.

Theorem A. There exist absolute constants c0, . . . , c5 for which the following holds. For any
integer n ≥ c0, there are random variables (X,Y ) and a dictionary F = {f1, f2} such that (Y −
fi(X))2 ≤ 1 almost surely for i = 1,2, for which the quadratic risk of the AEW satisfies the
following:

1. if T ≤ c1 and n is odd, then

ER(f̃ AEW) ≥ min
f ∈F

R(f ) + c2√
n
;

2. if T ≤ c3
√

n/ logn, then, with probability greater than c4,

R(f̃ AEW) ≥ min
f ∈F

R(f ) + c5√
n
.

Theorem A proves that AEW is suboptimal in expectation in the low-temperature regime and
suboptimal in probability in both the low- and high-temperature regimes, since it is possible to
construct procedures that achieve the rate C/n with high probability [3,16] and in expectation
[3,4,7,13,30,32] in the same setup as for Theorem A. It should be noted that the problem of
the optimality in probability of the progressive mixture rule (and other related procedures) was
studied by [3], who proved that, for a loss function Q satisfying some convexity and regularity
assumption (e.g., the quadratic loss used in Theorem A), the progressive mixture rule f̄ defined
in (1.4) satisfies that for any temperature parameter, with probability greater than an absolute
constant c0 > 0, R(f̄ ) ≥ minf ∈F R(f ) + c1n

−1/2.

In addition, it is important to observe that the suboptimality in probability does not imply
suboptimality in expectation for the aggregation problem, or vice versa. This property of the
aggregation problem was first noted by [3], who found the progressive mixture rule (and other
related aggregation procedures) to be suboptimal in probability for dictionaries of cardinality two
but, on the other hand, to be optimal in expectation ([7,30,32] and [13]). This peculiar property of
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the problem of aggregation comes from the fact that an aggregate f̂ is not restricted to the set F ,
which allows R(f̂ ) − minf ∈F R(f ) to take negative values. [3] showed that for the progressive
mixture rule f̄ , these negative values do compensate on average for larger values, but there is
still an event of constant probability on which R(f̄ ) − minf ∈F R(f ) takes values greater than
C/

√
n.

The proof of Theorem A shows that a dictionary consisting of two functions is sufficient to
yield a lower bound in expectation in the low-temperature regime and in probability in both the
small temperature regime, 0 ≤ T ≤ c1, and the large temperature regime, c1 ≤ T ≤ c3

√
n/ logn.

In the following theorem, we study the behavior of AEW for larger dictionaries. To the best
of our knowledge, negative results on the behavior of exponential weights based aggregation
procedures are not known for dictionaries with more than two functions, and we show that the
behavior of the AEW deteriorates in some sense as the cardinality of the dictionary increases.

Theorem B. There exist an integer n0 and absolute constants c1 and c2 for which the following
holds. For every n ≥ n0, there are random variables (X,Y ) and a dictionary F = {f1, . . . , fM}
of cardinality, M = �c1

√
n logn�, for which the quadratic loss function of any element in F is

bounded by 2 almost surely, and for every 0 < α ≤ 1/2, if T ≤ c2α, then with probability at least
1 − c3(α)nα−1/2,

R(f̃ AEW) ≥ min
f ∈F

R(f ) + c4(α)

√
logM

n
.

Moreover, if f ∗
F ∈ F denotes the optimal function in F with respect to the quadratic loss (the

oracle), then there exists fj = f ∗
F with an excess risk greater than c5(α)n−1/2 and for which the

weight of fj in the AEW procedure satisfies θ̂j ≥ 1 − n−c6(α)/T .

Theorem B implies that the AEW procedure might cause the weights to concentrate around a
“bad” element in the dictionary (i.e., an element whose risk is larger than the best in the class
by at least ∼n−1/2) with high probability. In particular, Theorem B provides additional evidence
that the AEW procedure is suboptimal for low temperatures.

The analysis of the behavior of AEW for a dictionary of cardinality larger than two is con-
siderably harder than in the two-function case and requires some results on rearrangement of
independent random variables that are almost Gaussian (see Proposition 5.2 below). Fortunately,
not all is lost as far as optimality results for AEW go. Indeed, we show that under some geo-
metric condition, AEW can be optimal and in fact can even adapt to the “real complexity” of the
dictionary.

Intuitively, a good aggregation scheme should be able to ignore the elements in the dictionary
whose risk is far from the optimal risk in F , or at least the impact of such elements on the function
produced by the aggregation procedure should be small. Thus, a good procedure is one with a
residual term of the order of ψ/n, where ψ is a complexity measure that is determined only
by the richness of the set of “almost minimizers” in the dictionary. This leads to the following
question:

Question 1.2. Is it possible to construct an aggregation procedure that adapts to the real com-
plexity of the dictionary?
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This question was first addressed by the PAC-Bayesian approach. [1,2] and [8] showed that in
the high-temperature regime, AEW satisfies the requirements of Question 1.2, assuming that the
class has a geometric property, called the Bernstein condition.

Definition 1.3 ([5]). We say that a function class F is a (β,B)-Bernstein class (0 < β ≤ 1 and
B ≥ 1) with respect to Z if every f ∈ F satisfies Ef ≥ 0 and

E(f 2(Z)) ≤ B(Ef (Z))β . (1.6)

There are many natural situations in which the Bernstein condition is satisfied. For instance,
when Q is the quadratic loss function and the regression function is assumed to belong to F , the
excess loss function class LF = {Q(·, f ) − Q(·, f ∗

F ): f ∈ F } satisfies the Bernstein condition
with β = 1, where f ∗

F ∈ F is the minimizer of the risk in the class F . Another generic example
is when the target function Y is far from the set of targets with “multiple minimizers” in F and
LF satisfies the Bernstein condition with β = 1. (See [21,22] for an exact formulation of this
statement and related results.)

The Bernstein condition is very natural in the context of ERM because it has two conse-
quences: that the empirical excess risk has better concentration properties around the excess risk,
and that the complexity of the subset of F consisting of almost minimizers is smaller under this
assumption. Consequently, if the class LF is a (β,B)-Bernstein class for 0 < β ≤ 1, then the
ERM algorithm can achieve fast rates (see, e.g., [5] and references therein). As the results below
show, the same is true for AEW. Indeed, under a Bernstein assumption, [1,2] and [8] proved that
if R(·) is a convex risk function and if F is such that |Q(Z,f )| ≤ b almost surely for any f ∈ F ,
then for every T ≥ c1 max{b,B} and x > 0, with probability greater than 1 − 2 exp(−x),

R(f̃ AEW) ≤ min
f ∈F

R(f ) + T c2

n

(
x + log

(∑
f ∈F

exp
(−(n/2T )

(
R(f ) − R(f ∗

F )
))))

. (1.7)

Although the PAC-Bayesian approach cannot be used to obtain (1.7) in the low-temperature
regime (T ≤ c1 max{b,B}), such a result is not surprising. Indeed, because fast error rates for the
ERM are expected when the underlying excess loss functions class satisfies the Bernstein condi-
tion, and because AEW converges to the ERM when the temperature T tends to 0, it is likely that
for “small values” of T , AEW inherits some of the properties of ERM, such as fast rates under
a Bernstein condition. We show this in Theorem C, proving that AEW answers Question 1.2 for
low temperatures under the Bernstein condition.

Before formulating Theorem C, we introduce the following measure of complexity. For every
r > 0, let

ψ(r) = log
(|{f ∈ F : R(f ) − R(f ∗

F ) ≤ r}| + 1
)

+
∞∑

j=1

2−j log
(|{f ∈ F : 2j−1r < R(f ) − R(f ∗

F ) ≤ 2j r}| + 1
)
,

where |A| denotes the cardinality of the set A.
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Observe that ψ(r) is a weighted sum of the number of elements in F that assigns smaller and
smaller weights to functions with a relatively large excess risk.

Theorem C. There exist absolute constants c0, c1, c2, and c3 for which the following holds.
Let F be a class of functions bounded by b such that the excess loss class LF is a (1,B)-
Bernstein class with respect to Z. If the risk function R(·) is convex and if T ≤ c0 max{b,B},
then for every x > 0, with probability at least 1 − 2 exp(−x), the function f̃ AEW produced by the
AEW algorithm satisfies

R(f̃ AEW) ≤ R(f ∗
F ) + c1(b + B)

x + ψ(θ)

n
,

where θ = c2(b + B)(log |F |)/n.
In particular,

ER(f̃ AEW) ≤ R(f ∗
F ) + c3(b + B)

ψ(θ)

n
.

In other words, the scaling factor θ that we use is proportional to (b + B)(log |F |)/n, and if
the class is regular (in the sense that the complexity of F is well spread and not concentrated just
around one point), then ψ(θ) is roughly the cardinality of the elements in F with risk at most
∼(b + B)(log |F |)/n.

Observe that for every r > 0, ψ(r) ≤ c log |F | for a suitable absolute constant c. Thus, if T

is reasonably small (below a level proportional to max{B,b}), then the resulting aggregation
rate is the optimal one, proportional to (b + B)(x + logM)/n with probability 1 − 2 exp(−x),
and proportional to (b + B)(logM)/n in expectation. Thus, Theorem C indeed gives a positive
answer to Question 1.2 in the presence of a Bernstein condition and for low temperatures.

Although the residual terms in Theorem C and in (1.7) are not the same, they are comparable.
Indeed, the contribution of each element in F in the residual term depends exponentially on its
excess risk.

Theorem C together with the results for high temperatures from [1,2] and [8] show that the
AEW is an optimal aggregation procedure under the Bernstein condition as long as T = O(1)

when M and n tend to infinity. In general, the residual term obtained is on the order of
((T + 1) logM)/n, and it can be proven that the optimal rate of aggregation under the Bern-
stein condition is proportional to (logM)/n using the classical tools in [28].

Finally, a word about the organization of the article. In the next section we present some
comments about our results. The proofs of the three theorems follow in the subsequent sections.
Throughout, we denote absolute constants or constants that depend on other parameters by c1, c2,
etc. (Of course, we specify when a constant is absolute and when it depends on other parameters.)
The values of constants may change from line to line. We write a ∼ b if there are absolute
constants c and C such that bc ≤ a ≤ Cb, and write a � b if a ≤ Cb.

2. Comments

Although from a theoretical standpoint, whether AEW is an optimal procedure in expectation
and for high temperatures in the regression model with random design remains to be seen, from
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a practical standpoint, we believe that exponential aggregating schemes simply should not be
used in the setup of this article, because of the following reasons (see also the comments in [3]):

1. For any temperature T ≤ c0
√

n/ logn, there is an event of constant probability on which
AEW performs poorly (this is the second part of Theorem A).

2. If the temperature parameter is chosen to be too small, then the AEW can perform poorly
even in expectation (the first part of Theorem A).

Another consequence of the lower bounds stated in Theorem A is that AEW cannot be an
optimal aggregation procedure both in expectation and in probability at low temperatures for two
other aggregation problems: the problem of convex aggregation, in which one wants to mimic the
best element in the convex hull of F , and the problem of linear aggregation, where one wishes
to mimic the best linear combination of elements in F . Indeed, clearly

min
f ∈F

R(f ) ≥ min
f ∈conv(F )

R(f ) ≥ min
f ∈span(F )

R(f ).

Moreover, the optimal rates of aggregation for the convex and linear aggregation problems for
dictionaries of cardinality two are of the order of n−1 (see [14,17,26]), whereas the residual terms
obtained in Theorem A are on the order of n−1/2 for such a dictionary. Thus AEW is suboptimal
for these two other aggregation problems in the low-temperature regime.

We end this section by comparing two seemingly related assumptions, the margin assumption
of [27] and the Bernstein condition of [5]. Note that in the proof of Theorem C, we have restricted
ourselves to the case β = 1 simply to make the presentation as simple as possible. A very similar
result, with the residual term ((x +ψ(θ))/n)1/(2−β) for the exact oracle inequality in probability
and (ψ(θ)/n)1/(2−β) for the exact oracle inequality in expectation, holds if one assumes a Bern-
stein condition for any 0 < β < 1, and the proof is identical to that in the case where β = 1. This
makes the discussion about β-Bernstein classes relevant here.

Recall the definition of the margin assumption:

Definition 2.1 ([27]). We say that F has margin with parameters (β,B) (0 < β ≤ 1 and B ≥ 1)
if for every f ∈ F ,

E
((

Q(Z,f ) − Q(Z,f ∗)
)2)≤ B

(
R(f ) − R(f ∗)

)β
,

where f ∗ is defined such that R(f ∗) = minf R(f ), and the minimum is taken with respect to all
measurable functions f on the given probability space.

Although the margin condition appears similar to the Bernstein condition, they are in fact very
different, and have been introduced in the context of different types of problems. In the first of
these, the “classical” statistical setup, one is given a function class F (the model) with an upper
bound on its complexity and an unknown target function f ∗, the minimizer of the risk over all
measurable functions. One usually assumes that f ∗ belongs to F , and the aim is to construct an
estimator f̂ = f̂ (·, D) for which the risk R(f̂ ) tends to 0 quickly as the sample size tends to
infinity. In this setup, the margin assumption can improve this rate of convergence because of a
better concentration of empirical means of Q(·, f ) − Q(·, f ∗) around its mean [27]. The margin
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assumption (MA) for β = 1 compares the performance of each f ∈ F with the best possible
measurable function, but it has nothing to do with the geometric structure of F . The margin is
determined for every f separately, because f ∗ does not depend on the choice of F .

In the second type of problem, the “learning theory” setup, one does not assume that the target
function f ∗ belongs to F . The aim is to construct a function f̂ with a risk as close as possible to
that of the best element f ∗

F ∈ F . Assuming that the excess loss class LF satisfies the Bernstein
condition (BC), the error rate can be improved (see, e.g., [5,22]).

At a first glance, MA and BC (for β = 1) share very strong similarities. Indeed, saying that
LF is a (1,B)-Bernstein class means that for every f ∈ F ,

E
((

Q(Z,f ) − Q(Z,f ∗
F )
)2)≤ B

(
R(f ) − R(f ∗

F )
)
,

but nevertheless they are different. Indeed, as mentioned earlier, MA is only a matter of con-
centration (and classical statistics questions are mostly a question of the trade-off between con-
centration and complexity). On the other hand, BC involves a lot of geometry of the function
class F , because f ∗

F might change significantly by adding a single function to F or by removing
a function. In fact, the difficulty of learning theory problems is determined by the trade-off be-
tween concentration and complexity, and the geometry of the given class, since one measures the
performance of the learning algorithm relative to the best in the class. Assuming that f ∗ ∈ F ,
as is usually done in classical statistics, exempts one from the need to consider the geometry
of F , but one does not have that freedom in the aggregation framework. Indeed, since in the
AEW algorithm the estimator is determined by the empirical means Rn(f ) − Rn(f

∗
F ), this is a

learning problem rather than a problem in classical statistics, despite the fact that it has been used
in statistical frameworks to construct adaptive estimators (see, e.g., [2,4,6,11,15,20,25,27,31]).
Therefore, given their nature, aggregation procedures like the AEW are more natural under a BC
assumption than under the MA. (A by-product of Theorem A is that the MA cannot improve the
performance of AEW since in the setup of Theorem A, it is easy to check that MA is satisfied
with the best possible margin parameter β = 1.)

3. Preliminary results on Gaussian approximation

Our starting point is the Berry–Esséen theorem on Gaussian approximation. Let (Wn)n∈N be a
sequence of i.i.d., mean-0 random variables with variance 1, set g to be a standard Gaussian
variable, and write

X̄n = 1√
n

n∑
i=1

Wi.

Theorem 3.1 ([23]). There exists an absolute constant A > 0 such that for every integer n,

sup
x∈R

|P[X̄n ≤ x] − P[g ≤ x]| ≤ AE|W1|3√
n

.
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From here on, we let A denote the constant appearing in Theorem 3.1.
When the tail behavior of the Wi has a subexponential decay, the Gaussian approximation can

be improved. Indeed, recall that a real-valued random variable W belongs to Lψα for some α ≥ 1
if there exists 0 < c < ∞ such that

E exp(|W |α/cα) ≤ 2. (3.1)

The infimum over all constants c for which (3.1) holds defines an Orlicz norm, which is called
the ψα norm and is denoted by ‖ · ‖ψα . (For more information on Orlicz norms, see, e.g., [29]
and [24].)

Proposition 3.2 (Chapter 5 in [23]). For every L > 0, there exist constants B0, c1, and c2 that
depend only on L for which the following holds. If ‖W‖ψ1 ≤ L, then for any x ≥ 0, such that
x ≤ B0n

1/6,

P[X̄n ≥ x] = P[g ≥ x] exp

(
x3

EW 3

6
√

n

)[
1 + O

(
x + 1√

n

)]
and

P[X̄n ≤ −x] = P[g ≤ −x] exp

(
−x3

EW 3

6
√

n

)[
1 + O

(
x + 1√

n

)]
,

where by v = O(u) we mean that −c1u ≤ v ≤ c1u.
In particular, if |x| ≤ B0n

1/6 and EW 3 = 0, then

|P[X̄n ≤ x] − P[g ≤ x]| ≤ c2
(
n−1/2 exp(−x2/2)

)
.

From here on, we let B0 denote the constant appearing in Proposition 3.2.

4. Proof of Theorem A

Before presenting the proof of Theorem A, we introduce the following notation. Given a proba-
bility measure ν and (Zi)

n
i=1 selected independently according to ν, we set Pn = n−1∑n

i=1 δZi

the empirical measure supported on (Zi)
n
i=1. We let P denote the expectation Eν . We assume

that T ≤ 1 and recall that n is an odd integer.
Let Y = 0 and define X by P[X = 1] = 1/2 − n−1/2 and P[X = −1] = 1/2 + n−1/2. Let

f1 = 1[0,1] and f2 = 1[−1,0], and consider the dictionary F = {f1, f2}. It is easy to verify that
the best function in F (the oracle) with respect to the quadratic risk is f1, and that the excess loss
function of f2, L2 = f 2

2 − f 2
1 = f2 − f1, satisfies that

L2(X) = −X, EL2(X) = 2n−1/2 and σ 2 = E(L2(X) − EL2(X))2 = 1 − 4/n.

To simplify notation, set P L2 = EL2(X) and PnL2 = n−1∑n
i=1 L2(Xi).
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An important parameter that lies at the heart of this counterexample is the Bernstein constant
(which is very bad in this case),

α = E(f1 − f2)
2

P L2
=

√
n

2
. (4.1)

Straightforward computation shows that AEW on F with temperature T is given by

f̃ AEW = θ̂1f1 + (1 − θ̂1)f2, θ̂1 = 1

1 + exp(−(n/T )PnL2)
,

and that for h(θ) = θ + αθ(1 − θ) defined for all θ ∈ [0,1],
E[R(f̃ AEW) − R(f1)] = E[1 − θ̂1 − αθ̂1(1 − θ̂1)]P L2 = E[1 − h(θ̂1)]P L2

=
[

1 −
∫ ∞

0
h′(t)P[θ̂1 ≥ t]dt

]
P L2

(4.2)

=
[

1 +
∫ 1

0

(
2αt − (1 + α)

)
P[θ̂1 ≥ t]dt

]
P L2

=
[

1 +
∫ 1

0

(
2αt − (1 + α)

)
P[PnL2 ≥ γ (t)]dt

]
P L2,

where γ (t) is an increasing function defined for any t ∈ (0,1) by

γ (t) = T

n
log

(
t

1 − t

)
.

In particular,

E[R(f̃ AEW) − R(f1)] = [I1 + I2]P L2

for

I1 =
∫ α−1

0

(
2αt − (1 + α)

)
P[PnL2 ≥ γ (t)]dt + 1

and

I2 =
∫ 1

α−1

(
2αt − (1 + α)

)
P[PnL2 ≥ γ (t)]dt.

First, we bound I1 from below. To that end, we note the following facts. First, for every 0 ≤
t ≤ α−1, 1 + α − 2αt ≥ 0 and ∫ α−1

0

(
2αt − (1 + α)

)
dt = −1.

Second, if we set E = exp(nP L2/T ), then for T � √
n/ logn, 0 < (1 + E)−1 ≤ α−1. In par-

ticular, this holds under our assumption that T ≤ 1. Moreover, because γ is increasing, for
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(1 + E)−1 ≤ t ≤ α−1, γ (t) ≥ γ ((1 + E)−1) = −P L2. Therefore,

I1 =
∫ α−1

0

(
2αt − (1 + α)

)
P[PnL2 ≥ γ (t)]dt + 1

=
∫ α−1

0

(
2αt − (1 + α)

)(
P[PnL2 ≥ γ (t)] − 1

)
dt

≥
∫ α−1

(1+E)−1
(1 + α − 2αt)P[PnL2 < γ (t)]dt

≥
∫ α−1

(1+E)−1
(1 + α − 2αt)dt · P

[(√
n/σ

)
(PnL2 − P L2) <

(√
n/σ

)
(−2P L2)

]
≥
∫ α−1

(1+E)−1
(1 + α − 2αt)dt

(
P[g ≤ −8] − A/

√
n
)≥ c0 > 0,

where in the last step we used the Berry–Esséen theorem, with |L2| ≤ 1 and n ≥ 8 ∨ (2A/P[g ≤
−8])2, implying that 0 < c0 < 1/2.

We turn to a lower bound for I2. Applying a change of variables t �→ 1+α−1 −u in the second
term of I2, it is evident that

I2 =
∫ (α+1)/(2α)

α−1

(
2αt − (1 + α)

)
P[PnL2 ≥ γ (t)]dt

+
∫ 1

(α+1)/(2α)

(
2αt − (1 + α)

)
P[PnL2 ≥ γ (t)]dt

=
∫ (α+1)/(2α)

α−1

(
2αt − (1 + α)

)
P[γ (t) ≤ PnL2 < γ (1 + α−1 − t)]dt = I3 + I4

for

I3 =
∫ (1+c0/4)α−1

α−1

(
2αt − (1 + α)

)
P[γ (t) ≤ PnL2 < γ (1 + α−1 − t)]dt

and

I4 =
∫ (α+1)/(2α)

(1+c0/4)α−1

(
2αt − (1 + α)

)
P[γ (t) ≤ PnL2 < γ (1 + α−1 − t)]dt.

To estimate I3, note that 2αt − (1 + α) ≤ 0 for t ∈ [α−1, (α + 1)/(2α)], and thus

I3 ≥
∫ (1+c0/4)α−1

α−1

(
2αt − (1 + α)

)
dt ≥ −c0

4

(
1 + 1

α

)
≥ −c0

3

for our choice of α.
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The final step of the proof is to bound I4 and in particular to show that for small values of T ,
I4 ≥ −c0/3.

For any 0 < t ≤ (α + 1)/(2α), consider the intervals IT (t) = [nγ (t), nγ (1 + α−1 − t)), and
set NT (t) = |{IT (t) ∩ Z}|, which is the number of integers in IT (t). Because L2(X) = −X,

P[γ (t) ≤ PnL2 < γ (1 + α−1 − t)] = P

[
n∑

i=1

−Xi ∈ IT (t)

]
= PT (t).

Recall that X ∈ {−1,1}, and thus P[∑i −Xi ∈ IT (t)] = P[∑i −Xi ∈ IT (t) ∩ Z]. Because nγ (t)

is increasing and non-negative for t > 1/2, then if 1/2 < t ≤ (α + 1)/(2α), it follows that 0 <

nγ (t) < nγ (1 + 1/α − t) < 1, provided that T ≤ 1. Thus, for such values of t , NT (t) = 0,
implying that PT (t) = 0. On the other hand, if t ≤ 1/2, then {0} ⊂ IT (t) ∩ Z. In particular,
if NT (t) = 1, then IT (t) ∩ Z = {0}, and since n is odd, then PT (t) = P[∑n

i=1 −Xi = 0] = 0.
Otherwise, NT (t) ≥ 2, which implies that NT (t) ≤ 2�T (t), where �T (t) is the length of IT (t),
given by

�T (t) = n
(
γ (1 + α−1 − t) − γ (t)

)= T log

(
(1 − t)(α + 1 − αt)

t (αt − 1)

)
.

Therefore, for every t in our range,

PT (t) ≤ NT (t) max
k∈IT (t)

P

[
n∑

i=1

−Xi = k

]
≤ 2�T (t)max

k∈Z

P

[
n∑

i=1

Xi = k

]
.

Since 2αt − (1 + α) ≤ 0 for every 0 < t ≤ (α + 1)/(2α), it is evident that

I4 ≥ 2T max
k∈Z

P

[
n∑

i=1

Xi = k

]
·
∫ (α+1)/(2α)

(1+c0/4)α−1

(
2αt − (1 + α)

)
log

(
(1 − t)(α + 1 − αt)

t (αt − 1)

)
dt.

It can be shown that maxk∈Z P[∑n
i=1 Xi = k] is on the order of n−1/2 either by a direct compu-

tation or by the Berry–Esséen theorem. Moreover, for any (1 + c0/4)α−1 ≤ t ≤ (α + 1)/(2α),
one has αt − 1 ≥ c0(4 + c0)

−1αt , and thus,

log

(
(1 − t)(α + 1 − αt)

t (αt − 1)

)
≤ log

(
2(4 + c0)

c0t2

)
.

Therefore, combining the two observations with a change of variables u = Ct for C = (c0/(2(4+
c0)))

1/2, it is evident that there are absolute constants c1, c2 for which

I4 ≥ c1T√
n

∫ (C(α+1)/(2α))

C(1+c0/4)α−1
(1 + α − 2αu/C)(logu)du ≥ −c2

T α√
n
.

Thus, there is an absolute constant c3 such that if T ≤ c3, then I4 ≥ −c0/3, implying that

E[R(f̃ AEW) − R(f1)] ≥ c0

3
√

n
,
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and proving the first part of Theorem A.
To prove the second part of the theorem, note that by the Berry–Esséen theorem, for every

x ∈ R, with probability greater than P[g ≤ x] − 2A/
√

n,

√
n

σ(L2)
(PnL2 − P L2) ≤ x.

Thus, if n is large enough to ensure that P[g ≤ −4] − 2A/
√

n ≥ P[g ≤ −4]/2 = c4, and taking
x = −4, then with probability at least c4, PnL2 ≤ −n−1/2. In that case, θ̂1 ≤ exp(−√

n/T ),
which yields that

R(f̃ AEW) − R(f1) = (
1 − θ̂1 − αθ̂1(1 − θ̂1)

) · P L2 ≥ P L2/4 = n−1/2/2,

provided that T � √
n/ logn.

5. Proof of Theorem B

The first step in the proof of Theorem B involves a general statement regarding a monotone rear-
rangement of independent random variables that are close to being Gaussian. Let W be a mean 0,
variance 1 random variable that is absolutely continuous with respect to the Lebesgue measure.
Further assume that |W | has a finite third moment (in fact, the random variables in which we
are interested are bounded) and set β(W) = AE|W |3, where A is the constant appearing in the
Berry–Esséen theorem (Theorem 3.1). Let W1, . . . ,Wn be independent random variables dis-
tributed as W and set X̄ = n−1/2∑n

i=1 Wi . Let (X̄j )
�
j=1 be � independent copies of X̄, and put

γ1 = γ1(�) ∈ R to satisfy that

P

[
min

1≤j≤�
X̄j ≤ γ1(�)

]
= 1 − 1

n
.

Note that such a γ1 exists because W has a density with respect to the Lebesgue measure.
Throughout the proof of Theorem B, we require the following simple estimates on γ1.

Lemma 5.1. There exist absolute constants c0, . . . , c3 for which the following hold:

1. If � ≥ c0 logn, then

1 − logn

�
≤ P[X̄ > γ1] ≤ 1 − c1

logn

�
.

2. If � and n are such that (β(W)/
√

n + (logn)/�) < P[g < −2], then γ1 ≤ −2.
3. If γ1 ≤ −2 and c0 logn ≤ � ≤ c2β

−1(W)
√

n logn, then

|γ1| ∼ log1/2
(

c3�

logn

)
and exp(−γ 2

1 /2) ∼ logn

�
log1/2

(
c3�

logn

)
.
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Before we present the proof of Lemma 5.1, recall that for every x ≥ 2,

3

4
√

2π

exp(−x2/2)

x
≤ P[g ≥ x] ≤ 1√

2π

exp(−x2/2)

x
. (5.1)

Proof of Lemma 5.1. To prove the first part, note that by independence and because exp(−x) ≥
1 − x,

P[X̄ > γ1] = P

[
min

1≤j≤�
X̄j > γ1

]1/� =
(

1

n

)1/�

≥ 1 − logn

�
. (5.2)

The reverse inequality follows in an identical fashion, because exp(−x) ≤ 1 − x/3 if 0 ≤ x ≤ 1.
Turning to the second part, if γ1 > −2, then

1 − 1

n
= P

[
min

1≤j≤�
X̄j ≤ −γ1

]
≥ P

[
min

1≤j≤�
X̄j ≤ −2

]
= 1 − (P[X̄ > −2])�,

implying that P[X̄ ≤ −2] ≤ (logn)/�. On the other hand, by the Berry–Esséen theorem, P[X̄ ≤
−2] ≥ P[g ≤ −2] − β(W)/

√
n, which is impossible under the assumptions of (2).

Finally, to prove (3), we use the Berry–Esséen theorem combined with the lower and upper
estimates on the Gaussian tail (5.1) and (5.2). Thus,

3

4
√

2π

1

|γ1| exp

(
−|γ1|2

2

)
≤ P[g < γ1] ≤ P[X̄ < γ1] + β(W)√

n
≤ β(W)√

n
+ c1

logn

�
,

and

1√
2π

1

|γ1| exp

(
−|γ1|2

2

)
≥ logn

�
− β(W)√

n
,

from which both parts of the third claim follow. �

Proposition 5.2. There exist constants c1, c2, c3, and c4 that depend only on ‖W‖ψ2 for which
the following holds. Let 2M2 exp(−c1n

1/3) < δ ≤ 1, and assume that EW 3 = 0 and that γ1 =
γ1(M − 1) ≤ −2. Then

P[∃j ∈ {2, . . . ,M}: X̄j ≤ γ1 and for every k ∈ {2, . . . ,M} \ {j}, X̄k − X̄j ≥ δ]

≥ 1 − 1

n
− c2

(
1√
n

+ δ

)
(logn)2

√
logM,

provided that c3 logn ≤ M ≤ c4
√

n(logn).

Proof. For every 2 ≤ j ≤ M , let

j = {
X̄j ≤ γ1 and X̄k − X̄j ≥ δ for every k ∈ {2, . . . ,M} \ {j}}.
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The events j for 2 ≤ j ≤ M are disjoint, and thus

P[∃j ∈ {2, . . . ,M}: X̄j ≤ γ1 and X̄k − X̄j ≥ δ for every k ∈ {2, . . . ,M} \ {j}]

= P

[
M⋃

j=2

j

]
= (M − 1)P[2].

Since the variables (X̄j )
M
j=2 are independent, we have

P[2] =
∫ γ1

−∞
fX̄(z)

(∫ ∞

z+δ

fX̄(t)dμ(t)

)M−2

dμ(z),

where fX̄ is a density function of X̄ with respect to the Lebesgue measure μ.
On the other hand, for any z ≤ γ1, P[X̄ ≥ z] > 0 because of (5.2). Thus, for every z ≤ γ1,∫ ∞

z+δ

fX̄(t)dμ(t) =
(

1 −
∫ z+δ

z
fX̄(t)dμ(t)∫∞

z
fX̄(t)dμ(t)

)
·
∫ ∞

z

fX̄(t)dμ(t). (5.3)

Note that for every 0 ≤ x ≤ 1, (1 − x)M−2 ≥ 1 − (M − 2)x, and applied to (5.3),

P[2] ≥
∫ γ1

−∞
fX̄(z)

(∫ ∞

z

fX̄(t)dμ(t)

)M−2

dμ(z)

− (M − 2)

∫ γ1

−∞
fX̄(z)

(∫ ∞

z

fX̄(t)dμ(t)

)M−3(∫ z+δ

z

fX̄(t)dμ(t)

)
dμ(z)

≥ P[X̄2 ≤ γ1 and X̄k ≥ X̄2, for everyk ≥ 3] − T2

= 1

M − 1
P

[
min

2≤j≤M
X̄j ≤ γ1

]
− T2,

where

T2 = (M − 2)

∫ γ1

−∞
fX̄(z)

(∫ z+δ

z

fX̄(t)dμ(t)

)
dμ(z).

Recall the if (Wi) are independent mean-0 random variables and (ai) are real numbers, then
‖∑aiWi‖ψ2 ≤ c(

∑
a2
i ‖Wi‖2

ψ2
)1/2, where c is an absolute constant [29]. Thus, ‖X̄‖ψ2 ≤

c‖W‖ψ2 , and for any t < 0,∫ t

−∞
fX̄(z)

(∫ z+δ

z

fX̄(t)dμ(t)

)
dμ(z) ≤ P[X̄ ≤ t] ≤ 2 exp(−t2/c2‖W‖2

ψ2
).

Let t0 < 0 be such that

2 exp(−t2
0 /c2‖W‖2

ψ2
) = δ

√
log(M − 1)

(M − 1)(M − 2)
.
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Thus,

(M − 2)

∫ t0

−∞
fX̄(z)

(∫ z+δ

z

fX̄(t)dμ(t)

)
dμ(z) ≤ δ

√
log(M − 1)

M − 1
.

Note that if t0 ≥ γ1, then our claim follows. Indeed, because P[min2≤j≤M X̄j ≤ γ1] = 1 − n−1,
we have

P[2] ≥ 1

M − 1

(
1 − 1

n

)
− δ

√
log(M − 1)

M − 1
.

Otherwise, we split the interval (−∞, γ1] = (−∞, t0) ∪ [t0, γ1], and to upper bound T2, it re-
mains to control the integral on the second interval [t0, γ1].

Recall that W ∈ Lψ1 and that EW 3 = 0. Therefore, by Proposition 3.2, it is evident that if z

and δ satisfy that z ≤ z + δ ≤ 0 and |z|, |z + δ| ≤ B0n
1/6, then∫ z+δ

z

fX̄(t)dμ(t) = P[z ≤ X̄ ≤ z + δ]
(5.4)

≤ P[z ≤ g ≤ z + δ] + B1√
n

exp(−z2/2),

where B0 and B1 are constants that depend only on ‖W‖ψ1 . In addition, for every z ≤ 0,

P[z ≤ g ≤ z + δ] ≤ 1√
2π

exp(−z2/2)

∫ δ

0
exp(−zt)dt ≤ δ√

2π
exp(−z2/2). (5.5)

If 2M2 exp(−B2
0n1/3/‖W‖2

ψ2
) < δ ≤ 1, then |t0| ≤ B0n

1/6. Combining (5.4) and (5.5) with
the definition of T2, we have

(M − 2)

∫ γ1

t0

fX̄(z)

(∫ z+δ

z

fX̄(t)dμ(t)

)
dμ(z)

≤ (M − 2)

(
B1√

n
+ δ√

2π

)∫ γ1

t0

fX̄(z) exp(−z2/2)dμ(z)

≤ (M − 2)

(
B1√

n
+ δ√

2π

)
exp(−γ 2

1 /2)P[X̄ ≤ γ1]

≤ (M − 2)

(
B1√

n
+ δ√

2π

)
exp(−γ 2

1 /2)
logn

M − 1
,

where the last inequality follows from (5.2). By Lemma 5.1, and since M � √
n logn,

(M − 2)

∫ γ1

t0

fX̄(z)

(∫ z+δ

z

fX̄(t)dμ(t)

)
dμ(z)

≤ c

(
1√
n

+ δ

)(
logn

M

)
(logn)

√
logM
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for some constant c = c(β), from which our claim follows. �

We next describe the construction needed for the proof of Theorem B. Let (X,Y ) and F =
{f1, . . . , fM} be defined by

Y = 0,

f1(X) = (12)1/4 U1,

fj (X) = (12)1/4(Uj + λ) for every 2 ≤ j ≤ M,

where U1, . . . , UM are M independent random variables with density u �−→ 2(u+λ)1[−λ,1−λ](u)

for 0 < λ < 1/2 to be fixed later. Note that for this choice of density function, (U1 + λ)2 is
uniformly distributed on [0,1], and the best element in F with respect to the quadratic risk is f1.

Let (U (i)
j : j = 1, . . . ,M, i = 1, . . . , n) be a family of independent random variables distributed

as U1. Thus, for every 1 ≤ i ≤ n, fj (Xi) = (12)1/4(U (i)
j + λ) for every 2 ≤ j ≤ M and f1(Xi) =

(12)1/4 U (i)
1 . For every 1 ≤ j ≤ M , set

R̄j =
√

12

n

(
n∑

i=1

(
U (i)

j + λ
)2 − E

(
U (i)

j + λ
)2)

,

and observe that if W = √
12((U + λ)2 − E(U + λ)2), then W is a mean 0, variance 1 random

variable that is absolutely continuous with respect to the Lebesgue measure and W ∈ Lψ2 and
satisfies that EW 3 = 0. These properties allow us to apply Proposition 5.2 to the random variables
R̄1, . . . , R̄M .

Let 0 < ρ < 1 (to be named later), and set

ξ(R̄1) = R̄1 + T√
n

log

[
ρ

2(1 − ρ)

]
− √

12λ(2 − λ)
√

n,

and

δ = −T√
n

log

[
ρ

2(M − 2)(1 − ρ)

]
.

Consider the system of inequalities{
R̄j ≤ ξ(R̄1),

R̄k − R̄j ≥ δ for every k = 1, j,
(Cj )

and recall that for each j = 1, . . . ,M θ̂j denotes the weight of fj in the AEW procedure.

Proposition 5.3. There exist absolute constants c1 and c2 for which the following holds. Let
0 < ρ < 1/2 and 2 ≤ j ≤ M . If the system (Cj ) is satisfied, then

θ̂j ≥ 1 − ρ.
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Moreover, if ρ ≤ c1λ, then the quadratic risk of the function produced by the AEW procedure
satisfies

R(f̃ AEW) ≥ min
f ∈F

R(f ) + c2λ.

Proof. Let 2 ≤ j ≤ M , and assume that (Cj ) is satisfied. Recall that Rn(f ) is the empirical risk
of f , and note that for any k ∈ {2, . . . ,M} \ {j},

Rn(fk) − Rn(fj ) = 1

n

n∑
i=1

[fk(Xi)
2 − fj (Xi)

2] = R̄k − R̄j√
n

(5.6)

≥ δ√
n

= −T

n
log

[
ρ

2(M − 2)(1 − ρ)

]
.

In addition, since U (i)
1 ≤ 1 − λ almost surely for any 1 ≤ i ≤ n,

Rn(f1) − Rn(fj ) = 1

n

n∑
i=1

[f1(Xi)
2 − fj (Xi)

2]

= R̄1 − R̄j√
n

− √
12

(
λ2 + 2λ

n

n∑
i=1

U (i)
1

)
(5.7)

≥ R̄1 − ξ(R̄1)√
n

− √
12λ(2 − λ) ≥ −T

n
log

[
ρ

2(1 − ρ)

]
.

Combining (5.6) and (5.7), it is evident that

θ̂j = 1∑M
k=1 exp[(−n/T )(Rn(fk) − Rn(fj ))]

≥ 1

1 + (M − 2)ρ/(2(M − 2)(1 − ρ)) + ρ/(2(1 − ρ))
= 1 − ρ.

Since the functions f1, . . . , fM are independent in L2(X) and Efj ≥ 0,

R(f̃ AEW) = E

(
M∑

j=1

θ̂j fj (X)

)2

= (θ̂j )
2
Ef 2

j +
∑
�=j

(θ̂�)
2
Ef 2

� +
∑
�=j

θ̂j θ̂�Efjf� ≥ (θ̂j )
2
Ef 2

j ,

and there is an absolute constant c0 for which Ef 2
j ≥ Ef 2

1 + c0λ. Thus,

(θ̂j )
2
Ef 2

j − Ef 2
1 ≥ (1 − ρ)(Ef 2

1 + c0λ) − Ef 2
1 ≥ c2λ,
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provided that ρ ≤ c1λ, giving

R(f̃ AEW) ≥ Ef 2
1 + c2λ = min

f ∈F
R(f ) + c2λ,

as claimed. �

Next, we formulate a general statement, from which Theorem B follows immediately.

Theorem 5.4. There exist absolute constants ci, i = 0, . . . ,5 and an integer n0 for which the
following holds. For any n ≥ n0, 1 ≤ κ ≤ c0

√
n logn, 0 < T ≤ 1, and c1T/

√
n logn < ε < 1/8,

let M = �c2
√

n logn�, λ = c3ε
√

(logn)/n, and ρ = n−εκ/T . Set F to be the class of functions
defined above with those parameters. Then, with probability at least

1 − c4(εκ + T + 1)
(
(log3 n)/n

)(1−2ε)2/2
,

there exists j ≥ 2 such that

θ̂j ≥ 1 − 1

nεκ/T
.

In particular, with the same probability and if 0 ≤ T < min{1,2εκ},

R(f̃ AEW) ≥ min
f ∈F

R(f ) + c5ε

√
logM

n
.

Proof. Set

P0 = P[∃j ∈ {2, . . . ,M} such that θ̂j ≥ 1 − ρ],
and, by Proposition 5.3,

P0 ≥ P[∃j ∈ {2, . . . ,M} for which (Cj ) is satisfied] = P1.

Let γ1 = γ1(M − 1) be defined by P[min2≤j≤M R̄j ≤ γ1] = 1 − n−1, and observe that γ1 is well
defined and satisfies all three parts of Lemma 5.1 for � = M − 1. Set 0 = {ξ(R̄1) ≥ γ1},

A = {∃j ∈ {2, . . . ,M}: R̄j ≤ ξ(R̄1), and R̄k − R̄j ≥ δ for every k = 1, j
}

and

B = {∃j ∈ {2, . . . ,M}: R̄j ≤ γ1 and R̄k − R̄j ≥ δ for every k = 1, j
}
.

Since the functions R̄j , j = 1, . . . ,M are independent, we have

P1 ≥ ER̄1
[P[A|R̄1]10 ] ≥ P[B]P[0].

Applying Proposition 5.2, we then have

P[B] ≥ 1 − 1

n
− c2

(
1√
n

+ δ

)
(logn)2

√
logM,
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provided that c3 logn ≤ M ≤ c4
√

n(logn).
To lower bound P[0], note that

P[0] = P

[
R̄1 ≥ γ1 − T√

n
log

(
ρ

2(1 − ρ)

)
+ √

12λ(2 − λ)
√

n

]
.

Fix 0 < ε < 1/8 and assume that λ,ρ and T are such that

√
12λ(2 − λ)

√
n ≤ −εγ1 and − T√

n
log

(
ρ

2(1 − ρ)

)
≤ −εγ1. (5.8)

By the Berry–Esséen theorem and (5.1),

P[0] ≥ P[R̄1 ≥ (1 − 2ε)γ1] = 1 − P[R̄1 < (1 − 2ε)γ1]
≥ 1 − P[g ≤ (1 − 2ε)γ1] − 2β(W)√

n

≥ 1 − 1√
2π(1 − 2ε)|γ1|

exp
(−(1 − 2ε)2γ 2

1 /2
)− 2A√

n
,

and by Lemma 5.1,

exp
(−(1 − 2ε)2γ 2

1 /2
)≤ c5

(
logn

M − 1
log1/2

(
c5M

logn

))(1−2ε)2

.

Therefore,

P0 ≥
(

1 − 1

n
− c2

(
1√
n

+ δ

)
(logn)2

√
logM

)
·
(

1 − c5

(
log3 n

M

)(1−2ε)2)
,

provided that c2 logn ≤ M ≤ c3
√

n logn.
To complete the proof, we need to chose λ and ρ for which (5.8) holds. By Lemma 5.1,

|γ1| � log1/2
(

M

logn

)
,

and thus (5.8) holds for λ and ρ for which

λ ≤ c8ε

[
1

n
log

(
M

logn

)]1/2

and ρ ≥ 2 exp

[−c9ε
√

n

T
log1/2

(
M

logn

)]
.

In particular, when we take M ∼ √
n logn, λ ∼ ε((logM)/n)1/2, and ρ = n−εκ/T , ρ satisfies the

required condition as long as ε � T/
√

n logn and κ �
√

n/ logn, as assumed. Moreover,

δ � (εκ + T )
logn√

n
,
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implying that

P0 ≥ 1 − c8(εκ + T + 1)

(
log3 n

n

)(1−2ε)2/2

.

The lower bound on the risk of the AEW procedure now follows from Proposition 5.3. �

6. Proof of Theorem C

In this section we prove Theorem C, which we reformulate below. From here on, we assume
that the dictionary F is finite, consisting of M functions, and that the functions are indexed
according to their risk in an increasing order. Thus, f1 = f ∗

F . In addition, we denote Lf (·) =
Q(·, f ) − Q(·, f1), and thus R(f ) − R(f1) = ELf .

For every r > 0, recall that

ψ(r) = log(|{f ∈ F : ELf ≤ r}| + 1)

+
∞∑

j=1

2−j log(|{f ∈ F : 2j−1r < ELf ≤ 2j r}| + 1),

which serves as a measure of complexity for the class F .
The first component needed in the proof of Theorem C is the level λ(x) with the following

property: with probability at least 1−2 exp(−x), Rn(fj )−Rn(f1) is equivalent to R(fj )−R(f1)

if R(fj ) − R(f1) ≥ λ(x). This “isomorphism” constant was introduced by [5]. To formulate the
exact properties that we need, first recall the following definitions and notation.

If G = LF is the excess loss functions class {Lf : f ∈ F }, then let star(G,0) = {θg: 0 ≤ θ ≤
1, g ∈ G} is the star-shaped hull of G and 0. Set Gr = star(G,0) ∩ {g: Eg = r}, that is, the set
of functions in the star-shaped hull of LF and 0, with expectation r . Let

r∗ = inf
{
r: E sup

g∈Gr

|Png − Pg| ≤ r/2
}
,

where, as always, Pn denotes the empirical mean and P is the mean according to the underlying
probability measure of Z.

Theorem 6.1 ([5]). There exists an absolute constant c for which the following holds. Let F be
a class of functions bounded by b, such that LF is a (1,B)-Bernstein class. For every x > 0 and
an integer n, let

λ(x) = c max

{
r∗, (b + B)

x

n

}
. (6.1)

Then, with probability at least 1 − 2 exp(−x), for every f ∈ F with R(f ) − R(f ∗
F ) ≥ λ(x),

Rn(f ) − Rn(f
∗
F ) ≥ 1

2

(
R(f ) − R(f ∗

F )
)
.
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Let ρ = κ1(B +b)/n, where κ1 is an absolute constant to be named later. Recall that functions
in F are indexed according to their risk in an increasing order. Let J−(x) = {j : R(fj )−R(f1) ≤
λ(x)}, and set J+(x) as its complement. Define the sets J+,0 = {j ∈ J+(x): R(fj )−R(f1) ≤ ρ}
and, for k ≥ 1,

J+,k = {j ∈ J+(x): 2k−1ρ < R(fj ) − R(f1) ≤ 2kρ}.
(Note that some of the sets J+,k may be empty.) Set

k0 = sup{k ≥ 0: 2k ≤ log(|J+,k| + 1)},

and let I = J− ∪⋃k≤k0
J+,k .

From Theorem 6.1, it follows that for every k ≥ 0 and every j ∈ J+,k , Rn(fj ) − Rn(f
∗
F ) ≥

1
2 (R(fj ) − R(f ∗

F )). This is because R(fj ) − R(f ∗
F ) ≥ λ(x) by the definition of J+(x), and

J+(x) ⊃ J+,k .
The key factor in the proof of Theorem C is Theorem 6.2.

Theorem 6.2. There exist absolute constants c1 and c2 for which the following holds. Let F be a
class of functions bounded by b, such that LF is a (1,B)-Bernstein class with respect to a convex
risk function R. Then, with probability at least 1 − 2 exp(−x), if f̃ AEW is produced by the AEW
algorithm and T ≤ c1(b + B), then

R(f̃ AEW) − R(f ∗
F ) ≤ c2

(
λ(x) + (b + B)

2k0

n

)
, (6.2)

where λ(x) is as defined in (6.1).

Proof. Let (θ̂j )
M
j=1 be the weights of the AEW algorithm, and set f̃ AEW =∑M

j=1 θ̂j fj to be the
aggregate function. Because R is a convex function,

R

(
M∑

j=1

θ̂j fj

)
− R(f1) ≤

M∑
j=1

θ̂j

(
R(fj ) − R(f1)

)
.

Note that for every j ∈ I , R(fj ) − R(f1) ≤ λ(x) + 2k0ρ = λ(x) + κ12k0(b + B)/n. In partic-
ular, because

∑M
j=1 θ̂j = 1,

∑
j∈I

θ̂j

(
R(fj ) − R(f1)

)≤ λ(x) + κ12k0(b + B)/n.

On the other hand, with probability at least 1 − 2 exp(−x), for every k > k0 and every j ∈ J+,k ,

Rn(fj ) − Rn(f1) ≥ (
R(fj ) − R(f1)

)
/2.
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Applying the definition of the weights in the AEW algorithm and given that θ̂1 ≤ 1,

∑
j∈I c

θ̂j

(
R(fj ) − R(f1)

) = θ̂1

∑
j∈I c

θ̂j

θ̂1

(
R(fj ) − R(f1)

)
≤
∑
j∈I c

exp

(
− n

T

(
Rn(fj ) − Rn(f1)

))(
R(fj ) − R(f1)

)
≤
∑
k>k0

∑
j∈J+,k

exp

(
− n

2T

(
R(fj ) − R(f1)

))(
R(fj ) − R(f1)

)= (�).

From the definition of k0, it is evident that for every k > k0, 2k ≥ log |J+,k|, and thus if T ≤
c1 max{b,B} and κ1 is sufficiently large, then

(�) ≤
∑
k>k0

exp

(
log |J+,k| − n

2T
2k−1ρ

)
2kρ ≤

∑
k>k0

exp

(
−c2

n

T
2kρ

)
2kρ ≤ c3

T

n
.

Indeed, this follows because for that choice of T , (n/T )2k0ρ ≥ c4, with c4 an absolute constant.
Thus, with probability at least 1 − 2 exp(−x),

R(f̃ ) − R(f1) ≤ λ(x) + κ12k0(b + B)/n + c3
T

n
≤ λ(x) + c52k0

b + B

n
,

as claimed. �

The next step in the proof of Theorem C requires several simple facts regarding the empirical
process indexed by a localization of the star-shaped hull of a Bernstein class. First, it is simple
to verify that the star-shaped hull of a (1,B)-Bernstein class is a (1,B)-Bernstein class as well.
Second, if G = star(LF ,0) and Gr = {h ∈ G: Eh = r}, then

Gr =
⋃
j≥1

{
rLf

ELf

: f ∈ F,2j−1r ≤ ELf ≤ 2j r

}
≡
⋃
j≥1

Hr,j .

In particular,

E sup
h∈Gr

∣∣∣∣∣1n
n∑

i=1

h(Zi) − Eh

∣∣∣∣∣≤
∞∑
i=1

E sup
h∈Hr,j

∣∣∣∣∣1n
n∑

i=1

h(Zi) − Eh

∣∣∣∣∣.
Lemma 6.3. There exists an absolute constant c for which the following holds. If LF is a (1,B)-
Bernstein class with respect to Z, then for every r and j ≥ 1,

E sup
h∈Hr,j

|Pnh − Ph| ≤ c max

{
b2−j log(|Hr,j | + 1)

n
,

√
log(|Hr,j | + 1)

n

√
rB2−j

}
.
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Proof. Fix r > 0 and j ≥ 1, and let

D = sup
h∈Hr,j

(
1

n

n∑
i=1

h2(Zi)

)1/2

.

Note that every h ∈ Hr,j satisfies that h = rLf /ELf for some f ∈ F , and for which ELf ≥
r2j−1. Therefore, using the Bernstein condition on LF ,

Eh2 = r2 E(Lf )2

(ELf )2
≤ rB2−j+1.

Moreover, ‖h‖∞ ≤ (r/ELf )‖Lf ‖∞ ≤ b2−j+1. Thus, by the Giné–Zinn symmetrization theo-
rem and a contraction argument (see, e.g., [12] and [19]),

ED2 ≤ E sup
h∈Hr,j

∣∣∣∣∣1n
n∑

i=1

h2(Zi) − Eh2

∣∣∣∣∣+ rB2−j+1

≤ 2√
n

EZEε sup
h∈Hr,j

∣∣∣∣∣ 1√
n

n∑
i=1

εih
2(Zi)

∣∣∣∣∣+ rB2−j+1

≤ b2−j+2

√
n

EZEε sup
h∈Hr,j

∣∣∣∣∣ 1√
n

n∑
i=1

εih(Zi)

∣∣∣∣∣+ rB2−j+1

≤ c0rb2−j+2

√
n

√
log(|Hr,j | + 1)ED + rB2−j+1,

where the last inequality is evident by the sub-Gaussian properties of the Rademacher process
(cf. [19]). Since ED ≤ (ED2)1/2, it follows that

ED2 ≤ c0b2−j+2

√
log(|Hr,j | + 1)

n
(ED2)1/2 + rB2−j+1,

implying that

ED2 ≤ c1 max

{
b22−2j log(|Hr,j | + 1)

n
, rB2−j

}
.

Thus, again using a symmetrization argument and the sub-Gaussian properties of the Rademacher
process, we have

E sup
h∈Hr,j

∣∣∣∣∣1n
n∑

i=1

h(Zi) − Eh

∣∣∣∣∣ ≤ c2√
n

√
log(|Hr,j | + 1)ED

≤ c3 max

{
b2−j log(|Hr,j | + 1)

n
,

√
log(|Hr,j | + 1)

n

√
rB2−j

}
.

�
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Corollary 6.4. There exist absolute constants c1 and c2 for which the following holds. Let F be
a finite class consisting of M functions bounded by b, such that the excess loss class LF is a
(1,B)-Bernstein class. If we set θ = c1(b + B)(logM)/n, then

r∗ ≤ c2

(
b + B

n

)
ψ(θ).

Proof. Observe that for every r > 0,

E sup
h∈Gr

∣∣∣∣∣1n
n∑

i=1

h(Zi) − Eh

∣∣∣∣∣
≤
∑
j≥1

E sup
h∈Hr,j

∣∣∣∣∣1n
n∑

i=1

h(Zi) − Eh

∣∣∣∣∣
≤ c1 max

{
b

n

∑
j≥1

2−j log(|Hr,j | + 1),

√
Br

n

∑
j≥1

2−j/2
√

log(|Hr,j | + 1)

}

≤ c1
b

n

(
log(|Hr,0| + 1) +

∑
j≥1

2−j log(|Hr,j | + 1)

)

+ c1

√
Br

n

(√
log(|Hr,0| + 1) +

∑
j≥1

2−j/2
√

log(|Hr,j | + 1)

)
≡ u(r),

where we define Hr,0 = {(rLf )/(ELf ): f ∈ F,ELf ≤ r}. Let r̄ = inf{r: u(r) ≤ r/2}. Since
|Hr,j | ≤ M for every j ≥ 0, we have

u(r) ≤ c2 max

{
b

logM

n
,

√
rB logM

n

}
,

and thus

r̄ ≤ c3(b + B)(logM)/n = θ.

Moreover, the functions of r ,

log(|Hr,0| + 1) +
∑
j≥1

2−j log(|Hr,j | + 1),

and √
log(|Hr,0| + 1) +

∑
j≥1

2−j/2
√

log(|Hr,j | + 1),
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are increasing, and thus for any r ≤ θ ,

b

n

(
log(|Hr,0| + 1) +

∑
j≥1

2−j log(|Hr,j | + 1)

)

≤ b

n

(
log(|Hθ,0| + 1) +

∑
j≥1

2−j log(|Hθ,j | + 1)

)

and √
Br

n

(√
log(|Hr,0| + 1) +

∑
j≥1

2−j/2
√

log(|Hr,j | + 1)

)

≤
√

Br

n

(√
log(|Hθ,0| + 1) +

∑
j≥1

2−j/2
√

log(|Hθ,j | + 1)

)
.

Thus, if we consider

r = c3
b

n

(
log(|Hθ,0| + 1) +

∑
j≥1

2−j log(|Hθ,j | + 1)

)

+ c3
B

n

(√
log(|Hθ,0| + 1) +

∑
j≥1

2−j/2
√

log(|Hθ,j | + 1)

)2

≤ c4

(
b + B

n

)
ψ(θ)

for appropriate constants c3 and c4, then r ≤ θ . Thus, u(r) ≤ r/2 and, therefore,

r̄ ≤ c4

(
b + B

n

)
ψ(θ).

Finally, because

E sup
h∈Gr

|Pnh − Ph| ≤ u(r)

and r∗ = inf{r: E supg∈Gr
|Png − Pg| ≤ r/2}, we have r∗ ≤ r̄ . �

Proof of Theorem C. The proof of Theorem C follows from estimates of λ(x) and 2k0 . From
Corollary 6.4, it is evident that

λ(x) ≤ c1 max

{(
b + B

n

)
ψ

(
c1(b + B)

logM

n

)
, (b + B)

x

n

}
,

where c1 is an absolute constant to be identified later. (Note that ψ is an increasing function.)
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Next, by the definition of k0, 2k0 ≤ logM . Therefore, using the notation of Theorem 6.2,⋃
k≤k0

{fj : j ∈ J+,k} ⊂
{
fj : R(fj ) − R(f1) ≤ κ1(b + B)

logM

n

}

and, in particular,

2k0 ≤ log

(∣∣∣∣⋃
k≤k0

{fj : j ∈ J+,k}
∣∣∣∣+ 1

)

≤ log

(∣∣∣∣{fj : R(fj ) − R(f1) ≤ κ1(b + B)
logM

n

}∣∣∣∣+ 1

)
≤ log(|Hθ,0| + 1),

for an appropriate choice of constant c1.
The second part of Theorem C follows from a standard integration argument. �
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