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We explore various estimators for the parameters of a pair-copula construction (PCC), among those the
stepwise semiparametric (SSP) estimator, designed for this dependence structure. We present its asymp-
totic properties, as well as the estimation algorithm for the two most common types of PCCs. Compared
to the considered alternatives, that is, maximum likelihood, inference functions for margins and semipara-
metric estimation, SSP is in general asymptotically less efficient. As we show in a few examples, this loss
of efficiency may however be rather low. Furthermore, SSP is semiparametrically efficient for the Gaussian
copula. More importantly, it is computationally tractable even in high dimensions, as opposed to its com-
petitors. In any case, SSP may provide start values, required by the other estimators. It is also well suited
for selecting the pair-copulae of a PCC for a given data set.

Keywords: copulae; efficiency; empirical distribution functions; hierarchical construction; stepwise
estimation; vines

1. Introduction

The last decades’ technological revolution have considerably increased the relevance of multi-
variate modelling. Copulae are now regularly used within fields such as finance, survival analysis
and actuarial sciences. Although the list of parametric bivariate copulae is long and varied, the
choice is rather limited in higher dimensions (Genest et al. [15]). Accordingly, a number of hier-
archical, copula-based structures have been proposed, among those the pair-copula construction
(PCC) of Joe [22], further studied and considered by Bedford and Cooke [2,3], Kurowicka and
Cooke [30] and Aas et al. [1].

A PCC is a treelike construction, built from pair-copulae with conditional distributions as
their two arguments (see Figure 1). The number of conditioning variables is zero at the ground,
and increases by one for each level, to ensure coherence of the construction. Despite its simple
structure, the PCC is highly flexible and covers a wide range of complex dependencies (Joe
et al. [25], Hobæk Haff et al. [21]). After Aas et al. [1] set it in an inferential context, it has
made several appearances in the literature (Fischer et al. [13], Chollete et al. [6], Heinen and
Valdesogo [19], Schirmacher and Schirmacher [35], Czado and Min [9], Kolbjørnsen and Stien
[29], Czado et al. [10,11]), exhibiting its adequacy for various applications.

Regardless of its recent popularity, estimation of PCC parameters has so far been addressed
mostly in an applied setting. The aim of this work is to explore the properties of alternative
estimators. As the PCC is a member of the multivariate copula family, one may exploit the
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Figure 1. Five-dimensional D-vine (to the left) and C-vine (to the right).

large collection of estimators proposed for that model class, such as moments type procedures,
based on, for instance, the matrix of pairwise Kendall’s tau coefficients (Clayton [8], Oakes [34],
Genest [14], Genest and Rivest [17]). Such methods may be well-suited for particular copula
families. We are however interested in more general procedures, allowing for broader model
classes. Moreover, we wish to exploit the specific structure of the PCC.

More specifically, the number of parameters of a PCC grows quickly with the dimension, even
if all pair-copulae constituting the structure are from one-parameter families. In medium to high
dimension, the existing copula estimators may simply become too demanding computationally,
and will at least require good start values in the optimisation procedure. Furthermore, due to
the PCC’s tree structure, selection of appropriate pair-copulae for a given data set must be done
level by level. Procedures that estimate all parameters simultaneously are therefore unfit for this
task.

In all, we contemplate four estimators. The first is the classical maximum likelihood (ML),
followed by the inference functions for margins (IFM) and semiparametric estimators, that have
been developed specifically for multivariate copulae. These three estimators are treated in Sec-
tion 2, and are included mostly for comparison. Section 3 is devoted to the fourth one, the step-
wise semiparametric estimator (SSP). Unlike the others, it is designed for the PCC structure.
Although it has been suggested and used earlier (Aas et al. [1]), it has never been formally pre-
sented, nor have its asymptotic properties been explored. In Section 4, we compare the four
estimators in a few examples. Finally, Section 5 presents some concluding remarks.

The setting is as follows. Consider the observations x1, . . . ,xn of n independent d-variate
stochastic vectors X1, . . . ,Xn, originating from the same pair-copula construction. Assume fur-
ther that the joint distribution is absolutely continuous, with strictly increasing margins. The
corresponding copula is then unique (Sklar [37]). Letting α and θ denote the parameters of the
margins and copula, respectively, the joint probability density function (p.d.f.) may then be ex-
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Table 1. Notation overview

Symbol j = 0 j = 1 j = 2, . . . , d − 1

v∗
ij

– ∅ {i + 1, . . . , i + j − 1}
w∗

ij
i {i, i + j} {i, vij , i + j}

θ∗
j

– {θ i,i+1: i = 1, . . . , d − 1} {θ s,s+t |vst
: |vst | = j − 1}

θ∗
i→i+j

– θ i,i+1 {θ s,s+t |vst
: (s, s + t) ∈ wij }

z∗∗
ij

∅ {i + 1} {1, . . . , j − 1, j + i}
θ∗∗
j_i

∅ ∅ {θ s,s+t |zs−1,0 : (s, s + t) ∈ zji}

∗: i = 1, . . . , d − j , ∗∗: i = 0, . . . , d − j .

pressed as (McNeil et al. [32], page 197)

f1...d (x1, . . . , xd;α, θ) = c1...d (F1(x1;α1), . . . ,Fd(xd;αd); θ)

d∏
l=1

fl(xl;αl ). (1)

Here, Fl and fl, l = 1, . . . , d , are the marginal cumulative distribution functions (c.d.f.s) and
p.d.f.s, respectively, and c1...d is the corresponding copula density. Since this is a PCC, c1...d is,
in turn, a product of pair-copulae.

Define the index sets vij = {i + 1, . . . , i + j − 1}, wij = {i, vij , i + j}, for 1 ≤ i ≤ d − j,1 ≤
j ≤ d − 1, with vi1 = ∅, and wi0 = i. Thus, for a vector a = (a1, . . . , ad), we write avij

=
(ai+1, . . . , ai+j−1) and awij

= (ai, . . . , ai+j ). Further, for an index k and a set of indices v,
with k /∈ v, let Fk|v be the conditional c.d.f. of Xk given Xv = xv , and ci,i+j |vij

the copula
density corresponding to the conditional distribution Fi,i+j |vij

of (Xi,Xi+j ) given Xvij
= xvij

.
Finally, let θ i,i+j |vij

be the parameters of the copula density ci,i+j |vij
, and define θ i→i+j =

{θ s,s+t |vst : (s, s + t) ∈ wij }, with θ i→i = ∅, and θ j = {θ s,s+t |vst : |vst | = j − 1}, where | · |
denotes the cardinality (i.e., θ j gathers all parameters from level j of the structure). Table 1
gives an overview of the notation. For a so-called D-vine (Bedford and Cooke [2,3]), the joint
p.d.f. (1) can now be written as (Aas et al. [1])

f1...d (x1, . . . , xd ;α, θ)

=
d∏

l=1

fl(xl;αl )

d−1∏
j=1

d−j∏
i=1

ci,i+j |vij
(Fi|vij

(xi |xvij
;αwi,j−1, θ i→i+j−1), (2)

Fi+j |vij
(xi+j |xvij

;αwi+1,j−1 , θ i+1→i+j ); θ i,i+j |vij
).

In four dimensions, this becomes

f1234(x1, x2, x3, x4;α, θ) = f1(x1;α1) · f2(x2;α2) · f3(x3;α3) · f4(x4;α4)

· c12(F1(x1;α1),F2(x2;α2); θ12) · c23(F2(x2;α2),F3(x3;α3); θ23)

· c34(F3(x3;α3),F4(x4;α4); θ34) (3)
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· c13|2(F1|2(x1|x2;α1,α2, θ12),F3|2(x3|x2;α2,α3, θ23); θ13|2)

· c24|3(F2|3(x2|x3;α2,α3, θ23),F4|3(x4|x3;α3,α4, θ34); θ24|3)

· c14|23(F1|23(x1|x2, x3;α1,α2,α3, θ12, θ23, θ13|2),

F4|23(x4|x2, x3;α2,α3,α4, θ23, θ34, θ24|3); θ14|23).

For simplicity, we will start by assuming that the distribution in question is a D-vine, repre-
sented to the left in Figure 1 for d = 5. Similar results can be obtained for C-vines (Section 3.3)
and other regular vines (Bedford and Cooke [2,3]). We also assume that the PCC is of a simpli-
fied form (Hobæk Haff et al. [21]), that is, that the parameters θ i,i+j |vij

of the copulae Ci,i+j |vij
,

combining conditional distributions, are not functions of the conditioning variables xvij
. Without

this assumption, inference on these models is not doable in practice.

2. Multivariate copula estimators

As previously mentioned, a PCC is a multivariate copula. Hence, one may estimate its parameters
with well-known methods, such as maximum likelihood or the two-step inference functions for
margins and semiparametric estimators.

2.1. Maximum likelihood (ML) estimator

Supposing the model is true, the ML estimator is a natural choice, due to its asymptotic efficiency
and other advantageous characteristics. According to (2), the log-likelihood function of a D-vine
is given by

l(α, θ;x) =
n∑

k=1

log(f1...d (x1k, . . . , xdk;α, θ))

=
n∑

k=1

d∑
l=1

log(fl(xlk;αl ))

+
n∑

k=1

d−1∑
j=1

d−j∑
i=1

log(ci,i+j |vij
(Fi|vij

(xi |xvij
;αwi,j−1, θ i→i+j−1), (4)

Fi+j |vij
(xi+j |xvij

;αwi+1,j−1 , θ i+1→i+j ); θ i,i+j |vij
))

= lM(α;x) + lC(α, θ;x),

where x = (x1, . . . ,xn). The ML estimator θ̂ML is obtained by maximising the above log-
likelihood function over all parameters, θ and α, simultaneously. Under the additional assump-
tions (M1)–(M8) of Lehmann [31] (pages 499–501), this corresponds to solving the set of es-
timating equations (one equation per parameter), 1

n

∑n
k=1 φML(X1k, . . . ,Xdk; α̂ML, θ̂ML) = 0,
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which is a vector of functions, with elements

φML
l (x1, . . . , xd ;α, θ) = ∂ log(f1...d (x1, . . . , xd;α, θ))

∂αl

,

(5)

φML
d+(j−1)(d−j/2)+i (x1, . . . , xd ;α, θ) = ∂ log(f1...d (x1, . . . , xd;α, θ))

∂θ i,i+j |vij

for l = 1, . . . , d , i = 1, . . . , d − j , j = 1, . . . , d − 1. Define I as the corresponding Fisher infor-
mation matrix

I = E

((
∂ log(f1...d (X;α, θ))

∂(α, θ)

)(
∂ log(f1...d (X;α, θ))

∂(α, θ)

)T )

= E

(
−∂2 log(f1...d (X;α, θ))

∂(α, θ) ∂(α, θ)T

)
=

(
Iα Iα,θ

IT
α,θ Iθ

)
.

In the last expression, it is partitioned according to marginal and dependence parameters. The
corresponding inverse is

I−1 =
(

I(α) I(α,θ)(
I(α,θ)

)T I(θ)

)
,

I(α) = (Iα − Iα,θI−1
θ IT

α,θ )
−1,

(6)
I(α,θ) = −I(α)Iα,θI−1

θ ,

I(θ) = I−1
θ + I−1

θ IT
α,θI(α)Iα,θI−1

θ .

It is well-known that under the mentioned conditions, the estimator θ̂ML is consistent for θ and
asymptotically normal, that is,

√
n(θ̂ML − θ)

d−→ N (0,VML),

VML = I(θ).

In general, ML estimation of PCC parameters will require numerical optimisation. Even in rather
low dimensions, such as four or five, the number of parameters is high if several of the model
components have more than one parameter. For instance, a five-dimensional PCC, consisting of
Student’s t-copulae, has 20 parameters, to which one must add the ones of the margins. Finding
the global maximum in such a high-dimensional space is numerically challenging, even with
more elaborate optimisation schemes, such as the modified Newton–Raphson method with first
and second order derivatives. It will in any case be highly time consuming, so the ML estima-
tor may not be an option in practice. Therefore, one needs faster and computationally easier
estimation procedures.

Moreover, the above results require the chosen model to be the true model, that is, the one that
produced the data. If the specified model is close to the truth in the Kullback–Leibler (KL) sense,
the ML estimator may behave very well (Claeskens and Hjort [7]). However, it is in general
non-robust to larger KL-divergences from the true model.
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2.2. Two-step estimators

The next two estimators are not particularly designed for pair-copula constructions, but for mul-
tivariate copula models in general. Both consist of two steps, the first being estimation of the
marginal parameters.

2.2.1. Inference function for margins (IFM) estimator

The IFM estimator, introduced by Joe [23,24], addresses the computational inefficiency of the
ML estimator by performing the estimation in two steps. First, one estimates α by maximising
the term lM from (4). The resulting estimates α̂IFM are plugged into the term lC to obtain θ̂ IFM.

Under conditions (M1)–(M8) (see Section 2.1), this corresponds to solving

1

n

n∑
k=1

φIFM(X1k, . . . ,Xdk; α̂IFM, θ̂ IFM) = 0,

with elements

φIFM
l (xl;αl ) = ∂ log(fl(xl;αl))

∂αl

,

(7)

φIFM
d+(j−1)(d−j/2)+i (x1, . . . , xd;α, θ) = ∂ log(f1...d (x1, . . . , xd ;α, θ))

∂θ i,i+j |vij

for l = 1, . . . , d , i = 1, . . . , d − j , j = 1, . . . , d − 1. Compared to the ML equations (5), the full
log-p.d.f., logf1...d , is replaced with the marginal log-p.d.f.s, logfj , for the estimation of α.

Consider a four-dimensional D-vine (3), consisting of Student’s t-copulae, each having their
own correlation and degrees of freedom parameter, combined with Student’s t-margins. The pa-
rameter vectors are then α = (ν1, ν2, ν3, ν4) and θ = (ρ12, ρ23, ρ34, ρ13|2, ρ24|3, ρ14|23, ν12, ν23,

ν34, ν13|2, ν24|3, ν14|23). IFM estimation of this model starts with a separate estimation of νi ,
i = 1,2,3,4, margin by margin. The next step is to optimise lC(ν̂1, . . . , ν̂4, θ;x) over θ , lC being
the sum of the log-copula densities in line 3 to 8 of (3), over all observations.

Define the matrix Kα with

Kα,i,j = E(φIFM
i (Xi;αi )φ

IFM
j (Xj ;αj ))

= E

((
∂ log(fi(Xi;αi ))

∂αi

)(
∂ log(fj (Xj ;αj ))

∂αj

)T )
, i, j = 1, . . . , d,

and the block diagonal matrix J α with

J α,i,i = E

(
− ∂

∂αT
i

φIFM
i (Xi;αi )

)
= E

(
−∂2 log(fi(Xi;αi ))

∂αi ∂αT
i

)
= Kα,i,i ,

each block corresponding to one of the margins. If all margins are one-parameter families, Kα

and J α are d × d matrices. More generally, their dimension depends on the number of parame-
ters of each margin.
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Joe [24] showed that under the mentioned conditions, the estimator θ̂ IFM is consistent for θ ,
as well as asymptotically normal:

√
n(θ̂ IFM − θ)

d−→ N (0,VIFM),
(8)

VIFM = I−1
θ + I−1

θ IT
α,θJ −1

α KαJ −1
α Iα,θI−1

θ .

The above covariance matrix is obtained by replacing I(α) in (6) with the asymptotic covariance
matrix J −1

α KαJ −1
α of α̂IFM. This quantifies the loss of asymptotic efficiency from discarding

information the dependence structure might have on the margins. Several studies, including Joe
[24] and Kim et al. [27], have demonstrated that unless the dependence between the variables is
extreme, this loss tends to be rather small. That is also the impression from Examples 4.2 and 4.3
(Section 4). Moreover, the IFM method is computationally faster than the ML estimator, and can
at least be used to set the start values in ML optimisation. Of course, for high-dimensional θ , the
IFM estimator is still too slow to be used for PCCs.

2.2.2. Semiparametric (SP) estimator for copula parameters

Just like IFM, the SP estimator is a two-step estimator, treating the margins separately. It was
introduced by Genest et al. [16], and for the censored case by Shih and Louis [36]. Later, it was
generalised by Tsukahara [40]. Aas et al. [1] suggest this estimator for PCCs.

As seen from (2), the pair-copula arguments at the ground level of a pair-copula construction
(T1 in Figure 1) are marginal distributions Fi . From the second level, they are conditional distri-
butions, whose conditioning set increases by one with each level. These conditional distributions
may however be written as functions of the margins. Let i, j be distinct indices, that is, i �= j ,
and v a nonempty set of indices, all from {1, . . . , d}, such that i, j /∈ v. Then, in a simplified
pair-copula construction (Joe [22])

Fi|v∪j (xi |xv∪j ) = ∂Cij |v(ui, uj )

∂uj

∣∣∣∣
ui=Fi|v(xi |xv),uj =Fj |v(xj |xv)

. (9)

Thus, by extracting one of the variables j from the conditioning set v ∪ j , one can express Fi|v∪j

as a function of two conditional distributions Fi|v and Fj |v with one conditioning variable less.
Likewise, Fi|v and Fj |v may be written as bivariate functions of conditional distributions with a
conditioning set reduced by one. Proceeding in this way, one finally obtains recursive functions
of the margins.

The type of pair-copula construction determines which conditional distributions are needed. At
level j ≥ 2 of a D-vine, these are the pairs (Fi|vij

(xi |xvij
),Fi+j |vij

(xi+j |xvij
)), i = 1, . . . , d − j .

Now, define the functions

hi,i+j |vij
(ui, ui+j ) ≡ ∂Ci,i+j |vij

(ui, ui+j )

∂ui+j

,

(10)

hi+j,i|vij
(ui+j , ui) ≡ ∂Ci,i+j |vij

(ui, ui+j )

∂ui
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for i = 1, . . . , d − j, j = 1, . . . , d − 1. Using (9), one obtains

Fi|vij
(xi |xvij

)

= hi,i+j−1|vi,j−1(Fi|vi,j−1(xi |xvi,j−1),Fi+j−1|vi,j−1(xi+j−1|xvi,j−1)),

Fi+j |vij
(xi+j |xvi,j−1)

= hi+j,i+1|vi+1,j−1(Fi+j |vi+1,j−1(xi+j |xvi+1,j−1),Fi+1|vi+1,j−1(xi+1|xvi+1,j−1)),

which are functions of conditional distributions constituting the arguments of the copulae from
the previous level, j − 1. As one continues this recursion, one achieves, as earlier mentioned,
functions of the margins Fi, . . . ,Fi+j . Since these are needed in the asymptotics, we denote them

g
(1)
i,i+j and g

(2)
i,i+j , and explicitly define them below. Note however, that for all practical purposes,

such as in the estimation algorithm (Algorithm 1 in Supplement A of Hobæk Haff [20]), one will
use the nested h-functions from (10). Define

g
(1)
i,i+j (ui, . . . , ui+j−1)

≡ Fi|vij
(F−1

i (ui)|F−1
i+1(ui+1), . . . ,F

−1
i+j−1(ui+j−1)),

(11)
g

(2)
i,i+j (ui+1, . . . , ui+j )

≡ Fi+j |vij
(F−1

i+j (ui+j )|F−1
i+1(ui+1), . . . ,F

−1
i+j−1(ui+j−1))

for i = 1, . . . , d − j, j = 1, . . . , d − 1. Now, one may rewrite (2) as:

f1...d (x1, . . . , xd;α, θ)

=
d∏

l=1

fl(xl;αl )

·
d−1∏
j=1

d−j∏
i=1

ci,i+j |vij

(
g

(1)
i,i+j (Fi(xi;αi ), . . . ,Fi+j−1(xi+j ;αi+j−1); θ i→i+j−1), (12)

g
(2)
i,i+j (Fi+1(xi+1;αi+1), . . . ,Fi+j (xi+j ;αi+j ); θ i+1→i+j );

θ i,i+j |vij

)
.

Recall that IFM estimates θ̂ IFM are obtained by plugging the estimated marginal parame-
ters α̂IFM into the function lC . Semiparametric estimation consists in replacing the parametric
marginal c.d.f.s uj = Fj (xj ;αj ) in lC with the corresponding empirical ones

ujn = Fjn(xj ) = 1

n + 1

n∑
k=1

I (xjk ≤ xj ),

I (A) =
{

1, if A is true,
0, otherwise.
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The resulting pseudo log-likelihood function lC,P (θ;x), given by

lC,P (θ;x)

=
n∑

k=1

log(c1...d (F1n(x1k), . . . ,Fdn(xdk); θ))

=
n∑

k=1

d−1∑
j=1

d−j∑
i=1

log
(
ci,i+j |vij

(
g

(1)
i,i+j (Fi,n(xik), . . . ,Fi+j−1,n(xi+j−1,k); θ i→i+j−1),

g
(2)
i,i+j (Fi+1,n(xi+1,k), . . . ,Fi+j,n(xi+j,k); θ i+1→i+j );

θ i,i+j |vij

))
,

is just a function of θ . To obtain the semiparametric estimator θ̂SP, one simply maximises
lC,P (θ;X) with respect to θ .

Returning to the four-dimensional Student’s t-vine of Section 2.2.1, SP estimation of this
model requires a preliminary computation of the so-called pseudo-observations uik,n = Fin(xik),
i = 1,2,3,4, k = 1, . . . , n. The estimate θ̂SP is obtained by maximising lC,P (x; θ), in this
case

n∑
k=1

(
log(c12(u1k,n, u2k,n; θ12)) + · · ·

+ log
(
c14|23

(
g

(1)
14 (u1k,n, . . . , u3k,n; θ1→3), g

(2)
14 (u2k,n, . . . , u4k,n; θ2→4); θ14|23

)))
,

with θ1→3 = (θ12, θ23, θ13|2) and θ2→4 = (θ23, θ34, θ24|3), over θ .
In addition to the assumptions made for the ML estimator, assume that c1...d fulfills condi-

tion (A.1) from Tsukahara [40]. Then, the procedure corresponds to solving

1

n

n∑
k=1

φSP(F1n(X1k), . . . ,F1n(Xdk); θ̂SP) = 0,

with

φSP
(j−1)(d−j/2)+i (u1, . . . , ud ; θ) = ∂ log(c1...d (u1, . . . , ud ; θ))

∂θ i,i+j |vij

(13)

for i = 1, . . . , d − j , j = 1, . . . , d − 1.
Let U be a d-variate stochastic vector distributed according to the copula C1...d (u1, . . . , ud; θ),

and define

WSP
j (U; θ) =

∫
∂2 log c1...d (u1, . . . , ud ; θ)

∂θ ∂uj

I (Uj ≤ uj )dC1...d (u1, . . . , ud; θ).
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Further, define

BSP
θ = Var

(
d∑

j=1

WSP
j (U; θ)

)
+

d∑
j=1

Cov(φSP(U; θ),WSP
j (U; θ))

= Var

(
d∑

j=1

WSP
j (U; θ)

)
+

d∑
j=1

Cov

(
∂ log c1...d (U; θ)

∂θ
,WSP

j (U; θ)

)
,

where A = Cov(Y,Z), for two stochastic vectors Y and Z, is the matrix with elements Aij =
Cov(Yi,Zj ) + Cov(Yj ,Zi). The matrix BSP

θ quantifies the effect of replacing the parametric
marginal c.d.f.s with empirical ones. According to Genest et al. [16] and later shown by Tsuka-
hara [40], θ̂SP is, under the mentioned conditions, consistent and asymptotically normal:

√
n(θ̂SP − θ)

d−→ N (0,VSP),
(14)

VSP = I−1
θ + I−1

θ BSP
θ I−1

θ .

Due to the completely separate and independent estimation of marginal and dependence parame-
ters, the semiparametric estimator is more robust to misspecification of the margins than ML and
IFM (Kim et al. [27]). If either of the latter two produce estimates that are rather different from
the former, it indicates that the chosen margins or copulae are inadequate for the data.

Computationally, SP is comparable to IFM. Hence, for high-dimensional θ , although faster
than ML, this procedure will require good start values, and may still be too demanding for
PCCs.

3. PCC parameter estimators

If the number of PCC parameters θ is high enough, the estimators considered so far will be com-
putationally too heavy. In any case, they necessitate appropriate start values. The next estimator,
designed for pair-copula constructions, addresses this particular issue.

3.1. Stepwise semiparametric estimator (SSP)

As in semiparametric estimation, the marginal parameters are handled separately, and the para-
metric margins in the PCC log-likelihood function lC are replaced with the nonparametric ones.
The idea is to estimate the PCC parameters level by level, conditioning on the parameters from
preceding levels of the structure. Define

lC,P,j (θ1, . . . , θ j ;x) =
n∑

k=1

j∑
l=1

ψl(F1n(x1k), . . . ,Fdn(xdk); θ1, . . . , θ l ),
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with

ψj(u1, . . . , ud ; θ1, . . . , θ j )

=
d−j∑
i=1

log
(
ci,i+j |vij

(
g

(1)
i,i+j (ui, . . . , ui+j−1; θ i→i+j−1), (15)

g
(2)
i,i+j (ui+1, . . . , ui+j ; θ i+1→i+j ); θ i,i+j |vij

))
for j = 1, . . . , d − 1. Hence, lC,P,j is the sum over all log pair-copula densities up to, and in-
cluding, level j . To obtain the parameter estimates θ̂SSP

j for level j , one plugs the estimates

θ̂SSP
1 , . . . , θ̂SSP

j−1 from preceding levels into lC,P,j and maximises it with respect to θ j . Assuming
the standard conditions for the ML estimator are fulfilled (see Section 2), this corresponds to
solving the estimating equations 1

n

∑n
k=1 φSSP(F1n(X1k), . . . ,Fdn(Xdk); θ̂SSP) = 0, with

φSSP
(j−1)(d−j/2)+i (u1, . . . , ud ; θ1, . . . , θ j ) = ∂

∂θ i,i+j |vij

j∑
l=1

ψl(u1, . . . , ud; θ1, . . . , θ l )

(16)

= ∂

∂θ i,i+j |vij

ψj (u1, . . . , ud ; θ1, . . . , θ j )

for i = 1, . . . , d − j , j = 1, . . . , d − 1. Compared to the SP equations (13), the full log copula
density log c1...d is now replaced by the sum of log copula densities up to, and including, the
level the parameter belongs to. The corresponding estimation procedure is presented in Algo-
rithm 1 (Supplement A of Hobæk Haff [20]). If none of the pair-copulae constituting the struc-
ture share parameters, which will usually be the case, the estimating equations are reduced to

∂
∂θ i,i+j |vij

log(ci,i+j |vij
). This means that the optimisation is performed for each copula, individu-

ally.
Let us return to the four-dimensional D-vine considered in Section 2.2.2. As in the SP pro-

cedure, one computes the pseudo-observations uik,n = Fin(xik), i = 1,2,3,4, k = 1, . . . , n.
One starts with the level 1 parameters, estimating each of the pairs (ρi,i+1, νi,i+1) by opti-
mising

∑n
k=1 log(ci,i+1(uik,n, ui+1,k,n;ρi,i+1, νi,i+1)), for i = 1,2,3. One subsequently com-

putes the copula arguments for level 2, ui|i+1,k,n = hi,i+1(uik,n, ui+1,k,n; ρ̂i,i+1, ν̂i,i+1)) and
ui+2|i+1,k,n = hi+2,i+1(ui+2,k,n, ui+1,k,n; ρ̂i+1,i+2, ν̂i+1,i+2)), i = 1,2,3, k = 1, . . . , n, by plug-
ging the resulting estimates into the adequate h-functions (10). At level 2, one estimates each
of the pairs (ρi,i+2|i+1, νi,i+2|i+1), for i = 1,2, by maximising

∑n
k=1 log(ci,i+2|i+1(ui|i+1,k,n,

ui+2|i+1,k,n;ρi,i+2|i+1, νi,i+2|i+1)). Next, one computes the copula arguments u1|23,k,n and
u4|23,k,n for level 3 by plugging the estimates from level 2 into h13|2 and h24|3. Finally, to obtain
(ρ̂14|23, ν̂14|23), one optimises

∑n
k=1 log(c14|23(u1|23,k,n, u4|23,k,n;ρ14|23, ν14|23)).

When some of the copulae share parameters, the procedure is a little different. Let us for in-
stance consider a four-dimensional Student’s t-copula with correlations (ρ12, ρ23, ρ34, ρ13, ρ24,

ρ14) and ν degrees of freedom. This is also a D-vine consisting of Student’s t-copulae (see for
instance Min and Czado [33]). The correlation parameters of these copulae are now the corre-
sponding partial correlations (ρ12, ρ23, ρ34, ρ13|2, ρ24|3, ρ14|23). However, the degrees of freedom
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parameter is shared. More specifically, it is ν for the three copulae at the ground level, ν + 1 at
level 2 and ν + 2 for the top level copula. The SSP estimation procedure is now as follows.
Having computed the pseudo-observations, one maximises the level 1 function

n∑
k=1

ψ1(u1k,n, . . . , u4k,n;ρ12, ρ23, ρ34, ν) =
n∑

k=1

3∑
i=1

log(ci,i+1(ui,k,n, ui+1,k,n;ρi,i+1, ν))

over (ρ12, ρ23, ρ34, ν). Then, one calculates the copula arguments for level 2 as described above.
At the second level, one estimates ρ13 and ρ24, which are not shared by c13|2 and c24|3. More
specifically, one optimises each of

∑n
k=1 log(ci,i+2|i+1(ui|i+1,k,n, ui+2|i+1,k,n;ρi,i+2, ρ̂i,i+1,

ρ̂i+1,i+2, ν̂)), over ρi,i+2, i = 1,2 (note that ρ̂i,i+1, ρ̂i+1,i+2 are needed to compute the par-
tial correlations ρi,i+2|i+1). Next, one computes the copula arguments for the top level copula,
and finally, one maximises

∑n
k=1 log(c14|23(u1|23,k,n, u4|23},k,n;ρ14, ρ̂12, . . . , ρ̂24|3, ν̂)) over ρ14.

Note however that although it is possible to estimate the parameters of a multivariate Student’s
t-copula as described above, it is unnecessarily complex. In practice, one would typically esti-
mate the correlation parameters via the corresponding Kendall’s τ coefficients, and subsequently
optimise the pseudo log-likelihood function lC,P over ν, plugging in the estimated correlations,
as described in for instance McNeil et al. [32] (page 231). The main purpose of the PCC is to
model pairs with different behaviour. If one does not really need that flexibility, then using a PCC
is like using a sledgehammer to crack a nut.

Let us now consider conditions (A.1)–(A.5) from Tsukahara [40]. The last four of these are
the standard conditions for the ML estimator, but on the score functions (16). Further, define

φ(j−1)(d−j/2)+i (u; θ1, . . . , θ j ) = ∂

∂θ i,i+j |vij

ψj (u; θ1, . . . , θ j ) ≡ ψ ij,θ (u; θ1, . . . , θ j ),

∂

∂uk

φ(j−1)(d−j/2)+i (u; θ1, . . . , θ j ) = ∂

∂uk

ψ ij,θ (u; θ1, . . . , θ j ) ≡ ψ ij,θ,uk
(u; θ1, . . . , θ j ).

Let Q and R be the sets of positive, symmetric, inverse square integrable functions on [0,1] and
reproducing u-shaped functions on [0,1], respectively, as defined in Tsukahara [40]. Further, let
|θ ij |vij

| = lij be the number of parameters of the pair-copula Ci,i+j |vij
. For the SSP estimator,

Condition (A.1) may then be phrased in the following way (note that a subscript ‘j’ on φ is
missing in Tsukahara [40]).

Condition 1. For each θ , ψ ij,θ = (ψij,θ,1, . . . ,ψij,θ,lij ) and ψ ij,θ,uk
= (ψij,θ,uk,1, . . . ,

ψij,θ,uk,lij ), j = 1, . . . , d − 1, i = 1, . . . , d − j are continuous, and there exist functions
rij,k, r̃ij,k ∈ R and qij,k ∈ Q, such that

|ψij,θ,m(u; θ1, . . . , θj )| ≤
d∏

l=1

rij,l(ul),

|ψij,θ,uk,m(u; θ1, . . . , θj )| ≤ r̃ij,k(uk)
∏
l �=k

rij,l(ul)
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for k, l = 1, . . . , d , j = 1, . . . , d − 1, i = 1, . . . , d − j , m = 1, . . . , lij , with

∫ (
d∏

l=1

rij,l(ul)

)2

dC1...d (u1, . . . , ud; θ) < ∞,

∫ (
qij,k(uk)r̃ij,k(uk)

∏
l �=k

rij,l(ul)

)2

dC1...d (u1, . . . , ud; θ) < ∞.

When none of the pair-copulae share parameters, Condition 1 becomes a condition on each of
them, individually.

Once more let U be distributed according to C1...d (u1, . . . , ud ; θ), as well as ψθ = (ψ11,θ , . . . ,

ψ1,d−1,θ ) and ψθ,uj
= (ψ11,θ,uj

, . . . ,ψ1,d−1,θ,uj
). Define

WSSP
j (U; θ) =

∫
∂

∂uj

φSSP(u1, . . . , ud ; θ)I (Uj ≤ uj )dC1...d (u1, . . . , ud ; θ)

=
∫

ψθ,uj
(u1, . . . , ud; θ)I (Uj ≤ uj )dC1...d (u1, . . . , ud ; θ)

and the matrix

BSSP
θ = Var

(
d∑

j=1

WSSP
j (U; θ)

)
+

d∑
j=1

Cov(φSSP(U; θ),WSSP
j (U; θ))

= Var

(
d∑

j=1

WSSP
j (U; θ)

)
+

d∑
j=1

Cov(ψθ (U; θ),WSSP
j (U; θ)).

Moreover, define the two matrices

Kθ = E(φSSP(φSSP)T ) =

⎛
⎜⎜⎝

Kθ,1,1 0
. . .

0T Kθ,d−2,d−2 0
0T 0T Iθ,d−1,d−1

⎞
⎟⎟⎠ ,

J θ = E

(
−∂φSSP

∂θT

)
=

⎛
⎜⎜⎜⎜⎜⎝

J θ,1,1 0
...
...

. . .

J θ,d−2,1 · · · J θ,d−2,d−2 0
Iθ,d−1,1 · · · Iθ,d−1,d−2 Iθ,d−1,d−1

⎞
⎟⎟⎟⎟⎟⎠ ,

where the blocks Kθ,i,j = E((
∂ψi

∂θ i
)(

∂ψj

∂θj
)T ) and J θ,i,j = −E(

∂2ψi

∂θ i ∂θT
j

), i, j = 1, . . . , d − 1, cor-

respond to each of the construction’s levels. The block diagonal and block lower triangular
forms of Kθ and J θ , respectively, follow from the structure of the estimating equations (see
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Appendix A.1). More specifically, the ψ functions depend on all the parameters from previous
levels but not from following levels. Further, the estimating equations for the top level copula
parameters are based on the full copula, as for the SP estimator. This accounts for the appearance
of blocks from the Fisher matrix Iθ in the last rows of Kθ and J θ . If all pair-copulae are from
one-parameter families, then Kθ and J θ are d(d − 1)/2 × d(d − 1)/2 matrices.

We now have all the necessary components to establish the asymptotic properties of the step-
wise semiparametric estimator.

Theorem 1. Under Condition 1, as well as Conditions (A.2)–(A.5) of Tsukahara [40], the SSP
estimator θ̂SSP is consistent for θ and asymptotically normal:

√
n(θ̂SSP − θ)

d−→ N (0,VSSP),
(17)

VSSP = J −1
θ Kθ (J −1

θ )T + J −1
θ BSSP

θ (J −1
θ )T .

Proof. Theorem 1 follows directly Theorem 1 of Tsukahara [40], with the estimating equa-
tions (16). Note that Theorem 1 of Tsukahara [40] is valid for the multiparameter case m > 1,
despite some misprints and imprecisions in the original paper. Specifically, Condition (A.1) is
assumed valid for every element of the vector φ of estimating equations, that is, a subscript ‘j’
is needed. Proposition 3 holds for m > 1 thanks to the Cramer–Wold device. The rest of the
argument works for m > 1, using ‖ · ‖ instead of | · | for the norm (Tsukahara [41]). �

In order to construct confidence intervals for θ , one needs a consistent estimate of VSSP. As
noted in Tsukahara [40], one may estimate this covariance matrix consistently by replacing ex-
pectations and variances in (17) by sample equivalents, and plugging in the estimate θ̂SSP. More
specifically, letting ψθ,θ = ∂

∂θT ψθWSSP = ∑d
j=1 WSSP

j , and uik , i = 1, . . . , d , k = 1, . . . , n, are
the pseudo-observations,

V̂SSP = Ĵ −1
θ K̂θ (Ĵ −1

θ )T + Ĵ −1
θ B̂SSP

θ (Ĵ −1
θ )T ,

with

K̂θ = 1

n

n∑
k=1

ψθ (u1k, . . . , udk; θ̂SSP)(ψθ (u1k, . . . , udk; θ̂SSP))T ,

Ĵ θ = −1

n

n∑
k=1

ψθ,θ (u1k, . . . , udk; θ̂SSP
),

B̂SSP
θ = 1

n

n∑
k=1

WSSP(u1k, . . . , udk; θ̂SSP)(WSSP(u1k, . . . , udk; θ̂SSP))T

+ 1

n

n∑
k=1

d∑
j=1

ψθ (u1k, . . . , udk; θ̂SSP)(WSSP(u1k, . . . , udk; θ̂SSP))T .
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In most cases, there is no analytic expression for the derivatives ψθ and ψθ,θ , but they can be
approximated numerically. However, the computation of the Wj -vectors involves d-dimensional
integrals, which is more problematic. In practice, one will not be able to compute the above co-
variance matrix estimate for d > 3. Instead, one will have to resort to some resampling technique,
such as parametric bootstrap from C1...d (·; θ̂SSP), as described in Example 4.4 of Section 4.

Theorem 2. Under the conditions of Theorem 1, the SSP estimator θ̂SSP is asymptotically semi-
parametrically efficient for the parameters θ of the Gaussian copula.

The proof is given in Appendix A.2.
In general, the stepwise semiparametric estimator θ̂SSP is asymptotically less efficient than

θ̂SP, since it at a given level discards all information from following levels. Nonetheless, the
levelwise estimation significantly improves the computational efficiency. The SSP estimator is
therefore adequate for medium to high-dimensional models, and to produce start values for the
SP estimator. Further, a substantial difference between SSP and SP estimates may be a sign that
the copulae are unsuitable. Hence, one may use the SSP estimator to assess the sensitivity to the
chosen copulae. Moreover, it is inherently suited for determining an appropriate PCC for a data
set, which consists in choosing an ordering of the variables and a set of parametric pair-copulae
in a stepwise manner. Once the ordering is fixed, one finds suitable copulae for the ground level,
based on the pseudo-observations. At the second level, the necessary pair-copula arguments are
obtained by transforming the pseudo-observations with the adequate h-functions, which depend
on the chosen ground level copulae. This requires ground level parameter estimates, which can be
provided by the SSP estimator. After one has selected copulae for the second level, one proceeds
in the same manner for the remaining levels. Of course, one could construct a similar, stepwise
estimator with a different transformation to uniform margins, for instance using the parametric
margins as in IFM estimation. That particular estimator was in fact proposed by Joe and Xu
[26].

3.2. Robustness

The SSP estimator is a substantial improvement over the three former in terms of computational
speed. However, it presupposes that the specified model is the true one. If the amount of data
available is high enough, it should, in most cases, be possible to find adequate marginal distribu-
tions. For the pair-copulae, the task is more complex. Using the pseudo-observations, one may
obtain a reasonable model for the ground level. Subsequently, however, one must condition on
choices from previous levels, as described above. One would therefore expect the quality of the
model to decrease with the construction level.

SSP estimation consists in replacing the parametric margins in the function lC with the non-
parametric ones, while keeping the parametric forms of the conditional distributions, that is, the
g-functions (11). The resulting estimator is robust toward misspecification of the margins, but
not of the pair-copulae. By replacing also the conditional distributions with nonparametric ver-
sions, one would reduce this sensitivity to chosen pair-copulae preceding in the structure. One



Parameter estimation for pair-copula constructions 477

possibility is the empirical conditional distribution proposed by Stute [39]:

Fi|v,n(xi |xv) = n

n + 1

∑n
k=1 I (xik ≤ xi)Ks(xv − xv,k)∑n

k=1 Ks(xv − xv,k)
, Ks(y) = 1

sl
K

(
y
s

)
, (18)

where l is the dimension of xv , K is a kernel function on R
l and s the bandwidth parameter. The

definition (18) is slightly modified here to avoid boundary problems in 0 and 1. Provided h → 0
and nsl → ∞ as n → ∞, it converges almost surely to the true conditional distribution, though
at a rather slow pace of order (nsl)1/2. The quality of the estimates will therefore significantly
decrease with the level number. Alternative versions of the empirical conditional distribution
function, such as the one proposed by Hall and Yao [18], share this unfortunate property.

Recall that the conditional distributions of interest are recursions of h-functions (10), which,
in turn, are conditional distributions of uniform variables with a conditioning set of length one.
These functions can therefore be estimated nonparametrically by (18) with l = 1. Seemingly,
one can exploit this to avoid the curse of dimensionality. However, the two arguments of the h-
functions are again h-functions from the preceding level. Hence, the error propagates from level
to level, and as expected, the resulting rate of convergence is of the same order as for the original
variables, that is (nsl)1/2.

Accordingly, the estimator suggested above becomes unreliable already at the fourth or fifth
level of the structure, depending on the amount of data. Since the intention is to improve the
quality of estimates at higher levels, it is in practice useless, unless the rate of convergence is
increased by additional assumptions on the conditional distributions.

3.3. C-vines

For simplicity, we have only considered D-vines so far. The same results are however easily
obtained for C-vines (see Figure 1) and more general regular vines (though computation of the
log-likelihood function is more complex (Dissmann et al. [12])).

The p.d.f. of a C-vine is given by (Aas et al. [1])

f1...d (x1, . . . , xd;α, θ)

=
d∏

l=1

fl(xl;αl )

(19)

·
d−1∏
j=1

d−j∏
i=1

cj,j+i|zj−1,0(Fj |zj−1,0(xj |xzj−1,0;αzj0 , θ j_0),

Fj+i|zj−1,0(xj+i |xzj−1,0;αzji
, θ j_i ); θ j,j+i|zj−1,0),

where zji = {1, . . . , j − 1, j + i} and θ j_i = {θ s,s+t |zs−1,0 : (s, s + t) ∈ zji}, for 0 ≤ i ≤ d − j ,
0 ≤ j ≤ d − 1, with z0i = ∅, z1i = {i + 1} and θ0_i = θ1_i = ∅. Hence, the log-likelihood
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function of n independent observations from a C-vine is

l(α, θ;x) =
n∑

k=1

log(f1...d (x1k, . . . , xdk;α, θ))

=
n∑

k=1

d∑
l=1

log(fl(xlk;αl ))

+
n∑

k=1

d−1∑
j=1

d−j∑
i=1

log(cj,j+i|zj−1,0(Fj |zj−1,0(xj |xzj−1,0;αzj0 , θ j_0), (20)

Fj+i|zj−1,0(xj+i |xzj−1,0;αzji
, θ j_i ); θ j,j+i|zj−1,0))

= lM(α;x) + lC(α, θ;x).

Replacing lC from (4) with lC from (20), one retrieves the results from Section 2 for C-vines.
To achieve the SSP estimator, one must simply replace the psi-function (15) in the estimating
equations (16) with

ψj (u1, . . . , ud; θ1, . . . , θ j )

=
d−j∑
i=1

log(cj,j+i|zj−1,0(Fj |zj−1,0(xj |xzj−1,0;αzj0 , θ j_0), (21)

Fj+i|zj−1,0(xj+i |xzj−1,0;αzji
, θ j_i ); θ j,j+i|zj−1,0)).

Also, the h-functions (10) are redefined as

hj+i,j |zj−1,0(uj+i , uj ) ≡ ∂Cj,j+i|zj−1,0(uj , uj+i )

∂uj

(22)

for i = 1, . . . , d − j , j = 1, . . . , d − 1. The estimation procedure for a C-vine is described in
Algorithm 2 (Supplement A of Hobæk Haff [20]).

4. Examples

To compare the four estimators’ performance, we have carried out asymptotic computations on a
few examples (Examples 4.1 to 4.3). We have also fitted a D-vine to a set of precipitation series,
using each of the estimators (Example 4.4).

Example 4.1. Consider the three-dimensional Gaussian distribution(
X1
X2
X3

)
∼ N3(0,SRS), S =

(
σ1 0 0
0 σ2 0
0 0 σ3

)
, R =

( 1 ρ12 ρ13
ρ12 1 ρ23
ρ13 ρ23 1

)
.
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This distribution can be represented by a D-vine consisting of Gaussian pair-copulae and mar-
gins, more specifically

f123(x1, x2, x3;S,R) = c(u1, u2;ρ12)c(u2, u3;ρ23)c(u1|2, u3|2;ρ13|2)
3∏

i=1

f (xi;σi),

where

c(ui, uj ;ρ) = exp{−ρ/(2(1 − ρ2))(ρ�−1(ui)
2 + ρ�−1(uj )

2 − 2�−1(ui)�
−1(uj ))}√

1 − ρ2

f (x;σ) = exp{−x2/(2σ 2)}√
2πσ

, ρ13|2 = ρ13 − ρ12ρ23√
(1 − ρ2

12)(1 − ρ2
23)

,

ui|j = hij (ui, uj ;ρ) = �

(
�−1(ui) − ρ�−1(uj )√

1 − ρ2

)
,

with ui = �(xi), � being the c.d.f. of the standard Gaussian distribution. Note that this is one of
the three possible decompositions of f123.

In practice, there are scarcely any other models for which it is feasible to do all computations
analytically. It is also one of the few distributions the IFM and SP estimators are asymptotically
efficient for, as explained below.

The ML estimators α̂ML and θ̂ML are of course the empirical standard deviations and corre-
lations, respectively. It is easily verified that for this particular model, the IFM estimators α̂IFM

and θ̂ IFM are identical to α̂ML and θ̂ML. Thus, they are asymptotically efficient. Moreover, the
SP estimator θ̂SP is semiparametrically efficient for θ , as shown by Klaassen and Wellner [28].

For SSP, we must compute the matrices Kθ , J θ and BSSP
θ , defined in Section 3.1. The co-

variance matrix VSSP of ρ12, ρ23 and ρ13, in that order (corresponding to the PCC levels), is
shown in Appendix A.3, along with VML. We see that VSSP = VML = VSP. As the SP estimator
is asymptotically semiparametrically efficient for θ , so must the SSP estimator be.

Example 4.2. Consider the three-dimensional PCC with exponential margins and Gumbel pair-
copulae:

f123(x1, x2, x3;λ, δ) = c(u1, u2; δ12)c(u2, u3; δ23)c(u1|2, u3|2; δ13|2)
3∏

i=1

f (xi;λi),

where

c(ui, uj ; δ) = exp{−(ũδ
i + ũδ

j )
1/δ}(ũi ũj )

δ−1((ũδ
i + ũδ

j )
1/δ + δ − 1)

uiuj (ũ
δ
i + ũδ

j )
2−1/δ

,

f (x;λ) = λ exp{−λx}, ui|j = hij (ui, uj ; δ) = exp{−(ũδ
i + ũδ

j )
1/δ(ũj )

δ−1}
uj (ũ

δ
i + ũδ

j )
1−1/δ

,
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Table 2. Asymptotic relative efficiencies of δ̂12 and δ̂13|2 from Example 4.2, for various parameter sets

IFM SP SSP

δ̂12 δ̂13|2 δ̂12 δ̂13|2 δ̂12 δ̂13|2
(δ12, δ13|2) = (1.2,1.2) 0.997 0.997 0.921 0.955 0.904 0.953
(δ12, δ13|2) = (1.2,2) 0.985 0.996 0.902 0.984 0.891 0.981
(δ12, δ13|2) = (1.2,3) 0.971 0.994 0.846 0.990 0.837 0.987
(δ12, δ13|2) = (2,1.2) 0.995 0.985 0.913 0.851 0.879 0.843
(δ12, δ13|2) = (2,2) 0.981 0.983 0.896 0.950 0.850 0.936
(δ12, δ13|2) = (2,3) 0.956 0.969 0.832 0.976 0.815 0.962
(δ12, δ13|2) = (3,1.2) 0.995 0.974 0.912 0.814 0.861 0.808
(δ12, δ13|2) = (3,2) 0.973 0.954 0.871 0.921 0.843 0.887
(δ12, δ13|2) = (3,3) 0.944 0.932 0.825 0.951 0.777 0.931

with uj = 1 − exp{−λjxj } and ũj = − log(uj ), i, j = 1,2,3. For various parameter sets, we
have computed the covariance matrices by numerical derivation and integration. Since the de-
pendence parameters δ are our primary interest, we let λ1 = λ2 = λ3 = 1 in all sets. Moreover,
we let δ12 = δ23. Table 2 shows the resulting asymptotic relative efficiencies of the ground and
top level parameter estimators, (δ̂12, δ̂23) and δ̂13|2, respectively, that is, the ratios between the
variances of the ML and alternative estimators in question. In a Gumbel copula, the dependence
increases with the parameter δ. Kendall’s τ is 0 when δ = 1 and tends to 1 as δ → ∞. The three
estimators are rather efficient in general, with IFM on top, followed by SP and finally SSP. As
the true margins are known, this is not that surprising, and agrees with the results of Kim et al.
[27]. All three estimators lose asymptotic efficiency with increasing dependence at the ground
level, that is, for δ12 and δ23, whereas SP and SSP gain efficiency at the top level. The asymptotic
variances of all three estimators actually decrease with increasing dependence at both levels,
though not as fast as for ML. As expected, SSP is overall less efficient than IFM and SP, but the
difference is quite small at the top level.

Example 4.3. Consider the five-dimensional D-vine with Student’s t-margins and Student’s t-
copulae:

f12345(x1, x2, x3, x4, x5; νM,ρ,νC) =
5∏

l=1

f (xl;νl)

4∏
j=1

5−j∏
i=1

c(ui|vij
, ui+j |vij

;ρi,i+j |vij
, νi,i+j |vij

),

with νM = (ν1, . . . , ν5), ρ = (ρ12, . . . , ρ15|234), νC = (ν12, . . . , ν15|234), and

f (x;ν) = �((ν + 1)/2)√
πν�(ν/2)

(
1 + x2

ν

)−(ν+1)/2

,

c(ui, uj ;ρ, ν) = �

(
ν + 2

2

)
�

(
ν

2

)(
1 + t−1

ν (ui)
2

ν

)(ν+1)/2(
1 + t−1

ν (uj )
2

ν

)(ν+1)/2
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/(
�

(
ν + 1

2

)2√
1 − ρ2

×
(

1 + t−1
ν (ui)

2 + t−1
ν (uj )

2 − 2ρt−1
ν (ui)t

−1
ν (uj )

ν(1 − ρ2)

)(ν+2)/2)
,

ui|vij
= h(ui|vi,j−1, ui+j−1|vi,j−1;ρi,i+j−1|vi,j−1, νi,i+j−1|vi,j−1),

ui+j |vij
= h(ui+j |vi+1,j−1 , ui+1|vi+1,j−1;ρi+1,i+j |vi+1,j−1, νi+1,i+j |vi+1,j−1),

h(u, v;ρ, ν) = tν+1
(√

ν + 1
(
t−1
ν (u) − ρt−1

ν (v)
)((

ν + t−1
ν (v)2)(1 − ρ2)

)−1/2)
,

with ui = tν(xi), tν being the c.d.f. of the Student’s t-distribution with ν degrees of freedom.
This is a five-dimensional extension of the example model considered in Sections 2.2.2 and 3.1,
that is, none of the copulae share parameters, nor do the margins. The number of parameters is
therefore 25.

In this case, it is infeasible to compute the asymptotic covariance matrices, both analyt-
ically and numerically. Therefore, we resort to simulation and Monte Carlo methods. More
specifically, we have generated N = 250 samples of size n = 10,000 from the above dis-
tribution with four different parameter sets. For each sample, we have estimated the PCC
parameters ρ and νC using the four estimators. Finally, we have computed the sample co-
variance matrices of the resulting estimates. The four parameter sets we have considered are
(ρ, ν) = (0.3,6), (0.7,6), (0.3,20), (0.7,20), where we let ρ12 = · · · = ρ15|234 = ρ, ν12 = · · · =
ν15|234 = ν, fixing the marginal parameters at ν1 = · · · = ν5 = 6. Table 3 shows the resulting

Table 3. Asymptotic relative efficiencies of ρ̂ and ν̂C from Example 4.3, averaged over each level, for
various parameter sets

Level 1 Level 2 Level 3 Level 4

ρ̂ ν̂ ρ̂ ν̂ ρ̂ ν̂ ρ̂ ν̂

IFM
(ρ, ν) = (0.3,6) 0.988 0.996 0.988 0.997 0.998 0.996 0.997 0.998
(ρ, ν) = (0.7,6) 0.935 0.913 0.961 0.988 0.984 0.979 0.968 0.996
(ρ, ν) = (0.3,20) 0.997 0.996 0.993 0.999 0.990 0.998 0.997 0.999
(ρ, ν) = (0.7,20) 0.952 0.992 0.962 0.993 0.969 0.988 0.991 0.989

SP
(ρ, ν) = (0.3,6) 0.952 0.985 0.973 0.987 0.991 0.992 0.998 0.997
(ρ, ν) = (0.7,6) 0.872 0.883 0.915 0.956 0.974 0.965 0.988 0.977
(ρ, ν) = (0.3,20) 0.965 0.963 0.994 0.970 0.989 0.991 0.983 0.992
(ρ, ν) = (0.7,20) 0.938 0.926 0.966 0.992 0.958 0.985 0.994 0.990

SSP
(ρ, ν) = (0.3,6) 0.890 0.907 0.932 0.937 0.938 0.985 0.946 0.996
(ρ, ν) = (0.7,6) 0.852 0.855 0.861 0.934 0.925 0.948 0.967 0.959
(ρ, ν) = (0.3,20) 0.941 0.955 0.992 0.964 0.981 0.975 0.973 0.974
(ρ, ν) = (0.7,20) 0.870 0.911 0.950 0.990 0.968 0.981 0.980 0.985
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relative efficiencies averaged over each level. The three estimators behave rather similarly, al-
though IFM once more appears to be the most efficient, SP the second and SSP the last. More
specifically, their efficiency decreases with increasing dependence (either higher correlation or
lower number of degrees of freedom) at all levels of the structure. Furthermore, they all become
more efficient with increasing level number. In particular, the SSP estimator gains with respect
to its competitors at the higher levels, just as for the Gumbel vine in Example 4.2. Note that an
increased efficiency is not synonymous with a lower estimator variance, but only measures the
behaviour relative to the ML estimator. Actually, the variances of all four estimators increase
with the level of the structure, as one would expect.

Example 4.4. Finally, we have fitted a D-vine to a set of daily precipitation values recorded from
01.01.1990 to 31.12.2006 at five different meteorological stations in Norway; Vestby, Ski, Løren-
skog, Nannestad and Hurdal, shown on the map (Figure 2, Supplement B of Hobæk Haff [20]).
These data were provided by the Norwegian Meteorological Institute. Moreover, this is one of
the data sets studied in Berg and Aas [4], extended with the series from Lørenskog. We have
followed their example and modelled only the positive precipitation, that is, we have discarded
all observations for which at least one of the stations has recorded zero precipitation, leaving
2013 out of the original 6209. The aim is to remove the temporal dependence between the ob-
servations, in accordance with our assumptions. Autocorrelation plots of the resulting data set
indicate that this is reasonable.

Since rain showers tend to be very local, we expect the dependence between measurements
from two proximate stations to be stronger than from stations that are farther apart. As the stations
almost lie on a straight line (see Figure 2, Supplement B of Hobæk Haff [20]), a D-vine ordered
according to geography is a very natural model. More specifically, the chosen dependence struc-
ture is the left-hand side of Figure 1, with Vestby, Ski, Lørenskog, Nannestad and Hurdal as
variables 1, 2, 3, 4 and 5, respectively. To find adequate copulae for our structure, we computed
the pseudo-observations, shown in Figure 3 in Supplement B of Hobæk Haff [20]. There are
strong indications of upper, but not of lower tail dependence. We therefore chose Gumbel cop-
ulae at the ground level. An inspection of the data transformed with the estimated h-functions
from the preceding level (as described in Section 3.1) indicated that Gaussian copulae would be
reasonable for the three remaining levels. Finally, according to histograms of the data (shown in
Figure 4, Supplement B of Hobæk Haff [20]), the generalised gamma distribution (Stacy [38])
with p.d.f.

f (x;γ,β,p) = p

βγ �(γ /p)
xγ−1 exp

{
−

(
x

β

)p}
appears to be suitable for the margins. This distribution is gamma for p = 1 and exponential if
in addition γ = 1. Both the ML and the IFM estimates of γ and p were rather different from
1, which confirms that the margins are neither exponential nor gamma distributions. The actual
fitted marginal p.d.f.s are shown in the histograms of the data (Figure 4).

We have fitted the described model with each of the four estimators, using the R-routine
optim(). The resulting estimates are shown in Table 4, along with 95% confidence intervals.
These were computed by θ̂ ± �−1(0.975)ŝe, for each of the ten parameters, where ŝe is an esti-
mate of the parameter’s asymptotic standard deviation. For the ML estimator, we computed the
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Table 4. Estimated parameters with 95% confidence intervals for the precipitation data set of Example 4.4

Lev. Par. ML IFM SP SSP

1 θ12 4.56 4.37 4.32 4.32
(4.44, 4.71) (4.18, 4.56) (4.14, 4.50) (4.14, 4.50)

θ23 3.02 2.92 2.91 2.90
(2.91, 3.13) (2.80, 3.04) (2.79, 3.03) (2.79, 3.03)

θ34 2.53 2.47 2.47 2.47
(2.44, 2.62) (2.37, 2.57) (2.37, 2.57) (2.37, 2.56)

θ45 3.59 3.48 3.44 3.44
(3.45, 3.73) (3.34, 3.62) (3.30, 3.58) (3.30, 3.58)

2 θ13|2 −0.17 −0.17 −0.17 −0.17
(−0.21, −0.13) (−0.21, −0.13) (−0.21, −0.13) (−0.21, −0.13)

θ24|3 0.21 0.20 0.21 0.21
(0.15, 0.27) (0.16, 0.24) (0.17, 0.25) (0.17, 0.25)

θ35|4 0.066 0.067 0.061 0.061
(0.022, 0.11) (0.031, 0.10) (0.023, 0.099) (0.024, 0.098)

3 θ14|23 0.093 0.088 0.081 0.081
(0.055, 0.13) (0.053, 0.12) (0.044, 0.12) (0.044, 0.12)

θ25|34 0.050 0.043 0.033 0.033
(0.009, 0.091) (0.008, 0.079) (−0.003, 0.070) (−0.003, 0.070)

4 θ15|234 0.040 0.045 0.046 0.046
(0.006, 0.075) (0.007, 0.083) (0.012, 0.080) (0.012, 0.080)

sample Fisher matrix

Î = 1

n

n∑
k=1

∂

∂(α, θ)
log(f1...5(x1k, . . . , x5k; α̂ML, θ̂ML)),

where α = (γ1, β1,p1, . . . , γ5, β5,p5), the derivative being calculated numerically. The esti-
mates ŝe were then simply the square roots of the diagonal entries of Î (θ). For the three re-
maining estimators, we used parametric bootstrap to obtain ŝe. More specifically, we gener-
ated B = 500 bootstrap samples from F1...5(x1, . . . , x5; α̂IFM, θ̂ IFM), C1...5(u1, . . . , u5; θ̂SP) and
C1...5(u1, . . . , u5; θ̂SSP), estimating the parameters α̂IFM,b, θ̂ IFM,b, θ̂SP,b, θ̂SSP,b , b = 1, . . . ,B .
Finally, we let the ŝes be the sample standard deviations of the bootstrap estimates.

At the ground level, the parameter estimates are overall high. This indicates a strong positive
dependence between large amounts of precipitation in stations that are close in distance, as an-
ticipated. The IFM, SP and SSP estimators give similar values. However, the ML estimates are
rather different, though the 95% confidence intervals overlap with the other estimators’. As noted
earlier, this indicates that the chosen univariate margins or copulae are not quite adequate. Since
the SP and SSP estimates are virtually the same, the problem appears to be the margins.

The second level models the conditional dependencies of two stations that are separated by
one, given the one between them. All four estimators agree that this conditional dependence is
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negative between Vestby and Lørenskog, positive between the pair Ski and Nannestad, whereas
Lørenskog and Hurdal are almost conditionally independent. At the top two levels, the estimated
copulae are close to the independence copula, as expected. Actually, the SP and SSP confidence
intervals indicate that the copula C25|34 is not significantly different from independence, which
can be an important aspect for practical purposes.

5. Concluding remarks

There are various estimators for the parameters of a pair-copula construction, among those the
stepwise semiparametric estimator, which is designed for this particular dependence structure.
Although previously suggested, it has never been formally introduced. In this paper, we have
presented its asymptotic properties, as well as the estimation algorithm for the two most common
types of PCCs, namely D- and C-vines.

Compared to alternatives such as maximum likelihood, inference functions for margins and
semiparametric estimation, SSP is in general asymptotically less efficient. The SSP estimator has
a higher variance than the alternatives. Nonetheless, the loss of efficiency is rather low, and de-
creases with the construction level, as shown in a couple of examples. For the set of five precipita-
tion series, the SSP estimates are actually almost indistinguishable from the SP ones. Moreover,
the SSP estimator is semiparametrically so for the Gaussian copula. To compare the alternative
estimators’ performance more thoroughly, we plan to perform a large simulation study.

One of the main advantages of the SSP estimator, is that it is computationally tractable even
in high dimensions, as opposed to its competitors. Moreover, it provides start values required by
the other estimators. Finally, determining the pair-copulae of a PCC is a stepwise procedure, that
involves parameter estimates from preceding levels. The SSP estimator lends itself perfectly to
that task.

For simplicity, we have only considered C- and D-vines. Equivalent results are, however, easily
obtained for the more general class of regular vines. Further, we have partitioned the parameter
vector into marginal and dependence parameters. This excludes some distributions, such as the
multivariate Student’s t. However, if one does not need the flexibility to model the margins and
dependence structure separately, as well different types of dependence between the various pairs
of variables, a PCC is unnecessarily complex. Moreover, we have assumed the observations to
be independent, identically distributed. In practice, the parameter estimation often includes a
preliminary step to deal with deviations from these assumptions (Chen and Fan [5]), for instance
GARCH filtration of time series data. The effect of such an additional step on the SSP estimator
is a subject for future work.

Appendix

A.1. Matrices Kθ and J θ

As stated in Section 3.1, the matrices Kθ = E(ψθψ
T
θ ) and J θ = E(−ψθ,θ ) are block diagonal

and block lower triangular, respectively, that is, Kθ,i,j = 0, i �= j and J θ,i,j = 0, i < j . This
follows from the structure of the ψ -functions, as shown below.
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We start with J θ,i,j , where i < j . Then, J θ,i,j = E(− ∂2ψi(u1,...,ud ;θ1,...,θ i )

∂θ i ∂θT
j

), with ψi from

(15). Since none of the copulae at level i are functions of the parameters at a following level j ,
∂ψi(u1,...,ud ;θ1,...,θ i )

∂θj
= 0. Hence, J θ,i,j = 0, i < j .

Assume now that i < j , and let u = (u1, . . . , ud) = (uwki
,u−wki

). Then,

Kθ,i,j = E

((
∂ψi(u1, . . . , ud ; θ1, . . . , θ i )

∂θ i

)(
∂ψj (u1, . . . , ud ; θ1, . . . , θ j )

∂θ j

)T )

=
∫

u

∂

∂θ i

d−i∑
k=1

log ck,k+i|vki

∂

∂θT
j

d−j∑
l=1

log cl,l+j |vlj
c1...d du

=
d−i∑
k=1

d−j∑
l=1

∫
uwki

∂

∂θ i

log ck,k+i|vki

∫
u−wki

1

cl,l+j |vlj

∂

∂θT
j

cl,l+j |vlj
c1...d du−wki

duwki
.

Under the conditions of Theorem 1, we may exchange the integration and differentiation in the
inner integral. Thus,

Kθ,i,j =
d−i∑
k=1

d−j∑
l=1

∫
uwki

∂

∂θ i

log ck,k+i|vki

∂

∂θT
j

(∫
u−wki

cl,l+j |vlj
c1...d

cl,l+j |vlj

du−wki

)
duwki

=
d−i∑
k=1

d−j∑
l=1

∫
uwki

∂

∂θ i

log ck,k+i|vki

∂

∂θT
j

(∫
u−wki

c1...d du−wki

)
duwki

=
d−i∑
k=1

d−j∑
l=1

∫
uwki

∂

∂θ i

log ck,k+i|vki

∂

∂θT
j

cwki
duwki

.

The pair-copulae composing cwki
, situated in levels 1, . . . , i, are not functions of parameters

from a following level j . Thus, ∂
∂θj

cwki
= 0. Consequently, Kθ,i,j = 0, i < j . The exact same

argument can be repeated for i > j . Hence, Kθ,i,j = 0, i �= j .

A.2. Proof of Theorem 2

Proof. In two dimensions, the SSP estimator is the same as the SP estimator, which was shown
to be semiparametrically efficient by Klaassen and Wellner [28]. In three dimensions, we have
computed the asymptotic covariance matrices for comparison. As shown in Example 4.1, the
covariance matrices of the SP and SSP estimators, VSP and VSSP, respectively, are equal. Thus,
the SSP estimator is semiparametrically efficient also for the three-dimensional Gaussian copula.

Assume now that it is true for the (d − 1)-dimensional Gaussian copula. Further, for the
d-dimensional model, partition the covariance matrix VSP as VSP

1 = VSSP
1...d−2,1...d−2, VSP

12 =
VSSP

1...d−2,d−1 and V SP
2 = V SSP

d−1,d−1, and likewise for VSSP, VML, BSP, BSSP, Iθ , I(θ) and J θ .
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As the SP estimator is semiparametrically efficient, VML for the Gaussian copula must be the
same, regardless of the margins. Moreover, when all margins are normal, θ̂ML is simply the
empirical correlation matrix. Adding an extra dimension leaves the remaining estimators un-
changed. Hence, VML

1 , corresponding to the (d − 1)-dimensional sub-model, will be the same as
for the (d − 1)-dimensional Gaussian copula. The same argument can repeated for all (d − 1)-
dimensional sub-models, covering all levels but the top. Due to its levelwise structure, the SSP
estimator for a given sub-model is unaffected when adding an extra dimension, and so must the
corresponding block of VSSP be. Accordingly, we must have VSSP

1 = VSP
1 = VML

1 . Hence, it re-
mains to show that VSSP

12 = VSP
12 and V SSP

2 = V SP
2 , related to the estimators θ̂SP

1d|v1d
and θ̂SSP

1d|v1d
for

the top level copula. According to Theorem 1 from Tsukahara [40] and Theorem 1, respectively,

√
n(θ̂SP

1d|v1d
− θ1d|v1d

)
d−→ ZSP ∼ N (0,V SP

2 )

and
√

n(θ̂SSP
1d|v1d

− θ1d|v1d
)

d−→ ZSSP ∼ N (0,V SSP
2 ),

as n → ∞. Now, define Un = (Un1, . . . ,Unn), with Unj = (F1n(X1j ), . . . ,Fdn(Xdj )), j =
1, . . . , d , and let


SP(Un; θ̂SP) = 1

n

n∑
k=1

φSP(Un; θ̂SP) = 0,


SSP(Un; θ̂SSP) = 1

n

n∑
k=1

φSSP(Un; θ̂SSP) = 0,

be the estimating equations of the SP and SSP estimators, respectively. Further, let

�(Un; θ) = �SP
d(d−1)/2(Un; θ) = �SSP

d(d−1)/2(Un; θ) = 1

n

n∑
k=1

∂

∂θ1d|v1d

log(c1...d (Un; θ)).

According to Theorem 1 from Tsukahara [40],

�(Un; θ̂SP) = �(Un; θ) + ∂�(Un; θ)

∂θ1d|v1d

(θ̂SP
1d|v1d

− θ1d|v1d
)

+ ∂�(Un; θ)

∂θT
1→d−2

(θ̂SP
1→d−2 − θ1→d−2) + oP

(
1

n

)
= 0.

Likewise, using Theorem 1, one obtains

�(Un; θ̂SSP) = �(Un; θ) + ∂�(Un; θ)

∂θ1d|v1d

(θ̂SSP
1d|v1d

− θ1d|v1d
)

+ ∂�(Un; θ)

∂θT
1→d−2

(θ̂SSP
1→d−2 − θ1→d−2) + oP

(
1

n

)
= 0.
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Hence,

√
n(θ̂SSP

1d|v1d
− θ̂SP

1d|v1d
) = A1

A2

√
n(θ̂SP

1→d−2 − θ̂SSP
1→d−2) + oP

(
1

n

)
,

with

A1 = ∂�(Un; θ)

∂θT
1→d−2

= 1

n

n∑
k=1

∂2

∂θ1d|v1d
∂θT

1→d−2

log(c1...d (Un; θ))

and

A2 = ∂�(Un; θ)

∂θ1d|v1d

= 1

n

n∑
k=1

∂2

∂θ2
1d|v1d

log(c1...d (Un; θ)).

According to the assumption,

√
n(θ̂SSP

1→d−2 − θ1→d−2)
d−→ Y ∼ Nd(d−1)/2−1(0,VML

1 ), n → ∞.

Thus,

√
n(θ̂SP

1→d−2 − θ̂SSP
1→d−2)

= √
n(θ̂SP

1→d−2 − θ1→d−2) − √
n(θ̂SSP

1→d−2 − θ1→d−2)

p−→ 0, n → ∞.

Moreover, under the assumed conditions, A1
p−→ −IT

θ,12 and A2
p−→ −Iθ,2, as n → ∞.

Hence,
√

n(θ̂SSP
1d|v1d

− θSP
1d|v1d

)
p−→ 0,

which means that ZSP
d= ZSSP. In other words, V SSP

2 = V SP
2 . Moreover,

VSSP
12 = 1

Iθ,2
(−VML

1 Iθ,12 + J −1
θ,12BSSP

12 ),

V SSP
2 = 1

Iθ,2

(
1 + BSSP

2

Iθ,2
+ 1

Iθ,2
IT

θ,12VML
1 Iθ,12 − 2

Iθ,2
IT

θ,12J −1
θ,12BSSP

12

)

= 1

I 2
θ,2

(Iθ,2 + BSSP
2 − IT

θ,12VML
1 Iθ,12) − 2IT

θ,12VSSP
12 .

Correspondingly for SP,

VSP
12 = 1

Iθ,2

(
−VML

1 Iθ,12 + I(θ)
1

(
BSP

12 − BSP
2

Iθ,2
Iθ,12

))
,



488 I. Hobæk Haff

V SP
2 = 1

Iθ,2

(
1 + BSP

2

Iθ,2
+ 1

Iθ,2
IT

θ,12VML
1 Iθ,12 − 2

Iθ,2
IT

θ,12I
(θ)
1

(
BSP

12 − BSP
2

Iθ,2
Iθ,12

))

= 1

I 2
θ,2

(Iθ,2 + BSP
2 − IT

θ,12VML
1 Iθ,12) − 2IT

θ,12VSP
12 .

Since the estimating equation for θ1d|v1d
is the same for SP and SSP, BSSP

2 = BSP
2 . Moreover,

V SSP
2 = V SP

2 . Consequently, VSSP
12 = VSP

12 . �

A.3. Covariance matrices from Example 4.1

The asymptotic covariance matrix of the ML estimator is given by

VML = 1

2

⎛
⎝2(1 − ρ2

12)
2 v13 v23

v13 2(1 − ρ2
23)

2 v12

v23 v12 2(1 − ρ2
13)

2

⎞
⎠ ,

with vik = 2ρik(1 − ρ2
il)(1 − ρ2

lk) − ρilρlk|R|. For the SSP estimator, we have

VSSP = J −1
θ Kθ (J −1

θ )T + J −1
θ BSSP

θ (J −1
θ )T ,

where

Kθ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 + ρ2
12

(1 − ρ2
12)

2

k12

(1 − ρ2
12)(1 − ρ2

23)
0

k12

(1 − ρ2
12)(1 − ρ2

23)

1 + ρ2
23

(1 − ρ2
23)

2
0

0 0
|R| + 2(ρ13 − ρ12ρ23)

2

|R|2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

J θ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 + ρ2
12

(1 − ρ2
12)

2
0 0

0
1 + ρ2

23

(1 − ρ2
23)

2
0

j23

|R|2
j12

|R|2
|R| + 2(ρ13 − ρ12ρ23)

2

|R|2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

BSSP
θ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ρ2
12(1 + ρ2

12)

(1 − ρ2
12)

2

ρ23b12 + ρ12b23 − ρ12ρ23a

2(1 − ρ2
12)(1 − ρ2

23)

(ρ13 − ρ12ρ23)b12

2(1 − ρ2
12)|R|

ρ23b12 + ρ12b23 − ρ12ρ23a

2(1 − ρ2
12)(1 − ρ2

23)

ρ2
23(1 + ρ2

23)

(1 − ρ2
23)

2

(ρ13 − ρ12ρ23)b23

2(1 − ρ2
23)|R|

(ρ13 − ρ12ρ23)b12

2(1 − ρ2
12)|R|

(ρ13 − ρ12ρ23)b23

2(1 − ρ2
23)|R|

(1 + ρ2
13)(ρ13 − ρ12ρ23)

2

|R|2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,
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with a = 1+ρ2
12 +ρ2

13 +ρ2
23, k12 = (ρ13 −ρ12ρ23)(|R|+ρ2

13 −ρ2
12ρ

2
23), jik = −ρik|R|+2(ρil −

ρlkρik)(ρlk − ρilρik) and bik = ρika(1 − 2
1−ρ2

ik

) + 2(1 + ρ2
ik)

ρik+ρilρlk

1−ρ2
ik

. The resulting covariance

matrix is

VSSP = 1

2

⎛
⎝2(1 − ρ2

12)
2 v13 v23

v13 2(1 − ρ2
23)

2 v12

v23 v12 2(1 − ρ2
13)

2

⎞
⎠ = VML.
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