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Exploratory data analysis is often used to test the goodness-of-fit of sample observations to specific target
distributions. A few such graphical tools have been extensively used to detect subexponential or heavy-tailed
behavior in observed data. In this paper we discuss asymptotic limit behavior of two such plotting tools: the
quantile–quantile plot and the mean excess plot. The weak consistency of these plots to fixed limit sets in
an appropriate topology of R2 has been shown in Das and Resnick (Stoch. Models 24 (2008) 103–132) and
Ghosh and Resnick (Stochastic Process. Appl. 120 (2010) 1492–1517). In this paper we find asymptotic
distributional limits for these plots when the underlying distributions have regularly varying right-tails. As
an application we construct confidence bounds around the plots which enable us to statistically test whether
the underlying distribution is heavy-tailed or not.

Keywords: asymptotic theory; confidence bounds; extreme values; ME plot; QQ plot; random set; regular
variation

1. Introduction

Statistical analysis of extremes in available data has been very important in varied areas
like finance (McNeil, Frey and Embrechts [28]), telecommunication (Maulik, Resnick and
Rootzén [27], D’Auria and Resnick [10]), hydrology (Katz, Parlange and Naveau [24]), environ-
mental statistics (Davison and Smith [11], Smith [39]) and many more. Before analyzing features
of the data using extreme value analysis, it is imperative that we check whether extreme-value
modeling is well suited in the given context; see Drees [17] for a recent survey of exploratory
techniques for extremes in an actuarial context. Popular exploratory techniques in this direction
have been the mean excess (ME) plots (Davison and Smith [11]) and the quantile–quantile (QQ)
plots which are specifically tuned for heavy-tailed data (Kratz and Resnick [25]). A distribution F

is heavy-tailed if the tail probability (1 − F) is regularly varying (Resnick [34], Chapter 1). It
has been shown earlier that under an assumption of heavy tails and with proper normalizations,
both plots converge in probability to fixed closed sets (for ME plots, an additonal assumption of
finiteness of the mean of F is required); see Das and Resnick [9] and Ghosh and Resnick [22].
These results corroborate the use of the QQ plot and the ME plot to test the null hypothesis that
the underlying distribution is heavy-tailed. The proximity of the observed plot to the fixed limit
set would support the null hypothesis.

Incidentally, one data set leads to just one single plot of each kind. A single plot is often not
enough to statistically detect proximity between the plot and the intended fixed limit set; see
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the examples in Section 6. Creating appropriate confidence bounds around these plots, though,
can help us to test the null hypothesis with some degree of confidence. In this paper we study
weak limits of both kinds of plots for heavy-tailed data and use these limits to obtain confidence
bounds around them with asymptotic coverage probabilities. The methods used here are general
and can be used to find weak limits and confidence bounds for other plots used in the analysis of
extremes.

1.1. Plan for this paper

We introduce the two plotting methodologies in Section 1. In Section 2 we set up necessary
tools to talk about convergence of random closed sets in R2, since the QQ and ME plots are
random closed sets in R2. In Sections 3 and 4, we prove weak convergence of the QQ and the
ME plot under the null hypothesis that the underlying distribution F is heavy-tailed. We proceed
by expressing both plots as appropriate functionals of the tail empirical measure and then use
convergence properties of the tail empirical measure to prove weak convergence of both plots. As
an application to obtaining these weak limits, we construct confidence bounds with asymptotic
coverage probability for both kinds of plots in Section 5. Finally, in Section 6 we apply the results
obtained in the previous sections to simulated and real data sets to exemplify how they perform
in practice. We conclude in Section 7 along with a discussion on future directions.

1.2. QQ plots for heavy tails

Suppose we want to test the null hypothesis that observations from a sample are independent
and identically distributed (i.i.d.) with some known distribution F . The QQ plot, which is a plot
of the empirical quantiles from the data against the distributional quantiles of F , is an intuitive
and popular graphical tool for detecting the goodness-of-fit for a sample to the distribution F .
If the true distribution of the sample is F , then the QQ plot should converge, in an appropriate
sense, to a straight line. Results involving empirical process and quantile process convergences
are available in Shorack and Wellner [38], which can be appropriately used to create confidence
intervals for QQ plots. The QQ plot we consider is a little different and is specifically designed to
check for distributions F where F̄ := 1 − F is regularly varying with some index −1/ξ , ξ > 0,
also denoted F̄ ∈ RV−1/ξ (Resnick [34], Chapter 1). For a sample X1,X2, . . . ,Xn, its decreasing
order statistics are denoted by X(1) ≥ X(2) ≥ · · · ≥ X(n) and the QQ plot in this context is defined
by

Qn =
{(

− log
j

k
, log

X(j)

X(k)

)
: 1 ≤ j ≤ k

}
, k < n.

Clearly we concentrate on the top k quantiles of the data justified by the fact that F̄ ∈ RV−1/ξ

only provides us with information about the right tail of the data. Under the null hypothesis of
F̄ ∈ RV−1/ξ for some ξ > 0, Das and Resnick [9] have shown convergence in probability for QQ
plots in an appropriate topology of random closed sets when the data is assumed to be an i.i.d.
sample.
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1.3. ME plots

The ME function of a random variable X is defined as

M(u) := E[X − u|X > u], (1.1)

provided EX+ < ∞, and is also known as the mean residual life function. A natural estimate of
M(u) is the empirical ME function M̂(u) defined as

M̂(u) =
∑n

i=1(Xi − u)I[Xi>u]∑n
i=1 I[Xi>u]

, u ≥ 0. (1.2)

The ME plot is the plot of the points {(X(k), M̂(X(k))): 1 < k ≤ n}.
The ME plot is often used as a simple graphical test to check if data conform to a generalized

Pareto distribution (GPD). The GPD is an important class of distributions and is fundamental for
the peaks-over-threshold method used in extreme value analysis (Davison and Smith [11]). The
GPD is characterized by its cumulative distribution function Gξ,β

Gξ,β(x) =
{

1 − (1 + ξx/β)−1/ξ if ξ �= 0,

1 − exp(−x/β) if ξ = 0,
(1.3)

where β > 0, and x ≥ 0, when ξ ≥ 0 and 0 ≤ x ≤ −β/ξ , if ξ < 0. The parameters ξ and β

are referred to as the shape and the scale parameter, respectively. The GPD in the case ξ > 0
corresponds to the classical Pareto law with tail exponent 1/ξ . For a random variable X ∼ Gξ,β ,
we have E(X) < ∞, if and only if ξ < 1, and in this case, the ME function of X is linear in u.

M(u) = β

1 − ξ
+ ξ

1 − ξ
u, (1.4)

where 0 ≤ u < ∞ if 0 ≤ ξ < 1 and 0 ≤ u ≤ −β/ξ if ξ < 0. In fact, the linearity of the ME func-
tion characterizes the GPD class; cf. McNeil, Frey and Embrechts [28] and Embrechts, Klüp-
pelberg and Mikosch [18]. Davison and Smith [11] used this property and suggested that if the
ME plot is close to a straight line for high values of the threshold, then there is no evidence
against the use of a GPD model. See also Embrechts, Klüppelberg and Mikosch [18] and Hogg
and Klugman [23] for the implementation of this plot in practice. Ghosh and Resnick [22] dis-
cuss convergence in probability for the high thresholds of suitably normalized ME plots in an
appropriate topology of random closed sets when the data is an i.i.d. sample.

The advantage of the ME plot over the QQ plot is that it works when −∞ < ξ < 1, whereas
the QQ plot works for ξ > 0 only. Hence the ME plot can be used whenever the sample is in
the maximal domain of attraction of any generalized extreme value distribution with finite mean
(Gumbel, Weibull or Fréchet distribution). The QQ plot is restricted to the domain of attraction
of Fréchet distribution only. In this paper, though, we restrict to the case when ξ > 0, which is
the case of maximal domain of attraction of the Fréchet distribution. The disadvantage of the ME
plot is that it requires ξ < 1 to make proper sense of the result, that is, the underlying distribution
should have a finite mean. Still, limits can and have been obtained for the ME plots, even when
the distributional mean is not finite; see Ghosh and Resnick [22].
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2. Preliminaries

2.1. Topology on closed sets of R2

Since we are dealing with plots which are closed sets in R2, it is imperative to understand the
topology on closed sets. We denote the collection of all closed (compact) sets in R2 by F (K,
resp.). We consider a hit and miss topology on F called the Fell topology. The Fell topology
is the smallest topology containing the families {F K,K compact} and {FG,G open} where, for
any set B ,

F B = {F ∈ F : F ∩ B = ∅} and FB = {F ∈ F : F ∩ B �= ∅}.
Hence F B and FB are collections of closed sets which miss and hit the set B , respectively. This
is the reason for which such topologies are called hit and miss topologies. In the Fell topology,
a sequence of closed sets {Fn} converges to F ∈ F if and only if the following two conditions
hold:

• F ∈ FG implies there exists N ≥ 1 such that for all n ≥ N , Fn ∈ FG, for any open set G.
• F ∈ F K implies there exists N ≥ 1 such that for all n ≥ N , Fn ∈ F K , for any compact

set K .

The Fell topology on the closed sets of R2 is metrizable (Flachsmeyer [19], Beer [1]) and we
indicate convergence in this topology of a sequence (Fn) of closed sets to a limit closed set F by
Fn → F . Often though, it is easier to deal with the following characterization of convergence.

Lemma 2.1. A sequence Fn ∈ F converges to F ∈ F in the Fell topology if and only if the
following two conditions hold:

1. For any t ∈ F there exists tn ∈ Fn such that tn → t.

2. If, for some subsequence (mn), tmn ∈ Fmn converges, then limn→∞ tmn ∈ F .

See Theorem 1-2-2 in Matheron [26], page 6, for a proof of this lemma.
Let σF denote the Borel σ -algebra generated by the Fell topology of open sets (not to be

confused with open sets in Rd ). A random closed set X :� 
→ F is a measurable mapping from
(�, A,P ′) to (F , σF ). Denote by P the induced probability on σF , that is, P = P ′ ◦ X−1.

Since the Fell topology is metrizable, the definition of convergence in probability is obvious.
The following result is a well-known and helpful characterization for convergence in probability
of random variables, and it holds for random sets as well; see Theorem 6.21 in Molchanov [29],
page 92.

Lemma 2.2. A sequence of random sets (Fn) in F converges in probability to a random set F if
and only if for every subsequence (n′) of Z+ there exists a further subsequence (n′′) of (n′) such
that Fn′′ → F -a.s.

A sequence of random closed sets (Xn)n≥1 weakly converges to a random closed set X with
distribution P if the corresponding induced probability measures (Pn)n≥1 converge weakly to P ,
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that is,

Pn(B) = P ′
n ◦ X−1

n (B) → P(B) = P ′ ◦ X−1(B), as n → ∞
for each B ∈ σF such that P(∂B) = 0. This is not always straightforward to verify from the
definition. The following characterization of weak convergence in terms of sup-measures is very
useful; cf. Vervaat [42]. Suppose h : Rd → R+ = [0,∞). For X ⊂ Rd , define h(X) = {h(x) :x ∈
X}, and h∨ is the sup-measure generated by h defined by

h∨(X) = sup{h(x) :x ∈ X}
(Molchanov [29], Vervaat [42]). These definitions permit the following characterization
(Molchanov [29], page 87).

Lemma 2.3. A sequence (Xn)n≥1 of random closed sets converges weakly to a random closed
set X if and only if Eh∨(Xn) converges to Eh∨(X) for every non-negative continuous function
h : Rd → R with a bounded support.

We often use the following notation: for a x ∈ R and a set A ⊂ Rn, xA = {xy: y ∈ A} and
x +A = {x + y: y ∈ A}. See Matheron [26] and Molchanov [29] for further details on the theory
of random sets.

2.2. Miscellany

Throughout this paper we will take k := kn to be a sequence increasing to infinity such that
kn/n → 0. For a distribution function F(x) we write F̄ (x) := 1 − F(x) for the tail, and the
quantile function is

b(u) := F←
(

1 − 1

u

)
= inf

{
s: F(s) ≥ 1 − 1

u

}
=

(
1

1 − F

)←
(u).

A function U : (0,∞) → R+ is regularly varying with index ρ ∈ R, written U ∈ RVρ , if

lim
t→∞

U(tx)

U(t)
= xρ, x > 0.

Regular variation is discussed in several books such as Resnick [33,34], Seneta [37], Geluk and
de Haan [20], de Haan [12], de Haan and Ferreira [13], Bingham, Goldie and Teugels [3].

We use M+(0,∞] to denote the space of non-negative Radon measures μ on (0,∞] metrized
by the vague metric. Point measures are written as a function of their points {xi, i = 1, . . . , n} by∑n

i=1 δxi
; see, for example, Resnick [34], Chapter 3.

We will use the following notations to denote different classes of functions: For 0 ≤ a < b ≤
∞,

1. C[a, b): Continuous functions on [a, b).
2. D[a, b): Right-continuous functions with finite left limits defined on [a, b).
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3. Dl[a, b): Left-continuous functions with finite right limits defined on [a, b).

D[0,1] is complete and separable under a metric d0(·), which is equivalent to the Skorohod
metric dS(·) (Billingsley [2], page 128), but not under the uniform metric ‖ · ‖. As we will see,
the limit processes that appear in our analysis below are always continuous. We can check that
if x is continuous (in fact, uniformly continuous) in [0,1], for xn ∈ D[0,1], ‖xn − x‖ → 0 is
equivalent to dS(xn, x) → 0 and hence equivalent to d0(xn, x) → 0 as n → ∞ (Billingsley [2],
page 124). So we use convergence in uniform metric, for our convenience henceforth. For spaces
of the form D[a, b) or Dl[a, b), we will consider the topology of locally uniform convergence.
In some cases we will also consider product spaces of functions, and then the topology will be
the product topology. For example, D2

l [1,∞) will denote the class of 2-dimensional functions
on [1,∞) which are left-continuous with right limit. The classes of functions defined on the sets
[a, b] or (a, b] will have the obvious notation.

2.3. A useful lemma

The following lemma will be used often in the proofs below. We use “⇒” to denote weak con-
vergence.

Lemma 2.4. Let Yn ∈ D2
l (0,1] be a sequence of random functions and assume the following

hold:

(i) Yn ⇒ Y , where Y(t) has continuous paths with probability 1.
(ii) There exists a partition 0 = t

(0)
n < t

(1)
n < · · · < t

(mn)
n = 1 such that Yn(t) is constant on the

interval (t
(i)
n , t

(i+1)
n ] for all 0 ≤ i < mn with probability 1.

Then for any 0 < ε < 1,

Y ε
n := {

Yn

(
t (i)n

)
: 0 < i ≤ mn, t

(i)
n ≥ ε

} ⇒ Y ε := {Y(t): ε ≤ t ≤ 1} in F . (2.1)

Furthermore, if limt↓0,n→∞ |Yn(t)| = ∞ with probability 1, then

Yn := {
Yn

(
t (i)n

)
: 0 < i ≤ mn

} ⇒ Y := {Y(t): 0 < t ≤ 1} in F . (2.2)

Proof. Using Lemma 2.3 it suffices to show that

lim
n→∞E[h∨(Yn)] = E[h∨(Y )]

for any continuous function h : R2 
→ R+ with a compact support. So take any such function h.
By the Skorohod representation theorem (Billingsley [2], Theorem 6.7, page 70), there exists a
probability space (�, G,P ) and random elements Y ∗

n and Y ∗ in D2
l (0,1] such that

Y ∗
n

d= Yn and Y ∗ d= Y
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in the sense of finite dimensional distributions (f.d.d.) and

Y ∗
n → Y ∗, P -a.s. in D2

l (0,1].
Now observe that

h∨(Y ε) = sup
x∈Y ε

h(x)
d= sup

ε≤t≤1
h(Y ∗(t)) and h∨(Y ε

n) = sup
x∈Y ε

n

h(x)
d= sup

ε≤t≤1
h(Y ∗

n (t)).

Since Y ∗(t) is continuous, we know that supε≤t≤1 |Y ∗
n (t) − Y ∗(t)| → 0. Moreover, since h is

continuous with a compact support, we get h is uniformly continuous, and hence

sup
ε≤t≤1

h(Y ∗
n (t)) → sup

ε≤t≤1
h(Y ∗(t)), P -a.s. (2.3)

As h is bounded, applying the dominated convergence theorem, we get

E[h∨(Y ε
n)] = E

[
sup

ε≤t≤1
h(Y ∗

n (t))
]

→ E
[

sup
ε≤t≤1

h(Y ∗(t))
]

= E[h∨(Y ε)],

and this proves (2.1).
Since h : R2 
→ R+ has a bounded support, we can find M > 0 such that h(x) = 0 whenever

|x| > M . If limt↓0,n→∞ |Y ∗
n (t)| = ∞ with probability 1, then almost surely for any ω ∈ � we

can find δ > 0 and N ≥ 1 such that |Y ∗
n (t)(ω)| > M for all δ ≤ t ≤ 1 and n ≥ N . This implies

(using (2.3))

sup
0<t≤1

h(Y ∗
n (t)(ω)) = sup

ε≤t≤1
h(Y ∗

n (t)(ω)) → sup
ε≤t≤1

h(Y ∗(t)(ω)) = sup
0<t≤1

h(Y ∗(t)(ω)).

The remaining part of the proof of (2.2) can be completed using the same argument used to
prove (2.1). �

3. Limit results for the QQ plots

Convergence of empirical processes and quantile processes to functionals of Gaussian processes,
usually Brownian motion and Brownian bridges, are quite well known; cf. Shorack and Well-
ner [38]. We prove similar results for extreme order statistics. We use the weak limit of tail
empirical measure and deduce weak convergence of the logarithmic version of the QQ plot of
the extreme order statistics as a random set.

The following was proved in Das and Resnick [9]:

Proposition 3.1. Suppose X1, . . . ,Xn are i.i.d. with common distribution F , and X(1) ≥ X(2) ≥
· · · ≥ X(n) are the order statistics from this sample. If F is strictly increasing and continuous on
its support, then

Tn :=
{(

F←
(

i

n + 1

)
,X(n−i+1)

)
: 1 ≤ i ≤ n

}
P→ T := {(x, x): x ∈ support(F )}

in F .
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This proposition though is not enough if one is interested in creating confidence bounds from
the data. For that purpose one would need weak convergence results which are widely known
in terms of convergence of affine transformations of quantile processes to appropriate Brownian
Bridges for a known distribution F ; see Shorack and Wellner [38], Chapter 3, for further details.
In the following section, we concentrate on the case where F̄ is regularly varying with tail index
−1/ξ with ξ > 0. The specific form of F is otherwise unknown.

3.1. QQ plots for distributions with regularly varying tails

Now assume that X1,X2, . . . ,Xn are i.i.d. from a distribution F . Suppose we want to check
whether F is heavy-tailed or not. In the sense of testing a hypothesis, our null hypothesis is that
F̄ ∈ RV−1/ξ for some ξ > 0. Note that we really do not have any specific form for F . We define
the following sets:

Qn =
{(

− log
j

k
, log

X(j)

X(k)

)
: 1 ≤ j ≤ k

}
, k < n, (3.1)

Q = {(x, ξx): x ≥ 0}. (3.2)

The set Qn is the logarithmic version of the QQ plot for the first k order statistics from the sample
X1, . . . ,Xn.

Das and Resnick [9] proved that under the null hypothesis, Qn
P→ Q in F as k,n → ∞ with

k/n → 0. We show below that a distributional convergence can also be obtained in this case.

Assumption 3.2. F satisfies

lim
n→∞

√
k

(
n

k
F̄

(
b(n/k)y−ξ

) − y

)
= 0 (3.3)

locally uniformly on (0,∞] as k,n,n/k → ∞.

Theorem 3.3. Suppose X1, . . . ,Xn are i.i.d. observations from a distribution F satisfying F̄ ∈
RV−1/ξ with ξ > 0 and Assumption 3.2. Then as n, k,n/k → ∞

Q N n :=
{(

− log
j

k
,−ξ log

j

k
+ √

k

(
log

X(j)

X(k)

+ ξ log
j

k

))
: 1 ≤ j ≤ k

}
(3.4)

⇒ Q N := {(− log t,−ξ log t + ξ t−1B(t)
)
: 0 < t ≤ 1

}
in F ,

where B(t) is a Brownian Bridge on [0,1] restricted to (0,1].

Remark 3.4. The set Q N n is a suitably normalized version of the QQ plot which allows us to
obtain a weak limit. It is important to observe that the format in which we have expressed the
result is not standard in the literature as far as weak limits of random variables or functions are
concerned. Usual weak limit results will only consider the normalized difference of the random
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variable from its mean or its limit in probability. In our setting it is imperative to state the result
in the form which we have used. We look at the plot as the probability limit perturbed by the
normalized deviation around it; that is, we shift the normalized differences so that we can obtain
the distribution of the deviation of the observed points of the QQ plot from its mean position. If
we do not make this shift, the weak limit will always hover around the y-axis and will not give
the deviation from the actual point in the plot.

Remark 3.5. We have used Assumption 3.2 in order to prove a weak limit for the QQ plots.
Without this assumption we can show the convergence of tail empirical measure with unknown
centering n

k
F̄ (b(n/k)y−ξ ) as in (3.7), but we wish the centering to be y here. To achieve this

lim
n→∞

√
k

(
n

k
F̄

(
b(n/k)y−ξ

) − y

)

should exist and have a finite value which we assume to be 0 without loss of any generality. The
same theorem can be proved by replacing Assumption 3.2 with the stronger condition of second
order regular variation; see de Haan and Ferreira [13], de Haan and Stadtmueller [15], de Haan
and Peng [14]. Neither Assumption 3.2 nor the second order RV condition is easy to check in
practice, albeit we resort to assuming them in order to obtain distributional limits.

Proof of Theorem 3.3. The tail empirical measure defined as

νn(·) := 1

k

n∑
i=1

εXi/b(n/k)(·) (3.5)

is a random element of M+(0,∞] where εx(·) puts unit mass at x. By Theorem 4.1 (Resnick [33],
page 79), we get that

νn ⇒ ν in M+(0,∞], (3.6)

where ν(y,∞] = y−1/ξ , y > 0. Furthermore, Theorem 9.1 in Resnick [33], page 292, gives us

√
k

(
νn(y

−ξ ,∞] − n

k
F̄

(
b(n/k)y−ξ

)) ⇒ W(y) in Dl (0,∞], (3.7)

where W is a standard Brownian motion on [0,∞). Since F satisfies Assumption 3.2, we obtain
√

k
(
νn(y

−ξ ,∞] − y
) ⇒ W(y) in Dl(0,∞]. (3.8)

We will use this to find the limiting distribution of

√
k

(
log

X(�kt�)
X(k)

+ ξ log t

)
= √

k log

(
X(�kt�)
X(k)

tξ
)

, 0 < t ≤ 1,

where for any z ∈ R, denote by �z�, the largest integer less than or equal to z. For 0 < t ≤ 1, let

ν←
n (t) := inf{y: νn(y

−ξ ,∞] ≥ t} = inf

{
y:

n∑
i=1

εXi/b(n/k)(y
−ξ ,∞] ≥ kt

}
=

(
X(�kt�)
b(n/k)

)−1/ξ

.
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Note that we can apply Vervaat’s lemma (Resnick [33], Proposition 3.3, page 59) to (3.8) to get

√
k

((
X(�kt�)
b(n/k)

)−1/ξ

− t

)
⇒ W(t) in Dl (0,1]. (3.9)

Therefore, using the continuous map f : Dl(0,1] → Dl (0,1] with f (x)(t) = x(t)/t , we have

√
k

((
X(�kt�)
b(n/k)

tξ
)−1/ξ

− 1

)
⇒ W(t)

t
in Dl(0,1]. (3.10)

Also observe that

√
k log

(
X(�kt�)
b(n/k)

tξ
)

= −√
kξ log

[
1 −

(
1 −

(
X(�kt�)
b(n/k)

tξ
)−1/ξ)]

= −√
kξ

((
X(�kt�)
b(n/k)

tξ
)−1/ξ

− 1

)
(3.11)

+ oP

(√
kξ

((
X(�kt�)
b(n/k)

tξ
)−1/ξ

− 1

))
.

So from (3.10) and (3.11) it follows that

√
k log

(
X(�kt�)
b(n/k)

tξ
)

⇒ −ξ
W(t)

t
in Dl(0,1]. (3.12)

We again use the continuous mapping theorem with f : Dl(0,1] → Dl(0,1], defined as
f (x)(t) = x(t) − x(1), to get the following:

√
k log

(
X(�kt�)
X(k)

tξ
)

= −√
k log

X(k)

b(n/k)
+ √

k log
X(�kt�)
b(n/k)

tξ

(3.13)

⇒ ξW(1) − ξ
W(t)

t
in Dl(0,1].

We know that tW(1) − W(t)
d= B(t) on Dl[0,1], where “

d=” denotes equality in distribution,
and B is a Brownian Bridge on [0,1]. Therefore, it is true on a restriction, and hence

√
k

(
log

X(�kt�)
X(k)

+ ξ log t

)
⇒ ξ t−1B(t) in Dl(0,1].

Furthermore, we also get

Sn(t) =
(

− log
�kt�
k

,−ξ log
�kt�
k

+ √
k

(
log

X(�kt�)
X(k)

+ ξ log
�kt�
k

))
(3.14)

⇒ S(t) =
(

− log t,−ξ log t + ξ
B(t)

t

)
in D2

l (0,1],
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using the converging-together lemma (Resnick [33], Proposition 3.1, page 57) and the fact that

√
k

(
log

�kt�
k

− log t

)
→ 0

locally uniformly on (0,1]. The weak convergence of the set Q N n follows from Lemma 2.4
once we note that Sn and S in (3.14) satisfy the conditions of Lemma 2.4. �

4. Limit results for the ME Plots

4.1. Empirical ME function for known distribution F

Suppose X1, . . . ,Xn is an i.i.d. sample from distribution F . Yang [43] studied the properties of
the empirical ME function M̂(u) in (1.2) as an estimator of M(u). They showed that M̂(u) is
uniformly strongly consistent for M(u): for any 0 < b < ∞,

P
[

lim
n→∞ sup

0≤u≤b

|M̂(u) − M(u)| = 0
]

= 1.

Yang [43] also proved a weak limit for M̂(u): for any 0 < b < 1,
√

n
(
M̂(F←(t)) − M(F←(t))

) ⇒ U(t),

where U(t) is a Gaussian process on [0, b] with covariance function

�(s, t) = (1 − t)σ 2(t) − tθ2(t)

(1 − s)(1 − t)2
for all 0 ≤ s ≤ t ≤ b

with

σ 2(t) = var
(
XI[t<F(X)≤1]

)
and θ(t) = E

(
XI[t<F(X)≤1]

)
.

Although these properties are stated for the empirical ME function, using Lemma 2.4, it can be
shown that the ME plots also exhibit the same features when the distribution F is known.

4.2. ME plot in the regularly varying case

The behavior of M̂(u) near the right end-point of F is not explained in Yang [43]. Here we
study the asymptotic properties of the ME plot when the explicit form of the distribution F is
not known. Ghosh and Resnick [22] proved the limit in probability of a suitably scaled version
of the ME plot under the following null hypothesis:

Theorem 4.1. If X1, . . . ,Xn are i.i.d. observations with distribution F satisfying F̄ ∈ RV−1/ξ

with 0 < ξ < 1, then in F ,

Mn := 1

X(k)

{(
X(i), M̂

(
X(i)

))
: i = 2, . . . , k

} P−→ M :=
{(

t,
ξ

1 − ξ
t

)
: t ≥ 1

}
. (4.1)
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In this paper we obtain the weak limit of the ME plot when the null hypothesis that F̄ ∈
RV−1/ξ for some ξ > 0 holds. The limit distribution depends on the value of ξ . We get different
limits depending on whether ξ ≤ 1/2, 1/2 < ξ < 1 or ξ ≥ 1.

4.2.1. Case I: 0 < ξ < 1/2

In this case var(X1) < ∞ exists and we obtain a Gaussian limit for the suitably normalized
ME plots. The following assumption is essential. It is stronger than Assumption 3.2 which was
required to obtain the weak limit of the QQ plot. As we discussed in Remark 3.5, it is quite
difficult to check this assumption in practice.

Assumption 4.2. F satisfies Assumption 3.2, and, moreover,

√
k

∫ ∞

1

∣∣∣∣nk F̄
(
b(n/k)y

) − y−1/ξ

∣∣∣∣dy → 0

as n, k,n/k → ∞.

Theorem 4.3. Suppose X1, . . . ,Xn are i.i.d. observations from a distribution F satisfying F̄ ∈
RV−1/ξ with 0 < ξ < 1/2 and Assumption 4.2 holds. Then for any 0 < ε < 1, as n, k,n/k → ∞,

M N n :=
{((

i

k

)−ξ

,
ξ

1 − ξ

(
i

k

)−ξ)

+ √
k

(
X(i)

X(k)

−
(

i

k

)−ξ

,
M̂(X(i))

X(k)

− ξ

1 − ξ

(
i

k

)−ξ)
: i = �εk�, . . . , k

}

⇒ M N :=
{(

t−ξ + ξ t−(1+ξ)B(t),
ξ

1 − ξ
t−ξ + ξ t−1

∫ t

0
y−(1+ξ)B(y)dy

)
,

ε ≤ t ≤ 1

}
in F ,

where B(t) is the standard Brownian bridge on [0,1] restricted to (0,1].

Remark 4.4. Similar to Theorem 3.3 we look at the ME plot as the probability limit perturbed
by the normalized deviation around it and obtain a weak limit in Theorem 4.3. The assumption
that ξ < 1/2 is essential. Note that

∫ t

0
y−(1+ξ)W(y)dy =

∫ ∞

t−ξ

W(u−1/ξ )du =
∫ ∞

t−ξ

∫ y−1/ξ

0
dW(s)dy =

∫ t

0
s−ξ dW(s),

and it is well known that the integral on the right-hand side exists if and only if
∫ t

0 s−2ξ ds < ∞,
for which it is necessary and sufficient to have ξ < 1/2; cf. Øksendal [30], Lemma 3.1.5, page 26.
This means ∫ t

0
y−(1+ξ)B(y)dy

d=
∫ t

0
y−(1+ξ)W(y)dy − W(1)

∫ t

0
y−ξ dy
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exists if and only if ξ < 1/2, and the same is true for the limit M N .

Proof of Theorem 4.3. Consider a functional form of the ME plot,

Sn(t) = (
S(1)

n (t), S(2)
n (t)

) :=
(

X(�kt�)
X(k)

,
M̂(X(�kt�))

X(k)

)
, t ∈ (0,1], (4.2)

as random elements in D2
l (0,1]. Following the proof of Theorem 3.2 in Ghosh and Resnick [22],

we know that Sn(·) P−→ S(·) in D2
l (0,1], where

S(t) := (
S(1)(t), S(2)(t)

) =
(

t−ξ ,
ξ

1 − ξ
t−ξ

)
, t ∈ (0,1].

Applying Vervaat’s lemma (Resnick [33], Proposition 3.3, page 59) to (3.8), we get

(√
k

((
X(�kt�)
b(n/k)

)−1/ξ

− t

)
,
√

k
(
νn(t

−ξ ,∞] − t
))

(4.3)
⇒ (−W(t),W(t)) in D2

l (0,∞).

Observe that

S(2)
n (t) := M̂(X(�kt�))

X(k)

= k

�kt� − 1

∫ ∞

X(�kt�)/b(n/k)

ν̂n(x,∞]dx,

where

ν̂n(·) := 1

k

n∑
i=1

εXi/X(k)
(·). (4.4)

Using (4.3) and the converging-together lemma (Resnick [33], Proposition 3.1, page 57), we also
have

(√
k

((
X(�kt�)
b(n/k)

)−1/ξ

− t

)
,
√

k
(
νn(t

−ξ ,∞] − t
)
,

X(k)

b(n/k)

)
(4.5)

⇒ (−W(t),W(t),1) in D2
l (0,∞) × (0,∞).

Define a map T̂ : D2
l (0,∞) × (0,∞) → Dl (0,∞) × D[1,∞) as T̂ (f, g, x)(t, y) = (f (t),

g(y−1/ξ x) + y−1/ξ f (1)). We can check that T̂ is continuous at any (f0, g0, x0) ∈ C2(0,∞] ×
(0,∞) (see Resnick [33], page 83). Hence, by the continuous mapping theorem on (4.5), with
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the map T̂ , we get that in Dl (0,∞) × D[1,∞)

Jn(t, y) :=
(√

k

((
X(�kt�)
b(n/k)

)−1/ξ

− t

)
,
√

k
(
ν̂n(y,∞] − y−1/ξ

))

=
(√

k

((
X(�kt�)
b(n/k)

)−1/ξ

− t

)
,

√
k

(
ν̂n

(
y

X(k)

b(n/k)
,∞

]
−

(
y

X(k)

b(n/k)

)−1/ξ)
(4.6)

+ y−1/ξ
√

k

((
X(k)

b(n/k)

)−1/ξ

− 1

))

⇒ (−W(t),W(y−1/ξ ) − y−1/ξW(1)
)
.

By an application of the functional delta method (van der Vaart and Wellner [41], Theorem 3.9.4)
to (4.6), we obtain in D∗ := Dl (0,1] × D[1,∞),

J ∗
n (t, y) :=

(√
k

(
X(�kt�)
b(n/k)

− t−ξ

)
,
√

k
(
ν̂n(y,∞] − y−1/ξ

))
(4.7)

⇒ (
ξ t−(1+ξ)W(t),W(y−1/ξ ) − y−1/ξW(1)

)
.

The map φ : D∗ → D∗ given by φ(f,g) = (f −ξ , g) is Hadamard differentiable at (f (t), g(y)) =
(t, y−1/ξ ), tangentially to D0 := C(0,1]× C[1,∞) ⊂ D∗, with the right-hand side of (4.6) being
separable and an element of D0. Thus we can apply the functional delta method (van der Vaart
and Wellner [41], Theorem 3.9.4) to obtain (4.7).

Consequently, in Dl(0,1] × D[1,∞),

Hn(t, y) :=
(√

k

(
X(�kt�)
X(k)

− t−ξ

)
,
√

k
(
ν̂n(y,∞] − y−1/ξ

))

=
(

b(n/k)

X(k)

√
k

(
X(�kt�)
b(n/k)

− t−ξ

)
− b(n/k)

X(k)

√
k

(
X(k)

b(n/k)
− 1

)
t−ξ ,

√
k
(
ν̂n(y,∞] − y−1/ξ

))
(4.8)

⇒ (
ξ t−(1+ξ)W(t) − ξ t−ξW(1),W(y−1/ξ ) − y−1/ξW(1)

)
d= (

ξ t−(1+ξ)B(t),B(y−1/ξ )
) =: H(t, y).

Define, for some 1 ≤ K < ∞, the maps T and TK from Dl(0,1]×D[1,∞) to Dl(0,1]×D[1,∞)

by

T (f,g)(t, y) =
(

f (t),

∫ ∞

y

g(x)dx

)
and TK(f,g)(t, y) =

(
f (t),

∫ K∨y

y

g(x)dx

)
. (4.9)
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We understand
∫ ∞
y

g(x)dx = ∞ if g is not integrable. Note that, in the Skorohod metric dS , we
get dS(TK(fn, gn), TK(f,g)) ≤ dS(fn, f ) + KdS(gn, g) → 0 where {fn,n ≥ 1}, f ∈ Dl (0,1]
and {gn,n ≥ 1}, g ∈ Dl[1,∞) with dS(fn, f ) → 0 and dS(gn, g) → 0 as n → ∞. So TK is a
continuous mapping. By (4.8) and the continuity of the map TK , we get that TK(Hn) ⇒ TK(H).
We also claim that, for any ε > 0,

lim
K→∞ lim sup

n→∞
P [‖TK(Hn) − T (Hn)‖ > ε] = 0. (4.10)

Note that, for any ε > 0,

lim
K→∞ lim sup

n→∞
P [‖TK(Hn) − T (Hn)‖ > ε]

≤ lim
K→∞ lim sup

n→∞
P

[√
k

∣∣∣∣
∫ ∞

K

(
ν̂n(x,∞] − x−1/ξ

)
dx

∣∣∣∣ > ε

]

≤ lim
K→∞ lim sup

n→∞
P

[√
k

∣∣∣∣
∫ ∞

K

(
νn

(
x

X(k)

b(n/k)
,∞

]
−

(
x

X(k)

b(n/k)

)−1/ξ)
dx

∣∣∣∣ > ε/2

]

+ lim
K→∞ lim sup

n→∞
P

[√
k

∣∣∣∣
∫ ∞

K

x−1/ξ

((
X(k)

b(n/k)

)−1/ξ

− 1

)
dx

∣∣∣∣ > ε/2

]
.

Using (3.9) and the assumption that ξ < 1/2, we get

lim
K→∞ lim sup

n→∞
P

[√
k

∣∣∣∣
∫ ∞

K

x−1/ξ

((
X(k)

b(n/k)

)−1/ξ

− 1

)
dx

∣∣∣∣ > ε/2

]
= 0.

Using a change of variable, we obtain

lim
K→∞ lim sup

n→∞
P

[√
k

∣∣∣∣
∫ ∞

K

(
νn

(
x

X(k)

b(n/k)
,∞

]
−

(
x

X(k)

b(n/k)

)−1/ξ)
dx

∣∣∣∣ > ε/2

]

= lim
K→∞ lim sup

n→∞
P

[√
k

∣∣∣∣
∫ ∞

KX(k)/b(n/k)

(
νn(u,∞] − u−1/ξ

)b(n/k)

X(k)

du

∣∣∣∣ > ε/2

]
.

Now fix any η > 0, and note that

lim
n→∞P

[∣∣∣∣ X(k)

b(n/k)
− 1

∣∣∣∣ > η or

∣∣∣∣b(n/k)

X(k)

− 1

∣∣∣∣ > η

]
= 0.

Therefore,

lim
K→∞ lim sup

n→∞
P

[√
k

∣∣∣∣
∫ ∞

KX(k)/b(n/k)

(
νn(u,∞] − u−1/ξ

)b(n/k)

X(k)

du

∣∣∣∣ > ε/2

]

≤ lim
K→∞ lim sup

n→∞
P

[
(1 + η)

√
k

∫ ∞

K(1−η)

|νn(u,∞] − u−1/ξ |du > ε/2

]
+ o(1).
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Now, since F satisfies Assumption 4.2, it suffices to show that

lim
K→∞ lim sup

n→∞
P

[√
k

∫ ∞

K(1−η)

∣∣∣∣νn(x,∞] − n

k
F̄

(
b(n/k)x

)∣∣∣∣dx >
ε

2(1 − η)

]
= 0. (4.11)

This can be easily proved using the arguments in the proof of Proposition 9.1 in (Resnick [33],
page 296). Observe that, by using the triangle and Chebyshev inequalities,

P

[√
k

∫ ∞

K(1−η)

∣∣∣∣νn(x,∞] − n

k
F̄

(
b(n/k)x

)∣∣∣∣dx >
ε

2(1 − η)

]

≤ P

[
1√
k

∫ ∞

K(1−η)

n∑
i=1

∣∣εXi/b(n/k)(x,∞] − F̄
(
b(n/k)x

)∣∣dx >
ε

2(1 − η)

]

≤
(

ε

2(1 − η)

)−2 ∫ ∞

K(1−η)

n

k
var

[
εXi/b(n/k)(x,∞]]dx

≤
(

ε

2(1 − η)

)−2 ∫ ∞

K(1−η)

n

k
F̄

(
b(n/k)x

)
dx

n→∞→
(

ε

2(1 − η)

)−2 ∫ ∞

K(1−η)

x−1/ξ dx.

The last limit follows from Karamata’s Theorem; cf. Resnick [33], page 25. Since ξ < 1, the
integral in the last expression is finite and therefore (4.11), and hence (4.10), holds. From Theo-
rem 3.5 in Resnick [33], page 56, we get T (Hn) ⇒ T (H) = (ξ t−(1+ξ)B(t),

∫ ∞
y

B(x−1/ξ )dx) in
Dl(0,1] × D[1,∞).

Now consider the random element Yn in the space D2
l (0,1] × D[1,∞),

Yn(t, y) :=
(

X(�kt�)
X(k)

, T (Hn)(t, y)

)
.

By another application of the converging-together lemma, it is easy to check that Yn ⇒ Y , where

Y(t, y) =
(

t−ξ , ξ t−(1+ξ)B(t),

∫ ∞

y

B(x−1/ξ )dx

)
.

The map T̃ : D2
l (0,1] × D[1,∞) → D2

l (0,1] defined by

T̃
((

f (1), f (2)
)
, g

)
(t) = (

f (2)(t), g
(
f (1)(t)

))
for all 0 < t ≤ 1

is continuous at (f, g) ∈ C2(0,1] × C[1,∞). Therefore

T̃ (Yn)(t) =
(√

k

(
X(�kt�)
X(k)

− t−ξ

)
,
√

k

∫ ∞

X(�kt�)/X(k)

(
ν̂n(y,∞] − y−1/ξ

)
dy

)

⇒
(

ξ t−(1+ξ)B(t),

∫ ∞

t−ξ

B(y−1/ξ )dy

)
in D2

l (0,1].
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This implies

√
k
(
Sn(t) − S(t)

) ⇒
(

ξ t−(1+ξ)B(t),
1

t

∫ ∞

t−ξ

B(y−1/ξ )dy

)
in D2

l (0,1].

It is then easy to check that

(
ξ t−(1+ξ)B(t),

1

t

∫ ∞

t−ξ

B(y−1/ξ )dy

)

d=
(

ξ t−(1+ξ)B(t),
ξ

t

∫ t

0
y−(1+ξ)B(y)dy

)
in D2

l (0,1].

Also observe that

S̃n(t) :=
((�kt�

k

)−ξ

,
ξ

1 − ξ

(�kt�
k

)−ξ)
(4.12)

+ √
k

(
X(�kt�)
X(k)

−
(�kt�

k

)−ξ

,
M̂(X(�kt�))

X(k)

− ξ

1 − ξ

(�kt�
k

)−ξ)
(4.13)

⇒ S̃(t) :=
(

t−ξ ,
ξ

1 − ξ
t−ξ

)
(4.14)

+
(

ξ t−(1+ξ)B(t),
ξ

t

∫ t

0
y−(1+ξ)B(y)dy

)
in D2

l (0,1],

since

√
k

((�kt�
k

)−ξ

− t−ξ

)
→ 0 as k → ∞

locally uniformly on (0,1]. The proof the theorem is completed by applying Lemma 2.4 to S̃n

and S̃. �

4.3. Case II: 1/2 < ξ < 1

When 1/2 < ξ < 1, the distribution F admits a finite mean but not a finite variance. The ME
function, however, exists, and we know the limit in probability of the scaled ME plot from The-
orem 4.1.

Assumption 4.5. F satisfies Assumption 3.2, and, moreover,

1

b(n)

(
kb(n/k)

1 − ξ
u1−ξ − Cku,n

)
→ 0
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for every 0 < u < 1. For any l < n

Cl,n := n

∫ l/n

0
F←(1 − u)du. (4.15)

Theorem 4.6. Suppose X1, . . . ,Xn are i.i.d. observations from a distribution F satisfying F̄ ∈
RV−1/ξ with 1/2 < ξ < 1 and Assumption 4.5. Then for any 0 < ε < 1

M N n :=
{((

i

k

)−ξ

,
ξ

1 − ξ

(
i

k

)−ξ)

+
(√

k

(
X(i)

X(k)

−
(

i

k

)−ξ)
,
kb(n/k)

b(n)

(
M̂(X(i))

X(k)

− ξ

1 − ξ

(
i

k

)−ξ))
:

i = �εk�, . . . , k
}

⇒ M N :=
{(

t−ξ + ξ t−(1+ξ)B(t),
ξ

1 − ξ
t−ξ + t−1S1/ξ

)
, ε ≤ t ≤ 1

}
in F ,

where B(t) is the standard Brownian bridge on [0,1] restricted to (0,1] and S1/ξ is a stable
random variable independent of B(t) with characteristic function

E[eitS1/ξ ] = exp

{
− 1

1 − ξ
�

(
2 − 1

ξ

)
cos

π

2ξ
|t |1/ξ

[
1 − i sgn(t) tan

π

2ξ

]}
. (4.16)

Remark 4.7. An interesting point to note here is that the two coordinates of the weak limit
M N are independent. The empirical ME function depends on the sum of the order statistics
X(1), . . . ,X(k). When 1/2 < ξ < 1, this sum is dominated by a very few high order statistics, and
it turns out that the contribution of X(k) to the suitably normalized M̂(X(k)) vanishes in the limit.
The proof below formalizes this idea.

This feature is in stark contrast to what happens in the case 0 < ξ < 1/2. In that case all the
top k order statistics have some contribution to M̂(X(k)) in the limit. Hence the two coordinates
in the limit are obtained from the same Gaussian process and are definitely not independent.

Remark 4.8. Unfortunately, we are unable to obtain a proper weak limit of the ME plot in the
case when ξ = 1/2. In this case it is known that the weak limit of the suitably normalized sum
of the first k order statistics is Gaussian; cf. Csörgo, Haeusler and Mason [6]. So this would be
similar to what happens when 0 < ξ < 1/2, but the problem is that the integral

∫ t

0 y−2 dB(y)

does not exist. It is possible to redefine the ME plot in a different way, by leaving out a few of
the top order statistics and obtaining a limit in that case, but we did not pursue that direction.
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Proof of Theorem 4.6. From Theorem 3 in Csörgo, Horváth and Mason [7] we know that if
l = ln → ∞ with ln/n → 0, then

1

b(n)

(
l∑

i=1

X(i) − Cl,n

)
⇒ S1/ξ . (4.17)

Observe that, by Karamata’s theorem (Resnick [33], Theorem 2.1, page 25),

Cl,n = n

∫ ∞

n/l

b(s)/s2 ds ∼ n
(n/l)b(n/l)

(n/l)2(1 − ξ)
= lb(n/l)

1 − ξ
.

Choose l = ln such that l/k → 0 as n → ∞. Fix any 0 < u < 1. Then

Vn(t) = (
V (1)

n (t),V (2)
n

) :=
(√

k

(
X(�kt�)
X(k)

− t−ξ

)
,

1

b(n)

(
l∑

i=1

X(i) − Cl,n

))
(4.18)

⇒ (
ξ t−(1+ξ)B(t), S1/ξ

)
in Dl[u,1] × R,

where B(t) and S1/ξ are as described in the statement of the theorem. The convergence of the

coordinates V
(1)
n (t) and V

(2)
n of Vn(t) follows from (4.8) and (4.17). The asymptotic indepen-

dence of V
(1)
n (t) and V

(2)
n is a consequence of Theorem D in Csörgo and Mason [5] or Satz 4 in

Rossberg [36]. Using (3.8) we get that

√
k

(
1

kb(n/k)

�kt�∑
i=�ku�+1

X(i) − 1

1 − ξ
(t1−ξ − u1−ξ )

)
⇒

∫ t

u

W(y)dy in Dl[u,1],

and since ξ > 1/2, kb(n/k)/(b(n)
√

k) → 0, which implies

U(2)
n (t) := kb(n/k)

b(n)

(
1

kb(n/k)

�kt�∑
i=�ku�+1

X(i) − 1

1 − ξ
(t1−ξ − u1−ξ )

)

(4.19)
→ 0 in Dl[u,1],

where 0 ∈ Dl[u,1] denotes the identically zero function. Furthermore, using Theorem 2 in
Csörgo, Horváth and Mason [7], we get

1√
kb(n/k)

( �ku�∑
i=l+1

X(i) − (Cku,n − Cl,n)

)
⇒ N(0,1)

and hence

U(3)
n := 1

b(n)

( �ku�∑
i=l+1

X(i) − (Cku,n − Cl,n)

)
→ 0. (4.20)
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Combining (4.18), (4.19) and (4.20) and the converging-together lemma (Resnick [33], Proposi-
tion 3.1, page 57), we get an important building block of this proof,

Un(t) := (
V (1)

n (t),U(2)
n (t),U(3)

n ,V (2)
n

)
(4.21)

⇒ (
ξ t−(1+ξ)W(t),0,0, S1/ξ

)
in D2

l [u,1] × R2.

Next we consider

Zn(t) = (
Z(1)

n (t),Z(2)
n (t)

) :=
(√

k

(
X(�kt�)
X(k)

− t−ξ

)
,
kb(n/k)

b(n)

(
M̂(X(�kt�))

X(k)

− ξ

1 − ξ
t−ξ

))

∈ D2
l [u,1]

and focus on the second coordinate Z
(2)
n (t).

Z(2)
n (t) = kb(n/k)

b(n)

(
M̂(X(�kt�))

X(k)

− ξ

1 − ξ
t−ξ

)

= kb(n/k)

b(n)

(
M̂(X(�kt�))

b(n/k)
− ξ

1 − ξ
t−ξ

)
+ oP (1)

= kb(n/k)

b(n)

(
1

(�kt� − 1)b(n/k)

�kt�−1∑
i=1

X(i) − X(�kt�)
b(n/k)

− ξ

1 − ξ
t−ξ

)
+ oP (1)

= kb(n/k)

b(n)

(
1

(�kt� − 1)b(n/k)

�kt�−1∑
i=1

X(i) − 1

1 − ξ
t−ξ

)
+ oP (1)

= kb(n/k)

tb(n)

(
1

kb(n/k)

�kt�−1∑
i=1

X(i) − 1

1 − ξ
t1−ξ

)
+ oP (1)

= 1

t
U(2)

n (t) + 1

t
U(3)

n + 1

t
V (2)

n + oP (1),

where the last equality holds because of Assumption 4.5. Therefore, we get

Zn(t) ⇒ (
ξ t−(1+ξ)B(t), t−1S1/ξ

)
in D2

l [u,1].
Since the above limit holds for every 0 < u < 1, it holds in Dl(0,1] as well. The proof is com-
pleted using Lemma 2.4. �

4.4. Case III: ξ ≥ 1

In this case, the distribution F need not have a finite mean, and the ME function may not be
defined. It definitely does not exists if ξ > 1. Still the empirical ME plot can have a limit.
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Theorem 4.9. Suppose X1, . . . ,Xn are i.i.d. observations with distribution F satisfying F̄ ∈
RV−1/ξ and Assumption 4.2.

1. If ξ > 1 and n, k,n/k → ∞, then

M N n :=
{((

i

k

)−ξ

+ √
k

(
X(i)

X(k)

−
(

i

k

)−ξ)
,
M̂(X(i))

b(n)/k

)
: i = 2, . . . , k

}

⇒ M N := {(
ξ t−(1+ξ)B(t), tS1/ξ

)
: t ≥ 1

}
in F , where S1/ξ is the positive stable random variable with index 1/ξ which satisfies, for
t ∈ R,

E[eitS1/ξ ] = exp

{
−�

(
1 − 1

ξ

)
cos

π

2ξ
|t |1/ξ

[
1 − i sgn(t) tan

π

2ξ

]}
,

and B(t) is a Brownian bridge independent of S1/ξ .
2. If ξ = 1, and k satisfies n, k,n/k → ∞, and kb(n/k)/b(n) → 1, then

M N n :=
{((

i

k

)−ξ

+ √
k

(
X(i)

X(k)

−
(

i

k

)−ξ)
,
M̂(X(i))

b(n/k)
− kC∗

k,n

ib(n)

)
: i = 2, . . . , k

}

⇒ M N := {
t
(
t−1B(t), S1 − 1 − log t

) : t ≥ 1
}

in F , where

C∗
k,n = n

∫ k/n

1/n

F←(1 − u)du,

S1 is a positively skewed stable random variable satisfying

E[eitS1] = exp

{
it

∫ ∞

0

(
sinx

x2
− 1

x(1 + x)

)
dx − |t |

[
π

2
+ i sgn(t) log |t |

]}
,

and B(t) is a Brownian bridge independent of S1.

Proof. The theorem is proved in the same fashion as the previous ones. First we prove the weak
limit in the functional form of the ME plot, and then we infer the weak limit of the plot as a
random set. Define

Sn(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(√
k

(
X(�kt�)
X(k)

− t−ξ

)
,
M̂(X(�kt�))

b(n)/k

)
in part (i)(√
k

(
X(�kt�)
X(k)

− t−ξ

)
,
M̂(X(�kt�))

b(n/k)
− kC∗

k,n

�kt�b(n)

)
in part (ii)

for all 0 < t ≤ 1.

We have already proved the weak limit of S
(1)
n (t) and the weak limit of S

(2)
n (t) is proved in

Theorem 3.4 in Ghosh and Resnick [22]. The rest of the proof is completed using Lemma 2.4. �
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5. Confidence bounds for the plots

In Sections 3 and 4, we have obtained weak convergence limits for the QQ and ME plots in the
Fell topology. Since the limit set in each case is a closed random set, we can compute from the
results in Sections 3 and 4, the probability that the random limit set is contained in a fixed set
in R2. This leads to creating asymptotic 100(1 − α)% confidence bounds around the plots, given
any 0 < α < 1. The methodology for creating confidence bounds around the plots is explained in
details for QQ plots, and the same idea follows for ME plots.

5.1. QQ plots

Under the usual assumptions of Section 3, the QQ plot, Qn, as defined in (3.1), consists of

k = k(n) < n points in R2. We know that Qn
P→ Q, where Q is a straight line. From Theorem 3.3,

we also know that Q N n, which is an affine transformation of Qn, converges weakly to a random
set Q N centered around Q in F . For fixed 0 < α < 1, we intend to create a confidence bound
around Qn which will contain Q with probability 1 − α under the null hyothesis.

The limit distribution for QQ plots obtained in Theorem 3.3 is a linear transformation of
{t−1B(t): 0 < t ≤ 1} where B is a Brownian bridge on [0,1]. So the limit explodes as t comes
close to 0, and thus we create confidence bounds under an ε truncation to avoid this. Define

Qε
n :=

{(
− log

j

k
, log

X(j)

X(k)

)
: 1 ≤ j ≤ k and

j

k
≥ ε

}
, k < n (5.1)

Qε := {(− log t,−ξ log t): ε ≤ t ≤ 1} =
{
(x, ξx): 0 ≤ x ≤ log

1

ε

}
. (5.2)

Now with similar truncations defined as above, it follows from (3.14) that S̃ε
n ⇒ S̃ε in

D2
l [ε,1]. This means Q N ε

n ⇒ Q N ε in F where Q N ε and Q N ε
n are the truncated versions

of Q N and Q N n, respectively, defined in (3.4). Suppose we can calculate cα/2,ε such that
P(supε≤t≤1

|B(t)|
t

≤ cα/2,ε) = 1 −α. Then a conservative 100(1 −α)% confidence bound around
Qε

n is given by

C Qε
n = Qε

n +
{
(0, y): y ∈ ξ

(
−cα/2,ε√

k
,
cα/2,ε√

k

)}
. (5.3)

It is easy to see that

P [Q N ε ⊂ C Qε] ≥ 1 − α,

where

C Qε := Qε +
{
(0, y): y ∈ ξ

(
−cα/2,ε√

k
,
cα/2,ε√

k

)}
.

An equivalent statement in a different notation is

P [{ρ(x, Q N ε) = 0,∀x ∈ C Qε}] ≥ 1 − α,
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where, for any x ∈ R2 and F ∈ F ,

ρ(x,F ) := inf{|x − y|: y ∈ F }.

From (Molchanov [29], Theorems B.6 and B.13, pages 400–401), we know that if Fn → F in F ,
then for any compact set K ⊂ R2

sup
x∈K

|ρ(x,Fn) − ρ(x,F )| → 0.

Since Q N ε
n ⇒ Q N ε in F , we get

lim
n→∞P [{ρ(x, Q N ε

n) = 0,∀x ∈ C Qε}] ≥ 1 − α.

Hence, C Qε
n in (5.3) is an asymptotic 100(1 − α)% confidence bound for Qε .

We calculate P(supε≤t≤1
|B(t)|

t
≤ M) next in order to complete the construction. Since

W(t) := (1 + t)B( t
t+1 ),0 ≤ t < ∞ is a Brownian motion on [0,∞), we can check that

sup
ε≤t≤1

|B(t)|
t

= sup
t≥δ

|W(t)|
t

, (5.4)

where δ = ε
1−ε

. In the following theorem we compute the boundary-crossing probability for

supt≥δ
|W(t)|

t
.

Proposition 5.1. Suppose W is a standard Brownian motion on [0,∞). Then for all δ > 0 and
M > 0,

P

(
sup
t≥δ

|W(t)|
t

> M

)
= 4

∞∑
k=1

[
�

(
(4k + 1)M

√
δ
) − �

(
(4k − 1)M

√
δ
)]

, (5.5)

where �(·) denotes the c.d.f. of a standard normal distribution.

Proof. We begin by observing that

P

(
sup
t≥δ

|W(t)|
t

≤ M

)
(5.6)

=
∫ Mδ

s=−Mδ

P
(−Mt − (Mδ + s) ≤ W(t) ≤ Mt + (Mδ − s),∀t ≥ 0

)
fW(δ)(s)ds,

where fW(δ) denotes the density of W(δ). The right-hand side is obtained by conditioning on
W(δ) = s and using the fact that {W(t) − W(δ): t ≥ δ} is independent of W(δ) and {W(δ): t ≥
δ} d= {W(t): t ≥ 0}. Now the above boundary (non-)crossing probablity of the Brownian motion



Exploratory plots in extremes 331

can be calculated using Doob [16], equation (4.3), as

P

(
sup
t≥δ

|W(t)|
t

> M

)

= 1 −
∫ Mδ

s=−Mδ

[
1 −

∞∑
k=1

(e−2Ak + e−2Bk − e−2Ck − e−2Dk )

]
fW(δ)(s)ds,

where

Ak = [(2k − 1)M]2δ − (2k − 1)Ms, Bk = [(2k − 1)M]2δ + (2k − 1)Ms,

Ck = 4k2M2δ − 2kMs, Dk = 4k2M2δ + 2kMs.

Since W(δ) ∼ N(0, δ), for any a, b ∈ R, we have∫ a

−a

ebsfW(δ)(s)ds = eb2δ/2
[
�

(
a − bδ√

δ

)
− �

(−a − bδ√
δ

)]
. (5.7)

Now using (5.7), we can compute, for each k ≥ 1,

∫ Mδ

−Mδ

(e−2Ak + e−2Bk )fW(δ)(s)ds = 2
[
�

(
(4k − 1)M

√
δ
) − �

(
(4k − 3)M

√
δ
)]

,

∫ Mδ

−Mδ

(e−2Ck + e−2Dk )fW(δ)(s)ds = 2
[
�

(
(4k + 1)M

√
δ
) − �

(
(4k − 1)M

√
δ
)]

.

Therefore we get

P

(
sup
t≥δ

|W(t)|
t

> M

)

= 1 −
∫ Mδ

s=−Mδ

[
1 −

∞∑
k=1

(e−2Ak + e−2Bk − e−2Ck − e−2Dk )

]
fZ(s)ds

= 4
∞∑

k=1

[
�

(
(4k − 1)M

√
δ
) − �

(
(4k − 3)M

√
δ
)]

.
�

Remark 5.2. Observe that the confidence bound in (5.3) depends on the value of ξ . While ob-
taining the width of the band, we replace ξ by its Hill estimate (Resnick [33], page 74). We could
use any consistent estimator of ξ and the choice of the estimator does not seem to be important
as far as the simulation study is concerned. It is well known that estimating the parameter ξ can
often be extremely tricky, see “Hill–Horror plots” in (Resnick [33], page 87). But as far as ob-
taining confidence bounds is concerned, we can get past that by using a conservative estimate
of ξ , that is, a value which we strongly believe is not less than the true value of ξ .
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Remark 5.3. It is clear that the probability calculated in Proposition 5.1 is very close to 1 if
M

√
δ is small. We can approximate the infinite sum in (5.5) by a finite sum whose limit depends

on our choice of M and δ. We use Proposition 5.1 to create confidence bands for the QQ plots in
the examples in Section 6. Simulation suggests that considering the first 15 terms of the infinite
sum is enough to give us approximations correct up to six decimal places.

Remark 5.4. It is possible to join the subsequent points in Qn to make a continuous curve Q∗
n ∈

F , and we can check that Q∗
n will converge to the same limit as that of Qn as n → ∞. We

mention this result here without proof, which can be completed following Theorem 3.3.

5.2. ME plots

In Section 4 we obtained weak limits for the ME plots, under the assumption that F̄ ∈ RV−1/ξ

with ξ > 0, where F denotes the underlying distribution. We observed three separate limits in
three different cases.

For the case 0 < ξ < 1/2, where F has a finite second moment, we obtain a limit in terms
of functionals of Brownian bridges (see Theorem 4.3). In order to convert this result to obtain
confidence bounds, we need to compute boundary-crossing probabilities for these functionals.
Analytical solution for such probabilities are available for linear boundaries (Doob [16]) and
piecewise linear boundaries (Pötzelberger and Wang [31]) in case of Brownian motion on [0,∞).
Probabilities for nonlinear boundaries, which happens to be our case, are usually approximated
using results for piecewise linear boundaries. Instead of such approximations, we resort to Monte
Carlo simulation to find appropriate confidence bounds; see Section 6.

For the case 1/2 < ξ < 1, F has a finite first moment, but its second moment does not exist.
The limit distribution for the affinely transformed ME plot consists of a functional of a Brownian
bridge in the first component and a Stable distribution in the second component. The feature
here is that the normalization required to get the limit depends on b(n) and b(n/k), which in
turn depends on the distribution function F and is hence unknown. These can be estimated in
practice with X(1) and X(k) respectively. Although, to justify such a procedure we would need
to know the joint behavior (X(1),X(k),

∑k
i=1 X(i)) when k,n and n/k → ∞. Results in Darling

[8], Chow and Teugels [4], Resnick [32], Section 4, are quite useful here. Using Theorem 5.3 in
Darling [8] we can show that under the assumptions of Theorem 4.6,

M̃ N n :=
{((

i

k

)−ξ

,
ξ

1 − ξ

(
i

k

)−ξ)

+
(√

k

(
X(i)

X(k)

−
(

i

k

)−ξ)
,
kX(k)

X(1)

(
M̂(X(i))

X(k)

− ξ

1 − ξ

(
i

k

)−ξ))
:

(5.8)

i = 2, . . . , k

}

⇒ M̃ N :=
{(

t−ξ + ξ t−(1+ξ)B(t),
ξ

1 − ξ
t−ξ + t−1S̃1/ξ

)
,0 < t ≤ 1

}
in F ,
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where S̃1/ξ is independent of B(t), and its characteristic function is of the form

E[eiλS̃1/ξ ] = eiλ
(

1 + iλ

1 − ξ
− 1

ξ

∫ 1

0
(eitλ − 1 − itλ)t−1−1/ξ dt

)−1

. (5.9)

We again resort to Monte Carlo simulation to obtain confidence bounds for the ME plots.
For ξ ≥ 1, F need not have a finite mean, and the ME plot does not have a non-trivial non-

random limit. We obtain weak limits here in Theorem 4.9. Clearly, calculating confidence bounds
is not sensible here.

5.2.1. Confidence bound for ME plots

We need to truncate the ME plot near infinity in this case, since the weak limits we obtain (The-
orems 4.3 and 4.6) blow up there (relates to t near 0 in the limit M N n). According to (4.1), Mn

denotes the ME plot for a sample of size n (with k < n top order statistics under consideration).
Define its truncated version

Mε
n := 1

X(k)

{(
X(i), M̂

(
X(i)

))
: i = �kε�, . . . , k}

and

(5.10)

Mε :=
{(

t,
ξ

1 − ξ
t

)
: ε ≤ t ≤ 1

}
.

Then Mε
n

P→ Mε .
If 0 < ξ < 1/2, then using Theorem 4.3 we can give the (1 − α)100% confidence band for

Mε as

C Mε
n := Mε

n +
{
(x, y): x ∈

(
−cα1/2,ε√

k
,
cα1/2,ε√

k

)
, y ∈

(
−dα2/2,ε√

k
,
dα2/2,ε√

k

)}
, (5.11)

where α1, α2 > 0 is such that α = α1 + α2 and

cα,ε = (1 − α)th quantile of sup
ε≤t≤1

ξ t−(1+ξ)B(t),

(5.12)

dα,ε = (1 − α)th quantile of sup
ε≤t≤1

ξ t−1
∫ t

0
y−(1+ξ)B(y)dy.

C Mε
n in (5.11) provides an asymptotic confidence bound around Mε with P(Mε ⊂ C Mε

n) ≥
(1 − α) for large n.

If 1/2 < ξ < 1, then we use Theorem 4.6 and its modified form in (5.8) to give the (1−α)100%
confidence band for Mε as

C Mε
n =

{(
X(�kt�)
X(k)

,
M̂(X(�kt�))

X(k)

)
(5.13)

+
(

−cα1/2,ε√
k

,
cα1/2,ε√

k

)
×

(
X(1)d1−α2/2

�kt�X(k)

,
X(1)dα2/2

�kt�X(k)

)
: ε ≤ t ≤ 1

}
,
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where

dα = (1 − α)th quantile of S̃1/ξ defined in (5.9).

Here 0 < α1, α2 < 1 are chosen such that (1 − α) = (1 − α1)(1 − α2). Since the random compo-
nents in the first and second components in the limit (Theorem 4.6) are independent, this gives us
the right confidence interval so that P(Mε ⊂ C Mε

n) ≥ 1 −α. The above quantiles are calculated
by Monte Carlo methods for the simulation we report in Section 6.1.2.

Remark 5.5. Throughout the literature of extreme value theory, the top k order statistics where
k = kn → ∞ and k/n → 0 as n → ∞ is considered for inference. The idea is that as the size of
data increases we concentrate more on the extreme right-hand tail of the underlying distribution.
In practice though, given a data set of fixed size n, albeit large, it is difficult to decide on which
value of k to choose. The popular solution is to try out different values of k; see Embrechts,
Klüppelberg and Mikosch [18], Chapter 6, and Resnick [34], Chapter 4, for further discussions
on this issue.

In order to obtain confidence bounds for QQ plots and ME plots, along with the problem of
choosing k, we also have to choose ε. The choice of ε should be such that, for the purpose of
drawing any inference, we leave out the region where data is sparse. In practice, we have to try
out different values of ε depending on the size of the data and the choice of k.

Remark 5.6. An important point to note here is that we are suggesting to use the weak limit of
the QQ plot to obtain the confidence band. In practice, even if we have a large data set, it will
always be finite. A natural question that arises here is what is the rate of convergence in these
cases. We do not have the answer at the moment, but all the simulation studies that we have done
strongly suggest that this method works well.

6. QQ plot and ME plot in practice

6.1. Simulation

We do a simulation study using the software R to check how well this method of obtaining
confidence bounds for the QQ plot and the ME plot works.

6.1.1. QQ plots

We begin with a simple exercise for Pareto distribution with ξ = 0.25 (F̄ (x) = x−4, x ≥ 1). We
simulate a sample of size n = 50,000 from this distribution and look at the QQ plot for extremes
as defined in (3.1); see Figure 1. The black line denotes the plot Qn, and the brown dotted line
denotes the true line Q. We know that Qn converges to Q, and, as we see in the plot, the two
lines are close, except for the top-right corner of the plots, which correspond to the very large
order statistics. We choose three different values for k: 2000, 1500 and 1000, which are large in
absolute terms, but small compared to the sample size n.

Following the discussion in Section 5, we know that the variance of the limiting distribu-
tion blows up as we move towards the extreme order statistics (towards the top-right corner)
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Figure 1. QQ plot for 50,000 i.i.d. Pareto random variables with ξ = 0.25.

in the plot. So while obtaining a confidence bound, we truncate at �εk�th order statistic for
ε = 0.05 and 0.01. The confidence bounds are obtained for the six cases. The three shades of the
colored bands signify the 99%,95% and the 90% confidence bands for the plot. As is evident in
Figure 1, the true line lies within the bound in all the cases. It is also notable that the width of the
confidence band increases as k and ε decrease.

Next we do a similar study for a right-skewed stable distribution with ξ = 2/3 (α = 1.5) and
mean 0. We use the same values of n, k and ε. The result is given in Figure 2. Here also we see
that the method works well, and the confidence band contains the true line in all the six cases.

We also try a non-standard distribution for which F̄−1(x) = x−1/5(1 − 10−1 lnx), 0 < x ≤ 1.
This means that F̄ ∈ RV−4, and therefore ξ = 0.5. The exact form of F̄ is given by

F̄ (x) = 1

32
W(2xe2)5x−5 for all x ≥ 1, (6.1)

where W is the Lambert W function satisfying W(x)eW(x) = x for all x > 0. Observe that
W(x) → ∞ as x → ∞ and W(x) ≤ log(x) for x > 1. Furthermore,

log(x)

W(x)
= 1 + logW(x)

W(x)
→ 1 as x → ∞,

and hence W(x) is a slowly varying function. This is therefore an example where the slowly
varying term contributes significantly to F̄ . That was not the case in the Pareto or the stable
examples. The result of the simulation is shown in Figure 3. As expected, the choice of k plays
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Figure 2. QQ plot for 50,000 i.i.d. right-skewed stable random variables with ξ = 2/3.

Figure 3. QQ plot for 50,000 i.i.d. random variables with the distribution described in (6.1) (ξ = 0.2).
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Figure 4. ME plot for 50,000 i.i.d. Pareto random variables with ξ = 0.25.

an important role in this case, and we see that the confidence band contains the true line when we
choose k = 1000 and ε = 0.01. Although not shown in Figure 3, the confidence bands perform
better for smaller values of k.

6.1.2. ME plots

Figure 4 shows the ME plot obtained from a data simulated from the Pareto distribution with
ξ = 0.25. The six plots correspond to different values of k (3000, 2500 and 2000) and ε (0.1
and 0.075). The black line is the observed ME plot, and the brown dotted line denotes the limit
in probability. Again, the three shades of the colored bands denote the 99%,95% and the 90%
confidence bands for the plot, respectively. Note that the weak limit is a functional of the Brow-
nian bridge and depends on ξ . We estimate ξ using the Hill estimator and obtain the bounds by
simulating 10,000 paths from the weak limit.

A striking feature in all these plots is that they are close to being linear near the bottom-left
corner and become quite erratic near top-right corner. The reason behind this phenomenon is that
the empirical ME function for high thresholds is the average of the excesses of a small number of
upper order statistics. When averaging over few numbers, there is high variability, and therefore
this part of the plot appears very nonlinear and is uninformative. Therefore, while obtaining
confidence bands it is essential to leave out some of the extreme order statistics. We would also
like to point out that, without the confidence bands, it would have been difficult to believe that
these plots were obtained from a distribution with tail index 0.25.

A simulation of ME plot for the right skewed stable distribution with ξ = 2/3 is shown in
Figure 5. We use the band described in (5.13) and estimate the quantiles using simulation. In this
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Figure 5. ME plot for 50,000 i.i.d. right-skewed stable random variables with ξ = 2/3.

case we only provide the 95% and the 90% confidence band. The 99% confidence band for the
stable is very large and using that is not much helpful.

The next simulation is the ME plot for a sample from the distribution function described
in (6.1), and the result is given in Figure 6. We use the same values for n, k and ε. We see
that this method of getting confidence bands works well in these cases.

6.2. An example with a real data

We study a data set which contains Internet response sizes corresponding to user requests. The
sizes are thresholded to be at least 100 KB. The data set consists of 67,287 observations and is
part of a bigger set collected in April 2000 at the University of North Carolina at Chapel Hill.

It is often stated that file size data typically exhibits heavy tails, and we observe that is indeed
the case here. Figure 7 shows various plots from this data set. The sample variance is of the
order of 1013 which suggests that the variance is possibly infinite for the underlying distribution
(denote by F ). This would imply that if F̄ is regularly varying for some ξ , then we must have
ξ ≥ 1/2. This is suggested by both the Pickands plot and the Hill plot (Figure 7(b) and (c), resp.).
The Hill plot is always above 1/2 and the Pickands is above 1/2 for most of the range. But it is
difficult to get an estimate of ξ using these two tools since both plots are highly fluctuating and
hence inconclusive. We fit a GPD model with the top 2000 order statistics using the command
“fit.GPD” in the library “QRMlib.” It gives an estimate 0.6218 of ξ and Figure 7(d) plots the
estimated F̄ in the log-log scale along with the fitted line.
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Figure 6. ME plot for 50,000 i.i.d. random variables with the distribution described in (6.1) (ξ = 0.2).

We try the QQ plot with data set for k = 4000 and 2000 (top 6% and 3% order statistics
approximately) and with ε = 0.05 and 0.02. The plots give an estimate of around 0.62 of ξ . The
plots are shown in Figure 7(e)–(h). The ME plots for k = 5000,3000 and ε = 0.06,0.04 are
shown in Figure 7(i)–(l), and they also suggest a similar estimate for ξ .

We observe that, in this example, the different methods of understanding the tail behavior of
a data work very well, and all of them are in agreement about the value of ξ . This is not true in
many situations, and then it is hard to judge which method one should trust. In those cases it is
important to have some more knowledge about the system from which the data was collected,
and often that helps in the understanding of the data.

7. Conclusion

Plotting techniques have always been popular as diagnostic tools for goodness-of-fit of observed
data, and we believe they will remain so because of their visual and intuitive appeal. In this paper
we have concentrated on two such tools used extensively in the extreme-value literature. A weak
law of large numbers has been shown previously for both the QQ plots (Das and Resnick [9])
and ME plots (Ghosh and Resnick [22]), considering them as random elements in an appropriate
topology. Our contribution in this paper has been to provide distributional limits for them. In
the case of QQ plots, we have also provided an explicit expression for confidence bounds (with
a truncation to avoid the confidence bounds from blowing up) by using these distributional re-
sults. In the case of ME plots we have obtained distributional limits in the cases 0 < ξ < 1/2,
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Figure 7. Analysis of the internet response size data.

1/2 < ξ < 1 and ξ ≥ 1 separately where the underlying distribution F is assumed to be regularly
varying with index −1/ξ . The case ξ = 1/2 is still open. We have produced confidence bounds
for the ME plots in these cases by Monte Carlo simulation, as explicit expressions for these
quantities are not easy to calculate. The explicit expressions would involve boundary-crossing
probabilities for a Brownian Bridge with nonlinear boundaries. Boundary-crossing probabilities
for Brownian motion can be approximated using piecewise linear boundaries Pötzelberger and
Wang [31], but we do not know of a nice approximation for the Brownian Bridge case; hence
we resort to simulation. We have illustrated the confidence bounds in both the cases of QQ plots
and ME plots with simulated and real data examples in Section 6. The importance of the con-
fidence bounds can be understood very clearly from Figure 4. Here we have a simulated data
set of 50,000 points from a Pareto distribution with parameter ξ = 0.25. Just looking at the ME
plot, it is not at all obvious that this is a heavy-tailed data, whereas when the confidence bounds
with the ε-truncation are drawn, the straight line with slope ξ = 0.25 remains inside the bounds
indicating the true nature of the data.

Since we are using the limiting distribution to obtain the confidence bounds, it is natural to ask
what the rate of convergence is. We have observed that this method works well in the simulation
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studies that we have done, but we have not answered this theoretically. This is currently a work
in progress.

A standing assumption in the results we proved in this paper is that the random variables Xn

are i.i.d. We believe that it is possible to obtain similar results under a more general assumption
of stationarity and mixing; cf. Rootzén [35]. We intend to look into this further.

We should also note here that often practitioners use the median-excess plot with the implied
meaning when ξ > 1; that is, the mean for the distribution does not exist (Embrechts, Klüppel-
berg and Mikosch [18]), but we have not ventured into this kind of plotting tool. We have also not
looked into other kinds of plots used in extremes, like the Stărică plot (Stărică [40]) to determine
the right k number of upper order statistics, or the Gertensgarbe and Werner plot (Gertensgarbe
and Werner [21]), for determining thresholds, over which a data may be assumed to be extreme-
valued, or the more popular Hill plot, Pickands plot (Resnick [33]), to detect the right value of
the extreme-value parameter. Obtaining results in the same spirit as this paper for these other
varieties of plots are a part of intended future research.

Acknowledgements

The authors are thankful to Paul Embrechts (ETH Zurich), Sidney I. Resnick (Cornell University)
and Gennady Samorodnitsky (Cornell University) for their detailed comments on a draft of the
paper which greatly helped in improving the paper. The authors are also thankful for insightful
comments and suggestions from the referees and the associate editor. Bikramjit Das was partially
supported by the program IRTG/Pro*Doc. Souvik Ghosh was partially supported by the FRAP
program at Columbia University.

References

[1] Beer, G. (1993). On the Fell topology. Set-Valued Anal. 1 69–80. MR1230370
[2] Billingsley, P. (1968). Convergence of Probability Measures. New York: Wiley. MR0233396
[3] Bingham, N.H., Goldie, C.M. and Teugels, J.L. (1987). Regular Variation. Encyclopedia of Mathe-

matics and Its Applications 27. Cambridge: Cambridge Univ. Press. MR0898871
[4] Chow, T.L. and Teugels, J.L. (1978). The sum and the maximum of iid random variables. In Proceed-

ings of the Second Prague Symposium on Asymptotic Statistics. Amsterdam: North-Holland.
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