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We prove Chung-type laws of the iterated logarithm for general Lévy processes at zero. In particular, we
provide tools to translate small deviation estimates directly into laws of the iterated logarithm.

This reveals laws of the iterated logarithm for Lévy processes at small times in many concrete examples.
In some cases, exotic norming functions are derived.
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1. Introduction

A classical question in stochastic process theory is to understand the asymptotic behavior of a
given stochastic process X = (Xt )t≥0 on the level of paths. In the present work, we consider
general Lévy processes and find Chung-type LIL (laws of the iterated logarithm) at zero; that is,
given the Lévy process X, we aim at characterizing a norming function b, satisfying

lim inf
t→0

‖X‖t

b(t)
= 1, where ‖X‖t := sup

0≤s≤t

|Xs |. (1.1)

The topic of large and small time fluctuations of Lévy processes has been studied extensively in
the past (see, e.g., Doney [10] for an overview and Bertoin [3], Sato [19], Bertoin, Doney and
Maller [5]).

It is well known that, via the Borel–Cantelli lemma, Chung-type LIL for a general stochastic
process are connected to the so-called small deviation rate of the process, that is,

− logP(‖X‖t ≤ ε), as ε → 0 and t → 0. (1.2)

The main motivation for this paper originates from the recent work Aurzada and Dereich [2],
where a framework for obtaining the small deviation rate (1.2) for general Lévy processes (but
fixed t ) is provided. The difficulty in passing over from the small deviation estimate to the re-
spective LIL concerns circumventing the independence assumption of the Borel–Cantelli lemma.

In this paper we show how the asymptotics of (1.2) imply explicit LIL. We stress that it is not
sufficient to have estimates for (1.2) for fixed t , which usually are referred to as small deviation
estimates.
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Small deviation problems are studied independently of LIL and have connections to other
fields, such as the approximation of stochastic processes, coding problems, the path regularity
of the process, limit laws in statistics and entropy numbers of linear operators. We refer to the
surveys Li and Shao [12], Lifshits [15], for an overview of the field, and to Lifshits [14], for a reg-
ularly updated list of references, which also includes references to laws of the iterated logarithm
of Chung type. The papers of Taylor [25], Mogul’skiı̆ [18], Borovkov and Mogul’skiı̆ [7], Si-
mon [23,24], Linde and Shi [16], Lifshits and Simon [13], Linde and Zipfel [17], Shmileva [21],
Shmileva [22] provide a good source for earlier results on small deviations of Lévy processes.

We now discuss LIL for special Lévy processes that have already appeared in the literature.
The norming function b(t) = √

π2t/(8 log | log t |) for a standard Brownian motion can be derived
from the large time LIL, proved by Chung [9], via time inversion. For any Lévy process with
non-trivial Brownian component, the recent result of Buchmann and Maller [8] shows that (1.1)
holds with the same norming function as for a standard Brownian motion. If X is an α-stable
Lévy process, (1.1) holds with norming function b(t) = (cαt/ log | log t |)1/α , which goes back
to Taylor [25]. The question was studied for subordinators already in [11]; there, the norming
function can be obtained from the Laplace transform.

Of course, it is natural to ask for the general structure of the norming function for arbitrary
Lévy processes not having the special features of the examples mentioned so far. LIL for more
general Lévy processes were obtained in Wee [26]; see Wee [27] for more examples. It was
shown that if, for some positive constant θ ,

P(Xt > 0) ≥ θ and P(Xt < 0) ≥ θ for all t sufficiently small, (1.3)

holds, then upper and lower bounds in the LIL hold in the following sense: for λ1 sufficiently
small and λ2 sufficiently large,

1 ≤ lim inf
t→0

‖X‖t

bλ1(t)
and lim inf

t→0

‖X‖t

bλ2(t)
≤ 1

for norming functions bλ given by

bλ(t) := f −1
(

log | log t |
λt

)
,

where f is given by some explicit, but complicated expression depending on the Lévy triplet.
Although the results of Wee are quite general, there are some points which we aim to improve

in the present work. First, we try to demonstrate and explain clearly how the LIL follow from
small deviation estimates of type (1.2) and which behavior of the process is actually responsible
for the correct norming function. Second, we attempt to control the unspecified (and suboptimal)
constants λ1 and λ2 above, which can influence the norming function essentially (see (3.2) below
for an example of influence on the exponential level) in the case when bλ is not regularly vary-
ing at zero. In our approach, we keep track of the appearing constants in an optimal way. This
allows us, in the case of known strong small deviation order, to transfer the constant in the strong
small deviation order to the limiting constant in the LIL. Third, we provide alternative conditions
to (1.3) which are explicit in terms of the Lévy triplet. We believe our conditions to be weaker
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than (1.3), but, as necessary and sufficient conditions for the latter in terms of the Lévy triplet
seem to be unknown in general, it is difficult to verify our claim, although our examples hint at
this direction.

This paper is structured as follows. In Section 2, we give the main results that manage the
transfer between small deviations and LIL. Several examples of LIL for concrete Lévy processes
are collected in Section 3. The proofs are given in Section 4.

Let us finally fix some notation. In this paper we let X be a Lévy process with characteristic
triplet (γ, σ 2,�), where γ ∈ R, σ 2 ≥ 0, and the Lévy measure � has no atom at zero and
satisfies ∫

(1 ∧ x2)�(dx) < ∞.

For basic definitions and properties of Lévy processes we refer to Bertoin [3], Sato [19]. As we
are interested only in the behavior for small times, we discard all jumps bigger than 1 in abso-
lute value and assume such truncation throughout the paper. Hence, the characteristic exponent,
EeizXt =: etψ(z), has the form

ψ(z) = iγ z − σ 2z2

2
+

∫ 1

−1
(eizx − 1 − izx)�(dx), z ∈ R.

For later use we denote by 
 the Laplace exponent of a subordinator A, Ee−uA1 = e−
(u),


(u) = uγA +
∫ ∞

0
(1 − e−ux)�A(dx).

Further, we use the standard notation �̄(ε) := �([−ε, ε]c) for the two-sided tail of the Lévy
measure.

In the following, we denote by f ∼ g the strong asymptotic equivalence, that is, limf/g = 1,
and by f ≈ g the weak asymptotic equivalence, that is, 0 < lim inff/g ≤ lim supf/g < ∞.

2. Main results

Our first theorem manages the transfer from small deviation rates to LIL under minimal loss of
constants.

Theorem 2.1. Let X be a Lévy process (without loss of generality assume that X has jumps
smaller than 1 in absolute value). Let F be a function increasing to infinity at zero, such that
with some 0 < λ1 ≤ λ2 < ∞

λ1F(ε)t ≤ − logP(‖X‖t < ε) ≤ λ2F(ε)t for all ε < ε0 and t < t0. (2.1)

Further, define

bλ(t) := F−1
(

log | log t |
λt

)
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for λ > 0, and assume that, as n → ∞,

(n + 1)−(n+1)β
∣∣∣∣
∫

|x|>bλ′
2
(n−nβ

)

x�(dx) − γ

∣∣∣∣
(2.2)

= o(bλ′
2
(n−nβ

)) for all β > 1 and λ′
2 > λ2.

Then the LIL

1 ≤ lim inf
t→0

‖X‖t

bλ′
1
(t)

and lim inf
t→0

‖X‖t

bλ′
2
(t)

≤ 1

hold almost surely for any λ′
1 < λ1 and λ′

2 > λ2.

Remark 2.1. It is important to note the role of (2.2). It ensures that the process does not become
too asymmetric when one continues to cut off more and more smaller jumps. Only in this case
is it possible to expect an estimate of type (2.1) to follow from the framework given in Aurzada
and Dereich [2]. Corollary 2.4 below and, in particular, (2.11) give a sufficient condition when
this is the case.

Remark 2.2. Let us relate our condition (2.2) with the condition of Wee [26]. Note that (2.2) is
analytic, that is, in terms of the Lévy triplet, whereas Wee’s condition (1.3) is probabilistic. It
seems that (1.3) cannot always be checked from the Lévy triplet. To understand the difficulty, it
may be instructive to look at Theorems 4 and 5 in Andrew [1], which reformulate (1.3) in terms
of other probabilistic quantities.

It is crucial that there is almost no loss of constants in the transfer from the small deviations to
the LIL as in cases when bλ is not regularly varying, the constants λ′

1, λ
′
2 may influence the rate

function drastically; see (3.2) for an extreme example.
If instead bλ only depends on λ via a multiplicative constant, our approach allows to strengthen

the previous theorem to the optimal limiting constants. Such examples occur, for instance, if the
small deviation rate function F is regularly varying.

Corollary 2.1. In the setting of Theorem 2.1, assume additionally that F is regularly varying at
zero with non-positive exponent. Then the following LIL hold almost surely:

1 ≤ lim inf
t→0

‖X‖t

bλ1(t)
and lim inf

t→0

‖X‖t

bλ2(t)
≤ 1. (2.3)

In particular, if there is λ > 0 such that (2.1) holds for all λ1 < λ and all λ2 > λ, then

lim inf
t→0

‖X‖t

bλ(t)
= 1 a.s.
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In the setting of a regularly varying rate function, say F is regularly varying at zero with
exponent −α, α > 0, one can express (2.3) as

lim inf
t→0

‖X‖t

b1(t)
∈ [λ1/α

1 , λ
1/α

2 ], a.s.

This shows that only the quality of the small deviation estimate (2.1) matters in order to obtain
the limiting constant in the LIL. Recall that the Blumenthal zero–one law implies that the limit
is almost surely equal to a deterministic constant, which in this case can be specified.

Theorem 2.1 reduces the question of the right norming function for the LIL to the question
of small deviations which is known precisely for many examples. For general Lévy processes,
those have been obtained in Aurzada and Dereich [2] (their results were stated for t = 1 only,
but hold, in general, as we discuss in Proposition 2.1 below). In particular, for symmetric Lévy
processes, their main result states that the rate function is given by

F(ε) = ε−2U(ε), (2.4)

where U(ε) is the variance of X with jumps larger than ε replaced by jumps of size ε,

U(ε) := ε2�̄(ε) + σ 2 +
∫ ε

−ε

x2�(dx). (2.5)

From these specific small deviations we can deduce the following corollary for symmetric pro-
cesses.

Corollary 2.2. Let X be a symmetric Lévy process; then there are 0 < λ1 ≤ λ2 < ∞ such that,
almost surely,

1 ≤ lim inf
t→0

‖X‖t

bλ1(t)
and lim inf

t→0

‖X‖t

bλ2(t)
≤ 1,

with

bλ(t) := F−1
(

log | log t |
λt

)

and F defined in (2.4). If, additionally, F is regularly varying at zero with exponent −α, α > 0,
then the following general bounds hold:

1

12

1

2α
≤ λ1 ≤ λ2 ≤ 3α10.

The loss of constants in the corollary is only due to the general formulation. For some examples
we will see below that the small deviations are known in the strong asymptotic sense so that
Theorem 2.1 gives the precise law.

In the sequel we call “strongly non-symmetric” Lévy processes the processes for which (2.2)
does not hold. Their study requires different assumptions on bλ; see (2.8). For this case, we
provide a different link between small deviation rates and LIL. The next result does not require
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(2.2) and thus allows us to study the “strongly non-symmetric” Lévy processes as well as other
cases when (2.2) is difficult to verify. The latter is substituted by the seemingly easier (2.8) at
the expense of the strength of the result; that is, we manage to keep track of the constants in the
norming function in an optimal way, but lose the limiting constant. We have tried unsuccessfully
to find a suitable relation between (2.2) and (2.8). We strongly suspect that neither one follows
from the other.

Theorem 2.2. Let X be a Lévy process with jumps smaller than 1 in absolute value, and let F

be a function increasing to infinity at zero such that for 0 < λ1 ≤ λ2 < ∞
λ1F(ε)t ≤ − logP(‖X‖t < ε) ≤ λ2F(ε)t for all ε < ε0 and t < t0. (2.6)

Furthermore, set

bλ(t) := F−1
(

log | log t |
λt

)
, (2.7)

and suppose that there is a constant C > 0 such that

Cbλ(t) ≤ bλ(t/2), 0 < t ≤ t0, λ ∈ (λ1/2,2λ2). (2.8)

Then the LIL

0 < lim inf
t→0

‖X‖t

bλ′
1
(t)

and lim inf
t→0

‖X‖t

bλ′
2
(t)

< ∞

hold almost surely for all λ′
1 < λ1 and λ2 < λ′

2.

Again, if the rate function F is regularly varying, then we can strengthen the result. Recall
that the Lévy processes that appear in the formulation of the next sequence of results have jumps
smaller than 1 in absolute value.

Corollary 2.3. In the setting of Theorem 2.2, assume additionally that F is regularly varying at
zero with negative exponent. Then the following LIL holds almost surely:

lim inf
t→0

‖X‖t

b1(t)
∈ (0,∞).

The theorems listed so far manage the transfer between small deviation order and LIL. Simi-
larly to Corollary 2.2, we can combine them with the main results of Aurzada and Dereich [2].
This looks more technical in the present case. We give an explanation of the role of the different
terms after stating the result.

Corollary 2.4. Let X be a Lévy process with triplet (γ, σ 2,�). Assume that uε is the solution
of the equation �′

ε(u) = 0, where �ε is the following log Laplace transform:

�ε(u) = σ 2

2
u2 +

(
γ −

∫
[−1,1]\[−ε,ε]

x�(dx)

)
u +

∫ ε

−ε

(eux − 1 − ux)�(dx). (2.9)
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Set

F(ε) := ε−2Uε(ε) − �ε(uε), Uε(ε) := ε2�̄(ε) + σ 2 +
∫ ε

−ε

x2e−uεx�(dx), (2.10)

and assume F is increasing to infinity as ε → 0. Define b as in (2.7), and assume that b satisfies
(2.8). If, furthermore,

ε|uε| = o(log logF(ε)), as ε → 0, (2.11)

is satisfied, then we have, for some λ1, λ2 > 0,

0 < lim inf
t→0

‖X‖t

bλ1(t)
and lim inf

t→0

‖X‖t

bλ2(t)
< ∞ a.s.

Let us explain the quantities appearing in Corollary 2.4 in more detail. The main observation
is that the proof for the small deviation estimates in Aurzada and Dereich [2] (Theorem 1.5) can
be used directly for any t > 0 to obtain the following proposition.

Proposition 2.1. Let �ε be as defined in (2.9) and assume that uε is the solution of �′
ε(uε) = 0.

Then, with F as in (2.10), we have, for all t > 0 and all ε < 1,

1

12
tF (2ε) − ε|u2ε| − 1 ≤ − logP(‖X‖t ≤ ε) ≤ 10tF

(
ε

3

)
+ ε|uε/3| + 3. (2.12)

The term �̄(2ε) in (2.12) (included in the F term) comes from the requirement that there
should be no jumps larger than 2ε. After removing these jumps, the process may drift out of
the interval [−ε, ε], which is prevented by applying an Esscher transform to the process, whose
“price” is given by the term −�ε(uε). The quantity uε is the drift that has to be subtracted in
order to make the process a martingale. Then the remaining process is treated as in the symmetric
case, and the same term ε−2Uε(ε) appears as in (2.4), but, this time, with respect to the Lévy
measure transformed by the change of measure.

Note that (2.12) is almost the required estimate in (2.6), except for the term ε|uε|, which may
spoil the estimate. It is exactly condition (2.11) that ensures that the term ε|uε| can be neglected.

We stress that in some cases ε|uε| does give an order that is larger than tF (ε) so that the
function b from (2.7) is not the right norming function. This effect can be observed in some
examples below. In particular, this happens for processes of bounded variation with non-zero
drift.

Proposition 2.2. Let X be a Lévy process with bounded variation and non-vanishing effective
drift, that is,

∫
[−1,1] |x|�(dx) < ∞ and c := γ − ∫ 1

−1 x�(dx) �= 0. Then

lim
t→0

‖X‖t

t
= |c| a.s.

The proof of this proposition is based on classical arguments rather than any connection to
small deviations.
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3. Explicit LIL for Lévy processes

In this section, we collect concrete Lévy processes for which we can transform small deviation
results to an LIL. As we have seen, understanding the small deviation rates is crucial.

In this section we keep in mind that our processes in all proofs have no jumps bigger than 1
in absolute value. However, without loss of generality, in some statements we use “stable Lévy
processes” and others which presuppose unbounded jumps.

The first corollary gives us a useful variance domination principle for LIL that works for many
examples.

Corollary 3.1. Suppose X1 and X2 are independent symmetric Lévy processes, then X1 + X2

and X2 fulfill precisely the same LIL if

lim
ε→0

UX1(ε)

UX2(ε)
= 0.

Proof. This follows directly from Corollary 2.2 noticing that UX1+X2 = UX1 + UX2 . �

In the same spirit, the following corollary (recovering (3.2) in Buchmann and Maller [8])
displays the intuitive fact that a non-zero Brownian component dominates the jumps of a Lévy
process.

Corollary 3.2. If X is a Lévy process with σ �= 0, then

lim inf
t→0

‖X‖t√
t/ log | log t | = πσ√

8
a.s.

Proof. Following precisely the proof of Corollary 2.6 of Aurzada and Dereich [2], one can show
that the small deviation rates of Lévy processes with non-zero Brownian component are given by

− logP(‖X‖t < ε) ∼ π2σ 2

8
ε−2t, as ε → 0 and t → 0.

Hence, the norming function follows from Theorem 2.1. As the process is not necessar-
ily symmetric, condition (2.2) has to be checked: Since b(t) = √

tπ2/(8 log | log t |) and∫
|x|>ε

|x|�(dx) = o(ε−1), it remains to be seen that

an+1 ≤ cb(an)
2 = an/ log | logan|

for an = n−nβ
and β > 1. This can be verified by simple computations. �

Similarly to Lévy processes with non-zero Brownian component, symmetric processes of
smaller small deviation order (e.g., stable processes of smaller index) are dominated by stable
Lévy processes.
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Corollary 3.3. Let X be a symmetric α-stable Lévy process with α ∈ (0,2], and let Y be sym-
metric with UY (x) = o(x2−α). Then there is a constant 0 < cα < ∞ such that

lim inf
t→0

‖X + Y‖t

(t/ log | log t |)1/α
= lim inf

t→0

‖X‖t

(t/ log | log t |)1/α
= c1/α

α a.s.

Proof. The small deviation rate is given by

− logP(‖X‖t < ε) ∼ cαε−αt, as ε → 0 and t → 0

for some constant cα > 0 (see, e.g., page 220 in Bertoin [3]). Hence, the LIL follows from
Corollary 2.1 and Corollary 3.1. �

Remark 3.1. The constant cα in the LIL of stable Lévy processes is the unknown constant of
the small deviations for respective α-stable Lévy processes (see Taylor [25] and Proposition 3
and Theorem 6 in Chapter VIII of Bertoin [3]). The results of Aurzada and Dereich [2] entail the
following concrete bounds:

2C

2α

(
1

α
+ 1

12(2 − α)

)
< cα < 3α · 2C

(
1

α
+ 10

2 − α

)
,

where C is the constant in the Lévy measure: �(dx) = C|x|−(1+α) dx. This implies cα ∼ 2C/α,
as α → 0. We remark that, contrary to the symmetric case, the constant cα is known explicitly
for completely asymmetric stable Lévy processes; see Bertoin [4].

Let us study the case when � behaves as a regularly varying function at zero and is symmetric.
Then the following LIL are satisfied.

Corollary 3.4. Let X be a Lévy process with triplet (0,0,�) with � being symmetric and

�̄(ε) ≈ ε−α| log ε|−γ , as ε → 0,

with 0 < α < 2 or α = 2, γ > 1. Then

lim inf
t→0

‖X‖t

b(t)
∈ (0,∞) a.s.

with

b(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
t | log t |−γ

log | log t |
)1/α

, 0 < α < 2,

(
t | log t |1−γ

log | log t |
)1/2

, α = 2, γ > 1.

Proof. The corollary follows from Theorem 2.1. The required small deviation estimate,

− logP(‖X‖t < ε) ≈
{

ε−α| log ε|−γ t, 0 < α < 2,

ε−2| log ε|1−γ t, α = 2, γ > 1,
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as ε → 0 and t → 0, is obtained from Proposition 2.1 (cf. Example 2.2 in Aurzada and Dereich
[2] for t = 1). Since we deal with a symmetric process, condition (2.11) is trivially satisfied due
to uε = 0. �

Having discussed the α-stable like cases, we now consider Lévy processes with polynomial
tails near zero of different exponents. The technique used for this example can be extended to
any case with essentially regularly varying Lévy measure at zero. Let X be a Lévy process with
triplet (γ,0,�), where � is given by

�(dx)

dx
= C11(0,1](x)

x1+α1
+ C21[−1,0)(x)

(−x)1+α2
, (3.1)

with 2 > α1 ≥ α2 and C1,C2 ≥ 0, C1 + C2 �= 0. We now analyze the pathwise behavior at zero
in the cases when α1 > 1, α1 = 1, and 0 < α1 < 1, respectively. The second exponent α2 can be
even negative.

Corollary 3.5. Let X be a Lévy process with triplet (γ,0,�) with � as in (3.1). Then the
following holds:

1. If α1 ≥ α2, C1 �= 0, and α1 > 1, then

lim inf
t→0

‖X‖t

(t/ log | log t |)1/α1
∈ (0,∞) a.s.

2. If α1 = α2 = 1 and C1 = C2, then

lim inf
t→0

‖X‖t

t/ log | log t | ∈ (0,∞) a.s.

3. If 1 > α1 ≥ α2 and the effective drift does not vanish, then

lim
t→0

‖X‖t

t
= |c| a.s.

Proof. Parts 1 and 2 follow from Theorem 2.1. The required small deviation estimates,

− logP(‖X‖t < ε) ≈ ε−α1 t

for ε → 0 and t → 0, are obtained from Proposition 2.1 (cf. Corollary 2.7, 2.8 and 2.9 of Aurzada
and Dereich [2] for t = 1; note that uε ≈ ε−1 in all cases). One can easily check condition (2.11).

In part 3 the process is of bounded variation, so that the claim is included in Proposition 2.2.
�

We now come to Lévy processes obtained from Brownian motion by subordination, that is,
Xt = σBAt , where B is a Brownian motion independent of the subordinator A. In this case,
the resulting Lévy process is symmetric and the small deviation asymptotics is governed by the
truncated variance U from (2.5).
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Corollary 3.6. Let B be a Brownian motion independent of the subordinator A, where A has
Laplace exponent 
. For λ > 0 we set bλ(t) := F−1(

log | log t |
λt

) with

F(ε) := 
(σ 2ε−2) + γAσ 2ε−2.

Then, for some λ1, λ2 > 0,

1 ≤ lim inf
t→0

‖X‖t

bλ1(t)
and lim inf

t→0

‖X‖t

bλ2(t)
≤ 1 a.s.

In particular, if γA = 0 and 
 is regularly varying with positive exponent, we have

lim inf
t→0

‖X‖t

(
−1(log | log t |/t))−1/2
∈ (0,∞) a.s.

Proof. The corollary follows from Theorem 2.1 with the small deviation estimate from Proposi-
tion 2.1,

− logP(‖X‖t ≤ ε) ≈ (

(σ 2ε−2) + γAσ 2ε−2)t,

as ε → 0 and t → 0 (cf. Example 2.13 of Aurzada and Dereich [2] for t = 1 and note the misprint
there). Condition (2.2) is trivially fulfilled as the process is symmetric. �

For a more specific example, in particular, exhibiting exotic small time behavior, we choose
the subordinator A to be a Gamma process. Then one defines the so called Variance-Gamma
process as

Xt = σBAt + μAt

for some constants σ �= 0 and μ ∈ R.

Corollary 3.7. Let X be a Variance-Gamma process; then for μ = 0 there are some constants
0 < λ1 ≤ λ2 < ∞ such that

1 ≤ lim inf
t→0

‖X‖t

e−λ1 log | log t |/t
and lim inf

t→0

‖X‖t

e−λ2 log | log t |/t
≤ 1 a.s., (3.2)

whereas for μ �= 0

lim inf
t→0

‖X‖t

t
= |μ|E(A1) a.s.

Proof. The second part is included in Proposition 2.2, since the process is of bounded variation
with non-zero effective drift. In the first part, the effective drift is zero, and the claim follows
from Theorem 2.1. The small deviation estimate,

− logP(‖X‖t ≤ ε) ≈ t | log ε|, as ε → 0 and t → 0,

follows from Proposition 2.1 (cf. Example 2.12 of Aurzada and Dereich [2] for t = 1). �
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In the first case of the previous corollary, the dependence of good small deviation estimates
and good LIL becomes transparant. The fact that we cannot specify the constants λ1, λ2 in (3.2)
is only caused by the weak asymptotics for the small deviation estimate as we do not lose any
further constants in the transfer of small deviations to the LIL. If one does not have more control
on the constants λ1, λ2, the understanding of the precise small time behavior of X is far from
optimal as the error enters exponentially.

4. Proofs

We start with a lemma which shows that the small deviation order is at least as large as the term
induced by the variance, defined in (2.5).

Lemma 4.1. Let ε > 0, and let X be a Lévy process with Lévy measure concentrated on [−ε, ε],
then

P(‖X‖t ≤ ε/2) ≤ exp

(
−ε−2

(∫ ε

−ε

x2�(dx) + σ 2
)

t
/

12 + 1

)
for t ≥ 0.

Proof. We proceed similarly to Lemma 4.2 in Aurzada and Dereich [2]. Let τ be the first exit
time of X out of [−ε, ε]. Then, by Wald’s identity,

4ε2 ≥ lim sup
t→∞

E[X2
t∧τ ] ≥ lim sup

t→∞
var[Xt∧τ ]

= lim sup
t→∞

(∫ ε

−ε

x2�(dx) + σ 2
)

E[t ∧ τ ] =
(∫ ε

−ε

x2�(dx) + σ 2
)

E[τ ].

Therefore,

P

(
τ ≥ 8ε2/(∫ ε

−ε

x2�(dx) + σ 2
))

≤ (
∫ ε

−ε
x2�(dx) + σ 2)E[τ ]

8ε2
≤ 1

2
.

Let n := �t (∫ ε

−ε
x2�(dx) + σ 2)/(8ε2)�, and set ti := 8iε2/(

∫ ε

−ε
x2�(dx) + σ 2), i = 0, . . . , n.

Then

P(‖X‖t ≤ ε/2) ≤ P

(
∀i = 0, . . . , n − 1: sup

s∈[ti ,ti+1)

|Xs − Xti | ≤ ε
)

= P(τ ≥ t1)
n ≤ 2−n.

�

This shows that the small deviation order is always at least as large as the term induced by the
truncated variance process. This fact will be needed later on.

Lemma 4.2. Let F be a function that increases to infinity at zero. If, for some Lévy process X,
for t ≤ t0 and ε < ε0,

− logP(‖X‖t ≤ ε) ≤ F(ε)t,
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then, for some absolute constant c > 0 and all ε > 0 small enough,

ε−2U(ε) ≤ c
(
F(ε) + 1

)
.

Proof. We use the assumption together with the fact that if ‖X‖t ≤ ε, then X must not have
jumps larger than 2ε and the previous lemma,

e−F(ε)t ≤ P(‖X‖t ≤ ε) = e−�̄(2ε)t
P(‖X′‖t ≤ ε) ≤ e−�̄(2ε)te−(2ε)−2(

∫ 2ε
−2ε x2�(dx)+σ 2)t/12+1,

where X′ has Lévy measure � restricted to [−2ε,2ε]. Noting that Lemma 5.1 of Aurzada and
Dereich [2] implies that U(ε)/ε2 ≈ U(2ε)/(2ε)2, the statement of the lemma is proved. �

The lower bound in the LIL comes from the following lemma.

Lemma 4.3. Let F be a function that increases to infinity at zero such that, for all t ≤ t0 and
ε ≤ ε0,

λF(ε)t ≤ − logP(‖X‖t ≤ ε),

and, for λ > 0, we set bλ(t) := F−1(
log | log t |

λt
). Then, for any λ′ < λ,

1 ≤ lim inf
t→0

‖X‖t

bλ′(t)
a.s.

Proof. For any λ′ < λ, we can find 0 < r < 1 such that 1 < λr/λ′. Note that

∑
n

P
(‖X‖rn+1 ≤ bλ′(rn)

)
< ∞

since

− logP
(‖X‖rn+1 ≤ bλ′(rn)

) ≥ λF(bλ′(rn))rnr = λ
r

λ′ log | log rn| = lognrλ/λ′ + const. (4.1)

Hence, by the Borel–Cantelli lemma,

{n: ‖X‖rn+1 ≤ bλ′(rn)}
is almost surely a finite set. Thus, for each path ω, we have that, for any n ≥ n0(ω) and any
t ∈ [rn+1, rn),

‖X‖t

bλ′(t)
≥ ‖X‖rn+1

bλ′(rn)
≥ 1,

as bλ′ is an increasing function. We take lim inft→0 to obtain the statement. �

The proof of the upper bound in the LIL requires the following lemma.
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Lemma 4.4. Let F be a function that increases to infinity at zero such that for all t ≤ t0 and
ε ≤ ε0

− logP(‖X‖t ≤ ε) ≤ λF(ε)t

and, for λ > 0, set bλ(t) := F−1(
log | log t |

λt
). Assume that

lim sup
n→∞

‖X‖
(n+1)−(n+1)β

bλ(n−nβ
)

= 0 a.s. (4.2)

for all β > 1. Then, for any λ′ > λ,

lim inf
t→0

‖X‖t

bλ′(t)
≤ 1 a.s. (4.3)

Proof. For λ′ > λ, we choose β > 1 such that λ′ > λβ . First note that (4.2) implies

lim sup
n→∞

‖X‖
(n+1)−(n+1)β

bλ′(n−nβ
)

= 0 a.s., (4.4)

as bλ(t) is an increasing function in λ for fixed t ≥ 0. Using the Lévy property, we see the
following:

∑
n

P

(
sup

(n+1)−(n+1)β ≤t<n−nβ

∣∣Xt − X
(n+1)−(n+1)β

∣∣ ≤ bλ′(n−nβ

)
)

=
∑
n

P
(‖X‖

n−nβ −(n+1)−(n+1)β ≤ bλ′(n−nβ

)
)

≥
∑
n

P
(‖X‖

n−nβ ≤ bλ′(n−nβ

)
) = ∞.

The last step follows as in (4.1) since now λβ/λ′ < 1. The Borel–Cantelli lemma shows that the
sequence of independent events

An =
{

sup
(n+1)−(n+1)β ≤t<n−nβ

∣∣Xt − X
(n+1)−(n+1)β

∣∣ ≤ bλ′(n−nβ

)
}

satisfies P(An i.o.) = 1. To reduce to the supremum, note that

‖X‖
n−nβ

bλ′(n−nβ
)

≤
sup

(n+1)−(n+1)β ≤t<n−nβ |Xt − X
(n+1)−(n+1)β |

bλ′(n−nβ
)

+
2‖X‖

(n+1)−(n+1)β

bλ′(n−nβ
)

,

and therefore, by (4.4),

lim inf
n→∞

‖X‖
n−nβ

bλ′(n−nβ
)

≤ lim inf
n→∞

sup
(n+1)−(n+1)β ≤t<n−nβ |Xt − X

n−(n+1)β |
bλ′(n−nβ

)
≤ 1.
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This shows (4.3). �

Now we are in position to prove Theorem 2.1. For a detailed analysis of the lim sup case, we
refer to Savov [20].

Proof of Theorem 2.1. The claim follows from Lemmas 4.3 and 4.4. To verify the use of
Lemma 4.4 we still need to check that condition (4.2) holds for all β > 1.

We fix β > 1 and λ′
2 > λ2. Since λ′

2 is fixed, we set b := bλ′
2

in order to increase readability.
We define the auxiliary function

h(t) = b(φ(t)),

where φ(t) is chosen such that φ(( t
t+1 )((t+1)/t)β ) = t1/tβ and φ(0) = 0. Note that φ is increasing

and that φ(s−sβ
) = (s − 1)−(s−1)β . We also do not record that φ and h depend on β and λ′

2.
Step 1: We show that

∫ 1/2

0
�̄(h(t))dt < ∞. (4.5)

First, by the definition of h and a change of variables, we obtain

∫ 1/2

0
�̄(h(t))dt

=
∫ C(β)

0
�̄(b(ss−β

))
d(s/(s + 1))((s+1)/s)β

ds

=
∫ C(β)

0
�̄(b(ss−β

))

(
s

s + 1

)((s+1)/s)β (
s + 1

s

)β−1

s−2(1 − β log
(
1 − (s + 1)−1))ds,

which can be estimated from above by

C

∫ C(β)

0

b2(ss−β
)�̄(b(ss−β

))

b2(ss−β
)

(
s

s + 1

)((s+1)/s)β

s−1−β | log s|ds

≤ C

∫ C(β)

0

U(b(ss−β
))

b2(ss−β
)

(
s

s + 1

)((s+1)/s)β

s−1−β | log s|ds

≤ C′
∫ C(β)

0
F(b(ss−β

))

(
s

s + 1

)((s+1)/s)β

s−1−β | log s|ds

= C′

λ

∫ C(β)

0

log | log ss−β |
ss−β

(
s

s + 1

)((s+1)/s)β

s−1−β | log s|ds

≤ C′

λ

∫ C(β)

0
s−1−β(log | log ss−β |)s((s+1)/s)β−1/sβ | log s|ds < ∞,
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where we have used x2�̄(x) ≤ x2�̄(x) + ∫ x

−x
y2�(dy) + σ 2 = U(x) ≤ cx2F(x) for some ab-

solute c > 0 by Lemma 4.2 and the definition of b.
Step 2: We denote by

An := {
there is at least one jump with modulus > b(n−nβ

) up to time (n + 1)−(n+1)β
}

(4.6)

and show that ∑
n

P(An) < ∞. (4.7)

This comes from (4.5). Indeed, note that h inherits the monotonicity of b and φ, and hence (4.5)
implies that

∑
n

(
(n + 1)−(n+1)β − (n + 2)−(n+2)β

)
�̄

(
h
(
(n + 1)−(n+1)β

))
(4.8)

≤
∑
n

∫ (n+1)−(n+1)β

(n+2)−(n+2)β
�̄(h(t))dt < ∞.

Using

(n + 1)−(n+1)β − (n + 2)−(n+2)β ∼ (n + 1)−(n+1)β ,

b(n−nβ

) = h
(
(n + 1)−(n+1)β

)
,

and that the sequence (n + 1)−(n+1)β �̄(h((n + 1)−(n+1)β )) tends to zero by (4.8), we obtain that

P(An) = 1 − e−(n+1)−(n+1)β �̄(b(n−nβ
)) ∼ (n + 1)−(n+1)β �̄

(
h
(
(n + 1)−(n+1)β

))
is summable. Therefore (4.7) is proved.

Step 3: Let us now show how to use (4.7) to deduce (4.2). Obviously, it suffices to show that

lim sup
n→∞

‖X‖
(n+1)−(n+1)β

b(n−nβ
)

< ε a.s.

for any ε > 0 and, hence, by the Borel–Cantelli lemma, it suffices to show that
∑
n

P
(‖X‖

(n+1)−(n+1)β > εb(n−nβ

)
)
< ∞.

Separating jumps of absolute value larger or smaller than b(n−nβ
), and, using the definition of

An in (4.6), we obtain that
∑
n

P
(‖X‖

(n+1)−(n+1)β > εb(n−nβ

)
)

=
∑
n

P
(‖X‖

(n+1)−(n+1)β > εb(n−nβ

);Ac
n

) +
∑
n

P
(‖X‖

(n+1)−(n+1)β > εb(n−nβ

);An

)
,



Chung-type LIL for Lévy processes at zero 131

which is bounded from above by
∑
n

P
(‖X‖

(n+1)−(n+1)β > εb(n−nβ

)|Ac
n

) · P(Ac
n) +

∑
n

P(An).

The second term is finite by (4.7); and the first term is bounded by
∑
n

P
(‖X‖

(n+1)−(n+1)β > εb(n−nβ

)|Ac
n

)
. (4.9)

To estimate this sum note that conditionally on Ac
n, Xt

d= Xt(n), where X(n) differs from X only

by removing jumps of size larger than |b(n−nβ
)|. Clearly, by Wald’s identity,

var(Xt (n)) = t

(∫ b(n−nβ
)

−b(n−nβ
)

y2�(dy) + σ 2
)

≤ tU(b(n−nβ

)). (4.10)

Note that
∣∣EX

(n+1)−(n+1)β (n)
∣∣ = (n + 1)−(n+1)β

∣∣∣∣
∫

|x|>b(n−nβ
)

x�(dx) − γ

∣∣∣∣.
Therefore, by assumption (2.2), taking also into account that |EXt(n)| = t |EX1(n)|, we obtain

sup
t≤(n+1)−(n+1)β

|EXt(n)| = ∣∣EX
(n+1)−(n+1)β (n)

∣∣ = o(b(n−nβ

)).

Using the previous relation (first step), Doob’s martingale inequality (second step), (4.10) (third
step), Lemma 4.2 (fourth step) and the definition of b (fifth step), we are led to the upper bound
of the term in (4.9),

∑
n

P
(‖X(n)‖

(n+1)−(n+1)β > εb(n−nβ

)
)

≤
∑
n

P

(
‖X(n) − EX(n)‖

(n+1)−(n+1)β >
1

2
εb(n−nβ

)

)

≤
∑
n

4E|X
(n+1)−(n+1)β (n) − EX

(n+1)−(n+1)β (n)|2
(ε/2)2b(n−nβ

)2

≤
∑
n

4(n + 1)−(n+1)β U(b(n−nβ
))

(ε/2)2b(n−nβ
)2

≤
∑
n

4(n + 1)−(n+1)β C · F(b(n−nβ
))

(ε/2)2

= C′

λε2

∑
n

(n + 1)−(n+1)β log | logn−nβ |
n−nβ

< ∞,
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where we used the definition of b in the last step. Thus, the term in (4.9) is finite, as required.
�

Proof of Corollary 2.1. If F is regularly varying so is bλ; see Bingham, Goldie and Teugels [6],
Proposition 1.5.7. Now note that if F is regularly varying with exponent −α < 0, we have

bλ(t) = F−1(log | log t |/λt)

∼ λ1/αF−1(log | log t |/t)

= λ1/αb1(t).

Hence, the statement of Theorem 2.1 reads

(λ′
1)

1/α ≤ lim inf
t→0

‖X‖t

b1(t)
≤ (λ′

2)
1/α a.s.

for all λ′
1 < λ1 and λ′

2 > λ2. Taking the limits on both sides, we obtain

(λ1)
1/α ≤ lim inf

t→0

‖X‖t

b1(t)
≤ (λ2)

1/α a.s.

Applying the regular variation argument in the reverse direction yields the claim. �

Proof of Corollary 2.2. This follows directly from Theorem 2.1. The bounds on the constants
can be obtained from the absolute constants in Proposition 2.1. �

Proof of Theorem 2.2. Lemma 4.3 gives the lower LIL of the theorem. Unfortunately, the argu-
ments for the proof of Theorem 2.1 do not apply here. Hence, for the reverse direction, we show
more directly that the given norming function of the LIL implies the rate function of the small
deviations. The following arguments go back to Kesten. The proof is via contradiction, assuming
that

lim inf
t→0

‖X‖t

bλ′
2
(t)

>
2

C
+ δ (4.11)

for some δ > 0 and λ′
2 > λ2. We show that under this assumption we can derive, for sufficiently

large l, the estimates

1 ≥
∑
n≥l

P

( ‖X‖rj−rn

bλ′
2
(rj − rn)

>
2

C
; for all l ≤ j ≤ n − 1

)
P
(‖X‖rn ≤ bλ′

2
(rn)

)
(4.12)

≥ 1

2

∑
n≥l

P
(‖X‖rn ≤ bλ′

2
(rn)

)
(4.13)

which is a contradiction as, by the choice of bλ′
2

and the small deviation rate (2.6), the sum in
(4.13) is infinite. First, let us derive estimate (4.12) for which Assumption (4.11) is not needed.
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For any fixed integer l partitioning the probability space, we obtain

1 ≥
∑
n≥l

P
(‖X‖rj > bλ′

2
(rj ) for all l ≤ j ≤ n − 1; ‖X‖rn ≤ bλ′

2
(rn)

)

≥
∑
n≥l

P

(
sup

rn≤s<rj

|Xs | > bλ′
2
(rj ) for all l ≤ j ≤ n − 1; ‖X‖rn ≤ bλ′

2
(rn)

)
.

In order to employ the independence of increments of X we estimate from below by

∑
n≥l

P

(
sup

rn≤s<rj

|Xs − Xrn | > 2bλ′
2
(rj ) for all l ≤ j ≤ n − 1; ‖X‖rn ≤ bλ′

2
(rn)

)

which equals
∑
n≥l

P
(‖X‖rj−rn > 2bλ′

2
(rj ) for all l ≤ j ≤ n − 1

)
P
(‖X‖rn ≤ bλ′

2
(rn)

)

=
∑
n≥l

P

( ‖X‖rj−rn

bλ′
2
(rj − rn)

> 2
bλ′

2
(rj )

bλ′
2
(rj − rn)

for all l ≤ j ≤ n − 1

)
P
(‖X‖rn ≤ bλ′

2
(rn)

)
.

By the monotonicity of bλ′
2
, this yields the lower bound

∑
n≥l

P

( ‖X‖rj−rn

bλ′
2
(rj − rn)

> 2
bλ′

2
(rj )

bλ′
2
(rj − rj+1)

; for all l ≤ j ≤ n − 1

)
P
(‖X‖rn ≤ bλ′

2
(rn)

)
.

Finally, we utilize the regularity of bλ′
2

from (2.8) to obtain the lower bound

∑
n≥l

P

( ‖X‖rj−rn

bλ′
2
(rj − rn)

>
2

C
; for all l ≤ j ≤ n − 1

)
P
(‖X‖rn ≤ bλ′

2
(rn)

)
.

As required, we derived Estimate (4.12).
Assuming (4.11) we now derive Estimate (4.13). The assumption directly shows that

lim
t→0

P

(⋂
s≤t

{‖X‖s ≥ 2C−1bλ′
2
(s)}

)
= 1

which implies that we may choose l large enough such that

P

( ‖X‖rj−rn

bλ′
2
(rj − rn)

>
2

C
; for all l ≤ j ≤ n − 1

)
≥ P

(⋂
s≤rl

{‖X‖s ≥ 2C−1bλ′
2
(s)}

)
≥ 1

2
.

Hence, we derived estimate (4.13) so that the proof is complete. �

Proof of Corollary 2.3. This is completely analogous to the proof of Corollary 2.1. �
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Proof of Corollary 2.4. We use Proposition 2.1 and Theorem 2.1. In order to do so, we have to
see that the term εuε in (2.12) has no influence on the order. We apply Lemma 4.3 and follow
the proof of Theorem 2.2 with the scaling

t = rn and ε = b(rn)

and with the sequence n−nβ
, respectively. Therefore, it is sufficient to show that

εuε = o(tF (ε))

with the above scalings of t and ε. Since ε = b(t) and thus t ∼ F(ε)−1 log logF(ε), we need to
show that

εuε = o(log logF(ε)).

As this is precisely what we stated in condition (2.11), the proof is complete. �

Proof of Proposition 2.2. As X is of bounded variation, the representation

Xt = A1
t − A2

t + ct

holds with two independent pure jump subordinators A1,A2. Next, we use the simple observation

|Xt |
t

≤ ‖X‖t

t
≤ ‖A1‖t + ‖A2‖t + |c|t

t
= A1

t

t
+ A2

t

t
+ |c|

to conclude the proof. The left-hand side converges to |c|, as X has bounded variation (see
Theorem 39 of Doney [10]). Finally, the right-hand side converges to |c| as |Ai

t |/t converge at
zero almost surely to their drift (see Proposition 5 of Doney [10]). �
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