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Chen, Fitzsimmons, Kuwae and Zhang (Ann. Probab. 36 (2008) 931–970) have established an Itô formula
consisting in the development of F(u(X)) for a symmetric Markov process X, a function u in the Dirichlet
space of X and any C 2-function F . We give here an extension of this formula for u locally in the Dirichlet
space of X and F admitting a locally bounded Radon–Nikodym derivative. This formula has some analogies
with various extended Itô formulas for semi-martingales using the local time stochastic calculus. But here
the part of the local time is played by a process (�a

t , a ∈ R, t ≥ 0) defined thanks to Nakao’s operator
(Z. Wahrsch. Verw. Gebiete 68 (1985) 557–578).
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1. Introduction and main results

For any real-valued semimartingale Y = (Y0 + Mt + Nt)t≥0 (M martingale and N bounded
variation process) and any function F in C 2(R), the classical Itô formula

F(Yt ) = F(Y0) +
∫ t

0
F ′(Ys)dMs +

∫ t

0
F ′(Ys)dNs + 1

2

∫ t

0
F ′′(Ys)d〈Mc〉s

(1.1)
+

∑
s≤t

{F(Ys) − F(Ys−) − F ′(Ys−)�Ys}

provides both an explicit expansion of (F (Yt ))t≥0 and its stochastic structure of semimartingale.
Let now E be a locally compact separable metric space , m a positive Radon measure on E,

and X a m-symmetric Hunt process. Under the assumption that the associated Dirichlet space
(E , F ) of X is regular, Fukushima has showed that for any function u in F , the additive functional
(abbreviated as AF) (u(Xt ) − u(X0))t≥0 admits the following unique decomposition:

u(Xt ) = u(X0) + Mu
t + Nu

t Px-a.e. for quasi-every x in E, (1.2)

where Mu is a martingale AF of finite energy and Nu is a continuous AF of zero energy.
Although u(X) is not in general a semimartingale, Nakao [14] and Chen et al. [3] have proved

that (1.1) is still valid with u(X), Mu and Nu replacing, respectively, Y , M and N . This is
done thanks to the construction of a new stochastic integral with respect to Nu, which takes the
place of the well-defined Lebesgue–Stieltjes integral for the bounded variation processes. As the
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classical Itô formula (1.1), this Itô formula for symmetric Markov processes requires the use of
C 2-functions.

For the semimartingale case, there exist extended versions of (1.1) relaxing this regularity con-
dition. This extensions are based on the replacement of the fourth and fifth terms of the right-hand
side of (1.1) by an alternative expression requiring only the existence of F ′ and some integrabil-
ity condition on F ′ (see, e.g., [7–9]). The integrability condition insures also the existence of the
other terms of (1.1).

The question of relaxing the regularity condition on F in the formula of Nakao and Chen et
al. is a more complex question. Indeed the integral

∫ t

0 F ′(u(Xs))dNu
s is well-defined only when

F ′(u) belongs to Floc, the set of functions locally in F . As in [3], u ∈ Floc means that there exists
a nest of finely open Borel sets {Gk}k∈N and a sequence {uk}k∈N ⊂ F such that f = fk q.e. on
Gk . As an example, in the case X is a Brownian motion, this condition implies that the second
derivative F ′′ exists at least as a weak derivative. Nevertheless, in the general case, we know that
for any function F element of C 1(R) with bounded derivative, F(u) belongs to F and the process
F(u(X)) hence admits a Fukushima decomposition. We can thus hope to obtain an Itô formula
for C 1-functions F that would express each element of the decomposition of F(u(X)) in terms
of F , u, Nu and Mu. Our purpose here is to establish such a formula. The obtained formula is
actually established for the functions F with locally bounded Radon Nikodym derivative and u

element of Floc.
Before introducing this extended Itô formula for symmetric Markov processes, remark that

one can easily obtain an extended Itô formula in case u(X) is a semimartingale. Indeed, under
the assumption that X has an infinite life time, we note (see (3.4) in [3]) that u(X) is then a
reversible semimartingale and that one can hence make use of [7] or [10] to develop F(u(X)).
But in general, u(X) is not a semimartingale.

The extended Itô formula for symmetric Markov processes presented here is based on the
construction for a fixed t > 0, of a stochastic integral of deterministic functions with respect to
the process (�a

t (u))a∈R, defined as follows.
For u in F , let Mu,c be the continuous part of Mu. For any real a and t ≥ 0, we set

Za
t (u) =

∫ t

0
1{u(Xs)≤a} dMu,c

s

and define �a by

�a(u) = (�a
t (u))t≥0 = (�(Za(u))t )t≥0 = �(Za(u)),

where � is the operator on the space of martingale AF with finite energy constructed by Nakao
[14] (its definition is recalled in Section 2). The process (�a

t (u))t≥0 is hence an additive func-
tional with zero energy.

In Section 2, we will see that the definition of �a(u) can be extended to functions u in Floc. In
that case, the process Mu,c is a continuous martingale AF on [[0, ζ [[ locally of finite energy and
the process (�a

t (u))t≥0 is an AF on [[0, ζ [[ locally with zero energy.
As shown by the Tanaka formula (1.4) below, the doubly-indexed process (�a

t (u), a ∈ R, t ≥
0) plays almost the part of a local time process for u(X). In Section 5, this analogy with local
time will be fully clarified under some stronger assumption on u.
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To introduce the obtained Itô formula, we need the objects presented by the following lemma.
We denote by (N(x,dy),H) a Lévy system for X (See Definition A.3.7 of [12]), by νH the
Revuz’s measure of H and by ζ the life time of X.

Lemma 1.1. Let u ∈ F (resp., u ∈ Floc).There exists a sequence (εn)n∈N of positive real numbers
converging to 0 and such that for any locally absolutely continuous function F from R into R

with a locally bounded Radon–Nikodym derivative, the following two processes are well-defined.

Md
t (F,u) = lim

n→∞

{∑
s≤t

{F(u(Xs)) − F(u(Xs−))}1{εn<|u(Xs)−u(Xs−)|<1}1{s<ζ }

−
∫ t

0

∫
{εn<|u(y)−u(Xs)|<1}

{F(u(y)) − F(u(Xs))}N(Xs,dy)dHs

}

At(F,u) = lim
n→∞

∫ t

0

∫
{εn<|u(y)−u(Xs)|<1}

{F(u(y)) − F(u(Xs))}N(Xs,dy)dHs.

The above limits are uniform on any compact of [0,∞) (resp., [0, ζ )) Px -a.e. for q.e. x ∈ E.
Moreover, (Md

t (F,u))t≥0 is a local martingale AF (resp., AF on [[0, ζ [[) with locally finite energy
and (At (F,u))t≥0 is a continuous AF (resp., AF on [[0, ζ [[) locally with 0 energy.

With the notation of Lemma 1.1, we have the following Itô formula.

Theorem 1.2. Let u ∈ F (resp., u ∈ Floc). For any locally absolutely continuous function F

from R into R with a locally bounded Radon–Nikodym derivative F ′ such that F(0) = 0, the
process (F (u(Xt ), t ∈ [0,∞)) (resp., t ∈ [0, ζ )) admits the following decomposition Px -a.e. for
q.e. x ∈ E

F(u(Xt )) = F(u(X0)) + Mt(F,u) + Qt(F,u) + Vt (F,u), (1.3)

where M(F,u) is a local martingale AF (resp., AF on [[0, ζ [[) locally of finite energy, Q(F,u) is
an AF (resp., AF on [[0, ζ [[) locally of zero energy, and V (F,u) is a bounded variation process,
respectively, given by:

Mt(F,u) = Md
t (F,u) +

∫ t

0
F ′(u(Xs))dMu,c

s ,

Qt (F,u) =
∫

R

F ′(z)dz�
z
t (u) + At(F,u),

Vt (F,u) =
∑
s≤t

{F(u(Xs)) − F(u(Xs−))}1{|u(Xs)−u(Xs−)|≥1}1{s<ξ}

− F(u(Xξ−))1{t≥ξ}.

Note that for u element of F and F in C 2(R), (1.3) provides the Itô formula of Chen et al.
[3] together with the identity connecting integration with respect to (Nu

t )t≥0 and integration with
respect to (�a

t (u))a∈R for smooth enough functions.
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As a consequence of Theorem 1.2, we obtain the following Tanaka formula for �a
t :

�a
t (u) = (

u(X0) − a
)− − (

u(Xt) − a
)− +

∫ t

0
1{u(Xs−)≤a} dMu,c

s

(1.4)
+ lim

n→∞
∑
s≤t

{(
u(Xs) − a

)− − (
u(Xs−) − a

)−}
1{|u(Xs)−u(Xs−)|>εn},

where (εn)n∈N is the sequence of Lemma 1.1 and the limit is uniform on any compact Px -a.e. for
q.e. x ∈ E. Using Tanaka’s formula for semi-martingales (see [15]), we obtain that when u(X)

is a martingale, −2�a(u) is the local time process of u(X) at level a. This is the case when
u(x) = x and X is a symmetric Lévy process.

Formula (1.3) is hence reminiscent of various extensions of Itô formula involving stochastic
integrals with respect to local time, as for example the extensions given in [2] for some martin-
gales, [5] for the Brownian Motion, [6] and [9] for Lévy processes with Brownian component
and [16] for Lévy processes without Brownian component. Note that in case the martingale part
of u(X) has no continuous component, the process �a(u) is identically equal to 0. But (1.3) still
represents an improvement of Fukushima’s decomposition since (1.3) requires only u in Floc and
F with a locally bounded Radon–Nikodym derivative.

Integration with respect to (�a
t (u))a∈R is constructed in Section 3 and the Itô formula (1.3) is

established in Section 4.
In Section 5, we will show that, when �(Mu,c) is of bounded variation, u(X) admits a local

time process (La
t , a ∈ R, t < ζ ) satisfying an occupation time formula of the same type as the

occupation time formula for the semimartingales and in this case, the process of locally zero
energy Q(F,u) can be rewritten as:

Qt(F,u) = −1

2

∫
R

F ′(z)dzL
z
t +

∫ t

0
F ′(u(Xs))d�(Mu,c)s + At(F,u), t < ζ.

Finally in Section 6 we give a multidimensional version of Theorem 1.2.

2. Preliminaries on m-symmetric Hunt processes

Let E be a locally compact separable metric space, m a positive Radon measure on E such that
Supp[m] = E, � be a point outside E and E� = E ∪ �. Let X = {�, F∞, Ft ,Xt , θt , ζ,Px, x ∈
E�, t ≥ 0} be a m-symmetric Hunt Processes such that its associated Dirichlet space (E , F ) is
regular on L2(E;m). We may take as � the space D([0,∞[→ E�) of càdlàg functions from
[0,∞[ to E�, for which � is a cemetery (i.e., if ω(t) = �, then ω(s) = � for any s > t) and
denote by θt the operator ω(s) → θtω(s) := ω(t + s). Every element u of F admits a quasi-
continuous m-version. In the sequel, the functions in F are always represented by their quasi-
continuous m-versions. We use the term “quasi everywhere” or “q.e.” to mean “except on an
exceptional set.”

We say that a subset � of � is a defining set of a process A = (At )t≥0 with values in [−∞,∞],
if for any ω ∈ �, t, s ≥ 0: θt� ⊂ �, A0(ω) = 0, A.(ω) is càdlàg and finite on [0, ζ [,

At+s(ω) = At(ω) + As(θt (ω))
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and At(ω�) = 0, where ω� is the constant path equal to �. A (Ft )-adapted process is an additive
functional if it has a defining set � ∈ F∞ admitting an exceptional set, that is, Px(�) = 1 for q.e.
x ∈ E.

An (Ft )-adapted process is an additive functional on [[0, ζ [[ or a local additive functional
if it satisfies all the conditions to be an additive functional except that the additive property
At+s(ω) = At(ω) + As(θt (ω)) is required only for t + s < ζ(ω).

Let F m∞ (resp., F m
t ) be the Pm-completion of σ {Xs,0 ≤ s < ∞} (resp., σ {Xs,0 ≤ s ≤ t}).

An (Ft )-adapted process is an additive functional admitting m-null set if it has a defining set
� ∈ F m∞ such that Px(�) = 1 for m-a.e. x ∈ E.

The abbreviations AF, PAF, CAF, PCAF and MAF stand respectively for “additive functional,”
“positive additive functional,” “continuous additive functional,” “positive continuous additive
functional” and “martingale additive functional,” respectively. Let

◦
M and Nc denote, respec-

tively, the space of MAF’s of finite energy and the space of continuous additive functionals of
zero energy N such that Ex(|Nt |) < ∞ q.e. for each t > 0. Moreover,

◦
Mc denotes the subset of

continuous elements of
◦

M and
◦

Md denotes the subset of purely discontinuous elements of
◦

M.
For u ∈ F , the elements Mu and Nu of the Fukushima’s decomposition (1.2) are elements of,

respectively,
◦

M and Nc. We denote by Mu,c , Mu,j and Mu,κ , respectively, the continuous part,
the jump part and the killing part of Mu (see Section 5.3 of [12]). This three martingales are
elements of

◦
M.

Let � the linear operator from
◦

M to Nc constructed by Nakao [14] in the following way. It is
shown in [14] that for every Z ∈ ◦

M, there is a unique w ∈ F such that

E (w,v) + (w,v)m = 1
2μ〈Mv+Mv,κ ,Z〉(E) for every v ∈ F ,

where (w,v)m = ∫
E

w(x)v(x)m(dx) and μ〈Mv+Mv,κ ,Z〉 is the smooth signed measure corre-
sponding to 〈Mv + Mv,κ,Z〉 by the Revuz correspondence. The process �(Z) is then defined
by:

�t(Z) = Nw
t −

∫ t

0
w(Xs)ds.

This operator satisfies: �(Mu) = Nu for u ∈ F . Thus Nu admits the decomposition:

Nu = cNu + jNu + κNu, (2.1)

where for p ∈ {c, j, κ}: pNu = �(Mu,p).
For a Borel subset B of E ∪ {�}, it is known that τB = inf{t > 0: Xt /∈ B} and σB = inf{t >

0: Xt ∈ B} are (Ft )-stopping times.
An increasing sequence of Borel sets {Gk} in E is called a nest if

Px

(
lim

k→∞ τGk
= ζ

)
= 1 for q.e. x ∈ E.

Let D be a class of AF’s. We say that an AF (resp., AF on [[0, ζ [[) is locally in D and write
A ∈ Dloc (resp., A ∈ Df -loc) if there exists a sequence {An} in D and an increasing sequence of
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stopping times Tn with Tn → ∞ (resp., a nest {Gn} of finely open Borel sets) such that Px -a.e.
for q.e. x ∈ E, At = An

t for t < Tn (resp., t < τGn ).
Let {An} be a sequence in D such that for k > n, Px -a.e. for q.e. x ∈ E, Ak

t = An
t for t < τGn ,

then it is clear that the process

At :=
{

An
t for t < τGn,

0 for t ≥ ζ

is a well-defined element of Df -loc. A Borel function f from E into R is said to be locally in
F (and denoted as f ∈ Floc), if there is a nest of finely open Borel sets {Gk} and a sequence
{fk}k∈N ⊂ F such that f = fk q.e. on Gk . This is equivalent to (see Lemma 3.1(ii) in [3]) there
is a nest of closed sets {Dk} and a sequence {fk}k∈N ⊂ Fb such that f = fk q.e. on Dk . For a
such f ,

M
f,c
t :=

{
M

fk,c
t for t < σE\Gk

,

0 for t ≥ lim
k→∞σE\Gk

is well defined and belongs to
◦

Mf -loc because, for n > k, M
fn,c
t = M

fk,c
t ∀t ≤ σE\Gk

Px -a.e. for
q.e. x ∈ E. Indeed, the last property is shown in Lemma 5.3.1 in [12] for τGk

instead of σE\Gk
,

we conclude with the following observation:
For a CAF A, and a Borel set G ⊂ E, Px -a.e. for q.e. x ∈ E:

At = 0 for t < τG ⇔ At = 0 for t < σE\G. (2.2)

Every f ∈ Floc admits a quasi-continuous m-version, so we may assume that all f ∈ Floc are
quasi-continuous and we set f (�) = 0.

We use the following notation for a locally bounded measurable function f and a (Ft )t≥0-
semimartingale M :

(f ∗ M)t =
∫ t

0
f (Xs−)dMs.

We will use repeatedly the following fact (see Theorem 5.6.2 in [12]):
For any F in C 1(Rd) (d is a positive integer) and u1, . . . , ud in Fb , the composite function

Fu = F(u1, . . . , ud) belongs to Floc and

MFu,c =
d∑

i=1

Fxi
(u) ∗ Mui,c. (2.3)

Chen et al. [3] have extended Nakao’s definition of the operator � to the set of locally square-
integrable MAF. We keep using the letter � for this extension without possible confusion since
thanks to Theorem 3.6 of [3] on the set

◦
M, both definitions given in [3] and [14] agree Pm-a.e. on

[[0, ζ [[. For a continuous locally square-integrable MAF M , �(M) is defined to be the following
CAF admitting m-null set on [[0, ζ [[:

�t(M) = − 1
2 (Mt + Mt ◦ rt ) for t ∈ [0, ζ [, (2.4)
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where the operator rt is defined by

rt (ω)(s) = ω((t − s)−)1{0≤s≤t} + ω(0)1{s>t} for a path ω ∈ {t < ζ }
and rt (ω) := ω� for a path ω ∈ {t ≥ ζ }.

The continuity of �(M) Pm-a.e. on [0, ζ [ is a consequence of Theorem 2.18 in [3].
For f a bounded element of F and M in

◦
M, Nakao has defined the stochastic integral of

f (X) with respect to �(M). We use here the extension of this definition set by Chen et al. [3]
for f in Floc and M continuous locally square-integrable MAF as follows:

f ∗ �(M)t =
∫ t

0
f (Xs−)d�s(M) := �t(f ∗ M) − 1

2
〈Mf,c,M〉t . (2.5)

It is a CAF admitting m-null set on [[0, ζ [[.
When M ∈ ◦

M and f ∈ Floc the integral f ∗�(M)t can be well defined Px -a.e. for q.e. x ∈ E.
In particular, the process (f ∗ �(M)t )t≥0 is a local CAF of X (Lemma 4.6 of [3]).

The argument developed by Chen et al. to write “q.e. x ∈ E” instead of “m-a.e. x ∈ E” in the
proof of their Lemma 4.6 in [3], is sufficient to establish Lemma 2.1 below.

Lemma 2.1. Let A be an AF of X (resp., AF on [[0, ζ [[). Let G be a measurable subset of E�

(resp., G ⊂ E) and � := {ω ∈ �: At ≥ 0,∀t < τG}, then Px(�) = 1 for m-a.e. x ∈ E if and only
if Px(�) = 1 for q.e. x ∈ E.

Lemma 2.2. Let {Dn} be a nest of closed sets and σ := limn→∞ σE\Dn . Let (Mn)n∈N be a

sequence of
◦

Mc such that for n < k, Px -a.e. for q.e. x ∈ E, Mn
t = Mk

t if t < σE\Dn . Define a
continuous locally square-integrable MAF M by:

Mt =
{

Mn
t on t < σE\Dn,

0 on t ≥ σ.

Then �t(M) can be well defined for all t in [0,∞) Px -a.e. for q.e. x ∈ E, by setting

�t(M) =
{

�t(M
n) on t < σE\Dn,

0 on t ≥ σ.
(2.6)

Moreover, �(M) belongs to Nc,f -loc.

For f element of Floc, (2.5) shows then that f ∗ �(M) is a well defined CAF on [[0, ζ [[.

Proof of Lemma 2.2. A consequence of the m-symmetry assumption on X is that the measure
Pm, when restricted to {t < ζ } is invariant under rt , so we have Pm-a.e. on t < ζ : Mt ◦ rt =
Mn

t ◦ rt if t ≤ τDn ◦ rt , but since Dn is closed, for any ω ∈ � and t < ζ(ω): t ≤ τDn(ω) ⇔ t ≤
τDn(rtω). Hence, it follows from (2.4) that (2.6) hold Pm-a.e. on [[0, τDn[[. This shows also, with
Lemma 2.1 that if l > n, Px -a.e. for q.e. x ∈ E: �t(M

n) = �t(M
l) for t ≤ τDn (and consequently

for t ≤ σE\Dn by (2.2)). Hence, the right-hand side of (2.6) is well defined as a CAF belongs to
Nc,f -loc. �
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Remark 2.3. Lemma 2.2 shows that for any u ∈ Floc, cNu := �(Mu,c) is an element of Nc,f -loc.

The above Lemma 2.1 and Theorem 4.1 of [3] lead to the following lemma.

Lemma 2.4. Let M be an element of
◦

M such that �(M) is of bounded variation on each
compact interval of [0, ζ [. Then for every element f of Floc, Px -a.e. q.e. for x ∈ E, on t < ζ ,∫ t

0 f (Xs)d�s(M) coincides with the Lebesgue–Stieljes integral of f (X) with respect to �(M).

For the reader’s convenience, we recall the following result which is Theorem 5.2.1 of [12]
and Theorem 3.2 of [14], the last statement can be seen directly from their proofs. By e(M), we
denote the energy of M .

Theorem 2.5. Let {Mn: n ∈ N} be a e-Cauchy sequence of
◦

M. There exists a unique element
M of

◦
M such that e(Mn − M) converges to zero. The subsequence nk such that there exists

C ∈ R+ such that for every k in N: e(M − Mnk) < C2−4k , satisfies: Px -a.e. for q.e. x ∈ E, M
nk
t

and �t(M
nk ) converge uniformly on any finite interval of t to Mt and �t(M), respectively.

3. Integration with respect to �z

We fix a function u of Floc. Let {Dk}k∈N be a nest of closed sets and (uk)k∈N be a sequence of
bounded elements of F associated to u such that u = uk q.e. on Dk . Let σ := limn→∞ σE\Dn .
For any real number a, define Za = Za(u) by

Za
t =

⎧⎨
⎩

∫ t

0
1{uk(Xs−)≤a} dMuk,c

s for t ≤ σE\Dk
,

0 for t ≥ σ.

Za is a MAF on [[0, ζ [[ locally of finite energy. In particular, when u belongs to F , Za is in
◦

Mc

for any real a. By Lemma 2.2, �(Za) is well-defined and belongs to Nc,f -loc.

Remark 3.1. For u element of F , we can choose Dk such that

σ = lim
k→∞σE\Dk

= ∞, Px -a.e. for q.e. x ∈ E. (3.1)

Indeed, in this case, take uk := (−k) ∨ u ∧ k and Gk := {x: |u(x)| < k}, then it follows from
the strict continuity of u that limk→∞ σE\Gk

= ∞ Px -a.e. for q.e. x ∈ E. Therefore, the nest of
closed sets {Fk}k∈N built in the proof of Lemma 3.1(ii) in [3] satisfies the property (3.1) and
u = uk q.e. on Fk . Choose then, {Dk} = {Fk}.

Definition 3.2. The process (�a
t , a ∈ R, t ≥ 0) is defined by �a

t = �a
t (u) = �t(Z

a).
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Consider an elementary function f , that is, there exists two finite sequences (zi)0≤i≤n and
(fi)0≤i≤n−1 of real numbers such that:

f (z) =
n−1∑
i=0

fi1(zi ,zi+1](z).

For such a function integration with respect to �t = {�z
t ; z ∈ R} is defined to be the following

CAF on [[0, ζ [[: ∫
R

f (z)dz�
z
t =

n−1∑
i=0

fi(�
zi+1
t − �

zi
t ). (3.2)

Thanks to the linearity property of the operator � we have for any elementary function f :∫
R

f (z)dz�
z
t = �t

(∫ ·

0
f (u(Xs))dMu,c

s

)
.

For any k ∈ N, we define the norm ‖ · ‖k on the set of measurable functions f from R into R

by

‖f ‖k =
(∫

E

f 2(uk(x))μ〈Muk,c〉(dx)

)1/2

. (3.3)

Let Ik be the set of measurable functions from R into R such that ‖f ‖k < ∞.
On I = ⋂

k∈N Ik , we define a distance d by setting:

d(f,g) = [f − g],
where

[f ] =
∞∑

k=1

2−k(1 ∧ ‖f ‖k). (3.4)

Note that I contains the measurable locally bounded functions and that the set of elementary
functions is dense in (I, d). Indeed, by a monotone class argument, we can show that if f is
bounded, for any n ∈ N, there exists fn elementary such that supk≤n ‖f − fn‖k ≤ 2−n. Hence,

∞∑
n=1

[f − fn] ≤
∞∑

n=1

(
n∑

k=1

2−k(1 ∧ ‖f − fn‖k) + 2−n

)
< 2.

Consequently it is sufficient to show that the set of bounded functions is dense in I . By dominated
convergence, limn→∞[f − (−n) ∨ f ∧ n] = 0 for any f ∈ I .

Let f be an element of I . The MAF Wk defined by: Wk
t = ∫ t

0 f (uk(Xs))dM
uk,c
s , has finite

energy since: e(Wk) = 1
2‖f ‖2

k . Hence,

f u ∗ Mu,c
s :=

{
f uk ∗ Muk,c

s for t < σE\Dk
,

0 for t ≥ σ,
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belongs to
◦

Mc
f -loc (

◦
Mc

loc if u ∈ F ) and by Lemma 2.2, �(f u ∗ Mu,c) is well defined and is an
element of Nc,f -loc (Nc,loc if u ∈ F ).

Theorem 3.3. The application defined by (3.2) on the set of elementary functions can be ex-
tended to the set I . This extension, denoted by

∫
f (z)dz�

z, for f in I , satisfies:

(i)
∫

f (z)dz�
z
t = �t(f u ∗ Mu,c) ∀t ≥ 0, Px -a.e. for q.e. x ∈ E.

(ii) Let (fn)n∈N be a sequence I . Assume that: [fn − f ] → 0. Then there exists a subse-
quence (fnk

)k∈N such that (
∫

fnk
(z)dz�

z
t )k∈N converges uniformly on any compact of

[0, ζ ) ([0,∞) if u ∈ F ) to
∫

f (z)dz�
z
t Px -a.e. for q.e. x ∈ E.

Proof. Elementary functions are dense in I and (i) holds for elementary functions. It is sufficient
to prove that that if [fn − f ] converge to zero, there exists a subsequence nk such that for any
p ∈ N, �(fnk

u ∗ Mu,c) converges to �(f u ∗ Mu,c) uniformly on any compact of [0, σE\Dp [.
Let nk be such that [fnk

− f ] < 2−4k and p ∈ N, hence ‖f − fnk
‖p ≤ 2p2−4k for any k > p/4

and it follows from Theorem 2.5 that �(fnk
up ∗ Mup,c) converges uniformly on any compact

to �(f up ∗ Mup,c) Px -a.e. for q.e. x ∈ E. But thanks to (2.6), �(fnk
up ∗ Mup,c) and �(f up ∗

Mup,c) agrees on t < σE\Dp with �(fnk
u ∗ Mu,c) and �(f u ∗ Mu,c), respectively, Px -a.e. for

q.e. x ∈ E. �

We finish this section with a characterization of the set I when u belongs to F . Let E (c) be
the local part in the Beurling–Deny decomposition for E (see Theorem 3.2.1 of [12]). E (c) has
the local property, hence with the same argument used to proof Theorems 5.2.1 and 5.2.3 of
[1], there exists a function U in L1(R,dx) such that for any function F in C 1 with bounded
derivatives f :

E (c)(F (u),F (u)) = 1

2

∫
R

f 2(x)U(x)dx.

Then thanks to (2.3) and Lemma 3.2.3 of [12],∫
E

f 2(u(x))μ〈Mu,c〉(dx) =
∫

R

f 2(x)U(x)dx,

hence it follows by a monotone class argument that for any measurable positive function f we
have: ∫

E

f (u(x))μ〈Mu,c〉(dx) =
∫

R

f (x)U(x)dx. (3.5)

Lemma 3.4. For u element of F , the set I coincides with the set L1
loc(R,U(x)dx), where the

function U is defined by (3.5).

Proof. For k integer, the function uk is defined be (−k) ∨ u ∧ k. Associate Uk to uk as U

is associated to u. We have then: ‖f ‖2
k = ∫

R
f 2(x)Uk(x)dx for any measurable function f .
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In order to proof Lemma 3.4, it is sufficient to prove that: Uk(x) = 1[−k,k]U(x) for a.e. x

in R.
Let f be a continuous function with support in [−k, k] and set F(x) := ∫ x

0 f (z)dz. We have
hence: F(u(x)) = F(uk(x)) for any x in E and therefore f (uk) ∗ Muk,c = f (u) ∗ Mu,c, indeed
thanks to (2.3) both martingales coincides with MFuk,c (= MFu,c).

We have therefore:
∫
E

f 2(uk(x))μ〈Muk,c〉(dx) = ∫
E

f 2(u(x))μ〈Mu,c〉(dx). This shows that∫
R

f 2(x)Uk(x)dx =
∫

R

f 2(x)U(x)dx

for any function f continuous with compact support in [−k, k], hence Uk(x) = U(x) for a.e. x

in [−k, k].
Now if g is a continuous positive function with support in R \ [−k, k] then:∫

R

g(x)Uk(x)dx =
∫

E

g(uk(x))μ〈Muk,c〉(dx) = 0

therefore Uk(x) = 0 for a.e. x in R \ [−k, k]. This finishes the proof. �

4. Itô formula

In this section, we first prove Lemma 1.1 and then Theorem 1.2.

Proof of Lemma 1.1. Let u be an element of Floc, thanks to the proof of Lemma 3.1 of [3],
there exists a nest of finely open Borel sets {Gk}k∈N and a sequence {uk}k∈N in F such that
u(x) = uk(x) for q.e. x ∈ Gk and ‖uk‖∞ < k. Let φ ∈ L1(E;m) such that 0 < φ ≤ 1 and for any
k let

hk(x) := Ex

(∫ σE\Gk

0
e−tφ(Xt )dt

)
,

Gk := {x ∈ E: hk(x) > k−1} and gk(x) := 1 ∧ (khk(x)). For any k, Gk ⊂ Gk , thus u(x) = uk(x)

for q.e. x ∈ Gk . Moreover, by the proof of Lemma 3.8 of [13], {Gk}k∈N is a nest and we have:
0 ≤ gk ≤ 1, gk(x) = 1 q.e. on Gk , gk(x) = 0 on E \ Gk . Since hk is quasi-continuous, we can
suppose that each Gk is finely open (Theorem 4.6.1 of [12]). For any k ∈ N, we have:∫

Gk

∫
{|u(x)−u(y)|<1}

|u(x) − u(y)|2N(x,dy)νH (dx)

=
∫

Gk

|gk(x)|2
∫

{|u(x)−u(y)|<1}
|u(x) − u(y)|2N(x,dy)νH (dx)

≤ 2
∫

Gk

∫
{|u(x)−u(y)|<1}

|gk(x) − gk(y)|2|u(x) − u(y)|2N(x,dy)νH (dx)

+ 2
∫

Gk×Gk∩{|u(x)−u(y)|<1}
|gk(y)|2|u(x) − u(y)|2N(x,dy)νH (dx)
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≤ 2
∫

E×E

|gk(x) − gk(y)|2N(x,dy)νH (dx)

+ 2
∫

E×E

|uk(x) − uk(y)|2N(x,dy)νH (dx)

≤ 4E (gk, gk) + 4E (uk, uk) < ∞.

Therefore, if for any ε > 0, we set:

Sε =
∞∑

k=1

2−k

(
1 ∧

∫
Gk

∫
{|u(x)−u(y)|<ε}

|u(x) − u(y)|2N(x,dy)νH (dx)

)
.

We have then limε→0 Sε = 0. We choose a sequence (εn)n∈N such that Sεn < 2−4n.
Let F be a locally absolutely continuous function with a locally bounded Radon–Nikodym

derivative f . For k in N, define (Fk) by

Fk(x) = F(x)1[−k−1,k+1](x) + F(k + 1)1[k+1,∞)(x) + F(−k − 1)1(−∞,−k−1](x).

Note that Fk has a bounded Radon–Nikodym derivative: fk = f 1[−k−1,k+1].
For a function β :E2 → R, define:

At(β,n) :=
∫ t

0

∫
{εn<|u(y)−u(Xs)|<1}

β(y,Xs)N(Xs,dy)dHs and

Md(β,n) =
∑
s≤t

β(Xs,Xs−)1{εn<|u(Xs−)−u(Xs)|<1}1{s<ξ} − At(β,n).

Denote by Md(F,u,n) (resp., Md(F,u,n, k)) the process Md(β,n) for β(y, x) = F(u(y)) −
F(u(x)) (resp., β(y, x) = (F (u(y)) − F(u(x))1Gk

(x)). Similarly, define Ad(F,u,n) and
A(F,n,u, k).

We just have to prove that Px -a.e. for q.e. x ∈ E, the limits limn→∞ Md(F,u,n) and
limn→∞ A(F,u,n) exist uniformly on any compact of [0, σE\Gk

[. We have: Md
t (F,u,n) =

Md
t (Fk,u,n, k) and At(F,u,n) = At(Fk,u,n, k) on [0, σE\Gk

[. For every k, the process

Md(Fk,u,n, k) belongs to
◦

M and for 4n > k, we have

e
(
Md(Fk,u,n + 1, k) − Md(Fk,u,n, k)

) ≤ ck2k2−4n,

where ck = ‖fk‖∞. Indeed, from the definition of εn:

e
(
Md(Fk,u,n + 1, k) − Md(Fk,u,n, k)

)
= 1

2

∫
Gk×E

(
Fk(u(x)) − Fk(u(y))

)21{εn+1≤|u(x)−u(y)|<εn}N(x,dy)νH (dx)

≤ ck

∫
Gk×E

|u(x) − u(y)|21{|u(x)−u(y)|<εn}N(x,dy)νH (dx)

≤ ck2k2−4n
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thus, the convergence of Md(F,u,n) follows from Theorem 2.5. Still thanks to Theorem 2.5,
the convergence of A(F,u,n) can be seen as a consequence of:

�(Md
t (Fk,u,n, k)) = At(Fk,u,n, k), Px-a.e. for q.e. x ∈ E. (4.1)

To prove (4.1), we note that (At (Fk,u,n, k))t≥0 is of bounded variation, so At(Fk,u,n, k)◦ rt =
At(Fk,u,n, k) Pm-a.e. on t < ζ (Theorem 2.1 of [11]). Hence, making use of the operator �

defined in [3], instead of �, we first obtain:

�(Md
t (Fk,u,n, k)) = At(Fk,u,n, k), Pm-a.e. for q.e. x ∈ E on [[0, ζ [[.

Finally by Theorem 3.6 in [3] and Lemma 2.1, (4.1) holds, Px -a.e. for q.e. x ∈ E on [[0, ζ [[, and
therefore on [[0,∞[[ thanks to the continuity of �(Md

t (Fk,u,n, k)) and At(Fk,u,n, k).

It is clear that Md(F,u) ∈ ◦
Mf -loc and A(F,u) ∈ Nc,f -loc. Moreover, for u element of F ,

we can take Gn = {x: |u(x)| < n} for any n. In this case, from the strict continuity of u we
have, Px(limn→∞ σE\Gn = ∞) = 1 for q.e. x ∈ E, thus the convergence of Md(F,u,n) and

A(F,u,n) are uniformly on any compact of [0,∞). Thus, we obtain: Md(F,u) ∈ ◦
Mloc and

A(F,u) ∈ Nc,loc. �

Remark 4.1. (i) If u ∈ F and f is bounded, then Md(F,u) ∈ ◦
M and �(Md(F,u)) = A(F,u).

(ii) With the notation of the proof of Lemma 1.1, it holds that if uk = u q.e. on Gk :

Md
t (F,u)+At(F,u) = Md

t (Fk,uk)+At(Fk,uk) for t ∈ [0, σE\Gk
[, Px-a.e. for q.e. x ∈ E.

Proof of Theorem 1.2. We use the notation of the proof of Lemma 1.1. Thus, if u ∈ F , we take
Gn := {x: |u(x)| < n}, n ∈ N. Let F be a locally absolutely continuous function F with a locally
bounded Radon–Nikodym derivative f .

Let It be the difference of the left-hand side and the right-hand side of (1.3). For any k, we
define I k

t as It with uk and fk replacing u and f , respectively. Hence, It = I k
t for t < σE\Gk

,
Px -a.e. for q.e. x ∈ E. Since σE\Gn ∧ ζ converges to ζ if u ∈ Floc and σE\Gn converges to ∞ if
u ∈ F , it is sufficient to prove (1.3) on [0, σE\Gk

[ for any k ∈ N. Consequently, we can assume
(and we do) that u is an element of Fb and f is bounded.

If f is continuous, thanks to (2.3), F(u) ∈ F and MFu,c = f u ∗ Mu,c and we have the
Fukushima decomposition:

F(u(Xt )) = F(u(X0)) + f u ∗ M
u,c
t + �(f u ∗ Mu,c)t + M

u,d
t + �(Mu,d)t .

We obtain (1.3) from Lemma 3.3(i) and Remark 4.1(i).
If f is not necessarily continuous, let g be in L1(R) be a strictly positive function on R such

that g and 1/g are locally bounded. Define the norms ‖ · ‖ and ‖ · ‖∗ on the Borel measurable
functions as follows:

‖h‖∗ =
(∫

E

h2(u(x))μ〈Mu,c〉(dx)

)1/2

,
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‖h‖ = ‖h‖∗ +
∫

|h(x)|g(x)dx

+
(∫

E×E−δ

|u(x) − u(y)|
∫ u(x)∨u(y)

u(x)∧u(y)

h(z)2 dzN(x,dy)νH (dx)

)1/2

.

Since u is in F , we have ‖f ‖ < ∞. By a monotone class argument, one shows that there exists
a sequence of bounded continuous functions (fn)n∈N with compact support such that ‖fn − f ‖
converges to 0 as n tends to infinity. We set Fn(x) = ∫ x

0 fn(z)dz.
In order to show (1.3), we will show that there exists a subsequence nk such that the terms in

the expansion (1.3) for Fnk
converge as k → ∞ to the corresponding expression with f replac-

ing fnk
. The convergence of Fn(u(Xt )) − Fn(u(X0)) − Vt (Fn,u) to F(u(Xt )) − F(u(X0)) −

Vt(F,u) is a consequence of the pointwise convergence of Fn to F , indeed, for any x ∈ R,

|Fn(x) − F(x)| ≤
∫ x+

−x−
|fn(z) − f (z)|dz ≤ sup

|λ|≤|x|
1

g(λ)

∫ ∞

−∞
|fn(z) − f (z)|g(z)dz → 0.

The existence of a subsequence {nk} such that
∫ t

0 fnk
(u(Xs))dM

u,c
s and

∫
R

fnk
(z)dz�

z
t (u) con-

verge to
∫ t

0 f (u(Xs))dM
u,c
s and

∫
R

f (z)dz�
z
t (u), respectively, is a consequence of the fact that

e(f u ∗ Mu,c − fnu ∗ Mu,c) = 1
2‖f − fn‖∗ → 0 as n → ∞, and Theorem 2.5. Thanks to Theo-

rem 2.5 and Remark 4.1(i), it is then sufficient to show that e(M(Fn,u) − M(F,u)) converges
to zero as n → ∞. But

e(M − Mn) ≤ 1

2

∫
E×E−δ

(
F(u(x)) − Fn(u(x)) − F(u(y))

+ Fn(u(y))
)2

N(x,dy)νH (dx)

≤ 1

2
‖f − fn‖2∗ → 0 as n → ∞. �

As an example, for F(z) = z and u in Floc, one obtains a Fukushima decomposition for the
process u(X). This case can be seen as a refinement of Lemma 2.2 in [4].

5. Local time

We fix an element u of Floc. The associated process cNu has been defined in (2.1) by cNu =
�(Mu,c). By Remark 2.3, cNu is a CAF locally of zero energy or merely a CAF of zero en-
ergy when u belongs to F . We suppose that u satisfies the additional assumption that cNu is of
bounded variation on [0, ζ ), that is, there exists two PCAF’s A(1) and A(2) such that Px -a.e. for
q.e. x ∈ E:

cNu
t = A

(1)
t − A

(2)
t ∀t ∈ [0, ζ ). (5.1)

We remind that a measure ν on E is a smooth signed measure on E if there exists a nest {Fk}
such that for each k, 1Fk

.ν is a finite signed Borel measure charging no set of zero capacity and
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further ν charges no Borel subset of E \ ⋃∞
k=1 Fk . Such nest is said to be associated to ν. For a

closed set F ⊂ E, we set:

Fb,F = {u ∈ Fb: u = 0 q.e. on E \ F }.

We also need the following definition:

E1(u, v) = E (u, v) + (u, v)m.

Lemma 5.1. The process cNu is of bounded variation if and only if there exists a smooth signed
measure ν on E with associated nest {Fk} such that

E (c)(u, v) = 〈v, ν〉, ∀v ∈
∞⋃

k=1

Fb,Fk
.

Proof. From Theorem 5.2.4 of [12], cNu is the only AF of zero energy such that for any h ∈ F ,

lim
t↓0

1

t
Eh.m[cNu

t ] = −e(Mu,c,Mh,c) = −E (c)(u,h).

On the other hand, since: |E (c)(u,h)| ≤ (E (c)(u,u))1/2(E1(h,h))1/2, there exists a unique w ∈ F
such that

E (c)(u,h) = E1(w,h) for any h ∈ F .

Hence, limt↓0
1
t
Eh.m[Nw

t − ∫ t

0 w(Xs)ds] = −E (c)(u,h) for all h ∈ F . This implies that the AF
Nw − ∫ ·

0 w(Xs)ds is equivalent to cNu. Consequently, cNu is of bounded variation if and only if
Nw is of bounded variation. But thanks to Theorem 5.4.2 of [12], this last condition is equivalent
to the existence of a smooth signed measure ν with an associated nest {Fk} such that

E1(w,v) = 〈v, ν〉 ∀v ∈
∞⋃

k=1

Fb,Fk
.

�

5.1. Definition of local time

Definition 5.2. The local time at a of u(X), denoted by La
t = La

t (u) is the following CAF on
[[0, ζ [[:

1

2
La

t = −�(Za)t +
∫ t

0
1{u(Xs−)≤a} dcNu

s for t ∈ [0, ζ ).

The name “local time” is justified by Proposition 5.3 and Corollary 5.4 below.
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Proposition 5.3. There exists a B(R) ⊗ B(R+) ⊗ F m∞-measurable version of the local time pro-
cess {L̃a

t ;a ∈ R, t ≥ 0} such that Pm-a.e. we have the occupation time density formula:∫
R

f (x)L̃x
t dx =

∫ t

0
f (u(Xs))d〈Mu,c〉s for any f Borel bounded and t < ζ .

Proof. We start with the case when u is a bounded element of F . From (2.4) we have: Pm-a.e. on
[[0, ζ [[: La

t = Za
t +Za

t ◦ rt +2
∫ t

0 1{u(Xs−)≤a} dN
u,c
s . Moreover, thanks to Theorem 63, Chapter IV

of [15], there exists a function Z̃(a, t,ω) in B(R) ⊗ B(R+) ⊗ F m∞, such that for each a ∈ R,
Z̃(a, t,w) is a continuous (F m

t )-adapted version of the stochastic integral Za , and thanks to
Lemma 2.10 and Theorem 2.18 of [3], Z̃(a, t,w)◦ rt (ω) ∈ B(R)⊗ B(R+)⊗ F m∞ is a continuous
(F m

t )-adapted version of Za
t ◦rt for each a ∈ R. Besides, we can take

∫ t

0 1{u(Xs−)≤a} dN
u,c
s jointly

continuous in t and right continuous in a, Pm-a.e. on [[0, ζ [[×R. Thus, we have constructed a ver-
sion {L̃a

t , a ∈ R, t ∈ [0, ζ [} of {La
t , a ∈ R, t ∈ [0, ζ )} which is B(R)⊗ B(R+)⊗ F m∞-measurable.

Let f be a continuous positive element of L1(R). Using the proof presented in [15] of
Fubini’s theorem for stochastic integrals (Theorem 64, Chapter IV of [15]), we know that∫

R
Z̃(z, t,ω)f (z)dz is a well-defined Lebesgue integral since Pm-a.e.:∫

R

|Z̃(z, t,ω)|f (z)dz < ∞ for all t.

Moreover, still thanks to this theorem,
∫

R
Z̃(z, t,ω)f (z)dz is a continuous Pm-version of∫ t

0 F(u(Xs))dM
u,c
s , where F(z) = ∫ ∞

z
f (λ)dλ. Consequently, for t > 0, Pm-a.e. on {t <

ζ }, ∫
R

|Z̃(z, t, rt (ω))|f (z)dz < ∞ and
∫

R
Z̃(z, t, rt (ω))f (z)dz is a continuous Pm-version of∫ t

0 F(u(Xs))dM
u,c
s ◦ rt .

Since (
∫ t

0 1{u(Xs−)≤a} dN
u,c
s )a∈R is of bounded variation on {t < ζ }, we obtain Pm-a.e. on

{t < ζ }: ∫
R

f (z)|L̃z
t |dz < ∞ and

∫
R

f (z)L̃z
t dz =

∫ t

0
F(u(Xs))dMu,c

s +
∫ t

0
F(u(Xs))dMu,c

s ◦ rt + 2
∫ t

0
F(u(Xs))dNu,c

s

which leads to ∫
R

f (z)L̃z
t dz = −2�(Fu ∗ Mu,c)t + 2

∫ t

0
F(u(Xs))dNu,c

s . (5.2)

Now thanks to (2.3), Fu belongs to Floc and M
Fu,c
t = − ∫ t

0 f (u(Xs))dM
u,c
s . Thus,

〈MFu,c,Mu,c〉t = −
∫ t

0
f (u(Xs))d〈Mu,c〉s .

Thanks to Lemma 2.4 we have Pm-a.e. on {t < ζ }:∫ t

0
F(u(Xs))dcNu

s =
∫ t

0
F(u(Xs))d�(Mu,c)s .
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On the other hand, the definition of the integral with respect to �(Mu,c) (Chen et al. [3]) gives:∫ t

0
F(u(Xs))d�(Mu,c)s = �(Fu ∗ Mu,c)t + 1

2

∫ t

0
f (u(Xs))d〈Mu,c〉s

which together with (5.2) lead to∫
R

f (z)L̃z
t dz =

∫ t

0
f (u(Xs))d〈Mu,c〉s , Pm-a.e. on{t < ζ }. (5.3)

Actually, the set of null Pm-measure on which (5.3) could fail can be chosen independently of f .
Indeed, the set of continuous functions with compact support, is a separable topological space
for the metric of uniform convergence.

We show now that the set of null Pm-measure on which (5.3) could fail does not depend on t

either. We have thanks to (5.3)

Pm-a.e. on {t < ζ }, L̃z
t ≥ 0 for dz-a.e. z (5.4)

hence by a monotone class argument, (5.3) holds Pm-a.e. on {t < ζ } for any f Borel bounded.
It remains to show that (5.3) holds Pm-a.e. on [[0, ζ [[. To do so, it is sufficient to show that the
left-hand side of (5.3) is continuous in t .

It follows from Theorem 2.18 in [3] that for any z, Z̃(z, t, rt (ω)) is continuous and has the ad-
ditivity property Pm-a.e. for on [[0, ζ [[. Hence, thanks to (5.4) for dz-a.e. z, L̃z

t is increasing. One
shows then by monotone convergence that for any positive Borel function f , t → ∫

R
f (z)L̃z

t dz

is continuous Pm-a.e. on [[0, ζ [[.
For a function u in Floc, take an nest of closed sets {Dk} and a sequence (uk)n∈N of bounded

elements of F such that u = uk for q.e. x ∈ E. For any k ∈ N, let L̃z
t (uk) be the version B(R) ⊗

B(R+) ⊗ F m∞-measurable of local time obtained above. Then L̃z
t := L̃z

t (uk) on t < τDk
is a

B(R)⊗ B(R+)⊗ F m∞-measurable version of Lz
t and satisfies the occupation time density formula

on [0, τDk
[, for any k ∈ N, so it satisfies it on [0, ζ [. �

Corollary 5.4. For any real a, La is a PCAF and Px -a.e. for q.e. x ∈ E, the measure in t , dtL
a
t

is carried by the set {s: u(Xs−) = u(Xs) = a}.

Proof. We use uk and {Dk} defined as in the end of the proof of Proposition 5.3. Since we
need to show the assertion of Cororally 5.3 only on [0, τDk

[, we can assume that u is a bounded
element of F . It follows from the occupation time density formula and the B(R)⊗ B(R+)⊗Fm∞-
measurability of L̃, that there exists a subset R of R of Lebesgue’s measure zero, such that for
any a outside of R: Pm-a.e. L̃a

t ≥ 0 on [[0, ζ [[. Consequently, La has the same property. This
property holds for any a ∈ R. Indeed for any real a, take a sequence (an)n∈N ⊂ R \ R such that
an ↓ a. We have: e(Zan − Za) = ∫

1{a<u(x)≤an}μ〈Mu,c〉(dx), which converges to 0 as n tends to
∞ by dominated convergence. Thus, thanks to Theorem 2.5 (taking a subsequence if necessary)
�(Zan) converges to �(Za) uniformly on any finite interval of t , Pm-a.e. On the other hand, for
Pm-a.e. w ∈ �,

∫ t

0 1{u(Xs)≤an} dN
u,c
s (ω) converges to

∫ t

0 1{u(Xs)≤a} dN
u,c
s (ω) for any t < ζ(ω).

Consequently, we obtain for Pm-a.e. ω ∈ �, La
t (ω) ≥ 0 for any t < ζ(ω).
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It follows from Lemma 2.1 that for any real a, La is a PCAF on [[0, ζ [[. By Remark 2.2 in [3],
it can be extended to a PCAF.

Now defining f (x) = (x − a)4 and h(x) = (x − a)41{x≤a}, it follows from (2.3) that f u and
hu belong to Floc. Moreover, we have:

M
f u,c
t = 4

∫ t

0

(
u(Xs) − a

)3
dMu,c

s and M
hu,c
t = 4

∫ t

0

(
u(Xs) − a

)3
1{u(Xs)≤a} dMu,c

s

thus, 〈Mf u,c,Za〉 = 〈Mhu,c,Mu,c〉, and from the definition of the stochastic integral (2.5) we
have that Pm-a.e. on {t < ζ }∫ t

0

(
u(Xs) − a

)4
d�(Za)s =

∫ t

0

(
u(Xs) − a

)4
1{u(Xs)≤a} d�(Mu,c)s .

By Lemmas 2.1 and 2.4, we finally obtain:
∫ t

0 (u(Xs) − a)4 dLa
s = 0 Px -a.e. for q.e. x ∈ E. �

5.2. Integration with respect to local time

We fix u an element of F satisfying (5.1) and set: lat = ∫ t

0 1{u(Xs−)≤a} dN
u,c
s . Hence, the local

time at a of u(X) satisfies:

La = −2�a + 2la.

For any ω ∈ � and t < ζ(ω), the function z → lzt (ω) is of bounded variation. The application
defined for the elementary functions by

f →
n−1∑
i=0

fi(l
zi+1
t − l

zi
t ), t < ζ

can hence be extended to the set of locally bounded Borel measurable functions f from R into
R as a Lebesgue–Stieljes integral and we have:∫

R

f (z)dzl
z
t =

∫ t

0
f (u(Xs))dNu,c

s , t < ζ.

Using the stochastic integral with respect to �, the application defined for the elementary func-
tions by

f →
n−1∑
i=0

fi(L
zi+1
t − L

zi
t ), t < ζ

can hence be extended to the set of locally bounded Borel measurable functions f from R into
R and we have:

−1

2

∫
R

f (z)dzL
z
t =

∫
R

f (z)dz�
z
t −

∫ t

0
f (u(Xs))dNu,c

s , t < ζ.
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6. Multidimensional case

In this section, we need the following notation. For d ∈ N, x = (x1, . . . , xd), y = (y1, . . . , yd) ∈
Rd , we set x ≤ y (resp., x < y) if and only of xi ≤ yi (resp., xi < yi ) for each i = 1, . . . , d and
]x, y] = {z ∈ Rd : x < z ≤ y}. The vector x̂ is obtained from x by elimination of its coordinate
xd , that is, x̂ = (x1, . . . , xd−1), ]̂x, y] = {z ∈ Rd−1: x̂ < z ≤ ŷ}.

Let ϕ be a measurable function from Rd into R. We define integration of simple functions
with respect to ϕ as follows. For f a simple function, that is, there exists x, y ∈ Rd such that
f (z) = 1]x,y](z) for all z ∈ Rd :

if d = 1:
∫

R

f (z)dϕ(z) = ϕ(y) − ϕ(x),

if d > 1:
∫

Rd

f (z)dϕ(z) =
∫

Rd−1
1]̂x,y](z)dϕ(z, yd) −

∫
Rd−1

1]̂x,y](z)dϕ(z, xd).

As an example, if there exist functions hi , 1 ≤ i ≤ d such that ϕ(z) = ∏d
i=1 h(zi), then∫

Rd f (z)dϕ(z) = ∏d
i=1(hi(y

i) − hi(x
i)).

We extend this integration to the elementary functions f : Rd → R (i.e., f (z) = ∑n
i=1 aifi(z)

where fi , 1 ≤ i ≤ n, are simple functions and ai , 1 ≤ i ≤ n, are real numbers) by setting

∫
Rd

f (z)dϕ(z) =
d∑

i=1

ai

∫
Rd

fi(z)dϕ(z).

An elementary function has many representations as linear combination of simple functions, but
as in the Riemann integration theory, the integral does not depend on the choice of its represen-
tation.

Let u be in F d
loc where F d

loc = {(u1, u2, . . . , ud): ui ∈ Floc,1 ≤ i ≤ d}. Let {Dk}k∈N be a nest
of closed set, σ := limk→∞ σE\Dk

and (uk)k∈N a sequence of bounded elements of F d such that
u = uk q.e. on Dk .

For any a in Rd and i in {1,2, . . . , d}, we define Za(ui) and �a(ui), respectively, in
◦

Mc
f -loc

and Nc,f -loc by

Za
t (ui) =

⎧⎨
⎩

∫ t

0
1{uk(Xs−)≤a} dM

ui
k,c

s for t ≤ σE\Dk
,

0 for t ≥ σ,

�a(ui) = �(Za(ui)).

Thanks to the linearity property of �, we have for any elementary function f :

∫
Rd

f (z)dz�
z
t (u

i) = �t

(∫ t

0
f (u(Xs))dMui,c

s

)
.
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We extend (3.3) of Section 3 from d = 1 to d ≥ 1, by defining for k ∈ N, the norm ‖ · ‖k on the
set of measurable functions f : Rd → R

‖f ‖k :=
d∑

i=1

(∫
E

f 2(uk(x))μ〈Mui
k
,c〉(dx)

)1/2

and we define the set I with the metric [·, ·] as in (3.4) of Section 3. The set of elementary
functions is dense in I . We have the following version of Lemma 3.3.

Lemma 6.1. The applications f → ∫
Rd f (z)dz�

z
t (u

i) (1 ≤ i ≤ d) defined on the set of elemen-
tary functions, can be extended to the set I . This extensions, denoted by

∫
Rd dz�

z(ui), satisfy:

(i)
∫

Rd f (z)dz�
z
t (u

i) = �(f u ∗ Mui,c)t ∀t ≥ 0, Px -a.e. for q.e. x ∈ E.
(ii) For (fn)n∈N sequence of I such that [fn − f ] → 0, there exists a subsequence (fnk

)k∈N

such that
∫

fnk
(z)dz�

z
t (u

i) converges uniformly on any compact of [0, ζ ) ([0,∞) if u ∈
F d ) to

∫
f (z)dz�

z
t (u

i) for every 1 ≤ i ≤ d Px -a.e. for q.e. x ∈ E.

With can prove a multidimensional version of Lemma 1.1 with the same arguments used in its
proof. We have the following multidimensional Itô formula.

Proposition 6.2. Let u be an element of F d (resp., F d
loc) and F : Rd → R a continuous function

admitting locally bounded Radon–Nikodym derivatives fi = ∂F/∂xi , 1 ≤ i ≤ d , satisfying the
following condition for any 1 ≤ i ≤ d and k ∈ N

lim
h→0

∫
E

{
fi

(
uk(x) + h

) − fi(uk(x))
}2

μ〈Mui
k
,c〉(dx) = 0. (6.1)

Then, Px -a.e. for q.e. x ∈ E, the process F(u(Xt )), t ∈ [0,∞) (resp., [0, ζ )) admits the de-
composition

F(u(Xt )) = F(u(X0)) + Mt(F,u) + Qt(F,u) + Vt(F,u), (6.2)

where M(F,u) ∈ ◦
Mloc, (resp.,

◦
Mf -loc) Q(F,u) ∈ Nc,loc (resp., Nc,f -loc) and V (F,u) is a

bounded variation process given by:

Mt(F,u) = Md
t (F,u) +

d∑
i=1

∫ t

0
fi(u(Xs))dMui,c

s ,

Qt (F,u) =
d∑

i=1

∫
R

fi(z)dz�
z
t (ui) + At(F,u),

Vt (F,u) =
∑
s≤t

{F(u(Xs)) − F(u(Xs−))}1{|u(Xs)−u(Xs−)|≥1}1{s<ξ}

− F(u(Xξ−))1{t≥ξ}.
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Proof. As in the proof of Theorem 1.2, we can assume that u is a bounded element of F and each
fi is bounded. For φ : Rd → R an infinitely differentiable function with compact support, the
function Fn defined by Fn(z) := ∫

Rd F (z + y/n)φ(y)dy converges pointwise to F(z). Setting:
fn,i = ∂Fn/∂xi we obtain thanks to (6.1):

lim
n→∞

∫
E

[fn,i(u(x)) − fi(u(x))]2μ〈Mui ,c〉(dx) = 0.

The rest of the proof follows step by step the proof of Theorem 1.2. �

In the case where E = Rd and E (c) is given by

E (c) =
d∑

i,j=1

∫
Rd

∂u

∂xi

∂v

∂xj

aij (x)dx,

where for every (i, j), aij is a bounded measurable function. The coordinates functions πi(x) =
xi,1 ≤ i ≤ d , belong to Floc and M = (Mπ1,c, . . . ,Mπd,c) is a martingale additive functional
with quadratic covariation 〈Mi,Mj 〉s = ∫ t

0 aij (Xs)ds, hence, μ〈Mi,c〉(dx) = aii(x)dx, and the
condition (6.1) holds for any locally bounded measurable function.
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