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We study the asymptotic behavior of empirical processes generated by measurable bounded functions of
an infinite source Poisson transmission process when the session length have infinite variance. In spite of
the boundedness of the function, the normalized fluctuations of such an empirical process converge to a
non-Gaussian stable process. This phenomenon can be viewed as caused by the long-range dependence in
the transmission process. Completing previous results on the empirical mean of similar types of processes,
our results on nonlinear bounded functions exhibit the influence of the limit transmission rate distribution
at high session lengths on the asymptotic behavior of the empirical process. As an illustration, we apply the
main result to estimation of the distribution function of the steady state value of the transmission process.
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1. Introduction

We consider the infinite source Poisson transmission process defined by

X(t) =
∑
�∈Z

W�1{��≤t<��+Y�}, t ∈ R, (1.1)

where the triples {(��,Y�,W�), � ∈ Z} of session arrival times, durations and transmission rates
satisfy the following assumption.

Assumption 1.

(i) The arrival times {��, � ∈ Z} are the points of a homogeneous Poisson process on the real
line with intensity λ, indexed in such a way that · · · < �−2 < �−1 < �0 < 0 < �1 < �2 <

· · · .
(ii) The durations and transmission rates {(Y,W), (Y�,W�), � ∈ Z} are independent and

identically distributed random pairs with values in (0,∞) × [0,∞) and independent
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of the arrival times {��, � ∈ Z}. The random variables Wj are positive with a positive
probability. The session lengths Yj have finite expectation and infinite variance.

(iii) There exist a measure ν on (0,∞] × [0,∞] such that ν((1,∞] × [0,∞]) = 1 and, as
n → ∞,

nP

((
Y

a(n)
,W

)
∈ ·

)
v−→ ν,

where
v→ denotes vague convergence on (0,∞] × [0,∞], and a is the left continuous

inverse (1/F̄ )← of 1/F̄ . Here F is the distribution function of Y , and F̄ = 1 − F is the
corresponding survival function. The relatively compact sets of (0,∞] × [0,∞] are all
sets contained in [ε,∞] × [0,∞] for some positive ε, see Resnick [11], Chapter 3.

Assumption 1(iii) implies several things, listed below. See Heffernan and Resnick [6].

• The survival function F̄ is regularly varying with index −α for some α > 0. The function a

is then regularly varying with index 1/α.
• The limiting measure ν is a product measure:

ν = να × G, (1.2)

where να is a measure on (0,∞) satisfying να((x,∞)) = x−α for all x > 0, and G is a
probability measure on [0,∞].

• We have the following weak convergence on [0,∞], as t → ∞,

P(W ∈ ·|Y > t)
w−→ G. (1.3)

We will assume that the exponent α satisfies

1 < α < 2. (1.4)

Under Assumption 1, the process (1.1) is well defined and stationary, see, e.g., Fay, Roueff
and Soulier [4]. Under additional moment assumptions, it is shown in this reference that the
autocovariance function of the process X is regularly varying at infinity with index 2H − 2 ∈
(−1,0), where H = (3 − α)/2. Such slow rate of decay of the covariance function is often
associated with long range dependence.

We are interested in studying the large time behavior of the empirical process

JT (φ) =
∫ T

0
φ(Xh(s))ds, T > 0, (1.5)

where h > 0, Xh(s) = {X(s + t),0 ≤ t ≤ h}, and φ is a real valued measurable function defined
on the space D([0, h]) endowed with the J1 topology, see, for instance, Kallenberg [7]. We notice
that the D([0, h])-valued stochastic process (Xh(s), s ∈ [0, T ]) is continuous in probability and,
hence, has a measurable version, see Cohn [2]. In particular, JT (φ) above is a well defined
random variable, as long as the function φ satisfies appropriate integrability assumptions, for
example, when the function φ is bounded.
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The case h = 0 and φ(x) = x has been considered in Mikosch et al. [9] with Wi ≡ 1 and
by Maulik, Resnick and Rootzén [8] in the present context of possible dependence between the
session lengths and the rewards (transmission rates). These references consider the case where
the intensity of the point process of arrivals is possibly increasing, which gives rise to the slow
growth/fast growth dichotomy. In the slow growth case, which includes the case of constant
intensity, the limit of the partial sum process is a Lévy stable process, whereas in the fast growth
case, the limiting process is the fractional Brownian motion with Hurst index H = (3 − α)/2.
Here, we consider a fixed intensity for the sessions arrival rate, hence are restricted to the slow
growth case. On the other hand, we take φ arbitrary (but bounded) and thus obtain what appears to
be the first result on the asymptotic behavior of the empirical process for this type of long range
dependent shot noise process. The limit process depends on the intensity λ, the tail exponent
α and the limit transmission rate distribution G defined in (1.3). As an illustration, we apply
the main result to the estimation of the distribution function of the steady state value of the
transmission process. Moreover, we allow h > 0. Other potential applications of our main result
(e.g., to estimation of the multivariate distribution function) can be handled in a similar way, but
we do not pursue them in this paper.

Our main result is stated as a functional central limit theorem in the Skorohod M1 topology.
A convergence result in this topology was obtained in Resnick and van den Berg [13] for a
similar traffic model, but with h = 0 and φ(x) = x. Our result can be viewed as a heavy traffic
approximation of the content of a fluid queue fed with input φ(X(s)). It shows, in particular, that
even for φ bounded (e.g., with φ(x) = x ∧ b with b denoting a maximal allowed bandwidth), the
fluctuations of the asymptotic approximation of the queue content have an infinite variance. See
also Resnick and van den Berg [13], Section 5.

2. Notation and preliminary results

We now introduce some notation and derive certain useful properties of the empirical process
(1.5) stated in several lemmas whose proofs are provided in Section 5.

We employ the usual queuing terminology: a time point t is said to belong to a busy period
if X(t) > 0; it belongs to an idle period otherwise. A cycle consists of a busy period and the
subsequent idle period.

The following facts about M/G/∞ queues will be useful, see Hall [5]. Under Assumption 1(i)
and (ii), one can define the sequence {Sj , j ∈ Z} of the successive starting times of the cycles
such that · · · < S−2 < S−1 < 0 < S0 < S1 < · · ·. Define the cycle lengths Cj = Sj − Sj−1 for all
j ∈ Z. Hence, S0 is the starting time of the first complete cycle starting after time 0 (note that S0

may or may not be equal to the first Poisson arrival after time 0), and Sn = S0 + ∑n
j=1 Cj . The

cycle form a regenerative sequence in the sense that {(Cj ,X(· + Sj−1)1[0,Cj )), j ≥ 1} is an i.i.d.
sequence of random pairs with values in (0,∞) × D([0,∞)). Moreover, we have

E[C1] = eλE[Y ]/λ. (2.1)

The following result provides the tail behavior of C1. It is proved in Section 5.
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Lemma 1. Suppose that Assumption 1 holds. Then C1 has a regularly varying tail with index α

and

lim
t→∞ tP

(
C1 > a(t)x

) = eλE[Y ]x−α. (2.2)

Let φ be a measurable function defined on D([0, h]), satisfying appropriate integrability con-
ditions for the integral in (1.5) to be well defined (e.g., bounded). We decompose JT (φ) using
the cycles defined above. Let us denote

Zj (φ) =
∫ Sj

Sj−1

φ(Xh(s))ds, j = 1,2, . . . . (2.3)

Then (Zj (φ))j≥1 is a stationary sequence, but, if h > 0, it is not an i.i.d. sequence. Nevertheless,
it is easy to see that it is strongly mixing. Define the sigma-fields Fj = σ(Zk(φ),1 ≤ k ≤ j) and
Gj = σ(Zk(φ), k > j) and mixing coefficients (αk)k≥1 by

αk = 2 sup{| cov(1A,1B)|,A ∈ Fj ,B ∈ Gj+k, j ≥ 1}.
Let j, k ≥ 1, A ∈ Fj and B ∈ Gj+k . Denote U = 1A − P(A) and V = 1B − P(B). Then

| cov(1A,1B)| ≤ P(Sj+k − Sj ≤ h) + ∣∣E[
UV 1{Sj+k−Sj >h}

]∣∣.
Observe that U1{Sj+k−Sj >h} is σ {X(Sj+k − t), t > 0}-measurable, V is σ {X(Sj+k + t), t ≥ 0}-
measurable and that by the regenerative property, these two sigma-fields are independent. Thus,
E[UV 1{Sj+k−Sj >h}] = 0 and we obtain, for all k ≥ 1,

αk ≤ 2 sup
j≥1

P(Sj+k − Sj ≤ h) ≤ 2 sup
j≥1

P
(
max(Cj+1, . . . ,Cj+k) ≤ h

) = 2FC(h)k, (2.4)

where FC denotes the distribution function of C1. Since FC(h) < 1 for any h, the mixing coef-
ficients αk decay exponentially fast, independently of φ. This property will be a key ingredient
to the proof of our result since it implies that, in many aspects, the sequence Zj (φ) has the same
asymptotic properties as an i.i.d. sequence.

Let E (·, φ) be the function defined on [0,∞) by

E (w,φ) = E
[
φ
(
w + Xh(0)

)]
, (2.5)

whenever the latter expectation is well defined, which is always the case if φ is bounded. In
that case, by Fubini’s theorem, E (·, φ) is a measurable function. It follows from the elemen-
tary renewal theorem that E[Zj (φ)] = E[φ(Xh(0))]E[C1]. This identity is stated formally in the
following lemma, which also contains another result that will be needed later.

Lemma 2. Suppose that Assumption 1 holds. Let h ≥ 0 and φ be a bounded measurable function
defined on D([0, h]). We have

E[Z1(φ)] = E (0, φ)E[C1] = E[φ(Xh(0))]E[C1]. (2.6)
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Moreover, for any p ∈ (1, α), there exists a constant C > 0 and a positive function g depending
neither on φ nor on T such that g(x) → 0 as x → ∞ and

P

(
sup

t∈[0,T ]
|Jt (φ) − E[Jt (φ)]| > x‖φ‖∞

)
≤ CT 1−p + CT x−p + g(x). (2.7)

For all ε, t > 0, let Nε,t be the number of sessions of length greater than εa(t) arriving and
ending within the first complete cycle [S0, S1). Further, we let Yε,t be the length of the first such
session starting at or after S0 with length greater than εa(t) and let �ε,t and Wε,t be, corre-
spondingly, its starting time and the transmission rate. The following lemma shows that, when
Nε,t ≥ 1, the process {φ(Xh(s)), s ∈ [S0, S1)} can be, in certain sense, approximated by the step
function {E (Wε,t , φ)1[�ε,t ,�ε,t+Yε,t )(s), s ∈ [S0, S1)}. (Note that by definition, if Nε,t ≥ 1, then
S0 ≤ �ε,t < �ε,t + Yε,t ≤ S1.)

Lemma 3. Suppose that Assumption 1 holds. Let h ≥ 0 and φ be a bounded measurable function
defined on D([0, h]). Let η > 0. We have, for all ε > 0 sufficiently small,

P

(
sup

v∈[S0,S1]

∣∣∣∣
∫ v

S0

{
φ(Xh(s)) − E (Wε,t , φ)1[�ε,t ,�ε,t+Yε,t )(s)

}
ds

∣∣∣∣ > ηa(t);Nε,t ≥ 1

)
= o(t−1).

(2.8)

Let W be a closed subset of [0,∞] such that P(W ∈ W ) = 1. (Note that by (1.3) this implies
G(W ) = 1.) We introduce the following assumption.

Assumption 2. We have

G(D(E (·, φ), W )) = 0, (2.9)

where D(E (·, φ), W ) denotes the set of discontinuity points of the function E (·, φ) restricted to
W ∩ [0,∞), and containing the point ∞ if ∞ ∈ W and E (w,φ) does not converge as w → ∞
with w ∈ W . (The notation E (∞, φ), when used in the sequel, refers to the continuous extension
of E (w,φ), and will be used only when such an extension exists.)

Remark 1. If the distribution of W is supported on a closed set consisting of isolated points in
[0,∞) (which would be the case, for instance, if W was a nonnegative integer-valued random
variable), then D(E (·, φ), W ) is either empty or equal to {∞}. In the latter case, if G({∞}) = 0,
then Assumption 2 is verified.

The next lemma, which may be of independent interest, states the multivariate regular variation
property of the empirical process over a cycle.

Lemma 4. Suppose that Assumption 1 holds. Let h ≥ 0 and φ1, . . . , φd be bounded measurable
functions defined on D([0, h]) satisfying Assumption 2 with G defined by (1.2). With E (w,φi) =
E[φi(w + Xh(0))], i = 1, . . . , d , w ≥ 0, we let

Z =
[∫ S1

S0

φ1(Xh(s))ds, . . . ,

∫ S1

S0

φd(Xh(s))ds

]T

.
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Then Z is multivariate regularly varying with index α. More precisely, the following vague con-
vergence holds on [−∞,∞]d \ {0} as t → ∞,

tP

(
Z

a(t)
∈ ·

)
v−→ eλE[Y ]

∫ ∞

y=0
P
(
y[E (W ∗, φ1), . . . , E (W ∗, φd)]T ∈ ·)αy−α−1 dy, (2.10)

where W ∗ is a random variable with values in [0,∞] and distribution G.

3. Main result

As observed in Resnick and van den Berg [13], since the limit is discontinuous, the convergence
of the sequence of processes {ZT (φ, t), t ≥ 0} in Theorem 5 cannot hold in D([0,∞)) endowed
with the topology induced by Skorohod’s J1 distance. We shall prove that the convergence holds
in D([0,∞)) endowed with the topology induced by Skorohod’s M1 distance.

Theorem 5. Suppose that Assumption 1 holds. Let h ≥ 0 and φ be a bounded measurable func-
tion on D([0, h]) satisfying Assumption 2 with G defined by (1.2). Then, as T → ∞, the sequence
of processes ZT (φ, ·) defined by

ZT (φ,u) = 1

a(T )

∫ T u

0
{φ(Xh(s)) − E[φ(Xh(0))]}ds, u ≥ 0, (3.1)

converges weakly in D([0,∞)) endowed with the M1 topology to a strictly α-stable Lévy motion
(�(φ,u),u ≥ 0) satisfying

Eeit�(φ,u) = exp
{−u|t |αλcαE|E (W ∗, φ) − E (0, φ)|α{1 − iβ sgn(t) tan(πα/2)}} (3.2)

for u ≥ 0 and t ∈ R, where cα = −�(1 − α) cos(πα/2), W ∗ is as in Lemma 4, and

β = E[|E (W ∗, φ) − E (0, φ)|α sgn(E (W ∗, φ) − E (0, φ))]
E|E (W ∗, φ) − E (0, φ)|α .

Remark 2. For applications of Theorem 5, it is sometimes useful to represent the limiting Lévy
motion (�(φ,u),u ≥ 0) in the form

�(φ,u) =
∫ u

0

∫
W

{E (w,φ) − E (0, φ)}Mα(ds,dw), u ≥ 0, (3.3)

where Mα is a totally skewed to the right α-stable random measure on (0,∞) × W with control
measure λcαLeb × G; see Samorodnitsky and Taqqu [15]. The representation (3.3) is linear in
φ, and this allows, for example, handling more than one function φ at a time.

Specifically, if Assumption 1 holds, and F is a class of bounded measurable functions sat-
isfying Assumption 2, then, by linearity, Theorem 5 implies that, for any n ≥ 2 and bounded
measurable functions φ1, . . . , φn on D([0, h]) satisfying Assumption 2, the family of R

n-valued
processes (ZT (φ1, ·), . . . , ZT (φn, ·)) converges weakly to the process (�(φ1, ·), . . . ,�(φn, ·))
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in the sense of finite-dimensional distributions. The components of the limiting process are de-
fined by (3.3) and is an R

n-valued α-stable Lévy motion. By Whitt [19], Theorem 11.6.7, the
convergence also holds in D([0,∞))n endowed with the product (or weak) M1 topology.

For another application of (3.3), we can write the one-dimensional weak convergence pre-
scribed by Theorem 5 at u = 1 in the form

ZT (φ,1) ⇒ �1(φ) :=
∫

W
{E (w,φ) − E (0, φ)}M̃α(dw), (3.4)

where this time M̃α is a totally skewed to the right α-stable random measure on W with control
measure λcαG. Again, the representation of the limit in the right-hand side of (3.4) is linear in
φ, allowing us to handle more than one function φ at a time.

4. An application: The empirical process

Suppose we want to estimate the distribution function K of X(0). For this purpose, we consider
the family of empirical processes

ET (x) = T −1
∫ T

0
1{X(s)≤x} ds, x > 0.

Let D denote the set of discontinuity points of the distribution function K restricted to W ∩
[0,∞). The following is an immediate corollary of Theorem 5 and (3.4).

Corollary 6. Let X be the collection of x > 0 such that G(x − D) = 0. Then(
T a(T )−1(ET (x) − K(x)

)
, x ∈ X

) ⇒ (
D(x), x ∈ X

)
in the sense of convergence of the finite-dimensional distributions, where

D(x) =
∫

W
{K(x − w) − K(x)}M̃α(dw), x > 0.

Remark 3. Let us briefly comment on the condition G(x − D) = 0.

1. Note that the set D is at most countable, and the set of atoms of G is at most countable as
well. We immediately conclude that the set X misses at most countably many x > 0.

2. Further, if the distribution of W is supported on a closed set consisting of isolated points in
[0,∞), we have D = ∅ (see Remark 1), and so X = (0,∞).

3. Finally, X(0) is an infinitely divisible random variable with Lévy measure μ satisfying

μ((a,∞)) = λE
(
Y1(W > a)

)
, a > 0.

Therefore, if W does not have positive atoms, then the distribution function K has a single
atom, at the origin, implying that D = {0} and X misses some of the atoms of G, specifi-
cally those atoms that are not isolated points of W .
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Remark 4. It is important to note that estimators based on the empirical process ET may not be
able to identify the parameter of interest, even for simple parametric models of the distribution
of (Y,W). For instance, if Y and W are independent, K depends on the distribution of Y only
through its mean E[Y ]. This is the main motivation for considering the case h > 0 in Theorem 5
although it is not the object of this paper to provide practical details on this application.

Observe that Corollary 6 shows that “the usual”
√

T -rate of convergence of an empirical pro-
cess does not hold in the present situation, since the actual rate of convergence is T a(T )−1,
which is regularly varying with index 1 − α−1 ∈ (0,1/2). This should not be surprising since
presence of long range dependence has long been known to yield slower rates of convergence
and non standard limit for the empirical process. See, for example, Dehling and Taqqu [3] for
subordinated Gaussian processes and Surgailis [16,17] for bounded functionals of infinite or fi-
nite variance linear processes.

5. Proofs

Proof of Lemma 1. By the definition of a and regular variation of the tail of F ,

F̄ (a(t)) = P
(
Y > a(t)

) ∼ t−1 as t → ∞;

recall, further, that a is regularly varying at infinity with index 1/α. We will use the notation
Nε,t , Yε,t , �ε,t and Wε,t introduced just before Lemma 3 above. Applying Lemma 1 in Resnick
and Samorodnitsky [12] and the regular variation of F̄ , we get

lim
t→∞ tP(Nε,t ≥ 1) = lim

t→∞
P(Nε,t ≥ 1)

F̄ (εa(t))

F̄ (εa(t))

F̄ (a(t))
= eλE[Y ]ε−α. (5.1)

Imagine, for a moment, that all sessions of the length exceeding εa(t) are discarded upon arrival,
and do not contribute to a busy period. Let Bε,t denote the length of the first busy period starting
at or after time S0 and generated by the remaining sessions, those of length not exceeding εa(t).
Then by Resnick and Samorodnitsky [12], Proposition 1, there exists a constant D independent
of ε such that

P
(
Bε,t > εDa(t)

) = o(t−1). (5.2)

We immediately conclude that

lim
t→∞ tP

(
C1 > εDa(t);Nε,t = 0

) = 0 (5.3)

(keeping in mind that an idle period has an exponential distribution).
We consider now the case Nε,t ≥ 1, in which case we use the decomposition

C1 = {�ε,t − S0} + Yε,t + {S1 − (�ε,t + Yε,t )}. (5.4)
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Since Bε,t is the length of the first busy session starting after S0 and generated only by sessions
of length less than εa(t) and since �ε,t is the starting point of the first session of length greater
than εa(t) starting after S0, it is clear that S0 + Bε,t < �ε,t implies that Nε,t = 0. Thus, on the
event {Nε,t ≥ 1}, it holds that

�ε,t − S0 ≤ Bε,t .

Hence, by (5.2), for any η > 0, choosing ε > 0 sufficiently small (i.e., ε < η/D where D is as in
(5.3)), we have

P
(
�ε,t − S0 > a(t)η;Nε,t ≥ 1

) = o(t−1) as t → ∞. (5.5)

Further, denote by �̃ε,t the completion time of the last session with length greater than εa(t)

before time S1. Notice that the infinite source Poisson process (1.1) is time reversible, in the sense
of switching the direction of time, declaring �� + Y� to be the arrival time of session number �

and �� to be its completion time. Therefore, by time inversion, the difference S1 − �̃ε,t has the
same distribution as �ε,t − S0 + I0, where I0 denotes the idle period preceding S0. Moreover,
the joint distribution of (S1 − �̃ε,t ,Nε,t ) and (�ε,t − S0 + I0,Nε,t ) are also the same. Since on
the event {Nε,t = 1}, the random variables �ε,t +Yε,t and �̃ε,t coincide, we conclude that, for all
η, ε > 0,

P
(
S1 − (�ε,t + Yε,t ) > a(t)η;Nε,t = 1

)
= P

(
S1 − �̃ε,t > a(t)η;Nε,t = 1

)
(5.6)

= P
(
�ε,t − S0 + I0 > a(t)η;Nε,t = 1

)
≤ P

(
�ε,t − S0 > a(t)η/2;Nε,t ≥ 1

) + P
(
I0 > a(t)η/2

) = o(t−1) as t → ∞,

where the o-term follows from (5.5) and the fact that I0 has exponential distribution. Next, by
Lemma 2 in Resnick and Samorodnitsky [12], we also have

P(Nε,t ≥ 2) = o(t−1) as t → ∞. (5.7)

Applying (5.3), (5.4), (5.5), (5.6) and (5.7), we get, for any x > η > 0, choosing ε small enough,

lim inf
t→∞ tP

(
Yε,t > a(t)x;Nε,t ≥ 1

) ≤ lim inf
t→∞ tP

(
C1 > a(t)x

)
≤ lim sup

t→∞
tP

(
C1 > a(t)x

)
(5.8)

≤ lim sup
t→∞

tP
(
Yε,t > a(t)(x − η);Nε,t ≥ 1

)
.

Note that the distribution of Yε,t is the conditional distribution of Y given {Y > εa(t)} and that
the event {Nε,t ≥ 1} is independent of Yε,t , so that (5.1) yields, for any x > 0,

tP
(
Yε,t > a(t)x;Nε,t ≥ 1

) ∼ eλE[Y ]ε−α
P
(
Y > a(t)x|Y > εa(t)

) → eλE[Y ]x−α

as t → ∞. Applying this statement to (5.8) and letting η → 0 gives (2.2). �
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Proof of Lemma 2. Observe that the process {X(t), t ∈ R} is a regenerative process (it regener-
ates at the beginning of each busy period), hence it is ergodic. Therefore, T −1 JT (φ) → E (0, φ)

a.s.; see, for example, Resnick [10]. On the other hand, as seen earlier, the sequence (Zj (φ))

is strongly mixing, hence also ergodic, and so n−1 ∑n
j=1 Zj(φ) converges almost surely to

E[Z1(φ)]. For T > 0, let MT denote the number of complete cycles initiated after time 0, and
finishing before time T . Since MT /T converges almost surely to 1/E[C1], we also obtain

1

T

MT∑
j=1

Zj (φ) → E[Z1(φ)]/E[C1], a.s.,

and (2.6) follows.
Denote φ̄ = φ − E (0, φ). Observe that JT (φ̄) is centered and ‖φ̄‖∞ ≤ ‖φ‖∞ + |E (0, φ)| ≤

2‖φ‖∞. We have

sup
t∈[0,S0]

|Jt (φ̄)| ≤ S0‖φ̄‖∞. (5.9)

For t ≥ S0, we use the decomposition

Jt (φ̄) = JS0(φ̄) +
Mt∑
j=1

Zj (φ̄) +
∫ t

SMt

φ̄(Xh(s))ds.

Now, using ‖φ̄‖∞ ≤ 2‖φ‖∞, (5.9) and that, for all k = 1, . . . ,MT + 1,

sup
u∈[Sk−1,Sk]

∣∣∣∣
∫ u

Sk−1

φ̄(Xh(s))ds

∣∣∣∣ ≤ ‖φ̄‖∞Ck,

we get, for any T > 0,

P

(
sup

t∈[0,T ]
|Jt (φ̄)| > 5x‖φ‖∞

)
≤ P(S0 > x) + P

(
sup

t∈[0,T ]

∣∣∣∣∣
Mt∑
j=1

Zj (φ̄)

∣∣∣∣∣ > x‖φ‖∞

)

+ P

(
max

k=1,...,MT +1
Ck > x

)
≤ P(S0 > x) + 2P(MT > 2T/E[C1])

+ P

(
max

1≤k≤2T/E[C1]

∣∣∣∣∣
k∑

j=1

Zj (φ̄)

∣∣∣∣∣ > x‖φ‖∞

)

+ (2T/E[C1] + 1)P(C1 > x).

Applying (2.6), we see that Zj (φ̄) is centered. Moreover, |Zj (φ̄)| ≤ 2Cj‖φ‖∞. Let p ∈ (1, α).
Applying the mixing property (2.4), Lemma 1 and Rio [14], Chapiter 3, Exercise 1, there exists
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a constant c which depends only on the distribution of C1 and p such that

E

[
max

1≤k≤n

∣∣∣∣∣
k∑

j=1

Zj (φ̄)

∣∣∣∣∣
p]

≤ c‖φ‖p∞n. (5.10)

Finally, we bound P(MT > 2T/E[C1]) by noting as usual that MT > n if and only if Sn+1 ≤ T .
Thus, denoting by m the smallest integer larger than or equal to 2T/E[C1], we have, for some
constant c only depending on the distribution of C1 and p,

P(MT > 2T/E[C1]) ≤ P(Sm ≤ T ) ≤ P(Sm − mE[C1] ≤ −T ) ≤ T −p
E

[|Sm − mE[C1]|p
]
.

Since Sm − mE[C1] is a sum of i.i.d. centered random variables with finite pth moment, we
obtain by Burkhölder inequality (see von Bahr and Esseen [18], Theorem 2),

P(MT > 2T/E[C1]) = O(T 1−p). (5.11)

Gathering the previous displays and using P(C1 > x) ≤ E[Cp

1 ]x−p for any p < α, we obtain
(2.7) with g(x) = P(S0 > x). �

Proof of Lemma 3. We will bound the function

(v) =
∫ v

S0

{
φ(Xh(s)) − E (Wε,t , φ)1[�ε,t ,�ε,t+Yε,t )(s)

}
ds

on the event {Nε,t ≥ 1} successively for v ∈ [S0,�ε,t ], v ∈ [�ε,t ,�ε,t + Yε,t ] and v ∈ [�ε,t +
Yε,t , S1].

Step 1. For v ∈ [S0,�ε,t ], we have

|(v)| =
∣∣∣∣
∫ v

S0

φ(Xh(s))ds

∣∣∣∣ ≤ (�ε,t − S0)‖φ‖∞.

Hence, using (5.5), for any η > 0, choosing ε > 0 sufficiently small, we have

P

(
sup

v∈[S0,�ε,t ]
|(v)| > a(t)η;Nε,t ≥ 1

)
= o(t−1). (5.12)

Step 2. For v ∈ [�ε,t ,�ε,t + Yε,t ], we write

|(v)| ≤ |(�ε,t )| + |(v) − (�ε,t )|
(5.13)

≤ sup
v∈[S0,�ε,t ]

|(v)| + sup
y∈[0,Yε,t ]

∣∣∣∣
∫ y

0

{
φ
(
Xh(�ε,t + s)

) − E (Wε,t , φ)
}

ds

∣∣∣∣.
For s ∈ (0, Yε,t ), X(�ε,t + s) can be expressed as

X(�ε,t + s) = Wε,t + X̌(s) + R(s),
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where R(s) is the sum of all transmission rates of the sessions that started before time �ε,t and
are still active at time s, and {X̌(s), s ≥ 0} is defined by

X̌(s) =
∑
�∈Z

W�1{�ε,t<��≤s+�ε,t<��+Y�}.

Since each session that arrives after time S0 but before time �ε,t has a length not exceeding εa(t),
we conclude that R(s) = 0 for s > εa(t). Using the notation X̌h(s) = {X̌(s + v),0 ≤ v ≤ h}, we,
therefore, obtain

sup
y∈[0,Yε,t ]

∣∣∣∣
∫ y

0

{
φ
(
Xh(�ε,t + s)

) − φ
(
Wε,t + X̌h(s)

)}
ds

∣∣∣∣ ≤ 2‖φ‖∞εa(t). (5.14)

Observe that the process X̌ is independent of (Yε,t ,Wε,t ,1{Nε,t≥1}). We preserve this indepen-

dence while transforming X̌ into a stationary process, with the same law as the original process
X in (1.1) by defining

X̂(s) =
∑
�≤0

W ′
�1{�′

�≤s<�′
�+Y ′

�} + X̌(s), s ∈ R,

where {(�′
�, Y

′
�,W

′
�), � ∈ Z} is an independent copy of {(��,Y�,W�), � ∈ Z}. Clearly,

sup
y∈[0,Yε,t ]

∣∣∣∣
∫ y

0

{
φ
(
Wε,t + X̌h(s)

) − φ
(
Wε,t + X̂h(s)

)}
ds

∣∣∣∣ ≤ 2‖φ‖∞ sup
�≤0

(�′
� + Y ′

�)+,

where X̂h(s) = {X̂(s + v),0 ≤ v ≤ h}. The random variable in the right-hand side above is finite
with probability 1 and independent of Nε,t . Therefore, it follows from (5.1) that for any u > 0,

P

(
sup
�≤0

(�′
� + Y ′

�) > a(t)u;Nε,t ≥ 1
)

= o(t−1).

The last two displays and (5.14) give that, for any η > 0 and 0 < ε < η/(2‖φ‖∞),

P

(
sup

y∈[0,Yε,t ]

∣∣∣∣
∫ y

0

{
φ
(
Xh(�ε,t + s)

) − φ
(
Wε,t + X̂h(s)

)}
ds

∣∣∣∣ > a(t)η;Nε,t ≥ 1

)
(5.15)

= o(t−1).

The event {Nε,t ≥ 1} is, clearly, independent of (Yε,t ,Wε,t ). Furthermore, the latter pair has
the conditional distribution of (Y,W) given that {Y > εa(t)}. Since X̂ has the same law as X,
we get for any x > 0,

P

(
sup

y∈[0,Yε,t ]

∣∣∣∣
∫ y

0

{
φ
(
Wε,t + X̂h(s)

) − E (Wε,t , φ)
}

ds

∣∣∣∣ > x;Nε,t ≥ 1

)
(5.16)

= P

(
sup

y∈[0,Y ]

∣∣∣∣
∫ y

0

{
φ
(
W + Xh(s)

) − E (W,φ)
}

ds

∣∣∣∣ > x
∣∣ Y > εa(t)

)
× P(Nε,t ≥ 1),
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where the pair (Y,W) in the right-hand side is taken to be independent of the process X.
Recall that E (w,φ) = E[φ(w + Xh(0))], that for any w ≥ 0, ‖φ(w + ·)‖∞ ≤ ‖φ‖∞ and,

for any y ≥ 0, E[Jy(φ(w + ·))] = yE (w,φ). It follows from these observations and (2.7) in
Lemma 2 that, for any x > 0,

sup
w≥0

P

(
sup

y∈[0,u]

∣∣∣∣
∫ y

0

{
φ
(
w + Xh(s)

) − E (w,φ)
}

ds

∣∣∣∣ > x‖φ‖∞
)

≤ Cu1−p + Cux−p + g(x),

for p ∈ (1, α), some constant C > 0 and g(x) → 0 as x → ∞. Integrating in (w,u) with respect
to the distribution of (W,Y ) in (5.16), this bound yields, for any u > 0 and A > 0,

P

(
sup

y∈[0,Y ]

∣∣∣∣
∫ y

0

{
φ
(
W + Xh(s)

) − E (W,φ)
}

ds

∣∣∣∣ > uA
∣∣ Y > A

)

≤ CE[Y 1−p | Y > A] + C‖φ‖p∞(uA)−p
E[Y | Y > A] + g(uA/‖φ‖∞).

As A → ∞, we have both E[Y 1−p | Y > A] → 0 and A−p
E[Y | Y > A] → 0 since Y has a

regularly varying tail with index α > 1 and p ∈ (1, α). Thus, the 3 terms in the previous bound
converge to 0 as A → ∞. This, together with (5.16) and (5.1), yields that, for any ε > 0 and
η > 0,

P

(
sup

y∈[0,Yε,t ]

∣∣∣∣
∫ y

0

{
φ
(
Wε,t + X̂h(s)

) − E (Wε,t , φ)
}

ds

∣∣∣∣ > a(t)η;Nε,t ≥ 1

)
= o(t−1).

Finally, gathering the last display, (5.15), (5.13) and (5.12), we obtain

P

(
sup

v∈[�ε,t ,�ε,t+Yε,t ]
|(v)| > a(t)η;Nε,t ≥ 1

)
= o(t−1). (5.17)

Step 3. If v ∈ [�ε,t + Yε,t , S1], we have on {Nε,t ≥ 1},

|(v)| ≤ |(�ε,t + Yε,t )| +
∣∣∣∣
∫ v

�ε,t+Yε,t

φ(Xh(s))ds

∣∣∣∣
(5.18)

≤ sup
v∈[�ε,t ,�ε,t+Yε,t ]

|(v)| + {S1 − (�ε,t + Yε,t )}‖φ‖∞.

Using (5.17) (5.18), (5.6) and (5.7), for any η > 0, we have

P

(
sup

v∈[�ε,t+Yε,t ,S1]
|(v)| > a(t)η;Nε,t ≥ 1

)
= o(t−1). (5.19)

�

Proof of Lemma 4. Let f a Lipschitz function with compact support in [−∞,∞]d \ {0}, and
let L be its Lipschitz constant. Let c > 0 be small enough such that the support of f does not
intersect [−2c,2c]d .
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Using the fact that, in the notation of (2.3), |Z1(φi)| ≤ ‖φi‖∞C1 for each i = 1, . . . , d , the
bound (5.3) implies that, as t → ∞,

P
(|Z1(φi)| > ca(t) for some i = 1, . . . , d;Nε,t = 0

) = o(t−1)

as long as ε > 0 is small enough relatively to c. We will show that

lim
ε→0

lim sup
t→∞

tE
[
f

(
Z/a(t)

);Nε,t ≥ 1
]

= lim
ε→0

lim inf
t→∞ tE

[
f

(
Z/a(t)

);Nε,t ≥ 1
]

(5.20)

= eλE[Y ]
∫ ∞

0
E[f (y[E (W ∗, φ1), . . . , E (W ∗, φ1)]T)]αy−α−1 dy.

This will prove the required vague convergence in (2.10). Write

tE
[
f

(
Z/a(t)

);Nε,t ≥ 1
] = tE

[
f

(
�(Yε,t ,Wε,t )/a(t)

);Nε,t ≥ 1
]

(5.21)
+ tE

[{
f

(
Z/a(t)

) − f
(
�(Yε,t ,Wε,t )/a(t)

)};Nε,t ≥ 1
]
,

where �(y,w) = y[E (w,φ1), . . . , E (w,φd)]T. Choose 0 < η < c and observe that the Lipschitz
property of f and the fact that its support does not intersect [−2c,2c]d implies that, on the event⋂

i{|Z1(φi) − E (Wε,t , φi)Yε,t | ≤ ηa(t)},∣∣f (
Z/a(t)

) − f
(
�(Yε,t ,Wε,t )/a(t)

)∣∣ ≤ Lη1
(|E (Wε,t , φi)Yε,t | > ηa(t) for some i = 1, . . . , d

)
.

Letting g be a continuous function on [−∞,∞]d such that g(x) = 1 for all x /∈ [−c, c]d and
g(x) = 0 in a neighborhood of the origin, we obtain

tE
[∣∣f (

Z/a(t)
) − f

(
�(Yε,t ,Wε,t )/a(t)

)∣∣;Nε,t ≥ 1
]

≤ LηtE
[
g
(
�(Yε,t ,Wε,t )/a(t)

);Nε,t ≥ 1
]

+ 2‖f ‖∞
d∑

i=1

tP
(|Z1(φi) − E (Wε,t , φi)Yε,t | > ηa(t);Nε,t ≥ 1

)
.

Recall that by Lemma 3,

lim
t→∞ tP

(|Z1(φi) − E (Wε,t , φi)Yε,t | > ηa(t);Nε,t ≥ 1
) = 0

for all ε > 0 small enough (relative to η). Therefore, for each η > 0 and ε > 0 small enough,

lim sup
t→∞

∣∣tE[
f

(
Z/a(t)

);Nε,t ≥ 1
] − tE

[
f

(
�(Yε,t ,Wε,t )/a(t)

);Nε,t ≥ 1
]∣∣

≤ Lη lim sup
t→∞

tE
[
g
(
�(Yε,t ,Wε,t )/a(t)

);Nε,t ≥ 1
]
.
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We will prove below that for any ε > 0,

tP

(
�(Yε,t ,Wε,t )

a(t)
∈ ·;Nε,t ≥ 1

)
v−→ eλE[Y ](να;ε × G) ◦ �−1(·), (5.22)

where the measure να;ε on (0,∞) is the restriction of the measure να in (1.2) to (ε,∞), i.e.
να;ε(x,∞) = min(x−α, ε−α), x > 0. Assuming this has been proved, it will follow that

lim sup
t→∞

∣∣tE[{
f

(
Z/a(t)

) − f
(
�(Yε,t ,Wε,t )/a(t)

)};Nε,t ≥ 1
]∣∣

≤ CLη

∫
g ◦ �d(να;ε × G) (5.23)

≤ CLη

∫
g ◦ �d(να × G)

for some finite positive constant C independent of η and ε. Note that the last integral is finite.
Similarly, (5.22) will imply that

lim
t→∞ tE

[
f

(
�(Yε,t ,Wε,t )/a(t)

);Nε,t ≥ 1
] = eλE[Y ]

∫
f ◦ �d(να;ε × G)

(5.24)

= eλE[Y ]
∫

f ◦ �d(να × G)

for all 0 < ε < c/(maxi=1,...,d ‖φi‖∞). We combine (5.21), (5.23) and (5.24) by keeping η fixed
and letting ε → 0. This shows that

−CLη

∫
g ◦ �d(να × G) + eλE[Y ]

∫
f ◦ �d(να × G)

≤ lim
ε→0

lim inf
t→∞ tE

[
f

(
Z/a(t)

);Nε,t ≥ 1
]

≤ lim
ε→0

lim sup
t→∞

tE
[
f

(
Z/a(t)

);Nε,t ≥ 1
]

≤ CLη

∫
g ◦ �d(να × G) + eλE[Y ]

∫
f ◦ �d(να × G),

and (5.20) follows by letting η → 0.
It remains to prove (5.22). holds. Since the event {Nε,t ≥ 1} is independent of (Yε,t ,Wε,t ),

whose distribution is the conditional distribution of (Y,W) given that {Y > εa(t)}, we have, as
t → ∞,

tP
(
�

(
Yε,t /a(t),Wε,t

) ∈ ·;Nε,t ≥ 1
) = tP(Nε,t ≥ 1) × P

(
�

(
Y/a(t),W

) ∈ · | Y > εa(t)
)

∼ eλE[Y ]ε−α
P
(
�

(
Y/a(t),W

) ∈ · | Y > εa(t)
)
,

by (5.1). Further, by Assumption 1(iii),

P
((

Y/a(t),W
) ∈ · | Y > εa(t)

) v−→ εανα;ε × G.
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We extend � to (0,∞) × [0,∞] by

�(y,∞) = lim
w→∞�(y,w),

when the limit exists, or by defining the value at infinity to be equal to 0 otherwise. Then the set
of discontinuities of � in (0,∞] × W is included in

(0,∞) ×
⋃

i=1,...,d

D(E (·, φi), W ),

which has να;ε × G-measure zero by (1.2), since each function φi satisfies Assumption 2. Now,
since �(y,w)/a(t) = �(y/a(t),w), (5.22) follows from the continuous mapping theorem. �

Proof of Theorem 5. In order to prove convergence in D([0,∞)) it is enough to prove conver-
gence in D([0, a]) for any a > 0. For notational simplicity, we present the argument for a = 1.

For any bounded interval [a, b] and real-valued functions x1 and x2 in D([a, b]), we denote
by dM1(x1, x2, [a, b]) the M1 distance between x1 and x2 on [a, b], and we write dM1(x1, x2) if
[a, b] = [0,1]. We refer the reader to Whitt [19] for the definition (page 81) of the M1 distance
and for the properties of the M1 and J1 Skorohod topologies we use below.

Recall that for all s > 0, Ms denote the number of complete cycles initiated after time 0,
and finishing before time s. To simplify the notation, we assume that E[φ(Xh(0))] = 0, i.e. that
φ = φ̄. Define the following processes:

ST (u) = 1

a(T )

[T u]∑
j=1

Zj (φ), ξT (u) = 1

a(T )
(MT u − T u/E[C1]),

S̃T (u) = ST (MT u/T ) = 1

a(T )

MT u∑
j=1

Zj (φ),

R0,T = 1

a(T )

∫ S0

0
φ(Xh(s))ds, RT (u) = 1

a(T )

∫ T u

SMT u

φ(Xh(s))ds.

Remark that, if u < S0, then Mu = 0 and, hence, S̃T (u) = 0 with the convention
∑0

j=1(· · ·) = 0.
Then

ZT (φ,u) = R0,T + S̃T (u) + RT (u).

We proceed through a sequence of steps. Specifically, we will prove that, as T → ∞,

(i) ST converges weakly in D([0,∞)) endowed with the J1 topology to the Lévy α-stable
process (E[C1])1/α�(φ, ·), where � is defined by (3.2);

(ii) ξT converges weakly in D([0,∞)) endowed with the M1 topology to an α-stable Lévy
process;

(iii) S̃T converges weakly in D([0,∞)) endowed with the J1 topology to the Lévy α-stable
process �(φ, ·);
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(iv) dM1(S̃T , ZT ) → 0 in probability.

The statement of the theorem will follow from statements (iii) and (iv). It is interesting that
the statement (iv) holds even though RT converges to zero in neither of the Skorohod topologies,
since otherwise it would then converge uniformly (because convergence in one of these topol-
ogy to a continuous limit implies uniform convergence), and this would imply that ZT weakly
converges in the J1 topology to its limit, which is not possible since the limit is not continuous.

We now prove (i). In the case h = 0, the random variables Zj (φ) are i.i.d., centered and
their tail behavior is given by Lemma 4. The weak convergence in the space D endowed
with the J1 topology of the normalized partial sum process ST to the α-stable Lévy process
(E[C1])1/α�(φ, ·) is well known in this case; see, for example, Resnick [11], Corollary 7.1.
When h > 0, {Zj (φ)} is no longer an i.i.d. sequence, so we use the following decomposition. For
j ≥ 1, we write Zj(φ) = Z1,j + Z2,j with

Z1,j =
∫ (Sj −h)∨Sj−1

Sj−1

φ(Xh(s))ds − E

[∫ (Sj −h)∨Sj−1

Sj−1

φ(Xh(s))ds

]
.

Observe that the sequence {Z1,j } is i.i.d. and centered, while the sequence {Z2,j } is centered and
exponentially α-mixing by (2.4). Furthermore, |Z2,j | ≤ 2‖φ‖∞h. Therefore, by the maximal
inequality for mixing sequences Rio [14], Theorem 3.1, we obtain

E

[
max

1≤k≤n

∣∣∣∣∣ 1

a(n)

k∑
j=1

Z2,j

∣∣∣∣∣
2]

= O(na−2
n ) = o(1).

This implies that the family of processes a(n)−1 ∑[n·]
j=1 Z2,j converges weakly to 0 uniformly

on compact sets. Since the random variables Z2,j are uniformly bounded, Z1,j has the same

tail behaviour as Zj . Thus, as in the case h = 0, the family of processes a(n)−1 ∑[n·]
j=1 Z1,j

converges weakly in the space D endowed with the J1 topology to the α-stable Lévy process
(E[C1])1/α�(φ, ·). This proves (i).

By the regenerative property of the cycles and Lemma 1, Mt is the counting process associated
with a renewal process whose interarrival times Cj are in the domain of attraction of a stable law
with index α. More specifically, by Lemmas 1 and 4, the tails of C1 and Z1(φ) are equivalent.
Now (ii) follows from Whitt [19], Theorem 4.5.3 and Theorem 6.3.1.

We now prove (iii) by the J1-continuity of composition argument. Observe that S̃T = ST ◦
[MT ·/T ]. Moreover, MT u/T = a(T )ξT (u)/T + u/E[C1] for all u ≥ 0. Since the supremum
functional is continuous in the M1 topology and a(T )/T → 0, we can use (ii) to see that MT ·/T

converges in the uniform topology on compact intervals to the linear function ·/E[C1] in proba-
bility. By (i) and Theorem 4.4 in Billingsley [1] we conclude that (ST ,MT ·/T ) converges weakly
to ((E[C1])1/α�(φ, ·), ·/E[C1]) in the product space D([0,∞))× D([0,∞)), where each of the
components is endowed with the J1 topology on compact intervals. Since the linear function is
continuous and strictly increasing, we can use Theorem 13.2.2 in Whitt [19] to conclude that S̃T

converges weakly to (E[C1])1/α�(φ, ·/E[C1]) in D([0,∞)) endowed with the J1 topology. By
the self-similarity of centered Lévy stable motions, the latter process has the same law as �(φ, ·).
This gives (iii).
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It remains to prove (iv). Define the process Z̃T by

Z̃T (t) = ZT (φ, t) − ZT (φ,S0/T ) = a(T )−1
∫ T t

S0

φ(Xh(s))ds.

Then, since S0 < ∞ a.s.,

‖Z̃T − ZT ‖∞ =
∣∣∣∣ 1

a(T )

∫ S0

0
φ(Xh(s))

∣∣∣∣ ≤ ‖φ‖∞S0

a(T )
= oP (1).

Since S̃T (t) = 0 for all t ∈ [0, S0/T ], we also have

sup
t∈[0,S0/T ]

|Z̃T (t) − S̃T (t)| ≤ ‖φ‖∞S0

a(T )
.

Next, we partition the random interval [0, SMT +1/T ] ⊇ [0,1] into the adjacent intervals

[0, S0/T ] ∪ [S0/T ,S1/T ] ∪ · · · ∪ [Si−1/T ,Si/T ] ∪ · · · ∪ [SMT
/T ,SMT +1/T ].

Recall the following property of the M1 metric: if a < b < c and x1, x2 are functions in D([a, c]),
then

dM1(x1, x2, [a, c]) ≤ max[dM1(x1, x2, [a, b]), dM1(x1, x2, [b, c])].
We conclude that

dM1(S̃T , ZT ) ≤ dM1(ZT , Z̃T ) + dM1(Z̃T , S̃T )

≤ 2‖φ‖∞S0

a(T )
+ max

i=1,...,MT

dM1(Z̃T , S̃T , [Si−1/T ,Si/T ])

+ dM1(Z̃T , S̃T , [SMT
/T ,1]).

Notice that the last term in the right-hand side is bounded by ‖φ‖∞CMT +1/a(T ), and the finite
mean of C1 implies that the CMT +1 converges weakly as T → ∞ and, in particular, the family
of the laws of (CMT +1) is tight. Observe, further, that Z̃T continuously interpolates S̃T at the
points t = Si/T , i = 0,1,2, . . . . Hence, by (5.11), P(T > S0) → 1 and stationarity we see that
for any η > 0,

P
(
dM1(S̃T , ZT ) > η

) ≤ 2T

E[C1]P
(
dM1(Z̃T , S̃T , [S0/T ,S1/T ]) > η/2

) + o(1).

Henceforth, we now only consider the process Xh(t) on [S0, S1]. We use the notation introduced
in Section 2. First of all,

dM1(Z̃T , S̃T , [S0/T ,S1/T ]) ≤ sup
u∈[S0/T ,S1/T ]

|Z̃T (u) − S̃T (u)|

≤ a(T )−1 sup
v∈[S0,S1]

∫ v

S0

φ(Xh(s))ds ≤ a(T )−1C1‖φ‖∞.
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Combining this with (5.3), we see that for any η > 0,

P
(
dM1(Z̃T , S̃T , [S0/T ,S1/T ]) > η;Nε,T = 0

) = o(T −1),

as long as ε > 0 is chosen to be small enough.
Next, we consider the event {Nε,T ≥ 1}. Define

ŽT (t) = a(T )−1
∫ tT

S0

E (Wε,T ,φ)1[�ε,T ,�ε,T +Yε,T )(s)ds.

Observe that ŽT is monotone on [S0/T ,S1/T ] and piecewise linear and S̃T is constant on
[S0/T ,S1/T ) with a step at the point S1/T . Using these properties and the definition of the
M1 distance, it is not difficult to check that

dM1(ŽT , S̃T , [S0/T ,S1/T ]) ≤ C1

T
∨ |S̃T (S1/T ) − ŽT (S1/T )|.

On the other hand, bounding by the uniform distance gives us

dM1(Z̃T , ŽT , [S0/T ,S1/T ]) ≤ sup
t∈[S0/T ,S1/T ]

|Z̃T (t) − ŽT (t)|.

Since S̃T (S1/T ) = Z̃T (S1/T ), the previous bounds yield

P
(
dM1(Z̃T , S̃T , [S0/T ,S1/T ]) > η;Nε,T = 1

)
≤ P(C1 > ηT/2;Nε,T = 1) + 2P

(
sup

t∈[S0/T ,S1/T ]
|Z̃T (t) − ŽT (t)| > η/2;Nε,T = 1

)
.

By Lemma 1, we know that P(C1 > ηT ) = o(T −1). Moreover, since

sup
t∈[S0/T ,S1/T ]

|Z̃T (t) − ŽT (t)|

= 1

a(T )
sup

v∈[S0,S1]

∣∣∣∣
∫ v

S0

{
φ(Xh(s)) − E (Wε,T ,φ)1[�ε,T ,�ε,T +Yε,T )(s)

}
ds

∣∣∣∣,
Lemma 3 states exactly that

P

(
sup

t∈[S0/T ,S1/T ]
|Z̃T (t) − ŽT (t)| > η;Nε,T ≥ 1

)
= o(T −1).

This completes the proof of (iv). �
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