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In this paper, we consider a partially linear model of the form Yt = Xτ
t θ0 + g(Vt ) + εt , t = 1, . . . , n, where

{Vt } is a β null recurrent Markov chain, {Xt } is a sequence of either strictly stationary or non-stationary
regressors and {εt } is a stationary sequence. We propose to estimate both θ0 and g(·) by a semi-parametric
least-squares (SLS) estimation method. Under certain conditions, we then show that the proposed SLS
estimator of θ0 is still asymptotically normal with the same rate as for the case of stationary time series.
In addition, we also establish an asymptotic distribution for the nonparametric estimator of the function
g(·). Some numerical examples are provided to show that our theory and estimation method work well in
practice.

Keywords: asymptotic theory; nonparametric estimation; null recurrent time series; semi-parametric
regression

1. Introduction

During the past two decades, there has been much interest in various nonparametric and semi-
parametric techniques to model time series data with possible nonlinearity. Both estimation and
specification testing problems have been systematically examined for the case where the ob-
served time series satisfy a type of stationarity. For more details and recent developments, see
Robinson [26–28], Fan and Gijbels [8], Härdle et al. [15,16], Fan and Yao [9], Gao [10], Li and
Racine [21] and the references therein.

As pointed out in the literature, the stationarity assumption seems too restrictive in practice.
For example, when tackling economic and financial issues from a time perspective, we often deal
with non-stationary components. In reality, neither prices nor exchange rates follow a stationary
law over time. Thus practitioners might feel more comfortable avoiding restrictions like stationar-
ity for processes involved in economic time series models. There is much literature on parametric
linear and nonlinear models of non-stationary time series, but very little work has been done in
nonparametric and semi-parametric nonlinear cases. In nonparametric estimation of nonlinear re-
gression and autoregression of non-stationary time series models and continuous-time financial
models, existing studies include Phillips and Park [25], Karlsen and Tjøstheim [20], Bandi and
Phillips [1], Karlsen et al. [19], Schienle [30] and Wang and Phillips [32,33]. Recently, Gao et al.
[11,12] considered nonparametric specification testing in both autoregression and cointegration
models.

Consider a nonparametric regression model of the form

Yt = m(Zt) + εt , t = 1, . . . , n, (1.1)
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where {Yt } and {Zt } are non-stationary time series, m(·) is an unknown function defined in Rp

and {εt } is a sequence of strictly stationary errors. We may apply a nonparametric method to
estimate m(·),

m̂(z) := m̂n(z) =
n∑

t=1

ant (z)Yt , (1.2)

where {ant (z)} is a sequence of positive weight functions; see Karlsen et al. [19] and Wang and
Phillips [32,33].

As pointed out in the literature for the case where the dimension of {Zt } is larger than three,
m(·) may not be estimated by m̂(z) with reasonable accuracy due to “the curse of dimensional-
ity”. The curse of dimensionality problem has been clearly illustrated in several books, such as
Silverman [31], Hastie and Tibshirani [17], Green and Silverman [13], Fan and Gijbels [8], Här-
dle et al. [15], Fan and Yao [9] and Gao [10]. There are several ways to circumvent the curse of
dimensionality. Perhaps one of the most commonly used methods is semi-parametric modelling,
which is taken to mean partially linear modelling in this context. In this paper, we propose using
a partially linear model of the form

Yt = Xτ
t θ0 + g(Vt ) + εt , t = 1, . . . , n, (1.3)

where θ0 is an unknown d-dimensional vector; g(·) is some continuous function; {Xt =
(xt1, . . . , xtd)τ } is a sequence of either stationary or non-stationary regressors, as assumed in
A1 below; {Vt } is a β null recurrent Markov process (see Section 2 below for detail); and {εt } is
an error process. As discussed in Section 3.2 below, {εt } can be relaxed to be either stationary
and heteroscedastic or non-stationary and heteroscedastic.

An advantage of the partially linear approach is that any existing information concerning pos-
sible linearity of some of the components can be taken into account in such models. Engle et al.
[7] were among the first to study this kind of partially linear model. It has been studied exten-
sively in both econometrics and statistics literature. With respect to development in the field of
semi-parametric time series modelling, various estimation and testing issues have been discussed
for the case where both {Xt } and {Vt } are strictly stationary (see, e.g., Härdle et al. [15] and Gao
[10]) since the publication of Robinson [27]. For the case where {Vt } is a sequence of either
fixed designs or strictly stationary regressors but there is some type of unit root structure in {Xt },
existing studies, such as Juhl and Xiao [18], have discussed estimation and testing problems.

To the best of our knowledge, the case where either {Vt } is a sequence of non-stationary re-
gressors or both {Xt } and {Vt } are non-stationary has not been discussed in the literature. This
paper considers the following two cases: (a) where {Xt } is a sequence of strictly stationary re-
gressors and {Vt } is a sequence of non-stationary regressors; and (b) where both {Xt } and {Vt }
are non-stationary. In this case, model (1.3) extends some existing models (Robinson [27], Här-
dle et al. [15], Juhl and Xiao [18] and Gao [10]) from the case where {Vt } is a sequence of strictly
stationary regressors to the case where {Vt } is a sequence of non-stationary regressors. Since the
invariant distribution of the β null recurrent Markov process {Vt } does not have any compact
support, however, the semi-parametric technique used in stationary time series cannot be directly
applicable to our case. In this paper, we will develop a new semi-parametric estimation method
to address such new technicalities when establishing our asymptotic theory.
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The main objective of this paper is to derive asymptotically consistent estimators for both θ0

and g(·) involved in model (1.3). In a traditional stationary time series regression problem, some
sort of stationary mixing condition is often imposed on the observations (Xt ,Vt ) to establish
asymptotic theory. In this paper, it is interesting to find that the proposed semi-parametric least-
squares (SLS) estimator of θ0 is still asymptotically normal with the same rate as that in the case
of stationary time series when certain smoothness conditions are satisfied. In addition, our non-
parametric estimator of g(·) is also asymptotically consistent, although the rate of convergence,
as expected, is slower than that for the stationary time series case.

The rest of the paper is organized as follows. The estimation method of θ0 and g(·) and some
necessary conditions are given in Section 2. The main results and some extensions are provided
in Section 3. Section 4 provides a simulation study. An analysis of an economic data set from
the United States is given in Section 5. An outline of the proofs of the main theorems is given
in Section 6. Supplementary Material section gives a description for a supplemental document
by Chen, Gao and Li [5], from which the detailed proofs of the main theorems, along with some
technical lemmas, are available.

2. Estimation method and assumptions

2.1. Markov theory

Let {Vt , t ≥ 0} be a Markov chain with transition probability P and state space (E, E ), and φ be
a measure on (E, E ). Throughout the paper, {Vt } is assumed to be φ-irreducible Harris recurrent,
which makes asymptotics for semi-parametric estimation possible. The class of stochastic pro-
cesses we are dealing with in this paper is not the general class of null recurrent Markov chains.
Instead, we need to impose some restrictions on the tail behavior of the distribution of the recur-
rence time Sα of the chain. This is what we are interested in: a class of β null recurrent Markov
chains.

Definition. A Markov chain {Vt } is β null recurrent if there exist a small non-negative function
f (·) (the definition of a small function can be found in the supplemental document), an initial
measure λ, a constant β ∈ (0,1) and a slowly varying function Lf (·) such that

Eλ

[
n∑

t=0

f (Vt )

]
∼ 1

	(1 + β)
nβLf (n) as n → ∞, (2.1)

where Eλ stands for the expectation with initial distribution λ and 	(·) is the usual gamma
function.

It is shown in Karlsen and Tjøstheim [20] that when there exist some small measure ν and
small function s with ν(E) = 1 and 0 ≤ s(v) ≤ 1, v ∈ E, such that

P ≥ s ⊗ ν, (2.2)
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then {Vt } is β null recurrent if and only if

Pα(Sα > n) = 1

	(1 − β)nβLs(n)

(
1 + o(1)

)
, (2.3)

where Ls = Lf

πsf
and πs is the invariant measure as defined in Karlsen and Tjøstheim [20]. Fur-

thermore, if (2.3) holds, by Lemma 3.4 in Karlsen and Tjøstheim [20], β̂ := ln(NC(n))
lnn

is a strongly
consistent estimator of β , where NC(n) = ∑n

t=1 IC(Vt ), in which IA(·) is the conventional indi-
cator function and C is a small set as defined in Karlsen and Tjøstheim [20].

We then introduce a useful decomposition that is critical in the proofs of asymptotics for
nonparametric estimation in null recurrent time series. Let f be a real function defined in R. We
now decompose the partial sum Sn(f ) = ∑n

t=0 f (Vt ) into a sum of independent and identically
distributed (i.i.d.) random variables with one main part and two asymptotically negligible minor
parts. Define

Zk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ0∑
t=0

f (Vt ), k = 0,

τk∑
t=τk−1+1

f (Vt ), 1 ≤ k ≤ N(n),

n∑
t=τN(n)+1

f (Vt ), k = (n),

where the definitions of τk and N(n) will be given in the supplemental document. Then

Sn(f ) = Z0 +
N(n)∑
k=1

Zk + Z(n). (2.4)

From Nummelin’s [24] result, we know that {Zk, k ≥ 1} is a sequence of i.i.d. random variables.
In the decomposition (2.4) of Sn(f ), N(n) plays the role of the number of observations. It follows
from Lemma 3.2 in Karlsen and Tjøstheim [20] that Z0 and Z(n) converge to zero almost surely
when they are divided by N(n). Furthermore, Karlsen and Tjøstheim [20] show that if (2.2) holds
and

∫ |f (v)|πs(dv) < ∞, then for an arbitrary initial distribution λ we have

1

N(n)
Sn(f ) −→ πs(f ) almost surely (a.s.), (2.5)

where πs(f ) = ∫
f (v)πs(dv).

Some useful results for Markov theory are available from Appendix A of the supplemental
document.

2.2. Estimation method

As assumed in assumption A1 below, there exist a function H(·) and a stationary process {Ut }
such that Xt = H(Vt ) + Ut . Since E[εt |Vt = v] = E[εt ] = 0 is assumed in A2(ii) and A3(ii), we
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have

E[Yt |Vt = v] = E
[(

Xτ
t θ0 + g(Vt ) + εt

)|Vt = v
] = H(v)τ θ0 + g(v). (2.6)

This implies that �(v) ≡ E[Yt |Vt = v] is a function of v independent of t for each fixed v and
given θ0. Thus, the form of g(v) can be represented by

g(v) = �(v) − H(v)τ θ0. (2.7)

In view of (2.7), we can rewrite model (1.3) as

Yt − �(Vt ) = (
Xt − H(Vt )

)τ
θ0 + εt . (2.8)

Letting Wt = Yt − �(Vt ) and Ut = Xt − H(Vt ), model (2.8) implies

Wt = Yt − �(Vt ) = (
Xt − H(Vt )

)τ
θ0 + εt = Uτ

t θ0 + εt . (2.9)

Note that E[Wt ] = E[Uτ
t θ0]+E[εt ] = 0. In the case where {(Xt ,Vt , εt ): t ≥ 1} is a sequence

of stationary random variables, various estimation methods for θ0 and g(·) in model (1.3) have
been studied by many authors (see, e.g., Robinson [27], Härdle et al. [15] and Gao [10]).

We now propose an SLS estimation method based on the kernel smoothing. For every given
θ , we define a kernel estimator of g(v) by

gn(v; θ) =
n∑

t=1

wnt (v)(Yt − Xτ
t θ), (2.10)

where {wnt (v)} is a sequence of weight functions given by

wnt (v) = Kv,h(Vt )∑n
k=1 Kv,h(Vk)

with Kv,h(Vt ) = 1

h
K

(
Vt − v

h

)
,

in which K(·) is a probability kernel function and h = hn is a bandwidth parameter.
Replacing g(Vt ) by gn(Vt ; θ) in model (1.3) and applying the SLS estimation method, we

obtain the SLS estimator, θn, of θ0 by minimizing

1

n

n∑
t=1

(
Yt − Xτ

t θ − gn(Vt , θ)
)2

over θ . This implies

θn = (X
τ
X)−1X

τ
Y , (2.11)

where X
τ = (X̃1, . . . , X̃n), X̃t = Xt − ∑n

k=1 wnk(Vt )Xk , Y
τ = (Ỹ1, . . . , Ỹn) and Ỹt = Yt −∑n

k=1 wnk(Vt )Yk . And g(·) is then estimated by

gn(·) = gn(·; θn). (2.12)
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This kind of estimation method has been studied in the literature (see, e.g., Härdle et al. [15]).
When {Vt } is a sequence of either fixed designs or stationary regressors with a compact support,
the conventional weighted least-squares estimators (2.11) and (2.12) work well in both the large
and small sample cases. Since the invariant distribution of β null recurrent Markov chain {Vt }
might not have any compact support, it is difficult to establish asymptotic results for the esti-
mators (2.11) and (2.12) owing to the random denominator problem involved in wnt (·). Hence,
to establish our asymptotic theory, we apply the following weighted least-squares estimation
method (see, e.g., Robinson [27]). Define

Ft := Fnt = I
(|pn(Vt )| > bn

)
, (2.13)

where

pn(v) = 1

N(n)

n∑
k=1

Kv,h(Vk)

and {bn} is a sequence of positive numbers satisfying some conditions. Furthermore, let

X̃τ = (X̃1F1, . . . , X̃nFn) and Ỹ τ = (Ỹ1F1, . . . , ỸnFn).

Throughout this paper, we propose to estimate θ0 by

θ̂n = (X̃τ X̃)−1X̃τ Ỹ (2.14)

and g(·) by

ĝn(·) = gn(·; θ̂n). (2.15)

2.3. Assumptions

As may be seen from equation (2.9), further discussion on the semi-parametric estimation method
depends heavily on the structure of {Xt } and {Vt }. This paper is concerned with the following
two cases: (i) where {Xt } is a sequence of strictly stationary regressors and independent of {Vt };
and (ii) where {Xt } is a sequence of non-stationary regressors with the non-stationarity being
generated by {Vt }.

Before stating the main assumptions, we introduce the definition of α mixing dependence. The
stationary sequence {Zt , t = 0,±1, . . .} is said to be α mixing if α(n) → 0 as n → ∞, where

α(n) = sup
A∈F 0−∞,B∈F ∞

n

|P(AB) − P(A)P (B)|,

in which {F j
k } denotes a sequence of σ fields generated by {Zt , k ≤ t ≤ j}. Since its introduction

by Rosenblatt [29], α mixing dependence is a property shared by many time series models (see,
e.g., Withers [34] and Gao [10]). For more details about limit theorems for α mixing processes,
we refer to Lin and Lu [22] and the references therein.

The following assumptions are necessary to derive the asymptotic properties of the semi-
parametric estimators.
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A1. There exist an unknown function H(v) and a stationary process {Ut } such that Xt =
H(Vt ) + Ut .

A2. (i) Suppose that {Ut } is a stationary ergodic Markov process with E[U1] = 0 and
E[‖U1‖4+γ1 ] < ∞ for some γ1 > 0, where ‖ · ‖ stands for the Euclidean norm. Furthermore,
we suppose that � := E[U1U

τ
1 ] is positive definite and {Ut } is α mixing with

∞∑
t=1

α
γ1/(4+γ1)

U (t) < ∞, (2.16)

where αU(t) is the α mixing coefficient of {Ut }.
(ii) Let {εt } be a stationary ergodic Markov process with E[ε1] = 0, σ 2 := E[ε2

1 ] > 0 and
E[|ε1|2+γ2 ] < ∞ for some γ2 > 0. Furthermore, the process {εt } is α mixing with

∞∑
t=1

αγ2/(2+γ2)
ε (t) < ∞, (2.17)

where αε(t) is the α mixing coefficient of {et }.
A3. (i) The invariant measure πs of the β null recurrent Markov chain {Vt } has a uniformly

continuous density function ps(·).
(ii) Let {Ut }, {Vt } and {εt } be mutually independent.

A4. Let fi,k(·) be the density function of

Vi,k = ϕi−k(Vi − Vk) for i > k with ϕm = mβ−1Ls(m) for m ≥ 1.

Let

inf
δ>0

lim sup
m→∞

sup
i≥1

sup
|v|≤δ

fi+m,i(v) < ∞. (2.18)

Furthermore, there exists a sequence of σ fields {Ft , t ≥ 0} such that {Vt } is adapted to Ft . With
probability 1,

inf
δ>0

lim sup
m→∞

sup
i≥1

sup
|v|≤δ

fi+m,i(v|Fi ) < ∞, (2.19)

where fi,k(v|Fk) is the conditional density function of Vi,k given Fk .
A5. (i) The function g(v) is differentiable and the derivative is continuous in v ∈ R. In

addition, for n large enough

n∑
t=1

∫
(g′(ϕ−1

t v))2ft,0(v)dv = O(nh−1), (2.20)

where g′(·) is the derivative of g(·), the definitions of ϕt and ft,0(v) are given in A4 above.
(ii) The function H(v) is differentiable and the derivative is also continuous in v ∈ R. In

addition, for n large enough

n∑
t=1

∫
‖H ′(ϕ−1

t v)‖2ft,0(v)dv = O(nh−1) (2.21)
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and

n∑
t=1

∫
‖g′(ϕ−1

t v)H ′(ϕ−1
t v)‖ft,0(v)dv = O(n1/2−ε1b2

nh
−2), (2.22)

where ε1 > 0 is small enough.
A6. (i) The probability kernel function K(·) is a continuous and symmetric function having

some compact support.
(ii) The sequences {hn} and {bn} both satisfy as n → ∞

hn → 0, bn → 0, nε0hnb
−4
n → 0 and nβ−ε0hnb

4
n → ∞ (2.23)

for some 0 < ε0 <
β
2 . Moreover,

n∑
t=1

P
(
pn(Vt ) ≤ bn

) = o(n). (2.24)

Remark 2.1. (i) While some parts of assumptions A1–A3 may be non-standard, they are jus-
tifiable in many situations. Condition A1 assumes that {Xt } is generated by Xt = H(Vt ) + Ut .
This is satisfied when the conditional mean function H(v) = E[Xt |Vt = v] exists. In this case,
A1 holds automatically with Ut = Xt − E[Xt |Vt ]. Condition A1 is also commonly used in the
stationary case (see, e.g., Linton [23]). There are various examples in this kind of situation (see,
e.g., in the univariate case where Xt = Vt + εt , in which {εt } is a sequence of i.i.d. errors with
E[εt ] = 0 and E[ε2

t ] < ∞, and independent of {Vt }. In this case, H(v) = E[Xt |Vt = v] = v and
Ut = εt ). As a consequence, condition A1 does not include the case where {Xt } is a random walk
sequence of the form Xt = Xt−1 + ζt . Note that the case where the non-stationarity in both {Xt }
and {Vt } is generated by a common random walk structure will need to be discussed separately,
since the methodology involved is likely to be quite different. In Section 3.2 below, we will give
some discussion about the case where {H(Vt )} is replaced by a bivariate function of the form
{H(Vt , t)} to take into account the inhomogeneous case.

(ii) The stationarity assumption on {Ut } is to ensure that the conventional
√

n-rate of conver-
gence is achievable and thus it is possible to construct an asymptotically efficient estimator for θ0.
The stationarity condition on {Ut } also requires that Xt can be decomposed into a non-stationary
component represented by H(Vt ) and a stationary component {Ut }. The α mixing dependence
in A2 is a mild condition on {Ut } and the errors process {et }. Karlsen et al. [19] have made similar
assumptions. As discussed in Section 3.2 below, A2(i) can be relaxed to allow for the inclusion
of both endogeneity and heteroscedasticity. Note that A2(ii) can also be relaxed to allow for the
inclusion of a deterministic function in model (1.3). In such cases, model (1.3) can be naturally
extended to a semi-parametrc additive model of the form Yt = Xτ

t θ0 + g(Vt ) + λ(Ut , t) + et as
discussed in Section 3.2 below.

(iii) As we can see from the asymptotic theory below, the condition on the existence of the
inverse matrix �−1 is required in Theorem 3.1. In the case where {(Xt ,Vt )} is a vector of either
independent regressors or stationary time series regressors, Härdle et al. [15] also assume similar
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conditions (see Section 1.3 in their book) for establishing the asymptotic results for the conven-
tional least-squares estimators of θ0 in (2.11) and of g(·) in (2.12). Condition A3(i) corresponds
to analogous conditions on the density function in the stationary case. A3(ii) imposes the mutual
independence to avoid involving some extremely technical conditions.

Remark 2.2. A4 is similar to but weaker than Assumption 2.3(ii) in Wang and Phillips [32].
It is easy to check that (2.18) and (2.19) are satisfied with β = 1 and Ls(·) ≡ 1 when {Vt } is a
sequence of either i.i.d. or stationary dependent variables. Consider the random walk case defined
by

Vt = Vt−1 + vt , t = 1,2, . . . , V0 = 0, (2.25)

where {vt } is a sequence of i.i.d. random variables. The random walk model (2.25) is very im-
portant in economics and finance and has been studied by many authors. It corresponds to a 1/2
null recurrent process and it is easy to check that (2.18) and (2.19) are satisfied with β = 1/2,
Ls(n) ≡ 1 and Fk = σ(vi, i ≤ k). On the other hand, (2.18) and (2.19) can be formulated in terms
of the transition probability. For example, assume that the transition probability of the Markov
process {Vt } is defined by

P(x,dy) = f (x|y)dy.

Let f k(·) be the marginal density of {Vk} and f m(x|y) be the m step transition density. Then

fi+m,i(v) = ϕ−1
m

∫
f m(ϕ−1

m v + y|y)f i(y)dy,

where ϕm is defined in A4.

Remark 2.3. (i) A5(i) is assumed to make sure that the bias term of the nonparametric estimator
is negligible when establishing the asymptotic distribution of the semi-parametric estimator θ̂n.
When {Vt } is the random walk process defined by (2.25), condition A5(i) can be verified. If

g(v) = �0 + �1v + �2|v|1+δ0 , 0 < δ0 < 1/2, (2.26)

nδ0h = O(1) and ft,0(v) = O(v−(1+2δ0+ς)) for some ς > 0 as t → ∞ and v → ∞, we can show
that by A4,

n∑
t=1

∫
(g′(ϕ−1

t v))2ft,0(v)dv = O

(
n∑

t=1

ϕ
−2δ0
t

)
= O(n1+δ0),

which implies (2.20).
(ii) Similarly, condition A5(ii) is also verifiable. Consider the case where

g(v) = �0 + �1v and H(v) = a0 + a1v + a2|v|1+δ1 , 1 < δ1 < 1/2,

in which ak , k = 0,1,2, are d-dimensional vectors, n1/2+δ1−ε1h2 = O(1) (ε1 < 1
2 − δ1) and

ft,0(v) = O(v−(1+2δ1+ς)) for some ς > 0 as t → ∞ and v → ∞. We can also show that (2.21)
and (2.22) hold for the random walk case. The detailed calculation is similar to that in Re-
mark 2.3(i) above.
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Remark 2.4. (i) Condition A6(i) is a quite natural condition on the kernel function and has been
used by many authors for the stationary time series case. The first part of A6(i) requires that the
rate of b−4

n → ∞ is slower than that of nε0h → 0 and the rate of b4
n → 0 is slower than that

of nβ−ε0h → ∞. Such conditions are satisfied in various cases. Letting bn = cb log−1(n) and
hn = chn

−ζ0 for some cb > 0, ch > 0 and ε0 < ζ0 < β − ε0, then the first part of A6(ii) holds
automatically.

(ii) The second part of A6(ii) is imposed to ensure that the truncated procedure works in this
kind of problem. When {Vt } is a sequence of i.i.d. random variables having some compact sup-
port S, it is easy to show that (2.24) holds if infx∈S p(x) > 0, where p(·) is the density function
of {Vt }. In the case where {Vt } is an i.i.d. sequence without any compact support, Robinson [27]
gives different conditions such that (2.24) holds. We can show that condition A6(ii) is verifiable
when {Vt } is a random walk model of the form (2.25). Since the verification is quite technical,
the details are given in the last part of Appendix C in the supplemental document.

3. The main results and their extensions

3.1. Asymptotic theory

We now establish an asymptotic distribution of the estimate θ̂n in the following theorem. The
following theorem includes two cases: (a) {Vt } is a sequence of non-stationary regressors and
{Xt } is a sequence of strictly stationary regressors and is independent of {Vt }; and (b) both {Xt }
and {Vt } are non-stationary.

Theorem 3.1. Let A1–A5(i) and A6 hold. In addition, suppose that �ε,U := σ 2� +
2
∑∞

t=2 E[ε1εt ]E[U1U
τ
t ] is positive definite.

(i) If {Xt } is strictly stationary and independent of {Vt }, then as n → ∞,

√
n(θ̂n − θ0)

d−→ N(0,�−1�ε,U�−1). (3.1)

(ii) Suppose that both {Xt } and {Vt } are non-stationary. If, in addition, A5(ii) is satisfied, then
(3.1) still holds.

Remark 3.1. (i) Theorem 3.1 shows that the standard normality can still be an asymptotic distri-
bution of the SLS estimate even when non-stationarity is involved. Theorem 3.1(ii) further shows
that the conventional rate of

√
n is still achievable when the non-stationarity in {Xt } is purely

generated by {Vt } and certain conditions are imposed on the functional forms of H(·) and g(·).
(ii) Since the asymptotic distribution and asymptotic variance in (3.1) are mainly determined

by the stationary sequences {εt } and {Ut }, the above conclusion extends Theorem 2.1.1 of Härdle
et al. [15] for the case when {Xt }, {Vt } and {εt } are all strictly stationary. In addition, when {Xt } is
assumed to be strictly stationary and independent of {Vt } in Theorem 3.1(i), the covariance matrix
reduces to the covariance matrix of {Xt } of the form � = E[(X1 − E[X1])(X1 − E[X1])τ ].
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Remark 3.2. (i) Theorem 3.1 establishes an asymptotically normal estimator for θ0. As in the
independent and stationary sample case, an interesting issue is how to construct an asymptotically
efficient estimator for θ0. As discussed in Chen [4] and Härdle et al. [15], it can be shown that θ̂

achieves the smallest possible variance of σ 2�−1 when both {Ut } and {εt } are independent and
εt ∼ N(0, σ 2).

(ii) Since the publication of the book by Bickel et al. [3], there has been an increasing interest
in the field of asymptotic efficiency in semi-parametric models. There are certain types of asymp-
totic efficiency in this kind of semi-parametric setting. Härdle et al. [15] consider several types
of asymptotically efficient estimators in Chapters 2 and 5 of the book. Linton [23] considers
second-order efficiency. Bhattacharya and Zhao [2] establish an asymptotically efficient estima-
tor without requiring finite variance. Chen [6] discusses asymptotic efficiency in nonparametric
and semi-parametric models using sieve estimation.

(iii) As shown in the literature, the establishment of an asymptotically efficient estimator in this
kind of semi-parametric setting requires the availability of uniform convergence of nonparamet-
ric estimation. Since such uniform convergence results are not readily available and applicable in
this kind of non-stationary situation, we wish to establish some necessary uniform convergence
results first before we may be able to address the issue of asymptotic efficiency in future research.

An asymptotic distribution of ĝn(x) is given in Theorem 3.2 below.

Theorem 3.2. (i) Let the conditions of Theorem 3.1(i) hold. If, in addition, g(·) is twice differen-
tiable and the second derivative, g′′(v), is continuous in v and nβ/5+εh = o(1) for some ε > 0,
then as n → ∞,√√√√ n∑

t=1

K

(
Vt − v

h

)(
ĝn(v) − g(v)

) d−→ N

(
0, σ 2

∫
K2(u)du

)
. (3.2)

(ii) Let the conditions of Theorem 3.1(ii) hold. If, in addition, g(·) is twice differentiable and
the second derivative, g′′(v), is continuous in v and nβ/5+εh = o(1) for some ε > 0, then equa-
tion (3.2) remains true.

Remark 3.3. The asymptotic distribution in (3.2) is similar to the corresponding results obtained
by Karlsen et al. [19] and Wang and Phillips [32]. The rate of convergence is slower than that for
the stationary time series case as

∑n
t=1 K(Vt−v

h
) = OP (N(n)h) and N(n) is usually smaller than

n almost surely. The condition nβ/5+εh = o(1) makes sure that the bias term of the nonparametric
estimator ĝn(v) is negligible.

3.2. Some extensions

In this section, we give some detailed discussion of the possible extensions raised in Remark
2.1(ii) and (iii). In addition, we also suggest some other extensions.
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Instead of considering a variety of extensions of model (1.3) and Theorems 3.1 and 3.2, this
section considers several extensions that are naturally based on the relaxation of A1–A3 to As-
sumptions 3.1–3.3 below, respectively. As a consequence, the extended models proposed below
allow for the inclusion of endogeneity, heteroscedasticity and deterministic trending.

Assumption 3.1. There are a bivariate function H(·, ·) and a stationary process {Ut } such that
Xt = H(Vt ,

t
n
) + Ut for 1 ≤ t ≤ n.

Assumption 3.2. (i) Let A2(i) hold.
(ii) Let {εt } be of the form of either εt = σ(ζt )et or εt = λ(ξt ) + et with ζt = Ut or Vt and

ξt = Ut or ξt = t
n

, in which {et } is a stationary ergodic Markov process satisfying A2(ii) and
both σ(·) and λ(·) are smooth functions.

Assumption 3.3. (i) Let A3(i) hold.
(ii) Let {Vt } be independent of both {Ut } and {et }. In addition, E[et |Ut ] = 0.

While it is difficult to consider some general non-stationarity for {Xt }, it is possible to consider
a general inhomogeneous case in Assumption 3.1 to allow for a bivariate functional form of
H(·, ·) such that the non-stationarity of {Xt } is caused by both the involvement of {Vt } and the
dependence on t . In this case, H(·, ·) may be estimated nonparametrically by

Ĥ (v, τ ) =
n∑

t=1

Wnt(v, τ )Xt with Wnt(v, τ ) = Kv,τ (Vt , t)∑n
k=1 Kv,τ (Vk, k)

, (3.3)

where Kv,τ (Vt , t) = 1
h1

1
h2

K1(
Vt−v
h1

)K2(
t/n−τ

h2
), in which both Ki(·) are probability kernel func-

tions and hi are bandwidth parameters for i = 1,2.
Assumption 3.2(ii) allows for inclusion of endogeneity, heteroscedasticity and determinis-

tic trending. In the case where we have either εt = σ(Ut )et or εt = σ(Vt )et with E[et |Ut ] =
E[et |Vt ] = 0, it follows that either E[εt |Vt ] = E[σ(Vt )et |Vt ] = σ(Vt )E[et |Vt ] = 0 = E[εt ] or
E[εt |Vt ] = E[σ(Ut )et ] = E[εt ]. This implies Assumption 3.2(ii) holds in both cases. In addi-
tion, Assumption 3.2(ii) also includes the case where εt = λ( t

n
) + et or εt = λ(Ut ) + et . In such

cases, obviously we have E[εt |Vt ] = E[εt ].
Under Assumptions 3.1–3.3, model (1.3) can be written as either

Yt = Xτ
t θ0 + g(Vt ) + σ(ζt )et ,

(3.4)

Xt = H

(
Vt ,

t

n

)
+ Ut ,

where ζt = Ut or Vt , or

Yt = Xτ
t θ0 + g(Vt ) + λ(ξt ) + et ,

(3.5)

Xt = H

(
Vt ,

t

n

)
+ Ut ,
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where ξt = Ut or ξt = t
n

.
Estimation of θ0 and g(·) in (3.4) is similar to what has been proposed in Section 2. Since

model (3.5) is a semi-parametric additive model, one will need to estimate θ0 based on the form
Yt = Xτ

t θ0 +G(Vt , ξt )+ et with G(v, τ) = g(v)+λ(τ) before both g(·) and λ(·) can be individ-
ually estimated using the marginal integration method as developed in Section 2.3 of Gao [10].

In both cases, one will need to replace {wnt (v)} in (2.10) and pn(v) in (2.13) by {Wnt(v, τ )}
of (3.3) and pn(v, τ ) = 1

N(n)

∑n
k=1 Kv,τ (Vk, k), respectively.

Since the establishment and the proofs of the corresponding results of Theorems 3.1 and 3.2
for models (3.4) and (3.5) involve more technicalities than those given in Appendices B and C of
the supplemental document, we wish to leave the discussion of models (3.4) and (3.5) to a future
paper.

4. Simulation study

To illustrate our estimation procedure, we consider a simulated example and a real data example
in this section. Throughout the section, the uniform kernel K(v) = 1

2I[−1,1](v) is used. A diffi-
cult problem in simulation is the choice of a proper bandwidth. From the asymptotic results in
Section 3, we can find that the rates of convergence are different from those in the stationary case
with n being replaced by N(n). In practice, we have found it useful to use a semi-parametric
cross-validation method (see, e.g., Section 2.1.3 of Härdle et al. [15]).

Example 4.1. Consider a partially linear time series model of the form

Yt = Xtθ + g(Vt ) + εt , t = 1,2, . . . , n, (4.1)

where Vt = Vt−1 + vt with V0 = 0 and {vt } is a sequence of i.i.d. random variables generated
from N(0,0.12), {εt } is generated by an AR(1) model of the form

εt = 0.5εt−1 + ηt ,

in which {ηt } is a sequence of i.i.d. random variables generated from N(0,1), {vt } and {ηt } are
mutually independent. We then choose the true value of θ as θ0 = 1, the true form of g(·) as
g0(v) = v and consider the following cases for {Xt }.

(i) Xt = Ut , where {Ut } is a sequence of i.i.d. N(0,1) random variables,
(ii) Xt = Vt + Ut , where {Ut } is defined as in case (i).

It is easy to check that the random walk {Vt } defined in this example corresponds to a 1/2
null recurrent process and the assumptions in Section 2 are satisfied here. We choose sample
sizes n = 200,700,1200 and N = 1000 as the number of replications in the simulation. The
simulation results are listed in Tables 1 and 2 and the plots are given in Figures 1–6.

The performance of θ̂n is given in Table 1. The “AE” in Table 1 is defined by 1
1000

∑1000
j=1 |θ̂ (j)−

θ0|, where θ̂ (j) is the value of θ̂n in the j th replication. “SE” is the standard error of {θ̂ (j)}. From
Table 1, we find that the estimator of θ0 performs well in the small and medium sample cases
and it improves when the sample size increases.
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Table 1. Simulation results for the estimator of θ0

n H(·) AE SE

200 H(v) ≡ 0 0.0137 0.0144
700 H(v) ≡ 0 0.0117 0.0086

1200 H(v) ≡ 0 0.0064 0.0062
200 H(v) = v 0.0172 0.0215
700 H(v) = v 0.0149 0.0126

1200 H(v) = v 0.0079 0.0108

The performance of the nonparametric estimator is given in Table 2. The “AE” in Ta-
ble 2 is the mean of the absolute errors in 1000 replications. The absolute error is defined by

1
300

∑300
j=1 |̂gn(vj ) − vj |, where vj = vmin + j−1

300 (vmax − vmin) for j = 1,2, . . . ,300, vmax and
vmin are the maximum and minimum of the random walk {Vt ,1 ≤ t ≤ n}, respectively. “SE” in
Table 2 is the standard error. From Table 2, we find that the nonparametric estimate of g0(v) = v

performs well in our example and it improves when the sample size increases.
Figures 1–3 compare the true nonparametric regression function g0(·) and its nonparametric

estimator for the case of H(v) = 0 when the sample sizes are 200, 700 and 1200, respectively.
Figures 4–6 compare the true nonparametric regression function g0(·) with its nonparametric
estimator for the case of H(v) = v when the sample sizes are 200, 700 and 1200, respectively.
The solid line is g0(·) and the dashed line is the nonparametric estimator. We cannot forecast
the trace of the random walk {Vt } because of its non-stationarity. Hence, we estimate the true
regression function g0(·) according to the scope of {Vt } and we cannot estimate g0(·) in other
points out of the scope since there is not enough sample in the neighborhood of each of such
points. That is why the scopes of the abscissa axis are different in Figures 1–6. We can also
find that the performance of the nonparametric estimate of g0(·) improves as the sample size
increases.

Table 2. Simulation results for the estimator of g0(v) = v

n H(·) AE SE

200 H(v) ≡ 0 0.1158 0.0575
700 H(v) ≡ 0 0.0894 0.0341

1200 H(v) ≡ 0 0.0628 0.0210
200 H(v) = v 0.1391 0.0582
700 H(v) = v 0.1299 0.0437

1200 H(v) = v 0.1075 0.0367
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Figure 1. Nonparametric estimate of the regression function g0(v) for the case of H(v) ≡ 0 with sample
size n = 200; the solid line is the true line, and the dashed curve is the estimated curve.

Figure 2. Nonparametric estimate of the regression function g0(v) for the case of H(v) ≡ 0 with sample
size n = 700; the solid line is the true line, and the dashed curve is the estimated curve.
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Figure 3. Nonparametric estimate of the regression function g0(v) for the case of H(v) ≡ 0 with sample
size n = 1200; the solid line is the true line, and the dashed curve is the estimated curve.

5. An empirical application

We use monthly observations on the U.S. share price indices, long-term government bond yields
and treasury bill rates from Jan/1957–Dec/2009. The data are obtained from the International

Figure 4. Nonparametric estimate of the regression function g0(v) for the case of H(v) = v with sample
size n = 200; the solid line is the true line, and the dashed curve is the estimated curve.
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Figure 5. Nonparametric estimate of the regression function g0(v) for the case of H(v) = v with sample
size n = 700; the solid line is the true line, and the dashed curve is the estimated curve.

Monetary Fund’s (IMF) International Financial Statistics (IFS). The share price series used is
IFS Series 11162ZF. The long-term government bond yield, which is the 10-year yield, is from

Figure 6. Nonparametric estimate of the regression function g0(v) for the case of H(v) = v with sample
size n = 1200; the solid line is the true line, and the dashed curve is the estimated curve.
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Figure 7. Time plots of the three series used in Section 5 over the period of Jan/1957–Dec/2009 with
624 observations. (a) treasury bill rates; (b) long-term bond yields; (c) share prices.

the IFS Series 11161ZF. The treasury bill rate is from IFS Series 11160CZF. Figure 7(a)–(c)
gives the data plots of the share prices, the long-term bond yields and the treasury bill rates.

To see whether there exist some statistical evidences for the three series to have the unit root
type of non-stationarity, we carry out a Dickey–Fuller (DF) unit root test on the three series. We
first fit the data by an AR(1) model of the form

Zt = ρZt−1 + et ,

where Zt = share price at time t or long-term bond yield at time t or treasury bill rate at time t .
Then, by using the least-squares estimation method, we estimate the parameter ρ for the three
series: for the share price series, ρ̂share = 1.0023; for the long-term bond yield series, ρ̂Lbond =
0.9992; and for the treasury bill rate series, ρ̂Tbill = 0.9966. Then we calculate the Dickey–Fuller
t statistics and compare them with the critical values at the 5% significance level. The simulated
P values for the long-term bond yields, treasury bill rates and share prices are 0.7040, 0.3130 and
0.4410, respectively. In addition, we also employ an augmented DF test and the nonparametric
test proposed in Gao et al. [11] for checking the unit root structure of {Zt }. The resulting P

values are very similar to those obtained above.
Therefore, both the estimation results and the simulated P values suggest that there is some

strong evidence for accepting the null hypothesis that a unit root structure exists in these series
at the 5% significance level.

We then consider the following modelling problem:

Yt = Xtθ0 + g(Vt ) + εt ,

Xt = H(Vt ) + Ut ,
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Figure 8. Estimates of the nonparametric functions H(·) and g(·) in Case A.

where Case A: Yt is the share price, Xt is the long-term bond yield and Vt is the treasury bill;
and Case B: Yt is the long-term bond yield, Xt is the share price and Vt is the treasury bill.

For Case A, the resulting estimator of θ0 is θ̂ = −3.2155 and the plots of the estimates of g(·)
and H(·) are given in Figure 8. For Case B, the resulting estimator of θ0 is θ̂ = −0.0037 and the
the plots of the estimates of g(·) and H(·) are given in Figure 9.

Figures 8 and 9 show that increases in treasury bill rates tend to lead to increases in long-term
bond yields and decreases in share prices. Such findings are supported by the theory of finance
and consistent with existing studies. Moreover, Figures 7–9 clearly indicate our new findings that
both null recurrent non-stationarity and nonlinearity can be simultaneously exhibited in the share
price, the long-term bond yield and the treasury bill rate variables.

Due to the cointegrating relationship among the stock price, the treasury bill rate and the
long-term bond yield variables, our experience suggests that models (3.4) and (3.5) might be
more suitable for this empirical study. We will have another look at this data after models (3.4)
and (3.5) have been fully studied.

6. An outline of the proofs of the theorems

In this section, we provide only one key lemma and then an outline of the proofs of Theorems
3.1 and 3.2. The detailed proofs of the theorems are available from the supplemental document
by Chen, Gao and Li [5].

Lemma 6.1. Under the conditions of Theorem 3.1, we have as n → ∞,

1

n
X̃τ X̃

P−→ �. (6.1)
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Figure 9. Estimates of the nonparametric functions H(·) and g(·) in Case B.

Proof of Theorem 3.1. In view of Lemma 6.1 and the decomposition

X̃τ X̃(θ̂n − θ0) = X̃τ (Ỹ − X̃θ0)

=
n∑

t=1

X̃t g̃(Vt )Ft +
n∑

t=1

X̃t εtFt −
n∑

t=1

X̃tFt

(
n∑

k=1

wnk(Vt )εk

)
,

in order to prove Theorem 3.1, we need only to show that for large enough n

n∑
t=1

X̃t g̃(Vt )Ft = oP

(√
n
)
, (6.2)

n∑
t=1

X̃tFt

{
n∑

k=1

wnk(Vt )εk

}
= oP

(√
n
)
, (6.3)

n−1/2
n∑

t=1

X̃t εtFt
d−→ N(0,�ε,U ), (6.4)

where g̃(Vt ) = g(Vt ) − ∑n
k=1 wnk(Vt )g(Vk). Recall that X̃t = Xt − ∑n

s=1 wns(Vt )Xs = Ut −∑n
s=1 wns(Vt )Us + H̃ (Vt ), where H̃ (Vt ) = H(Vt ) − ∑n

s=1 wns(Vt )H(Vs).
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In order to prove (6.2)–(6.4), it suffices to show that for large enough n

n∑
t=1

Ut g̃(Vt )Ft = oP

(√
n
)
, (6.5)

n∑
t=1

Ut g̃(Vt )Ft = oP

(√
n
)
, (6.6)

n∑
t=1

g̃(Vt )H̃ (Vt )Ft = oP

(√
n
)
, (6.7)

n∑
t=1

UtεtFt = oP

(√
n
)
, (6.8)

n∑
t=1

UtεtFt = oP

(√
n
)
, (6.9)

n∑
t=1

H̃ (Vt )εtFt = oP

(√
n
)
, (6.10)

n∑
t=1

UtεtFt = oP

(√
n
)
, (6.11)

n∑
t=1

H̃ (Vt )εtFt = oP

(√
n
)
, (6.12)

n−1/2
n∑

t=1

UtεtFt
d−→ N(0,�ε,U ), (6.13)

where Ut = ∑n
s=1 wns(Vt )Us and εt = ∑n

s=1 wns(Vt )εs .
In the following, we verify equations (6.5)–(6.13) to complete the proofs of Theorem 3.1(i) and

Theorem 3.1(ii). Note that, for Theorem 3.1(i), equations (6.7), (6.10) and (6.12) hold trivially.
By the continuity of g(·) and g′(·), we have for 1 ≤ t ≤ n,

1

N(n)h

n∑
j=1

K

(
Vj − Vt

h

)(
g(Vj ) − g(Vt )

)
(6.14)

= g′(Vt )

N(n)h

n∑
j=1

(Vj − Vt )K

(
Vj − Vt

h

)(
1 + oP (1)

)
.
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Thus, in view of (6.14) and Lemma 3.4 of Karlsen and Tjøstheim [20], in order to prove (6.5),
it suffices to show that for n large enough

n∑
t=1

Ut�n(Vt )Ft = oP

(√
n
)
, (6.15)

where �n(Vt ) = g′(Vt )

nβ−ηhpn(Vt )

∑n
j=1(Vj − Vt )K(

Vj −Vt

h
).

This kind of procedure of replacing N(n) by nβ−η and ignoring a small-order term as in-
volved in (6.14) will be used repeatedly throughout the proofs in Appendices B and C of the
supplemental document.

We then may show that (6.6) holds. Similarly to (6.14) and (6.15), we need only to show that

n∑
t=1

Ût�n(Vt )Ft = oP

(√
n
)
, (6.16)

where Ût = 1
nβ−ηhpn(Vt )

(
∑n

k=1 K(
Vk−Vt

h
)Uk).

The detailed derivations for (6.15) and (6.16) are available from Appendix B of the supple-
mental document. The detailed proofs of (6.8), (6.9), (6.11) and (6.13) are also available from
Appendix B. This will complete the proof of Theorem 3.1(i).

We then may prove Theorem 3.1(ii) by completing the proofs of (6.7), (6.10) and (6.12), which
are again available from Appendix B of the supplemental document. �

Proof of Theorem 3.2. By the definition of ĝn(v), we have

ĝn(v) − g(v) =
n∑

t=1

wnt (v)(Yt − Xt θ̂n) − g(v)

(6.17)

=
n∑

t=1

wnt (v)
(
εt + g(Vt ) − g(v)

) +
n∑

t=1

wnt (v)Xt (θ0 − θ̂n).

Let �n,1 = ∑n
t=1 wnt (v)(εt + g(Vt ) − g(v) and �n,2 = ∑n

t=1 wnt (v)Xt (θ0 − θ̂n). Then, we
have

ĝn(v) − g(v) =
n∑

t=1

wnt (v)(Yt − Xt θ̂n) − g(v) = �n,1 + �n,2. (6.18)

Since {εt } is assumed to be stationary and α mixing, by Corollary 5.1 of Hall and Heyde [14]
and an existing technique to deal with the bias term (see, e.g., the proof of Theorem 3.5 of Karlsen
et al. [19]), we have as n → ∞√√√√ n∑

t=1

K

(
Vt − v

h

)
�n,1

d−→ N

(
0, σ 2

∫
K2(u)du

)
. (6.19)
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By (6.17)–(6.19), it is sufficient to show that√√√√ n∑
t=1

K

(
Vt − v

h

)
�n,2 = oP (1). (6.20)

The proof of (6.20) may then be completed by Theorem 3.1 and Assumptions A1–A6. The
details are available from Appendix B of the supplemental document. This completes an outline
of the proofs of Theorems 3.1 and 3.2. �
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