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Power law or generalized polynomial regressions with unknown real-valued exponents and coefficients,
and weakly dependent errors, are considered for observations over time, space or space–time. Consistency
and asymptotic normality of nonlinear least-squares estimates of the parameters are established. The joint
limit distribution is singular, but can be used as a basis for inference on either exponents or coefficients. We
discuss issues of implementation, efficiency, potential for improved estimation and possibilities of extension
to more general or alternative trending models to allow for irregularly spaced data or heteroscedastic errors;
though it focusses on a particular model to fix ideas, the paper can be viewed as offering machinery useful
in developing inference for a variety of models in which power law trends are a component. Indeed, the
paper also makes a contribution that is potentially relevant to many other statistical models: Our problem
is one of many in which consistency of a vector of parameter estimates (which converge at different rates)
cannot be established by the usual techniques for coping with implicitly-defined extremum estimates, but
requires a more delicate treatment; we present a generic consistency result.
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1. Introduction

Polynomial-in-time regression is one of the longest-established tools of time series analysis (see
Jones [9]). In much empirical work, especially when stochastic trends, such as unit roots, are also
involved, only a linear trend is countenanced, or merely a constant intercept. On the other hand,
classical methods can test polynomial order when observations are equally spaced in time. With
independent and identically distributed (i.i.d.) normal errors, a particularly elegant way of achiev-
ing this, with finite sample validity, results from an orthogonal polynomial representation – the
covariance matrix of the least-squares estimate (LSE) is diagonalized, and contributions to the F

statistic from individual regressors are i.i.d. (see Section 3.2.2 of Anderson [1]). Asymptotic the-
ory is valid under much wider conditions on the errors; indeed from Section 7.4 of Grenander and
Rosenblatt [5], the LSE is asymptotically efficient (in the Gauss–Markov sense) when the (pos-
sibly non-Gaussian) errors are covariance stationary with spectral density bounded and bounded
away from zero at zero frequency, as with short memory processes. Polynomial models have also
been extended to spatial lattice data (see Section 3.4 of Cressie [2]).

Polynomials are nevertheless restrictive. The Weierstrass theorem justifies their uniform ap-
proximation of any continuous function over a compact interval, but seems less practically rele-
vant the longer the data set. Nonparametric smoothing may be unreliable in a series of moderate
length, when instead richer parametric models than polynomials might be considered. One class
that advantageously nests polynomials, which has received little theoretical attention, consists of
“generalized polynomial” or “power law” models. With equally spaced time series observations
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yu, u = 1, . . . ,N , consider

yu =
p∑

j=1

βju
θj + xu, (1.1)

where the θj and βj are real valued and all can be unknown, θj > −1/2 for all j , and the zero-
mean unobservable process xu is covariance stationary with short memory. For θj < −1/2, βj

would not be estimable (whether θj were known or unknown) because the corresponding signal
is drowned by the noise. For θj = −1/2, βj is estimable but we omit this possibility because
our central limit theorem requires θj to lie in the interior of a compact set. Polynomials, such as
when θj = j −1 for all j , are nested; indeed this is a hypothesis that might be tested within (1.1).

We consider the nonlinear least-squares estimate (NLSE) of the θj , βj in (1.1) and, more gen-
erally, of exponents and coefficients in an extended model defined on a lattice, applying to spatial
and spatio-temporal data, where our provision, for example, for weaker trends than linear ones
and for decaying trends seems practically useful. Unlike the LSE when exponents are known, the
NLSE cannot be expressed in closed form and requires numerical optimization. Correspondingly,
asymptotic theory, with sample size N increasing, is needed to justify rules of statistical inference
even when errors are Gaussian. We establish consistency and asymptotic normality for the NLSE
of exponent and coefficient estimates, achieving also an analogous efficiency bound to that de-
scribed above. As with other implicitly defined estimates, asymptotic distribution theory makes
use (in application of the mean value theorem) of an initial consistency proof. Many such proofs
(see Jennrich [8], Malinvaud [12]) require regressors to be non-trending, whence under suitable
additional conditions all parameter estimates are N1/2-consistent. For the NLSE of (1.1), Wu [21]
significantly relaxed this requirement but nevertheless appears to heavily restrict the diversity of
trends. The discussion after Assumptions A and A′ of Wu [21] indicates that they reduce in (1.1)
with known θj to the assumption maxj θj < 1

2 +2 minj θj , and no weaker requirement suffices in
the case of unknown θj . Example 4 of Wu [21] addressed the latter case but with p = 1 only (and
for θ1 ∈ (− 1

2 ,0]) when the inequality is trivially satisfied. In general, more elaborate techniques
seem required to establish consistency in (1.1). Moreover, Wu [21] established consistency with
no rate, whereas we find that a slow rate of convergence in the θj estimates is required before
asymptotic normality is established. Wu [21] also established asymptotic normality of the NLSE
in a quite general setting, but under the assumption that all parameter estimates converge at the
same rate. This is not the case with (1.1); indeed all rates of θj , βj estimates turn out to differ.
For implicitly defined extremum estimates such variation is typically associated with difficulty
in the initial consistency proof due to the objective function not converging uniformly to a func-
tion that is uniquely optimized over the whole parameter space. Consistency proofs here have
tended to be geared to the case at hand (see e.g. Giraitis, Hidalgo and Robinson [4], Nagaraj and
Fuller [13], Nielsen [14], Robinson [15], Sun and Phillips [17]). Our consistency proof employs
a generic result (presented and proved in Appendix A to avoid interrupting the flow) that seems
likely to apply to a quite general class of estimates (not just the NLSE) of a variety of models.
Our asymptotic distribution theory of estimates for (1.1) and its extension presents some other
unusual features.

The following section presents the model, regularity conditions and three theorems describing
asymptotic statistical properties. The main details of their proofs appear in Appendix B. These
use a series of propositions, stated and proved in Appendix C, and relying in turn also on a
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series of lemmas, in Appendix D. A Monte Carlo study of finite sample performance appears in
Section 3, while Section 4 discusses aspects of the theoretical results and their implementation,
with possible extensions.

2. Estimation of spatial lattice regression model

Let the integer d ≥ 1 represent the dimension on which data are observed, where d = 1 for
time series (as in (1.1)) and d ≥ 2 for spatial or spatio-temporal data. Generalize u to the
d-dimensional multi-index u = (u1, u2, . . . , ud)′. Denoting Z+ = {j : j = 0,1, . . .}, general-
ize (1.1) to

yu =
d∑

i=1

pi∑
j=1

βiju
θij

i + xu = f (u; θ)′β + xu, u ∈ Z
d+, (2.1)

where xu is described subsequently and β = (β ′
1, . . . , β

′
d)′, βi = (βi1, . . . , βipi

)′, θ = (θ ′
1, . . . ,

θ ′
d)′, θi = (θi1, . . . , θipi

)′, f (u; θ) = (f1(u1; θ1)
′, . . . , fd(ud ; θd)′)′, fi(ui; θi) = (u

θi1
i , . . . ,

u
θipi

i )′, for i = 1, . . . , d . Defining p = p1 + · · · + pd , the p × 1 vectors β and θ are supposed
unknown. Any fi(ui; θi) might be absent from f (u; θ) when corresponding θi and βi are void;
we proceed as if corresponding pi and sums over j = 1, . . . , pi are zero, avoiding indicator
functions to describe such circumstances.

Our consistency proof confines the NLSE of θ to a compact set. Prescribe an (arbitrarily small)
positive δ, and for each i = 1, . . . , d , prescribe ¯�i , �̄i such that −1/2 < ¯�i < �̄i < ∞, and
define

�i = {h1, . . . , hpi
: h1 ≥ ¯�i;hj − hj−1 ≥ δ, j = 2, . . . , pi;hpi

≤ �̄i} (2.2)

and � = ∏d
i=1 �i. We introduce two assumptions that imply identifiability of θ and β .

Assumption 1. θ ∈ �.

Assumption 2. θij = 0 for at most one (i, j); βij �= 0 for all (i, j).

Assumption 1 implies

−1/2 < θi1 < · · · < θipi
< ∞, i = 1, . . . , d. (2.3)

The ordering in (2.3) is arbitrary, and distinctness of the θij across j along with the first part of
Assumption 2 identifies β; note that u0

i = 1 for all i and that we allow an intercept but do not
require one. The second part of Assumption 2 identifies θ .

Given N = ∏d
i=1 ni observations on yu, u ∈ N = N1 × · · · × Nd and Ni = (1, . . . , ni), de-

fine the NLSE of β , θ by (β̂, θ̂ ) = arg minb∈Rp,h∈� Q(b,h), where Q(b,h) = ∑
u∈N

{yu −
b′f (u;h)}2. Asymptotic theory requires further assumptions. Let Z ={j : j = 0,±1, . . .}.
Assumption 3. xu, u ∈ Z

d , is covariance stationary with zero mean, and its autocovariance
function, γu = cov(xt , xt+u), for the multi-index t = (t1, . . . , td )′, satisfies

∑
u∈Zd |γu| < ∞.



Inference on power law spatial trends 647

Our parameter estimates make no attempt to correct for this possible nonparametric weak
dependence of the xu (permitted also in Assumption 5), and Cressie [2], page 25, stresses the
importance of mean function specification relative to error specification. However, the NLSE
turns out to be not only consistency-robust to spatial correlation but also asymptotically Gauss–
Markov efficient.

The next assumption, of increase with algebraic rate of observations in all dimensions, is
capable of generalization but is employed for simplicity.

Assumption 4. ni ∼ BiN
bi , i = 1, . . . , d , as N → ∞, where Bi > 0, bi > 0, i = 1, . . . , d ,∏d

i=1 Bi =∑d
i=1 bi = 1.

Define ζij = biθij and, with no loss of generality, identify dimension i = 1 such that

ζ11 = min
1≤i≤d

{ζi1}, (2.4)

where, if two or more i satisfy (2.4), an arbitrary choice is made. Note that ζ11 + 1
2 > 0 is implied

by θ11 + 1
2 > 0.

Theorem 1. Let Assumptions 1–4 hold. Then for j = 1, . . . , pi , i = 1, . . . , d , as N → ∞,

θ̂ij − θij = Op(Nχ−ζij −1/2) (2.5)

for any χ > 0.

The proof is in Appendix B. As is common with initial consistency proofs, a sharp rate (cor-
responding to χ = 0 in (2.5)) is not delivered (smoothness conditions, in particular, are not ex-
ploited). Theorem 1 is used in the proof of our central limit theorem (CLT), for which we also
need consistency, with a rate, for β̂ . We state this result without the proof, which is a relatively
straightforward application of Theorem 1, techniques used in its proof, Theorem 3 below and
routine manipulations.

Theorem 2. Let Assumptions 1–4 hold. Then, for j = 1, . . . , pi , i = 1, . . . , d ,

β̂ij = βij + Op((logN)Nχ−ζij −1/2), as N → ∞.

The relative rates for the θ̂ij and β̂ij in Theorems 1 and 2 are matched by relative rates that
feature in our CLT. For this we introduce first

Assumption 5. xu = ∑
v∈Zd ξvεu−v ,

∑
v∈Zd |ξv| < ∞, u ∈ Z

d , where v is the multi-index v =
(v1, . . . , vd)′, {εu,u ∈ Z

d} are independent random variables with zero mean and unit variance,
{ε2

u,u ∈ Z
d} are uniformly integrable and

∑
v∈Zd ξv �= 0.

Assumption 5 implies Assumption 3, and both imply the existence and boundedness of
the spectral density F(λ) = (2π)−1|∑v∈Zd ξveiv′λ|2 of xu, where λ is the multi-index λ =
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(λ1, . . . , λd)′, while Assumption 5 also implies F(0) > 0. Stationary invertible autoregressive
moving averages are among time series processes covered by Assumption 5, as are spatial gener-
alizations of these (see e.g. Hallin, Lu and Tran [6], Robinson and Vidal Sanz [16], Tjøstheim [18,
19], Yao and Brockwell [24]). Mixing conditions, such as ones employed in a spatial context by
Gao, Lu and Tjøstheim [3], Hallin, Lu and Yu [7], and Lu, Lundervold, Tjøstheim and Yao [11],
provide an alternative route for establishing a CLT, but are not strictly weaker or stronger than
Assumption 5, which we prefer here because xu, unlike processes considered in the latter refer-
ences, is involved only linearly.

Let Ir be the r-rowed identity matrix, ⊗ denote the Kronecker product, and introduce p × p

matrices D = N1/2 diag{nθ11
1 , . . . , n

θ1p1
1 , . . . , n

θd1
d , . . . , n

θdpd

d }, L(s) = diag{L1(s1), . . . ,Ld(sd)},
where Li(si) = (log si)Ipi

, and (2p × 2p) matrices D+ = I2 ⊗ D and L+ = diag{Ip,L(n)}.
Define α = (θ ′, β ′)′, α̂ = (θ̂ ′, β̂ ′)′. Denote by Nr (a,A) an r-dimensional normal vector with
mean vector a and (possibly singular) covariance matrix A. Appendix B defines the p×p matrix
ϒ and p × 2p matrix B and proves:

Theorem 3. Let Assumptions 1, 2 and 5 hold. Then as N → ∞,

D+L−1+ (α̂ − α) →d N2p(0,2πF(0)B ′ϒ−1B).

3. Finite sample properties

A small Monte Carlo study provides some information on finite sample performance. Issues of
concern, given unknown θ , are bias and variability of the NLSE and accuracy of large sample
inference rules suggested by Theorem 3. We employed (2.1) with d = 2, p1 = p2 = 1, picking 2
(θ1, θ2) = (θ11, θ21) combinations – (1,1), (0.5,2) – but throughout took �i1 = [−0.45,4], βi =
βi1 = 1, i = 1,2. We varied N absolutely and also the relative n1, n2, taking n1, n2 = (8,12),
(10,10), (11,20), (15,15).

Our first experiment took the xu to be i.i.d. N1(0,1) variables. Tables 1 and 2 report, for the
respective parameter combinations, bias (BIAS), mean squared error (MSE), and empirical size
at 5% (SIZE5) and 1% (SIZE1) for the NLSE θ̂i , β̂i , and also β̃i , the LSE of βi that correctly
assumes θ , for i = 1,2, across 1000 replications. The sizes were proportions of significant esti-
mates, using normal critical values scaled by estimated standard deviations which, in the case of
the θ̂i , β̂i , were computed on the basis of Theorem 3 with current parameter estimates replacing
true values of θ,β , and 2πF(0) replaced by the sum of squared residuals divided by N (so the
spatial independence of the xu was treated as known, as it was also in the conventional scaling
used for the β̃i ).

The tables reveal a definite inferiority of the NLSE relative to the LSE, but unsurprisingly, as
the LSE is exactly unbiased, more efficient and yields exact critical regions. Though the NLSE-
based tests on β are nearly always over-sized, this phenomenon diminishes with increased N ,
and overall the discrepancy between the performances of the two classes of the β estimate does
not seem very serious. There is also a predominate over-sizing of the tests on θ , but again this
falls as N increases, and, in Table 2 in particular, it is often modest. There is a tendency for the
NLSE to over-estimate, but for β biases only exceed 2% of the parameter value when ni = 8
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Table 1. θ1 = 1, θ2 = 1, β1 = 1, β2 = 1, σ 2 = 1, xu i.i.d.

n1 n2 θ̂1 θ̂2 β̂1 β̃1 β̂2 β̃2

8 12 BIAS 0.008 0.007 0.024 0.000 0.017 0.000
MSE 0.016 0.007 0.080 0.001 0.051 0.000
SIZE5 0.100 0.125 0.151 0.048 0.166 0.055
SIZE1 0.044 0.048 0.075 0.010 0.084 0.010

10 10 BIAS 0.005 0.009 0.016 −0.001 0.009 0.002
MSE 0.010 0.009 0.060 0.006 0.063 0.007
SIZE5 0.132 0.132 0.180 0.053 0.186 0.051
SIZE1 0.055 0.050 0.084 0.015 0.090 0.011

11 20 BIAS −0.002 0.002 0.016 0.000 −0.007 0.000
MSE 0.003 0.001 0.022 0.000 0.010 0.000
SIZE5 0.086 0.104 0.115 0.039 0.120 0.051
SIZE1 0.030 0.039 0.051 0.005 0.049 0.012

15 15 BIAS 0.003 0.002 0.006 0.000 −0.001 0.000
MSE 0.002 0.002 0.013 0.000 0.013 0.000
SIZE5 0.074 0.075 0.108 0.043 0.103 0.039
SIZE1 0.024 0.022 0.033 0.010 0.037 0.010

and ni = 12. For θ they never reach 1%, while overall they mostly fall with increasing N , as
does the MSE. In Table 2, the results are not in line with what the rates in Theorem 3 suggest,
because the fall in MSE is greater for θ̂2 and β̂2 than for θ̂1 and β̂1, despite the fact that θ1 = 2
and θ2 = 1

2 . Nevertheless, it is not clear to what extent one would expect asymptotic theory to
predict comparisons at this level of refinement in such sample sizes. Note that the Monte Carlo
results are also difficult to judge relative to the theory because the various ni did not result from
fixing the bi and Bi and then increasing n, but were chosen with a view to representing some
variability in n, and relative to n1 and n2. In addition, the convergence rates of θ̂i and β̂i do not
only depend on ni , but on the overall n. Other results are more closely in line with the asymptotic
theory. This is the case in Table 1 where, with θ1 = θ2 = 1, the above MSE ratios are sometimes
greater for θ̂2 and/or β̂2 and sometimes less. It is also the case in Table 2 for the LSE β̃i , as
elsewhere, that comparisons are sometimes difficult as a number of MSEs are zero to 3, and even
to 4 (unreported here), decimal places.

Next we considered the effect of dependence, employing three different models for xu, again
with d = 2. All models entailed weak dependence, with varying spans, but in the first dependence
was negative, so that the spectral density at zero was small, whereas in the other two it was
positive, producing a peaked spectral density. In the following, εu ∼ i.i.d. N1(0,1).

1. Multiple direction MA(1):

xu = εu − 0.12
1∑

j=−1

1∑
k=−1

(j,k) �=0

εu1+j,u2+k, ui = 1, . . . , ni, i = 1,2. (3.1)
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Table 2. θ1 = 2, θ2 = 1/2, β1 = 1, β2 = 1, σ 2 = 1, xu i.i.d.

n1 n2 θ̂1 θ̂2 β̂1 β̃1 β̂2 β̃2

8 12 BIAS 0.008 0.001 0.024 0.003 −0.002 −0.000
MSE 0.014 0.001 0.071 0.005 0.001 0.000
SIZE5 0.063 0.060 0.087 0.077 0.053 0.090
SIZE1 0.028 0.012 0.038 0.029 0.014 0.034

10 10 BIAS 0.008 0.000 0.020 0.004 0.000 −0.000
MSE 0.013 0.003 0.074 0.004 0.001 0.000
SIZE5 0.069 0.057 0.101 0.058 0.065 0.039
SIZE1 0.033 0.013 0.047 0.015 0.017 0.009

11 20 BIAS 0.005 −0.000 −0.001 −0.002 0.000 0.000
MSE 0.005 0.000 0.028 0.002 0.000 0.000
SIZE5 0.052 0.054 0.069 0.030 0.059 0.041
SIZE1 0.017 0.012 0.017 0.012 0.011 0.006

15 15 BIAS 0.002 0.001 0.004 0.001 0.004 0.000
MSE 0.004 0.001 0.025 0.001 0.000 0.000
SIZE5 0.058 0.044 0.070 0.081 0.043 0.055
SIZE1 0.018 0.011 0.019 0.019 0.010 0.020

2. Multilateral MA(4), no interactions:

xu = εu +
4∑

j=−4
j �=0

a|j |(εu1+j,u2 + εu1,u2+j ), ui = 1, . . . , ni, i = 1,2 (3.2)

for a1 = 0.14, a2 = 0.12, a3 = 0.1, a4 = 0.08.
3. Bilateral MA(9), on diagonal:

xu = εu +
9∑

j=−9
j �=0

(0.95)|j |εu1+j,u2+j , ui = 1, . . . , ni, i = 1,2. (3.3)

For the same parameter values as before, bias and MSE of the LSE and NLSE are presented
in Tables 3–8, with Tables 3 and 4 referring to (3.1), Tables 5 and 6 to (3.2), and Tables 7
and 8 to (3.3). As before the LSE β̃1, β̃2 are exactly unbiased, as the Monte Carlo results tend
to illustrate. However, perhaps surprisingly, the dependent model (3.3) produces some very large
biases in the NLSE β̂1, though not so much in β̂2, θ̂1, θ̂2. For the other dependence models the
NLSE biases are not necessarily greater than under independence. The MSE magnitudes are not
directly comparable to those of Tables 1 and 2, because scales were not calibrated, but a similar
overall picture emerges: the NLSE of β often has much greater MSE than the LSE, but this falls
with increasing N , as does that of the NLSE of θ . In Tables 4, 6 and 8, where θ1 = 2, θ2 = 1

2 ,
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Table 3. θ1 = 1, θ2 = 1, β1 = 1, β2 = 1, σ 2 = 1, xu = (3.1)

n1 n2 θ̂1 θ̂2 β̂1 β̃1 β̂2 β̃2

8 12 BIAS 0.005 0.003 0.006 0.000 0.002 −0.000
MSE 0.006 0.003 0.031 0.000 0.021 0.000

10 10 BIAS 0.005 0.001 0.001 0.000 0.008 −0.000
MSE 0.003 0.003 0.023 0.000 0.023 0.000

11 20 BIAS 0.001 0.0001 0.001 −0.000 0.001 0.000
MSE 0.001 0.000 0.006 0.000 0.003 0.000

15 15 BIAS 0.002 −0.001 −0.003 −0.000 0.005 0.000
MSE 0.000 0.000 0.004 0.000 0.004 0.000

the same somewhat surprising feature as noted in Table 2 appears, with θ̂1 and β̂1 improving less
than θ̂2 and β̂2 with increasing n, and the only additional point to add to our previous discussion
is that convergence is often expected to be slowed by dependence.

4. Final comments

1. For known θ , long-established techniques (see [1], Section 2.6) give D(β̂(θ) − β) →d

Np(0,2πF(0)�−1) (where � is defined near the start of Appendix B below), so ignorance
of θ incurs not only efficiency loss, but slightly slower convergence. Theorem 3 also implies a
singularity in the limit distribution, whose covariance matrix has rank p only. This is due to bias
in β̂ , which on expansion is seen to have a term linear in θ̂ − θ that dominates the contribution
from

∑
u∈N

f (u; θ)xu. Nevertheless, Theorem 3 does provide separate inference on β (moreover,
one can conduct joint inference that does not cover both θij and βij for any (i, j)), though, given
Assumption 1, we cannot test zero restrictions on β . In our setting, β may be of less initial

Table 4. θ1 = 2, θ2 = 1/2, β1 = 1, β2 = 1, σ 2 = 1, xu = (3.1)

n1 n2 θ̂1 θ̂2 β̂1 β̃1 β̂2 β̃2

8 12 BIAS 0.003 0.000 0.003 −0.000 −0.000 0.000
MSE 0.003 0.000 0.017 0.001 0.000 0.000

10 10 BIAS −0.003 0.000 0.014 −0.001 −0.001 0.000
MSE 0.003 0.000 0.018 0.001 0.000 0.000

11 20 BIAS −0.000 0.000 0.003 0.000 −0.000 −0.000
MSE 0.001 0.000 0.004 0.000 0.000 0.000

15 15 BIAS −0.001 0.000 0.005 0.001 −0.000 −0.000
MSE 0.000 0.000 0.004 0.000 0.000 0.000
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Table 5. θ1 = 1, θ2 = 1, β1 = 1, β2 = 1, σ 2 = 1, xu = (3.2)

n1 n2 θ̂1 θ̂2 β̂1 β̃1 β̂2 β̃2

8 12 BIAS 0.032 0.020 0.053 −0.001 0.035 0.000
MSE 0.050 0.026 0.249 0.004 0.169 0.002

10 10 BIAS 0.029 0.020 0.017 −0.005 0.047 0.003
MSE 0.031 0.031 0.181 0.003 0.177 0.003

11 20 BIAS 0.010 0.003 0.017 −0.001 0.015 0.001
MSE 0.013 0.004 0.091 0.001 0.045 0.000

15 15 BIAS 0.008 0.007 0.006 −0.001 0.014 0.000
MSE 0.007 0.008 0.059 0.000 0.060 0.001

interest than θ , and Theorem 3 allows inference on θ with θ̂ converging slightly faster than β̂ ,
and at what appears to be the optimal rate for this problem.

2. If independence of the xu is not assumed, the limiting covariance matrix in Theorem 3
can be consistently estimated (under additional conditions) by replacing F(0) by a parametric or
smoothed nonparametric estimate based on NLSE residuals.

3. The form of the limiting covariance matrix in Theorem 3, with dependence simply reflected
in the scale factor 2πF(0), suggests that a generalized NLSE, which corrects parametrically or
nonparametrically for correlation in xu, affords no efficiency improvement (cf. Section 7.4 of
Grenander and Rosenblatt [5]).

4. On the other hand, our estimates are not Fisher efficient for non-Gaussian xu. Departures
from Gaussianity might be detected by, for example, nonparametric probability density estima-
tion based on NLSE residuals; Hallin, Lu and Tran [6] studied density estimation for linear lattice
processes. More efficient parameter estimates could be obtained by M-estimation using a cor-
rectly parameterized εu distribution, or adapting semi-parametrically to a nonparametric one, in
either case employing parametric {ξv} or approximating them via a long autoregression. The ex-
tra proof details would be far from trivial, but convergence rates should be unaffected, with the
limiting covariance matrix of Theorem 3 simply shrunk by a scalar factor.

Table 6. θ1 = 2, θ2 = 1/2, β1 = 1, β2 = 1, σ 2 = 1, xu = (3.2)

n1 n2 θ̂1 θ̂2 β̂1 β̃1 β̂2 β̃2

8 12 BIAS 0.064 0.001 0.048 0.005 −0.001 −0.000
MSE 0.115 0.000 0.272 0.024 0.003 0.000

10 10 BIAS 0.067 −0.001 0.023 −0.002 0.005 0.000
MSE 0.111 0.001 0.267 0.019 0.005 0.000

11 20 BIAS 0.019 0.000 0.035 0.000 −0.001 0.000
MSE 0.027 0.000 0.151 0.009 0.000 0.000

15 15 BIAS 0.008 0.000 0.046 −0.002 −0.001 0.000
MSE 0.020 0.000 0.143 0.007 0.001 0.000
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Table 7. θ1 = 1, θ2 = 1, β1 = 1, β2 = 1, σ 2 = 1, xu = (3.3)

n1 n2 θ̂1 θ̂2 β̂1 β̃1 β̂2 β̃2

8 12 BIAS 0.074 0.096 0.154 0.008 0.091 −0.004
MSE 0.129 0.157 0.738 0.048 0.549 0.024

10 10 BIAS 0.041 0.069 0.105 −0.008 0.050 0.008
MSE 0.080 0.097 0.455 0.033 0.371 0.032

11 20 BIAS 0.016 0.036 0.134 0.0010 0.017 −0.000
MSE 0.043 0.032 0.462 0.014 0.232 0.005

15 15 BIAS 0.013 0.024 0.061 −0.003 0.028 0.002
MSE 0.026 0.026 0.214 0.009 0.182 0.009

5. Another extension allows long or negative memory, in xu, bearing in mind results of Ya-
jima [22] for (1.1) with known integer θi , and Yajima and Matsuda [23]; this would affect all
convergence rates by the same scalar factor, the efficiency property in Comment 3 would be lost,
and negative θij , and corresponding βij may not be estimable.

6. In an alternative formulation to (1.1), uθj is replaced by (u/N)θj , confining the regression
to the unit interval, and (2.1) can be analogously modified. Consistency is then much easier to
prove, all exponent estimates being

√
N -consistent. A similar device is employed in fixed-design

nonparametric regression, but unlike there it is not essential in order to achieve consistency in
our parametric setting, where we find it aesthetically unattractive given that xu is defined on an
increasing domain.

7. The results are straightforwardly extended to allow some θij in (2.1) to be known; for
example, to specify an intercept by θ11 = 0, though the norming factor and limit covariance
matrix in Theorem 3 are affected.

8. Our notation suggests constant spacing between observations across all d dimensions, but
allowing the interval of observation to vary with dimension affects each βij by a factor depending
also on the corresponding θij , but not the θij themselves.

Table 8. θ1 = 2, θ2 = 1/2, β1 = 1, β2 = 1, σ 2 = 1, xu = (3.3)

n1 n2 θ̂1 θ̂2 β̂1 β̃1 β̂2 β̃2

8 12 BIAS 0.063 −0.000 0.100 0.014 0.009 −0.000
MSE 0.518 0.003 1.217 0.291 0.019 0.000

10 10 BIAS 0.098 −0.000 0.118 0.009 0.008 −0.000
MSE 0.512 0.003 0.912 0.222 0.016 0.000

11 20 BIAS −0.037 −0.002 −0.007 −0.001 0.008 0.000
MSE 0.275 0.000 1.059 0.128 0.004 0.000

15 15 BIAS 0.054 0.000 0.128 −0.001 0.001 0.000
MSE 0.226 0.000 0.616 0.086 0.003 0.000
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9. Irregular spacing of observations, either due to missing data from an otherwise regular
lattice, or with observations occurring anywhere on R

d , can also be considered. In both of these
settings asymptotic theory requires a degree of regularity in the observation locations, ruling
out situations where observations become too sparse, for example. Given this, the extension is
relatively simple with independent xu. Under dependence, asymptotic variance formulae will be
complicated by the irregular spacing and the efficiency property of Comment 3 will be lost. In
addition, different kinds of assumptions from ours on the errors xu may be needed. In the case
of missing data from an otherwise regular lattice, our Assumptions 3 (for consistency) and 5
(for asymptotic normality) should still suffice. But for observations anywhere on R

d it would
be appropriate to consider an underlying continuous process. Then, for consistency, a suitable
ergodicity property would be needed, whereas for asymptotic normality leading possibilities that
can entail weak dependence analogous to that of Assumption 5 include suitable linear functionals
of Brownian motion and mixing conditions.

10. A Bayesian treatment would be worthwhile, with suitable priors placed on the exponents
and possibly also the coefficients.

11. When d ≥ 2 a more realistic model than (2.1) might allow interaction terms, that is, prod-
ucts of powers of ui and uk , i �= k. Our proof methods are extendable, but from a practical
perspective the curse of dimensionality threatens and the issue of parsimonious specification,
already posed by (2.1), becomes more pressing. A penalized procedure could be used.

12. Modified model classes might provide an alternative route to parsimony; for example, one
might take pi = 1 with βi1u

θi1
i1 replaced by βi1(ui1 + φi1)

θi1 for known or unknown φi1 (cf.
Example 3 of Wu [21]). Trigonometric factors might also be incorporated (cf. Section 7.5 of
Grenander and Rosenblatt [5]).

13. For alternative classes of trending model (for example, involving wavelets), asymptotic
estimation theory might be handled by similar techniques.

14. An alternative practically relevant modelling of the xu treats them as heteroscedastic but
possibly independent. Broadly similar proof techniques would provide corresponding results to
ours, but the NLSE is less efficient than a suitably weighted estimate.

15. Though we have focussed on (1.1) and (2.1) to fix ideas, our methods and theory can
be developed to cover models that incorporate power law trends along with other explanatory
variables, both stochastic and non-stochastic, such as extensions of the nonparametric and semi-
parametric spatial regressions considered by Gao, Lu and Tjøstheim [3] and Lu, Lundervold,
Tjøstheim and Yao [11], and so the paper can be viewed as introducing machinery relevant to a
wide variety of settings.

Appendix A: Generic consistency theorem

We present a consistency theorem for a general, implicitly defined extremum estimate under un-
primitive conditions that will be checked in the paper’s setting and seem capable of checking
in a number of others. As this appendix is self-contained, there seems no risk of confusion in
employing notations that are similar to those elsewhere in the paper but can have slightly dif-
ferent meanings. We estimate the p × 1 vector parameter θ , with elements θi , i = 1, . . . , p, by
θ̂ = arg minh∈� R(h), where R(h) : Rp → R depends on sample size N and � ⊂ R

p is a fixed
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compact set. For positive scalars Ciw , i = 1, . . . , p, w = 1,2, . . . , depending on N and such that
Ciw ≤ Ci,w+1, i = 1, . . . , p, define Cw = (C1w, . . . ,Cpw)′, and

Ni (Ciw) = {hi : |hi − θi | < Ciw}, N (Cw) =
p∏

i=1

Ni (Ciw),

(A.1)
N̄ (Cw) = � \ N (Cw), Sw = N̄ (Cw) ∩ N (Cw+1).

Theorem A. Assume:

(i) � ⊂ N (CW+1) for a finite integer W and N sufficiently large;
(ii) There exist positive s1, . . . , sW and U(h), V (h) such that R(h) = R(θ) + U(h) + V (h)

and s1 < · · · < sW , and as N → ∞, s1 → ∞ and

P

(
inf

h∈Sw

U(h)

sw
> η

)
→ 1, some η > 0, (A.2)

sup
h∈Sw

|V (h)|
sw

= op(1). (A.3)

Then

θ̂ = θ + Op(C1), as N → ∞,

where Op(C1) is a p × 1 vector with ith element Op(Ci1).

Proof. We show that P(θ̂ ∈ N̄ (C1)) → 0 as N → ∞. By a standard kind of argument

P
(
θ̂ ∈ N̄ (C1)

)≤ P
(

inf
h∈N̄ (C 1)

{R(h) − R(θ)} ≤ 0
)
.

Under (i), N̄ (C1) ⊂ N̄ (C1) ∩ N (CW+1) =⋃W
w=1 Sw . Thus the last probability is bounded by

W∑
w=1

P

(
inf

h∈Sw

{
R(h) − R(θ)

sw

}
≤ 0

)
≤

W∑
w=1

P

(
sup

h∈Sw

|V (h)|
sw

≥ inf
h∈Sw

U(h)

sw

)
,

which is bounded by

W∑
w=1

{
P

(
sup

h∈Sw

|V (h)|
sw

> η

)
+ P

(
inf

h∈Sw

U(h)

sw
≤ η

)}
, (A.4)

which tends to zero on applying (A.2) and (A.3). �

Three comments are relevant. (1) In the setting of the rest of the paper, U can be chosen non-
stochastic but this is not possible in the context of such stochastic trends as unit roots, where the
more general (A.2) is useful. (2) An almost sure convergence version of Theorem A is possible
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under suitably strengthened versions of (A.2) and (A.3). (3) By comparison with our decom-
position of N̄ (C1) into S1, . . . , SW , van de Geer [20] (see pages 69, 70) employed a “peel-
ing device” to obtain an exponential inequality for supg∈G {|ZN(g)|/τ(g)}, where ZN(g) is a

stochastic process, τ(g) is a non-negative function and the set G is “peeled off” as
⋃J

j=1 Gj ,
where Gj = {g ∈ G: mj−1 ≤ τ(g) < mj }, for an increasing sequence {mj }, and J need not be
finite. Thus supg∈Gj

{|ZN(g)|/τ(g)} ≤ {supg∈G,τ (g)<mj
|ZN(g)|}/mj−1 and only the supremum

of the numerator of the original statistic need be approximated. There is no denominator there
like τ(g) in our problem, and our decomposition of N̄ (C1) is designed to suitably balance U(h)

and V (h) on each Sw to enable choices of the sw that make all W summands in (A.4) small.

Appendix B: Definitions and proofs of theorems

To define ϒ , introduce first, for i = 1, . . . , d , the pi × 1 vector φi(gi) with j th element
(gij + 1)−1 and the pi × pi matrix �i(gi, hi) with (j, k)th element (gij + hik + 1)−1 for gi =
(gi1, . . . , gipi

)′, hi = (hi1, . . . , hipi
)′, where gij , hij > −1/2 for all i, j . For g = (g′

1, . . . , g
′
d)′,

h = (h′
1, . . . , h

′
d)′, introduce the p × p matrix �(g,h) with (i, j)th pi × pj block �i(gi, hi)

when i = j and φi(gi)φj (hj )
′ when i �= j . Denote � = �(θ, θ). Writing φi = φi(θi), �i =

�i(θi, θi), define p × p matrices �+, �++ with (i, j)th pi × pj block �i ◦ �i , 2�i ◦ �i ◦ �i

when i = j and φi(φj ◦ φj )
′, (φi ◦ φi)(φj ◦ φj )

′ when i �= j , where “◦” denotes the Hadamard
product. Put ϒ = �++ − �′+�−1�+. Define B = (β−1

� ,−Ip), where β� is the p × p diagonal
matrix such that β�1p = β and 1p is the p × 1 vector of 1’s.

Proof of Theorem 1. We have θ̂ = arg minh∈� R(h), β̂ = β̂(θ̂ ), where

R(h) = Q(β̂(h),h), β̂(h) = M(h,h)−1{M(h, θ)β + m(h)}
for M(g,h) = ∑

u∈N
f (u;g)f (u;h)′, m(h) = ∑

u∈N
f (u;h)xu. The subsequent proof im-

plies that after suitable norming M(h,h) is well conditioned for relevant h and large N .
In Theorem A, take U(h) = β ′D�(h)Dβ , V (h) = V1(h) − {V2(h) − V2(θ)} − {V3(h) −
V3(θ)}, for V1(h) = β ′{P(h) − D�(h)D}β , V2(h) = 2m(h)′M(h,h)−1M(h, θ)β , V3(h) =
m(h)′M(h,h)−1m(h), with �(h) = �(θ, θ) − �(θ,h)�(h,h)−1�(h, θ), P(h) = M(θ, θ) −
M(θ,h)M(h,h)−1M(h, θ). Define, for j = 1, . . . , pi , i = 1, . . . , d , and a finite W , positive
scalars Cijw , w = 1, . . . ,W , such that Cijw ≤ Cij,w+1 for each such w. Define

Cw = (C11w, . . . ,C1p1w, . . . ,Cd1w, . . . ,Cdpdw), w = 1, . . . ,W + 1. (B.1)

Define neighbourhoods Nij (Cijw) = {hij : |hij − θij | < Cijw}, j = 1, . . . , pi , i = 1, . . . , d , w =
1, . . . ,W + 1. Finally, define for w = 1, . . . ,W + 1,

N (Cw) =
d∏

i=1

pi∏
j=1

Nij (Cijw), (B.2)

and then N̄ (Cw), Sw as in (A.1). Take Cij1 = Nχ−ζij −1/2 ∼ B
θij

i Nχ−1/2n
−θij

i , j = 1, . . . , pi ,
i = 1, . . . , d , so we need to show that P(θ̂ ∈ N̄ (C1)) → 0 as N → ∞. We check (i) and (ii) of
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Theorem A, where (A.2) reduces to the requirement infh∈Sw
U(h)/sw > η for large enough N

and η as in (A.2). From (B.1) and (B.2),

Sw ⊂ � ∩ Tw,

where

Tw =
d⋃

i=1

pi⋃
j=1

{hij : |hij − θij | ≥ Cijw;hkl : hkl ∈ (−1/2,∞), all (k, l) �= (i, j)}.

It follows from Proposition 1 that

inf
h∈Sw

U(h) ≥ η∗N min
i,j

β2
ij

d∑
i=1

pi∑
j=1

n
2θij

i C2
ijw ≥ η

p

d∑
i=1

pi∑
j=1

N1+2ζij C2
ijw.

Thus (A.2) is satisfied when

d∑
i=1

pi∑
j=1

N1+2ζij C2
ijw ≥ psw. (B.3)

Next, (A.3) is implied if

sup
h∈Sw

|V1(h)| = o(sw), (B.4)

sup
h∈Sw

|V2(h) − V2(θ)| = op(sw), (B.5)

sup
h∈Sw

|V3(h)| = op(sw), (B.6)

as N → ∞. Note that in (B.5) we are considering the difference V2(h) − V2(θ) for h suitably
close to θ and this closeness is important in obtaining the desired result, whereas in the usual
kind of consistency proof, for standard, non-mixed rate settings, one more simply shows the
convergence to zero in probability of a suitably normalized V2(h), uniformly in h ∈ �. Now (B.6)
follows from Proposition 4, while (B.4) and (B.5) follow from Propositions 2 and 3, respectively,
if

d∑
i=1

pi∑
j=1

N1+2ζij −δ∗
C2

ij,w+1 = o(sw), (B.7)

where δ∗ = min[min1≤i≤d{bi/2 + min(bi ¯�i,0)},2χ] (implying δ∗ > 0) and

d∑
i=1

pi∑
j=1

N1/2+ζij +εCij,w+1 = o(sw) (B.8)

for some ε > 0.
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It remains to show that we can choose W and the sw , Cijw , to satisfy (i) of Theorem A and
(B.3), (B.7) and (B.8). Now (B.3) holds for w = 1 if s1 = N2χ , and for w > 1 if

sw = s1N
(w−1)δ∗/2 = N2χ+(w−1)δ∗/2,

Cijw = Cij1N
(w−1)δ∗/4 = Nχ−ζij −1/2+(w−1)δ∗/4, j = 1, . . . , pi, i = 1, . . . , d.

Since

N1+2ζij C2
ij1 = s1, N1+2ζij −δ∗

C2
ij,w+1 = s1N

(w/2−1)δ∗ = swN−δ∗/2

for all i, j , (B.7) is satisfied. For all i, j ,

N1/2+ζij +εCij,w+1 = Nχ+ε+wδ∗/4 = swNε−χ+δ∗/4+(1−w)δ∗/4 = o(sw),

on taking ε < χ − δ∗/4, to satisfy (B.8). Finally, for all i, j , though Cij1 → 0 as N → ∞ (no
matter how small δ∗ or how large ζij ), we have Cijw → ∞ as N → ∞ for large enough w, so
there is a finite W to satisfy (i) of Theorem A. �

Proof of Theorem 2. Omitted. �

Proof of Theorem 3. Put a = (h′, b′)′, Q(a) = Q(h,b) and define Q(1)(a) = (∂/∂a)Q(a),
Q(2)(a) = (∂/∂a′)Q(1)(a). We have

L+Q(1)(a) = −2
∑
u∈N

{yu − b′f (u;h)}H(u;h,b),

where H(u;h,b) = [(L(u)f (u;h) ◦ b)′, (Lf (u;h))′]′ with L = L(n) and L+Q(2)(a)L+ =∑3
i=1 Q

(2)
i (a), with

Q
(2)
1 (a) = 2

∑
u∈N

H(u;h,b)H(u;h,b)′,

Q
(2)
2 (a) = 2

∑
u∈N

{b′f (u;h) − β ′f (u; θ)}J (u;h,b),

Q
(2)
3 (a) = −2

∑
u∈N

xuJ (u;h,b),

in which J (u;h,b) is the 2p × 2p symmetric matrix with (i, j)th p × p block L(u)f�(u;h)

L(u)b� for i = j = 1, L(u)f�(u;h)L for i = 1, j = 2 and 0 for i = j = 2, b�, f�(u,h) being
the p × p diagonal matrices such that b = b�1p , f (u;h) = f�(u;h)1p .

By the mean value theorem

D+L−1+ (α̂ − α) = (
D−1+ L+Q̃(2)L+D−1+

)−1
D−1+ L+Q(1)(α), (B.9)
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where Q̃(2) is formed from Q(2)(a) by evaluating its ith row at a = ᾱ(i), where ‖ᾱ(i) − α‖ ≤
‖α̂ − α‖, i = 1, . . . ,2p. By Proposition 5 (B.9) is

{
D−1+ L+Q(2)(α)L+D−1+ + Op(logN)−2}−1

D−1+ L+Q(1)(α).

Let B� = diag(β−1
� ,−Ip) and � be the 2p × 2p matrix with p × p blocks �11 = 0, �21 =

�′
12 = L−1�, �22 = −L−1� − �′L−1, with � = �−1�+ϒ−1. Noting Proposition 6 and the

representations

BD−1+ L+Q(1)(α) = 2N−1/2
∑
u∈N

{L(u) − L}D−1f (u; θ)xu,

B��B�D−1+ L+Q(1)(α) = −2N−1/2
∑
u∈N

[
(β−1

� �′)′,
(
L−1�{L(u) − L} − �′)′]′

× D−1f (u; θ)xu,

we obtain from (B.9)

D+L−1+ (α̂ − α) = −N−1/2B
∑
u∈N

[ϒ−1{L(u) − L} + �′]D−1f (u; θ)xu

− N−1/2
∑
u∈N

[
0,
(
L−1�{L(u) − L}D−1f (u; θ)xu

)′]′
+ Op((logN)−2)N−1/2

∑
u∈N

((β�L(u))′,L)′D−1f (u; θ)xu.

The last two terms are Op((logN)−1) by application of Lemmas 15 and 10, respectively. The
proof is completed by applying Proposition 7 to the first term. �

Appendix C: Propositions

Proposition 1. For all Cw given by (B.1) such that Cijw > 0, j = 1, . . . , pi , i = 1, . . . , d , there
exists η∗ > 0 such that, for all θ ∈ �

inf
h∈N̄ (Cw)

U(h) ≥ η∗N
d∑

i=1

pi∑
j=1

β2
ij n

2θij

i C2
ijw.

Proof. Non-singularity of �(h,h) for h ∈ �, and

sup
�

‖�(h,h)−1‖ ≤ K, (C.1)

where K throughout denotes a finite, positive generic constant, follow from Lemmas 2 and 3,
numerators of elements of the inverse being bounded and denominators bounded away from
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zero. Now �(h) = [(Ip,0)�(h)−1(Ip,0)′]−1, where the 2p×2p matrix �(h) has (i, j)th p×p

submatrix �(θ1(i = 1)+h1(i = 2), θ1(i = 1)+h1(i = 2)), 1(·) denoting the indicator function
and �(h)−1 existing on N̄ (Cw) as implied below. Introduce the 2p×2p orthogonal permutation
matrix � defined by �(12 ⊗ a) = ((1′

2 ⊗ a′
1), . . . , (1

′
2 ⊗ a′

d))′, for any p × 1 vector a with ith
pi × 1 subvector ai . Then ��(h)�′ has the form of T in Lemma 2 or 3.

In the Lemma 2 situation, where no θij is zero and no hij is zero on N̄ (Cw), we have
ri = 2pi , r = 2p, and vik = θik , k = 1, . . . , pi , vik = θi,k−pi

, k = pi + 1, . . . ,2pi . De-
noting Ei(h) = diag{θi1 − hi1, . . . , θipi

− hipi
} and ei(h) = diag{Ei(h),−Ei(h)}, e(h) =

diag{e1(h), . . . , ed(h)}, inspection of the results of Lemma 2 indicates that we may write
(��(h)�′)−1 = e(h)−1Ge(h)−1, where the p × p matrix G is non-singular and bounded on
N̄ (Cw). Then

�(h) = (Ip,0)�′e(h)−1Ge(h)−1�(Ip,0)′ = E(h)G̃−1E(h),

where E(h) = diag{E1(h), . . . ,Ed(h)}, G̃ = (Ip,0)�′G�(Ip,0)′. Thus U(h) = β ′DE(h) ×
G̃−1E(h)Dβ ≥ β ′D2E(h)2β/ tr(G̃), whence the result follows by boundedness of G̃ and
infhij ∈N̄ (Cijw)(θij − hij )

2 = C2
ijw .

The details in the Lemma 3 setting, in which either θij = 0 for one (i, j), or hij can be zero
on N̄ (Cw) for one (i, j), are too similar to warrant inclusion. �

Proposition 2.

sup
h∈N (Cw)

|V1(h)| ≤ K

d∑
i=1

pi∑
j=1

N1+2ζij −δ∗
C2

ijw. (C.2)

Proof. Define D(h) = N diag{nh11
1 , . . . , n

h1pi

1 , . . . , n
hd1
d , . . . , n

hdpd

d }, so D = D(θ), and M̃(g,

h) = D(g)−1M(g,h)D(h)−1, also F1(h) = M̃(θ, θ) − M̃(θ,h) − M̃(h, θ) + M̃(h,h), F2(h) =
{M̃(θ,h) − M̃(h,h)}M̃(h,h)−1{M̃(h, θ) − M̃(h,h)}, so we have the identity D−1P(h)D−1 =
F1(h) − F2(h). Likewise, �(h) = �1(h) − �2(h), where

�1(h) = �(θ, θ) − �(θ,h) − �(h, θ) + �(h,h),

�2(h) = {�(θ,h) − �(h,h)}�(h,h)−1{�(h, θ) − �(h,h)}.

Thus V1(h) = V11(h) − V12(h), where V1i (h) = β ′D{Fi(h) − �i(h)}Dβ , i = 1,2. Now V1i (h)

is bounded by

KN

d∑
i=1

pi∑
j=1

pi∑
�=1

n
θij +θi�

i

∣∣∣∣∣ 1

ni

ni∑
ui=1

vij (ui/ni)vi�(ui/ni) −
∫ 1

0
vij (x)vi�(x)dx

∣∣∣∣∣
+ KN

d∑
i=1

pi∑
j=1

d∑
k=1

pk∑
�=1

n
θij

i n
θk�

k |ṽij ṽk� − v̄ij v̄k�|,
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where vij (x) = v(x; θij , hij ) with v defined just before Lemma 6, v̄ij = ∫ 1
0 vij (x)dx, ṽij =

n−1
i

∑ni

ui=1 vij (ui/ni). From Lemma 8 the first modulus is bounded by

K|hij − θij ||hi� − θi�|(logni)
2/n

1+min(2 ¯�i,0)

i ≤ KNδ∗

because logni ≤ logN , n
1+min(2 ¯�i,0)

i = (BiN
bi )1+min(2 ¯�i,0) ≥ N2δ∗

/K . The second modulus is
bounded by

|ṽij − v̄ij ||ṽk�| + |ṽk� − v̄k�||v̄ij |. (C.3)

Now

|ṽk�| ≤
{

1

nk

nk∑
uk=1

vk�(uk/nk)
2

}1/2

, |v̄ij | ≤
{∫ 1

0
vij (x)2 dx

}1/2

,

so from Lemmas 6, 7 and 8, (C.3) is bounded by

K

{
(logni)

2

n
1+min( ¯�i,0)

i

+ (lognk)
2

n
1+min( ¯�k,0)

k

}
|hij − θij ||hk� − θk�|,

and the expression in braces is bounded by N−δ∗
. Thus by elementary inequalities,

suph∈N (Cw) |V1i (h)| has the bound (C.2). Next, F2(h) − �2(h) is

{M̃(θ,h) − M̃(h,h) − �(θ,h) + �(h,h)}M̃(h,h)−1{M̃(h, θ) − M̃(h,h)}
+ {�(θ,h) − �(h,h)}{M̃(h,h)−1 − �(h,h)−1}{M̃(h, θ) − M̃(h,h)} (C.4)

+ {�(θ,h) − �(h,h)}�(h,h)−1{M̃(h, θ) − M̃(h,h) − �(h, θ) + �(h,h)}.
The final factor times Dβ has a norm bounded by

KN1/2
d∑

i=1

pi∑
j=1

∣∣∣∣∣
pi∑

�=1

n
θi�

i

{
1

ni

nk∑
uk=1

vij (ui/ni)(ui/ni)
hi� −

∫ 1

0
vij (x)xhi� dx

}∣∣∣∣∣
(C.5)

+ KN1/2
d∑

i=1

pi∑
j=1

∣∣∣∣∣
d∑

k=1

pk∑
�=1

n
θk�

k

{
ṽij

1

nk

nk∑
uk=1

(uk/nk)
hk� − v̄ij

∫ 1

0
xhk� dx

}∣∣∣∣∣.
The first term in braces is

1

ni

ni∑
ui=1

v

(
ui

ni

; θij + hi�, hij + hi�

)
−
∫ 1

0
v(x; θij + hi�, hij + hi�)dx.

By Lemma 8, this is bounded by

K|θij + hi� − hij − hi�|N−δ∗ ≤ K|θij − hij |N−δ∗
.
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After rearrangement as before, and application also of Lemma 8, the second term in braces
in (C.5) has the same bound. Thus (C.5) is bounded over h ∈ N (Cw) by K ×∑d

i=1
∑pi

j=1 N1/2+ζij −δ∗
Cijw . On the other hand, using Lemma 6,

‖β ′D{�(θ,h) − �(h,h)}‖ ≤ K

d∑
i=1

ni∑
j=1

N1/2+ζij Cijw (C.6)

uniformly in h ∈ N (Cw). Using (C.1), the contribution to V2i (h) has the bound in (C.2). To deal
with the contributions from the other two terms in (C.4), standard manipulations indicate that it
suffices to show that

sup
h∈N (Cw)

‖{M̃(h, θ) − M̃(h,h)}Dβ‖ ≤ K

d∑
i=1

ni∑
j=1

N1/2+ζij +δ∗
Cijw, (C.7)

sup
h∈�

‖M̃(h,h) − �(h,h)‖ ≤ KN−2δ∗
. (C.8)

Since the elements of M̃(h, θ) − M̃(h,h) are of form n−1
i

∑
u∈N

(ui/ni)
hij vk�(uk/nk), for i = k

or i �= k, (C.7) follows much as before, using Lemmas 4 and 7. Finally, (C.8) is an easy conse-
quence of Lemma 5. �

Proposition 3. For any ε > 0

sup
h∈N (Cw)

|V2(h) − V2(θ)| ≤ K

d∑
i=1

ni∑
j=1

N1/2+ζij +εCijw. (C.9)

Proof. We can write V2(h) − V2(θ) as

2{m(h) − m(θ)}′β + 2m(h)′M(h,h)−1{M(h, θ) − M(h,h)}β
= 2{m̃(h) − m̃(θ)}′Dβ (C.10)

+ 2m̃(h)′M̃(h,h)−1{M̃(h, θ) − M̃(h,h)}Dβ,

where m̃(h) = D(h)−1m(h). Now

E
{

sup
h∈�

‖m̃(h)‖
}

≤ K (C.11)

immediately from Lemma 10. From the proof of Proposition 2, the last term of (C.10) thus has
the bound (C.9). Next,

|{m̃(h) − m̃(θ)}′Dβ| ≤ K

d∑
i=1

ni∑
j=1

Nζij

∣∣∣∣∑
u∈N

vij (ui/ni)xu

∣∣∣∣
and by Lemma 11 its supremum over N (Cw) has the bound (C.9). �
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Proposition 4.

sup
h∈�

|V3(h)|≤ K.

Proof. Writing V3(h) = m̃(h)′M̃(h,h)−1m̃(h), the result follows from (C.1), (C.8) and
(C.11). �

Proposition 5. As N → ∞,

D−1+ L
{
Q̃(2) − Q(2)(α)

}
LD−1+ = Op((logN)−2).

Proof. By elementary inequalities, the result follows if

D−1+ L
{
Q̃(2)(ᾱ) − Q(2)(α)

}
LD−1+ = Op((logN)−2)

for any ᾱ such that ‖ᾱ − α‖ ≤ ‖α̂ − α‖. A typical element of Q
(2)
1 (ᾱ) − Q

(2)
1 (α) is

2
∑
u∈N

(logui)
ρ1(logni)

1−ρ1(loguk)
ρ2(lognk)

1−ρ2

(C.12)
× (β̄

ρ1
ij u

θ̄ij

i u
θ̄k�

k β̄
ρ2
k� − β

ρ1
ij u

θij

i u
θk�

k β
ρ2
k� )

for i = k and i �= k, and ρ1, ρ2 = 0,1. We need to show that (C.12) = Op(N1+ζij +ζk�/(logN)2).
With β̄ij , β̄k� replaced by βij , βk�, it is bounded by

K(logN)2 N

ni

ni∑
ui=1

|uθ̄ij +θ̄i�

i − u
θij +θi�

i |, i = k, (C.13)

or by

K(logN)2 N

nink

ni∑
ui=1

ni∑
ui=1

|uθ̄ij

i u
θ̄k�

k − u
θij

i u
θk�

k |, i �= k. (C.14)

Note that, for example,

ni∑
ui=1

u
θ̄ij

i = Op

(
n

θ̄ij

i sup
hij ∈�ij

∣∣∣∣∣n−hij

i

ni∑
ui=1

u
hij

i

∣∣∣∣∣
)

= Op(n
θij

i ),

since n
θ̄ij

i = Op(n
θij

i exp(Nχ−ζij −1/2 logN)) = Op(n
θij

i ), taking χ < ζ11 + 1
2 . Then from Theo-

rem 2 and Lemma 12, (C.13) is

Op

(
(logN)3N1+ζij +ζi� (Nχ−ζij −1/2 + Nχ−ζi�−1/2)

)
,
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which is Op(N1+ζij +ζi�/(logN)2) as desired, while using Lemma 4, (C.14) is

Op

(
(logN)3N1+ζij +ζk� (Nχ−ζij −1/2 + Nχ−ζk�−1/2)

)
,

which is Op(N1+ζij +ζk�/(logN)2) as desired. Using Theorem 3, it is readily seen that (C.12) =
Op(N1+ζij +ζk�/(logN)2).

The only elements of Q
(2)
2 (ᾱ)−Q

(2)
2 (α) that are not identically zero are the diagonal elements

corresponding to the three non-null submatrices in J (u;h,b), and are of form

2
∑
u∈N

{β̄ ′f (u; θ̄ ) − β ′f (u; θ)}uθ̄ij

i {(logui)
2β̄ij }ρ(logui logni)

1−ρ (C.15)

for ρ = 0,1. We have to show this is Op(N1+2ζij /(logN)2). After replacing β̄ij by βij , it is
bounded by

K(logN)2
d∑

k=1

pk∑
�=1

∣∣∣∣∑
u∈N

(u
θ̄k�

k − u
θk�

k )u
θ̄ij

i

∣∣∣∣.
Proceeding much as before, this is

Op

(
(logN)2

d∑
k=1

pk∑
�=1

N1+ζk�+ζij Nχ−ζk�−1/2

)

= Op((logN)2N1/2+ζij +χ ) = Op

(
N1+2ζij /(logN)2).

Again, the same bound holds for (C.15).
Finally, Q

(2)
3 (ᾱ) − Q

(2)
3 (α) has non-zero elements at the same locations, and they are of form

−2(logni)
1−ρ

∑
u∈N

xu{(β̄ij logui)
ρu

θ̄ij

i − (βij logui)
ρu

θij

i } (C.16)

for ρ = 0,1, which again will be shown to be Op(N1+2ζij /(logN)2). Replacing β̄ij by βij gives

−2βij (logni)
1−ρ

{
n

θij

i

∑
u∈N

xu(logui)
ρv(ui/ni; θ̄ij , θij )

+ (nθ̄ij −θij − 1)
∑
u∈N

xu(logui)
ρu

θij

i

}

= Op((logN)2N1/2+ζij +χ ) = Op

(
N1+2ζij /(logN)2),

applying Lemmas 10 and 11, and nθ̄ij −θij − 1 = Op((logN)|θ̄ij − θij |). We can show, as before,
that (C.16) has the same bound. �
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Proposition 6. As N → ∞,

D+L−1Q(2)(α)−1L−1D+ = 1
2Bϒ−1B ′ + 1

2B��B� + Op((logN)−2).

Proof. Clearly Q
(2)
2 (α) ≡ 0. A typical non-zero element of Q

(2)
3 (α) is

−2
∑
u∈N

{(logui)
2βij }ρ(logui logni)

1−ρu
θij

i xu

for ρ = 0,1, and from Lemma 10 this is

Op((logN)2N1/2+ζij ) = Op

(
N1+2ζij /(logN)2)

as desired. From Lemmas 13 and 14,

D−1+ Q
(2)
1 D−1+ = 2 diag{β�, Ip}(A + O((logN)−2)

)
diag{β�, Ip},

where A has p × p submatrices Aij such that A11 = L�L − L�+ − �′+L + �++, A12 =
A′

21 = L�L − �′+L, A22 = L�L. Thus A−1 has p × p submatrices Aij such that A11 = ϒ−1,
A12 = A21′ = �′L−1 − ϒ−1, A22 = L−1�−1(L−1 + (�L − �+)ϒ−1(L� − �+)�−1L−1).
It follows that A−1 = (Ip,−Ip)ϒ−1(Ip,−Ip)′ + �. The proof is straightforwardly con-
cluded. �

Proposition 7. As N → ∞,

N−1/2
∑
u∈N

[ϒ−1{L(u) − L} + �′]D−1f (u; θ)xu →d Np(0,2πF(0)ϒ−1).

Proof. Write xu = xu1 + xu2 for xu1 = ∑
v∈EM

ξvεu−v , xu2 = ∑
v∈ĒM

ξvεu−v , with EM =
{u: |ui | ≤ M, i = 1, . . . , d}, ĒM = Z

d \ EM , for positive integer M . For η > 0, choose M such
that

∑
v∈ĒM

|ξv| < η. Writing

gu = [ϒ−1{L(u) − L} + �′]D−1f (u; θ),

we have

E

∥∥∥∥N−1/2
∑
u∈N

guxu2

∥∥∥∥
2

= N−1
∑

v∈ĒM

∑
w∈ĒM

ξvξw

∑
u,u−v+w∈N

g′
ugu−v+w

(C.17)

≤
( ∑

v∈ĒM

|ξv|
)2

N−1
∑
u∈N

‖gu‖2,

and

1

N

∑
u∈N

‖gu‖2 ≤ K

N

∑
u∈N

d∑
i=1

pi∑
j=1

[1 + {log(ui/ni)}2](ui/ni)
2θij ≤ K,
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by Lemmas 13 and 14. Then (C.17) ≤ Kη2. Next write N−1/2∑
u∈N

guxu1 = N−1/2∑
w∈E′ εw ×∑

u∈E′′ ξu−wgu, where

E′ = {w: 1 − M ≤ wi ≤ ni + M, i = 1, . . . , d},
E′′ = {u: max(1,wi − M) ≤ ui ≤ min(ni,wi + M), i = 1, . . . , d}.

We may then apply a CLT, with N and thus N∗ =∏d
i=1(ni + 2M) increasing, for independent

random variables whose squares are uniformly integrable. It remains to check two aspects. The
first is the Lindeberg condition,

1

N
max
w∈E′

∥∥∥∥∑
u∈E′′

ξu−wgu

∥∥∥∥
2

→ 0, as N → ∞.

The left side is bounded by

K

N
max
u∈N

‖gu‖2 ≤ K

N

d∑
i=1

pi∑
j=1

max
ui

[{log(ui/ni)}2 + 1](ui/ni)
2θij → 0,

since, for some η > 0,

(ui/ni)
2θij ≤ 1(θij ≥ 0) + n

2|θij |
i 1(θij < 0) ≤ N1−η, | log(ui/ni)| ≤ K logN.

The second aspect is the covariance structure:

E

{
N−1/2

∑
u∈N

gux1u

}{
N−1/2

∑
u∈N

gux1u

}′
= N−1

∑∑
v,w∈ĒM

ξvξw

∑ ′gugu+w−v, (C.18)

where the primed sum is over all u such that u, u + w − v ∈ N. Since M is fixed and
‖gu‖ ≤ KN1−η , for some η > 0, (C.18) differs by o(1), as N → ∞, from N−1∑

v,w∈EM
ξvξw ×∑

u∈N
gugu+w−v . Using Lemma 16, this differs by o(1) from N−1(

∑
v∈EM

ξv)
2∑

u∈N
gug

′
u,

which, by Lemmas 13 and 14 and straightforward calculation and elimination, equals

( ∑
v∈EM

ξv

)2

{ϒ−1�++ϒ−1 − ϒ−1�′+� − �′�+ϒ−1 + �′�� + O(1/ logN)}

=
( ∑

v∈EM

ξv

)2

{ϒ−1 + O(1/ logN)} →
( ∑

v∈EM

ξv

)2

ϒ−1

as N → ∞, and the last displayed expression differs by O(η) from (
∑

∈Zd ξv)
2ϒ−1 =

2πF(0)ϒ−1. �
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Appendix D: Technical lemmas

Lemma 1. Let T be an r × r matrix, with (i, j)th ri × rj block Tij , i, j = 1, . . . , d , where∑d
i=1 ri = r . Let ti be a column vector such that Tij = ti t

′
j , i �= j , and Tii − ti t

′
i is positive

definite, i, j = 1, . . . , d . Then T is non-singular, with (i, j)th ri × rj submatrix

T −1
ii + T −1

ii ti t
′
iT

−1
ii

1 − τi

d∑
s=1
s �=i

τs

1 − τs

/
(1 + σ), i = j, (D.1)

and

−T −1
ii ti t

′
j T

−1
jj

(1 − τi)(1 − τj )

/
(1 + σ), i �= j, (D.2)

where τi = t ′iT
−1
ii ti , σ =∑d

i=1 τi/(1 − τi).

Proof. Let T̃ be the r × r matrix with diagonal blocks T̃i = Tii − τiτ
′
i , and zeros elsewhere, so

T = T̃ + t t ′, where t = (t ′1, . . . , t ′d)′. Now because det{Tii − ti t
′
i } = det{Tii}(1 − τi), it follows

that τi < 1, and

T̃ −1
ii = T −1

ii {Iri + (1 − τi)
−1ti t

′
iT

−1
ii }, i = 1, . . . , d. (D.3)

Then T̃ −1 is the r × r matrix with diagonal blocks T̃ −1
ii . Thus

T −1 = T̃ −1{Ir − (1 + t ′T̃ −1t)−1t t ′T̃ −1}. (D.4)

Now t ′i T̃
−1
ii = (1 + τi(1 − τi)

−1)t ′iT
−1
ii = (1 − τi)

−1t ′iT
−1
ii , i = 1, . . . , d , and so t ′T̃ −1 = {(1 −

τ1)
−1t ′1T

−1
11 , . . . , (1−τd)−1t ′dT −1

dd }, and thus t ′T̃ −1t = σ . From (D.4), the (i, j)th ri × rj subma-
trix of T −1, for i �= j , is −T̃ −1

ii ti t
′
j T̃

−1
jj /(1 + t ′T̃ −1t), which equals (D.2) on substituting (D.3),

while for i = j it is

T −1
ii + T −1

ii ti t
′
iT

−1
ii

1 − τi

− T −1
ii ti t

′
iT

−1
ii

(1 − τi)2

/{1 + σ },

which equals (D.1) after straightforward algebra. �

Lemma 2. Let Tii be a Cauchy matrix, having (j, k)th element (1 + vij + vik)
−1, and let the j th

element of ti be (1 + vij )
−1, where vij ∈ (− 1

2 ,∞) \ {0}, all i, j and vij �= vik , for j �= k. Then T

as defined in Lemma 1 is non-singular, and its inverse T −1 has (i, j)th ri × rj block with (k, �)th
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element

(1 + 2vik)(1 + 2vi�)

ri∏
m=1
m �=k

1 + vik + vim

vik − vim

ri∏
m=1
m �=l

1 + vi� + vim

vi� − vim

×
[

1

1 + vik + vi�

−
{

1

vik(1 + vik)vi�(1 + vi�)

ri∏
m=1

(
1 + vim

vim

)2}
(D.5)

/{
d∑

s=1

ri∏
m=1

(
1 + vsm

vsm

)2

+ 1 − d

}]
, i = j,

(1 + 2vik)(1 + 2vj�)

v2
ikv

2
j�

ri∏
m=1
m �=k

(1 + vik + vim)(1 + vim)

(vim − vik)vim

×
ri∏

m=1
m �=l

(1 + vj� + vjm)(1 + vjm)

(vjm − vj�)vjm

(D.6)

/{
d∑

s=1

ri∏
m=1

(
1 + vsm

vsm

)2

+ 1 − d

}
, i �= j.

Proof. From page 31 of Knuth [10], T −1
ii has (k, �)th element

ri∏
m=1

(1 + vik + vim)(1 + vi� + vim)

/{
(1 + vik + vi�)

ri∏
m=1
m �=l

(vik − vim)

ri∏
m=1
m �=l

(vi� − vim)

}
.

For each i define the (ri + 1) × (ri + 1) non-singular Cauchy matrix T +
ii whose first ri rows are

(Tii , ti) and whose last row is (t ′i ,1). Thus, again from page 31 of Knuth [10], the (ri +1, ri +1)th
element of its inverse is (1 − τi)

−1 =∏ri
�=1(1 + v−1

i� )2. Thus

1 + σ =
ri∏

�=1

(1 + v−1
i� )2 + 1 − d. (D.7)
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Also, the leading ri × 1 subvector of the (ri + 1)th column of T +−1
ii is (1 − τi)

−1T −1
ii ti , which

has kth element

(1 + vik)

ri∏
m=1

(1 + vik + vim)(1 + vim)

/{
(1 + vik)vik

ri∏
m=1
m �=l

(vik − vim)

ri∏
m=1

(−vim)

}

= 1 + 2vik

v2
ik

ri∏
m=1
m �=k

(1 + vik + vim)(1 + vim)

(vim − vik)vim

.

The proof is completed by substitution and rearrangement. �

Lemma 3. Let T + be the (r + 1) × (r + 1) matrix whose first r rows are (T , t) and whose last
row is (t ′,1), with T and t defined as in Lemmas 1 and 2. Then

T +−1 =
[

T −1
(
Ir + t t ′T −1(1 − t ′T −1t)−1

) −T −1t (1 − t ′T −1t)−1

−(1 − t ′T −1t)−1t ′T −1 (1 − t ′T −1t)−1

]
,

where (1 − t ′T −1t)−1 = 1 + σ .

Proof. From (D.1) and (D.2)

t ′T −1t =
d∑

i=1

{
τi + τ 2

i

(1 + σ)(1 − τi)

(
σ − τi

1 − τi

)}
− σ 2

1 + σ
+ 1

(1 + σ)

d∑
i=1

τ 2
i

(1 − τi)2
= σ

1 + σ

after routine algebra. Thus 1 − t ′T −1t = 1/(1 + σ), and the proof is readily completed. �

Lemma 4. For ¯a > −1

sup
a≥¯a

∣∣∣∣∣ 1

J

J∑
j=1

(
j

J

)a
∣∣∣∣∣≤ K.

Proof. The expression within the modulus is bounded by

∫ 1

0
xa dx + 1 = 1

a + 1
+ 1 ≤ 1

¯a + 1
+ 1 ≤ K. �

Lemma 5. For ¯a > −1,

sup
a≥¯a

∣∣∣∣∣ 1

J

J∑
j=1

(
j

J

)a

− 1

1 + a

∣∣∣∣∣≤ K

J 1+min(¯a,0)
.
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Proof. The expression within the modulus is

1

J

J−1∑
j=2

∫ j/J

(j−1)/J

{(
j

J

)a

− xa

}
dx + 1

J a+1
−
∫ 1/J

0
xa dx + 1

J
−
∫ 1

1−1/J

xa dx. (D.8)

Using the mean value theorem, the first term in (D.8) is bounded by

2a

J

J∑
j=1

(
j

J

)a−1

1(a > 0) + |a|
J a+1

J∑
j=1

ja−11(a < 0) ≤ 2

J
+ K

J ¯a+1
.

The last two integrals in (D.8) are bounded by

(1/J )a+1

a + 1
+ 1

a + 1

{
1 −

(
1 − 1

J

)a}
≤ K

J ¯a+1
+ 2

J
. �

Define, for s ∈ [0,1], v(s;a, b) = sa − sb .

Lemma 6. For ¯a > − 1
2

sup
a,b≥¯a

(a − b)−2
∫ 1

0
v(x;a, b)2 dx ≤ K.

Proof. The integral is

1

2a + 1
− 2

a + b + 1
+ 1

2b + 1
= 2(a − b)2

(2a + 1)(a + b + 1)(2b + 1)
≤ K(a − b)2. �

Lemma 7. For ¯a > − 1
2 ,

sup
a,b∈[¯a,ā]

{
(a − b)−2

J∑
j=1

v

(
j

J
;a, b

)2
}

≤ KJ(logJ )2. (D.9)

Proof. By the mean value theorem,

|v(s;a, b)| ≤ sc| log s||a − b|, s ∈ (0,1], (D.10)

where |a − c| ≤ |a − b|. Also, for such c,

sc ≤ s¯a, s ∈ (0,1]. (D.11)

Thus the quantity in braces in (D.9) is bounded by

K(logJ )2
J∑

j=1

(
j

J

)2¯a ≤ KJ(logJ )2, (D.12)
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because ¯a > − 1
2 . �

Lemma 8. For −1 < ¯a < ā < ∞,

sup
a,b∈[¯a,ā]

|a − b|−1

∣∣∣∣∣ 1

J

J∑
j=1

v

(
j

J
;a, b

)
−
∫ 1

0
v(x;a, b)dx

∣∣∣∣∣≤ K(logJ )2

J 1+min(¯a,0)
.

Proof. The expression within the modulus is

J∑
j=2

∫ j/J

(j−1)/J

{
v

(
j

J
;a, b

)
− v(x;a, b)

}
dx + 1

J
v

(
1

J
;a, b

)
−
∫ 1/J

0
v(x;a, b)dx. (D.13)

From (D.10) and (D.11), the last integral is bounded by

K

∫ 1/J

0
x¯a| logx|dx|a − b| ≤ K(logJ )J−¯a−1|a − b|,

and the same bound results for the penultimate term of (D.13). By the mean value theorem
|v(s;a, b) − v(s − r;a, b)| is bounded by

|sc log s − (s − r)c log(s − r)||a − b|, 0 ≤ r ≤ 1/J, s ≥ 2/J, (D.14)

where |a − c| ≤ |a − b|, and the first modulus is bounded by

|{sc − (s − r)c} log s| + |(s − r)c{log s − log(s − r)}|

≤ sc| log s|
{∣∣∣∣1 −

(
1 − r

s

)c∣∣∣∣+
(

1 − r

s

)c∣∣∣∣log

(
1 − r

s

)∣∣∣∣
}

(D.15)

≤ K
sc−1

J
| log s|.

Thus the first term of (D.13) is bounded by |a − b| times

K logJ

J 2

J∑
j=1

(
j

J

)
¯a−1

= O

(
logJ

J ¯a+1
1(¯a ≤ 0)+ (logJ )2

J
1(¯a = 0)+ logJ

J
1(¯a > 0)

)
. (D.16)

�

Lemma 9. For ¯a > − 1
2 ,

sup
taj ,bi∈[¯a,ā]

i=1,2

{
2∏

i=1

|ai − bi |
}−1∣∣∣∣∣ 1

J

J∑
j=1

2∏
i=1

v

(
j

J
;ai, bi

)
−
∫ 1

0

2∏
i=1

v(x;ai, bi)dx

∣∣∣∣∣

≤ K(logJ )3

J 1+min(2¯a,0)
.
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Proof. The expression within the second modulus is

J∑
j=2

∫ j/J

(j−1)/J

{
2∏

i=1

v

(
j

J
;ai, bi

)
−

2∏
i=1

v(x;ai, bi)

}
dx

(D.17)

+ J−1
2∏

i=1

v

(
1

J
;ai, bi

)
−
∫ 1/J

0

2∏
i=1

v(x;ai, bi)dx.

Similarly to the proof of Lemma 7, the last term is bounded by

K

∫ 1/J

0
x2¯a(logx)2 dx

2∏
i=1

|ai − bi | ≤ K(logJ )2

J 2¯a+1

2∏
i=1

|ai − bi |.

The expression in braces in (D.17) can be written{
v

(
j

J
;a1, b1

)
− v(x;a1, b1)

}
v

(
j

J
;a2, b2

)

+ v(x;a1, b1)

{
v

(
j

J
;a2, b2

)
− v(x;a2, b2)

}
.

Both terms are treated similarly; we consider only the first. From the bounds (D.14), (D.15)
its first factor is bounded by (K/J )(j/J )¯a−1(logJ )|a1 − b1|, and its second one by
K(j/J )¯a(logJ )|a2 − b2|. Thus its contribution is

O

(
(logJ )2J 1+2¯a

J∑
j=1

j2¯a−1

)
,

whence the result follows by an analogous calculation to (D.16). �

Lemma 10. For i = 1, . . . , d and − 1
2 < ¯a < ā < ∞, and all q ≥ 0

E

{
sup

a∈[¯a,ā]

∣∣∣∣N−1/2
∑
u∈N

(
ui

ni

)a

(logui)
qxu

∣∣∣∣
}

≤ K(logN)q. (D.18)

Proof. By summation by parts

ni∑
ui=1

(
ui

ni

)a

(logui)
qxu

=
ni−1∑
ui=1

{(
ui

ni

)a

−
(

ui + 1

ni

)a} ui∑
�=1

(log�)qxu1,...,�,...,ud
+

ni∑
ui=1

(logui)
qxu,
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where xu1,...,�,...,ud
is xu with ui replaced by �. Thus the expression in the modulus in (D.18) is

N−1/2
ni−1∑
ui=1

(
ui

ni

)a

{1 − (1 + u−1
i )a}Hi(ui) + n−1/2Hi(ni), (D.19)

where

Hi(s) =
nk∑

uk=1
k=1,...,d

k �=i

s∑
�=1

xu1,...,�,...,ud
(log�)q .

The factor in braces in (D.19) is bounded by |a|/ui ≤ K/ui , whereas (ui/ni)
a ≤ (ui/ni)¯a . Thus

the left side of (D.18) is bounded by

KN−1/2
ni−1∑
ui=1

(
ui

ni

)
¯a 1

ui

E|Hi(ui)| + n−1/2E|Hi(ni)|

≤ K(logni)
qn

−1/2−¯ai

ni∑
ui=1

u¯a−1/2
i + K(logN)q ≤ K(logN)q,

since ¯a > − 1
2 and

EHi(s)
2 =

nk∑
uk=1

k=1,...,d

k �=i

s∑
�=1

nk∑
vk=1

k=1,...,d

k �=i

s∑
m=1

γu1−v1,...,�−m,...,ud−vd
(log�)q(logm)q

≤ KNs

ni

(log s)2q
∑
u∈Zd

|γu| ≤ KNs(log s)2q

ni

.
�

Lemma 11. For ¯a > − 1
2 ,

E

{
sup

a,b∈[¯a,ā]
|a − b|−1

∣∣∣∣∑
u∈N

v(ui/ni;a, b)xu

∣∣∣∣
}

≤ KN1/2 logN. (D.20)

Proof. By summation by parts,

ni∑
ui=1

v(ui/ni;a, b)xu =
ni−1∑
ui=1

{
v(ui/ni;a, b) − v

(
(ui + 1)/ni;a, b

)} ui∑
�=1

xu1,...,�,...,ud
.
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From (D.14) and (D.15), the expression in braces is bounded by

K

(
logni

ni

)(
ui + 1

ni

)
¯a−1

≤ K logN

ui

(
ui

ni

)
¯a
.

Thus the left side of (D.20) is bounded by K logN
∑ni−1

ui=1(ui/ni)¯au−1
i E|Hi(ui)|, which, from

the proof of Lemma 10 (with q = 0), has the desired bound. �

Lemma 12. Let a > − 1
2 be a scalar and ã = ãJ be a sequence such that ã − a = Op(J−η) as

J → ∞, for some η > 0. Then for all q ≥ 0,

J−1−a

J∑
j=1

(log j)q |j ã − ja| = Op(J−η), as J → ∞.

Proof. The left side is bounded by

J∑
j=1

(log j)q
(

j

J

)a

|j ã−a − 1| ≤ 1

J

J∑
j=1

(log j)q+1
(

j

J

)a

|ã − a|

≤ KJη/2Op(J−η)
1

J

J∑
j=1

(
j

J

)a

= Op(J−η/2).
�

Lemma 13. For a > − 1
2 , there is an η > 0 such that for all sufficiently large J ,

∣∣∣∣∣ 1

J

J∑
j=1

(log j)

(
j

J

)a

− logJ

a + 1
+ 1

(a + 1)2

∣∣∣∣∣≤ KJ−η. (D.21)

Proof. The left side is bounded by

1

J a+1

J∑
j=2

∫ j

j−1
|(logx)xa − (log j)ja|dx +

∣∣∣∣ 1

J a+1

∫ 1

0
(logx)xa dx

∣∣∣∣. (D.22)

The first modulus is bounded by

| logx||xa − ja| + | log(x/j)|ja ≤ K(log j){(j − 1)a−1 + ja−1} + ja−1

≤ K(log j)ja−1

for x ∈ [j − 1, j ], j ≥ 2. Thus the first term of (D.23) is O((logJ )J−a−1) for a < 0,
O((logJ )2J−1) for a = 0, and O((logJ )J−1) for a > 0. The last integral is O(J a−1). Since
a > −1 there is an η > 0 to satisfy (D.21). �
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Lemma 14. For any a > − 1
2 , there is an η > 0 such that for all sufficiently large J ,

∣∣∣∣∣ 1

J

J∑
j=1

(log j)2
(

j

J

)a

− (logJ )2

a + 1
+ 2 logJ

(a + 1)2
− 2

(a + 1)3

∣∣∣∣∣≤ J−η.

Proof. The left side is bounded by

1

J a+1

J∑
j=2

∫ j

j−1
|(logx)2xa − (log j)2ja|dx +

∣∣∣∣ 1

J a−1

∫ 1

0
(logx)2xa dx

∣∣∣∣.
The first integrand is bounded by

(logx)2|xa − ja| + | log(x/j)|| log(xj)|ja ≤ K(log j)2ja−1

as in the proof of Lemma 13; the proof is completed in similar fashion. �

Lemma 15. For any a > − 1
2 and all sufficiently large N ,

E

{
N−1/2

∑
u∈N

log(ui/ni)(ui/ni)
axu

}2

≤ K.

Proof. The left side is

N−1
∑∑
u,v∈N

(
ui

ni

)a(
vi

ni

)a

log

(
ui

ni

)
log

(
vi

ni

)
γu−v

≤ N−1
∑
u∈N

(
ui

ni

)2a

log2
(

ui

ni

) ∑
v∈Zd

|γu−v| ≤ K,

by Assumption 3 and straightforward application of Lemmas 13 and 14. �

Lemma 16. For a1, a2 > 1
2 , q1, q2 ≥ 0, and any finite positive or negative integer M , there is an

η > 0 such that for all sufficiently large J ,

1

J

J∑
j=1

{
logq1

(
j

J

)}(
j

J

)a1
{

logq2

(
j + M

J

)(
j + M

J

)a2

− logq2

(
j

J

)(
j

J

)a2
}

(D.23)
≤ |M|J−η.

Proof. We have ∣∣∣∣
(

j + M

J

)a2

−
(

j

J

)a2
∣∣∣∣ ≤ M

j

(
j

J

)a2

,



676 P.M. Robinson∣∣∣∣logq2

(
j + M

J

)
− logq2

(
j

J

)∣∣∣∣ ≤ M

j
.

By elementary inequalities the left side of (D.23) is bounded by

KM(logJ )q1+q2

J a1+a2+1

J∑
j=1

ja1+a2−1

≤ K|M|(logJ )q1+q2

{
1(a1 + a2 < 0)

J a1+a2+1
+ 1(a1 + a2 = 0)

J
logJ + 1(a1 + a2 > 0)

J

}
,

which is O(|M|J−η). �
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