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In the linear random effects model, when distributional assumptions such as normality of the error variables
cannot be justified, moments may serve as alternatives to describe relevant distributions in neighborhoods
of their means. Generally, estimators may be obtained as solutions of estimating equations. It turns out
that there may be several equations, each of them leading to consistent estimators, in which case finding the
efficient estimator becomes a crucial problem. In this paper, we systematically study estimation of moments
of the errors and random effects in linear mixed models.
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1. Introduction

Normality or, more generally, the existence of a parametric structure on the distribution of ran-
dom effects is a routine assumption for linear mixed models. In such a case, both the maximum
likelihood estimator (MLE) and the restricted maximum likelihood estimator (RMLE) work well.
Moreover, they are standard outputs in statistical software packages such as SAS and R. A com-
prehensive account of the methodology is contained in the monograph of Verbeke and Molen-
berghs [7]. In recent years, more efforts were devoted to relaxing this assumption and using
semiparametric or nonparametric methods to estimate the parameters of interest. Zhang and Da-
vidian [9] suggested using the seminonparametric representation of Gallant and Nychka [4] to
approximate the random effect density in order to estimate parameters for linear mixed mod-
els. Cui, Ng and Zhu [3] used the estimation of moments in mixed effect models with errors in
variables. Rank estimation was applied by Wang and Zhu [8] to estimate fixed effects.

However, the aforementioned papers do not consider the estimation of higher moments that are
useful for hypothesis testing and interval estimation for the parameters in the models. To the best
of our knowledge, Cox and Hall [2] is the only reference in the literature that defines and studies
the estimators of the errors and random effects for higher than second moments. The authors
of that work obtained the cumulants of the two components of variance based on homogeneous
polynomials in a simple random effects location model, which is the sum of the one-level random
effect and the error. For this model, Hall and Yao [5] studied nonparametric estimation of the
distributions of the errors and the random effects via empirical cumulant generating functions.
To the best of our knowledge, no paper has investigated this issue for the linear mixed model
under consideration.
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The contents of this paper are as follows:

• In Section 2.1 we introduce the linear mixed model and derive basic properties of the gen-
eralized least squares estimator under weak conditions on the group sizes and the design
variables. The fundamental Lemma 2.1 yields representations of certain polynomial func-
tions of the overall errors in terms of individual and group errors. This will be the basic tool
to answer a question posed by Cox and Hall [2] in the context of the simple random effects
location model, namely, how to properly weight and combine certain polynomial functions
of the residuals.

• As a warmup, in Section 2.2, we consider the estimation of second moments. It turns out
that by a proper combination of polynomial functions of the residuals, we can obtain second
moment estimators which are asymptotically normal and have the same limit variance as if
the unknown errors were known.

• For third and fourth moments, the situation is more complex. In Sections 2.3 and 2.4, we
propose and study estimators yielding efficiency and asymptotic normality under weak con-
ditions on the design and group sizes.

• As an alternative, in Sections 3.1 and 3.2, we study an extension of an estimator due to Cox
and Hall [2] which may therefore be considered as a first step estimator. When the group
sizes are all equal, our estimators have similar asymptotic properties to theirs. We show that
for unequal group sizes, the obtained estimators may converge at slower rates unless some
restrictive regularity assumptions are satisfied.

• Section 4 presents some simulation studies, while proofs are deferred to the Appendix.

2. Minimum variance estimation of moments

2.1. Motivation and first results

Assume that data are available from a linear mixed model, that is, we observe pairs (xij , yij ),1 ≤
i ≤ n,1 ≤ j ≤ li , satisfying

yij = α + x′
ij β + bi + εij . (2.1)

Here, i denotes the group index, while the measurements within this group are indexed by j .
The integer li is the sample size within group i. The row vector x′

ij is a p-dimensional input
vector corresponding to the j th observation in the ith group leading to the output yij . The rela-
tion between xij and yij described by (2.1) contains the intercept parameter α, the fixed effect
regression parameter β and the one-level random effect bi for group i, all unknown. Moreover,
these quantities are disturbed by random errors εij . It is assumed throughout that b1, . . . , bn are
independent and identically distributed (i.i.d.) and also independent of all εij , which are also
i.i.d. Finally, we may assume without loss of generality that

Ebi = 0 and Eεij = 0 for 1 ≤ i ≤ n and 1 ≤ j ≤ li . (2.2)

Otherwise, we may incorporate unknown nonzero expectations in the intercept α. Let γ k
b and

γ k
ε denote the kth moments of the random effects and errors, respectively. In this paper, we
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shall construct and analyze estimators of α, β , γ k
b and γ k

ε , k = 2,3,4, that are based on various
estimating equations. These equations are obtained from proper nonlinear combinations of the
residuals. For these, we first have to estimate β and α via a generalized least squares method. In
the model (2.1), this leads to

β̂ = �̂−1
n

∑n
i=1

∑li
j=1(xij − x̄i·)(yij − ȳi·)∑n

i=1 li
(2.3)

and

α̂ = 1

n

n∑
i=1

ȳi· − 1

n

n∑
i=1

x̄′
i·β̂. (2.4)

Here,

�̂n = 1∑n
i=1 li

n∑
i=1

li∑
j=1

(xij − x̄i·)(xij − x̄i·)′, (2.5)

while

x̄i· = 1

li

li∑
j=1

xij and ȳi· = 1

li

li∑
j=1

yij

denote the corresponding group averages. Furthermore, we let

N =
n∑

i=1

li ,

the overall sample size.

Theorem 2.1. Assume that the following conditions (2.6)–(2.8) are satisfied:

lim
n→∞ �̂n = � for some positive definite p × p matrix �; (2.6)

1

n

n∑
i=1

1

li
→ 0 and N/n → ∞ as n → ∞; (2.7)

maxi≤i≤n,1≤j≤li ‖xij − x̄i·‖√
N

→ 0 and
1

n

n∑
i=1

x̄i· is bounded. (2.8)

Then, in distribution, we have

N1/2(β̂ − β) → Np(0, γ 2
ε �−1) (2.9)
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and

n1/2(α̂ − α) → N1(0, γ 2
b ). (2.10)

The estimators β̂ and α̂ and their distributional behavior play an important role for motivating
the estimation of γ k

b and γ k
ε since this will be based on the residuals

êij = yij − α̂ − x′
ij β̂.

Set

b̄ ≡ b̄n = 1

n

n∑
i=1

bi, ε̄ ≡ ε̄n = 1

n

n∑
i=1

1

li

li∑
j=1

εij

and

x̄ ≡ x̄n = 1

n

n∑
i=1

1

li

li∑
j=1

xij .

In view of (2.4), we have

α̂ − α = b̄ + ε̄ − x̄′(β̂ − β),

from which it follows that

êij = (bi − b̄) + (εij − ε̄) + (xij − x̄)′(β − β̂)
(2.11)

≡ (bi + εij ) − (b̄ + ε̄) + z′
ij (β − β̂).

Set

eij = bi + εij ,

a sum of two independent zero-mean random variables.
When the li ’s are equal and β = 0, that is, in the simple random effects location model, Cox

and Hall [2] used homogeneous polynomial functions to construct estimating equations. In the
present paper, we consider more general situations in which new special nonlinear functions of
the eij ’s are important tools to derive estimating equations for

γ k
b = Ebk

i and γ k
ε = Eεk

ij .

For this, define, for 1 ≤ i ≤ n and 1 ≤ m ≤ k,

f k
m(i) =

li∑
j=1

em
ij

[
li∑

j=1

eij

]k−m

.

The following lemma turns out to be crucial for our analysis.



210 P. Wu, W. Stute and L.-X. Zhu

Lemma 2.1. We have

f k
m(i) =

k∑
t=0

t∧m∑
s=(t−k+m)∨0

(
m

s

)(
k − m

t − s

)(
li∑

j=1

εs
ij

)(
li∑

j=1

εij

)t−s

bk−t
i lk−m−t+s

i .

Here, a ∧ b and a ∨ b denote the minimum and maximum, repectively, of two real numbers a

and b.

The proof follows from simple arithmetic. When we take expectations, usually many of the
terms in the expansion of f k

m(i) will vanish, mainly because the εij ’s and bi ’s are centered and
independent; see (2.2). Moreover, by taking proper linear combinations of the f k

m(i)’s, we shall
be able to represent the γ k

b ’s and γ k
ε ’s in terms of the f ’s. These so-called estimating equations

will then lead to associated estimators.
For example, in the case of γ 2

ε , we have

lif
2
2 (i) − f 2

1 (i) = li

li∑
j=1

ε2
ij −

[
li∑

j=1

εij

]2

,

from which it follows that

E[lif 2
2 (i) − f 2

1 (i)] = li (li − 1)γ 2
ε .

This equation does not incorporate any b-term, so it may serve as a basis for the estimation of
γ 2
ε . For moments γ k

ε and γ k
b , k > 2, things become more delicate. At first, it is not clear how to

combine the f k
m(i)’s in order to get efficient estimators. This issue is dealt with in Sections 2.2–

2.4, for k = 2,3 and 4, respectively. In Section 3, we briefly discuss the extension of Cox and
Hall [2] to the regression case and show that it may cause some inefficiencies.

Remark 2.1. We only remark in passing that the results of this and the following sections may
be extended to group sizes lni , 1 ≤ i ≤ n, that is, when the l’s depend on the number n of groups
and therefore form a triangular array.

2.2. Estimation of γ 2
ε and γ 2

b

We start by estimating γ 2
ε and γ 2

b . As mentioned above,

E[lif 2
2 (i) − f 2

1 (i)] = li (li − 1)γ 2
ε .

Averaging over 1 ≤ i ≤ n and replacing the unknown ε’s by the residuals leads to the estimator

γ̂ 2
ε =

∑n
i=1(1/(li − 1)){li ∑li

j=1 ê2
ij − (

∑li
j=1 êij )

2}
N

.
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Similarly, the equation

E[f 2
1 (i) − f 2

2 (i)] = li (li − 1)γ 2
b

leads to the estimator

γ̂ 2
b = 1

n

n∑
i=1

1

li (li − 1)

{(
li∑

j=1

êij

)2

−
li∑

j=1

ê2
ij

}
.

Theorem 2.2. Under the conditions of Theorem 2.1, when γ 4
ε and γ 4

b are finite, we have that

N1/2[γ̂ 2
ε − γ 2

ε ] → N1(0,μ2
ε) (2.12)

and

n1/2[γ̂ 2
b − γ 2

b ] → N1(0,μ2
b), (2.13)

where

μ2
ε = γ 4

ε − (γ 2
ε )2 and μ2

b = γ 4
b − (γ 2

b )2.

It is interesting to note that (2.12) and (2.13) will be shown by verifying

N1/2[γ̂ 2
ε − γ 2

ε ] = N−1/2

[
n∑

i=1

li∑
j=1

(ε2
ij − γ 2

ε )

]
+ oP(1)

and

n1/2[γ̂ 2
b − γ 2

b ] = 1√
n

[
n∑

i=1

(b2
i − γ 2

b )

]
+ oP(1).

In other words, γ̂ 2
ε and γ̂ 2

b are as efficient as the moment estimators based on the true (but
unknown) εij and bi .

2.3. Estimation of γ 3
ε and γ 3

b

In this section we show how to estimate γ 3
ε and γ 3

b with minimal variance. Again, this may be
achieved by properly combining the f k

m(i)’s. From Lemma 2.1, we obtain

Ef 3
3 (i) = liγ

3
b + liγ

3
ε ,

Ef 3
2 (i) = l2

i γ 3
b + liγ

3
ε

and

Ef 3
1 (i) = l3

i γ
3
b + liγ

3
ε .
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We conclude that

E[2f 3
1 (i) + l2

i f 3
3 (i) − 3lif

3
2 (i)] = li (li − 1)(li − 2)γ 3

ε .

The corresponding estimator of γ 3
ε becomes

γ̂ 3
ε = N−1

n∑
i=1

1

(li − 1)(li − 2)

{
2

(
li∑

j=1

êij

)3

+ l2
i

li∑
j=1

ê3
ij − 3li

(
li∑

j=1

ê2
ij

)(
li∑

j=1

êij

)}
.

For γ 3
b , the relevant equation is

E[f 3
1 (i) − 3f 3

2 (i) + 2f 3
3 (i)] = li (li − 1)(li − 2)γ 3

b ,

leading to the estimator

γ̂ 3
b = 1

n

n∑
i=1

1

li (li − 1)(li − 2)

{(
li∑

j=1

êij

)3

− 3

(
li∑

j=1

ê2
ij

)(
li∑

j=1

êij

)
+ 2

li∑
j=1

ê3
ij

}
.

Theorem 2.3. Under the conditions of Theorem 2.1, when γ 6
ε and γ 6

b are finite, we have that

N1/2(γ̂ 3
ε − γ 3

ε ) → N1(0,μ3
ε)

and

n1/2(γ̂ 3
b − γ 3

b ) → N1(0,μ3
b),

where

μ3
ε = γ 6

ε − (γ 3
ε )2 − 6γ 2

ε γ 4
ε + 9(γ 2

ε )3,

μ3
b = γ 6

b − (γ 3
b )2 − 6γ 2

b γ 4
b + 9(γ 2

b )3.

As for second moments, these quantities denote the minimum variances, which may be
achieved for empirical estimators based on the true εij and bi , respectively.

2.4. Estimation of γ 4
ε and γ 4

b

For γ 4
ε , we are also looking for a combination of f 4

m’s such that the expectations include γ 4
ε but

no other moments. First, from Lemma 2.1, we have

Ef 4
4 (i) = liγ

4
b + 6liγ

2
b γ 2

ε + liγ
4
ε ,

Ef 4
3 (i) = l2

i γ
4
b + 3li (li + 1)γ 2

b γ 2
ε + liγ

4
ε ,

Ef 4
2 (i) = l3

i γ
4
b + (l3

i + 5l2
i )γ 2

b γ 2
ε + li (li − 1)(γ 2

ε )2 + liγ
4
ε
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and

Ef 4
1 (i) = l4

i γ
4
b + 6l3

i γ
2
b γ 2

ε + E

[(∑
j

εij

)4]
.

Finally, we put

f 4
5 (i) =

[
li∑

j=1

e2
ij

]2

.

Clearly,

Ef 4
5 (i) =

li∑
j=1

li∑
k=1

E[e2
ij e

2
ik] =

li∑
j=1

li∑
k=1

E[(bi + εij )
2(bi + εik)

2]
(2.14)

= l2
i γ

4
b + liγ

4
ε + (2l2

i + 4li )γ
2
b γ 2

ε + (l2
i − li )(γ

2
ε )2.

We now combine these expressions in a proper way. In particular, we check that

E
[
(l2

i − 2li + 3)
(
lif

4
4 (i) − 4f 4

3 (i)
) + 6lif

4
2 (i) − 3f 4

1 (i) − 3(2li − 3)f 4
5 (i)

]
= li (li − 1)(li − 2)(li − 3)γ 4

ε .

At first sight, the coefficients may look a little strange, but they appear as solutions of linear equa-
tions incorporating Ef 4

1 , . . . ,Ef 4
5 such that all terms involving moments other than γ 4

ε vanish.
Our minimum variance estimator of γ 4

ε thus becomes

γ̂ 4
ε = N−1

n∑
i=1

1

(li − 1)(li − 2)(li − 3)

×
{

(l2
i − 2li + 3)

[
li

li∑
j=1

ê4
ij − 4

li∑
j=1

ê3
ij

li∑
j=1

êij

]

+ 6li

(
li∑

j=1

ê2
ij

)(
li∑

j=1

êij

)2

− 3

(
li∑

j=1

êij

)4

− 3(2li − 3)

[
li∑

j=1

ê2
ij

]2}
.

For γ 4
b , the relevant equation is

E[f 4
1 (i) − 6f 4

2 (i) + 8f 4
3 (i) − 6f 4

4 (i) + 3f 4
5 (i)] = li (li − 1)(li − 2)(li − 3)γ 4

b ,
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giving us

γ̂ 4
b = 1

n

n∑
i=1

1

li (li − 1)(li − 2)(li − 3)

{(
li∑

j=1

êij

)4

− 6

(
li∑

j=1

ê2
ij

)(
li∑

j=1

êij

)2

+ 8

(
li∑

j=1

ê3
ij

)(
li∑

j=1

êij

)
− 6

li∑
j=1

ê4
ij + 3

(
li∑

j=1

ê2
ij

)2}
.

Theorem 2.4. Under the conditions of Theorem 2.1, when γ 8
ε and γ 8

b are finite, we have that

N1/2(γ̂ 4
ε − γ 4

ε ) → N1(0,μ4
ε)

and

n1/2(γ̂ 4
b − γ 4

b ) → N1(0,μ4
b),

where

μ4
ε = γ 8

ε − (γ 4
ε )2 − 8γ 3

ε γ 5
ε + 16γ 2

ε (γ 3
ε )2

and

μ4
b = γ 8

b − (γ 4
b )2 − 8γ 3

b γ 5
b + 16γ 2

b (γ 3
b )2.

As in previous cases, μ4
ε and μ4

b are minimal variances.

3. First step estimation

3.1. Estimation of γ 3
ε and γ 3

b

In this section, we briefly discuss the fact that different choices of estimating equations may lead
to inefficiencies. These observations eventually lead us to the efficient estimators discussed in
the previous section. For the third moments, recall that

Ef 3
3 (i) = liγ

3
b + liγ

3
ε and Ef 3

2 (i) = l2
i γ

3
b + liγ

3
ε ,

from which

liγ
3
ε = 1

li − 1
[liEf 3

3 (i) − Ef 3
2 (i)].

Summation over 1 ≤ i ≤ n yields

γ 3
ε =

∑n
i=1(1/(li − 1))[liEf 3

3 (i) − Ef 3
2 (i)]

N
.
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If we replace the expectations by their sample analogs and the true e’s by the residuals, then we
come up with an estimator of γ 3

ε similar to that of Cox and Hall [2], where all li ’s are equal and
there are no covariate effects:

γ̂ ∗3
ε =

∑n
i=1(1/(li − 1))[li ∑li

j=1 ê3
ij − (

∑li
j=1 ê2

ij )(
∑li

j=1 êij )]
N

.

In the same way, we obtain

γ̂ ∗3
b = 1

n

n∑
i=1

1

li (li − 1)

{
li∑

j=1

ê2
ij

li∑
j=1

êij −
li∑

j=1

ê3
ij

}
.

To formulate limit results for γ̂ ∗3
ε and γ̂ ∗3

b , we recall that

μ3
ε = γ 6

ε − (γ 3
ε )2 − 6γ 2

ε γ 4
ε + 9(γ 2

ε )3,

μ3
b = γ 6

b − (γ 3
b )2 − 6γ 2

b γ 4
b + 9(γ 2

b )3

and put

μ∗3
ε = γ 6

ε − (γ 3
ε )2 − 6γ 2

ε γ 4
ε + (4c + 5)(γ 2

ε )3 + 4(γ 2
ε )3x′

0�
−1x0.

Here,

x̄∗
n = N−1

n∑
i=1

li∑
j=1

xij

and (as before)

x̄n = 1

n

n∑
i=1

1

li

li∑
j=1

xij .

The vector x0 in μ∗3
ε equals

x0 = lim
n→∞(x̄∗

n − x̄n),

while

c = lim
n→∞

N

n2

n∑
i=1

l−1
i ,

assuming that both limits exist.
A detailed qualitative interpretation of these quantities will be deferred to the end of this sec-

tion.

Theorem 3.1. Under the conditions of Theorem 2.1, when γ 6
ε and γ 6

b are finite, we have that

N1/2(γ̂ ∗3
ε − γ 3

ε ) → N1
(
0,μ∗3

ε + 4γ 2
b

(
γ 4
ε − (1 − d)(γ 2

ε )2)), (3.1)
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where

d = lim
n→∞

[∑n
i=1 l2

i

N
−

∑n
i=1 li

n

]
.

As to γ̂ ∗3
b , we have that

n1/2[γ̂ ∗3
b − γ 3

b ] → N1(0,μ3
b) as n → ∞. (3.2)

Remark 3.1. As in Section 2, the estimator in the b-case achieves the minimum variance. It
equals the variance of the moment estimator based on the true but unknown bi . In the ε-case,
things are less transparent. For example, assume that lni ≡ l0

n are all equal for 1 ≤ i ≤ n, a
situation studied by Cox and Hall [2]. If l0

n → ∞, then c = 1, x0 = 0 and d = 0. Hence,

μ∗3
ε = γ 6

ε − (γ 3
ε )2 − 6γ 2

ε γ 4
ε + 9(γ 2

ε )3 = μ3
ε,

the variance of the (central) moment estimator based on the true εij . The total variance therefore
becomes

μ3
ε + 4γ 3

b

(
γ 4
ε − (γ 2

ε )2),
which, by the Cauchy–Schwarz inequality, exceeds μ3

ε . Hence, in this situation, γ̂ ∗3
ε is inefficient.

Remark 3.2. If li = ia with 0 < a < 1, then c = 1/(1 − a2) > 1 becomes large as a → 1. Hence,
the quality of the Cox–Hall-type estimator deteriorates in such situations. Worse than that, as our
proofs reveal, asymptotic normality may fail in situations where the limit d is not finite.

3.2. Estimation of γ 4
ε and γ 4

b

For fourth moments, taking expectations of f 4
4 (i) and f 4

3 (i), we again obtain

Ef 4
4 (i) = liγ

4
b + 6liγ

2
b γ 2

ε + liγ
4
ε (3.3)

and

Ef 4
3 (i) = l2

i γ 4
b + 3li (li + 1)γ 2

b γ 2
ε + liγ

4
ε , (3.4)

from which it follows that

γ 4
b = Ef 4

3 (i) − Ef 4
4 (i)

li(li − 1)
− 3γ 2

b γ 2
ε .

Averaging over 1 ≤ i ≤ n leads to the estimator

ˆ̂γ ∗4
b = 1

n

n∑
i=1

1

li (li − 1)

{
li∑

j=1

ê3
ij

li∑
j=1

êij −
li∑

j=1

ê4
ij

}
− 3γ̂ 2

b γ̂ 2
ε ,
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where γ̂ 2
b and γ̂ 2

ε were studied in Section 2.2. From (3.3) and (3.4) we immediately obtain

liγ
4
ε = liEf 4

4 (i) − Ef 4
3 (i)

li − 1
− 3liγ

2
b γ 2

ε

and therefore to

ˆ̂γ ∗4
ε = N−1

n∑
i=1

1

li − 1

{
li

li∑
j=1

ê4
ij −

li∑
j=1

ê3
ij

li∑
j=1

êij

}
− 3γ̂ 2

b γ̂ 2
ε .

Cox and Hall [2] also considered these estimators; however, we have discovered that the limit
variances are larger than those given in their paper. Therefore, we propose the following modifi-
cation. First, recall that

Ef 4
2 (i) = l3

i γ 4
b + (l3

i + 5l2
i )γ 2

b γ 2
ε + li (li − 1)(γ 2

ε )2 + liγ
4
ε . (3.5)

In addition to the f k
m(i) with m ≤ k, we again need

f 4
5 (i) =

[
li∑

j=1

e2
ij

]2

.

It follows from (3.5) and (2.14) that

E[f 4
2 (i) − f 4

5 (i)] = (l3
i − l2

i )γ
4
b + (l3

i + 3l2
i − 4li )γ

2
ε γ 2

b . (3.6)

To estimate γ 4
ε , we are looking for a linear combination of (3.3), (3.4) and (3.6) so that the

terms γ 4
b and γ 2

ε γ 2
b cancel out. In fact, it is easily seen that

E[(2l2
i − li )f

4
4 (i) − (5li − 4)f 4

3 (i) + 3f 4
2 (i) − 3f 4

5 (i)] = 2li (li − 1)(li − 2)γ 4
ε .

The corresponding estimator of γ 4
ε becomes

γ̂ ∗4
ε = N−1

n∑
i=1

1

2(li − 1)(li − 2)

{
(2l2

i − li )

li∑
j=1

ê4
ij − (5li − 4)

li∑
j=1

ê3
ij

li∑
j=1

êij

+ 3

(
li∑

j=1

ê2
ij

)(
li∑

j=1

êij

)2

− 3

[
li∑

j=1

ê2
ij

]2}
.

Following this idea, we also get an estimator of γ 4
b . Subtracting (3.3) from (3.4), we obtain

E[f 4
3 (i) − f 4

4 (i)] = (l2
i − li )γ

4
b + 3(l2

i − li )γ
2
b γ 2

ε .

Together with (3.6), this yields

3E[f 4
2 (i) − f 4

5 (i)] − (li + 4)E[f 4
3 (i) − f 4

4 (i)] = 2li (li − 1)(li − 2)γ 4
b



218 P. Wu, W. Stute and L.-X. Zhu

and therefore

γ̂ ∗4
b = 1

n

n∑
i=1

1

2li (li − 1)(li − 2)

{
3

(
li∑

j=1

ê2
ij

)(
li∑

j=1

êij

)2

− 3

(
li∑

j=1

ê2
ij

)2

− (li + 4)

(
li∑

j=1

ê3
ij

)(
li∑

j=1

êij

)
+ (li + 4)

li∑
j=1

ê4
ij

}
.

In the following theorem, we summarize the main results on the limit distributions of γ̂ ∗4
ε

and γ̂ ∗4
b .

Theorem 3.2. Under the conditions of Theorem 3.1, when γ 8
ε and γ 8

b are finite, we have that

N1/2(γ̂ ∗4
ε − γ 4

ε ) → N1
(
0,μ∗4

ε + 9
4γ 2

b [γ 6
ε − (1 − d)(γ 3

ε )2 − 6γ 2
ε γ 4

ε + 9(γ 2
ε )3])

and

n1/2[γ̂ ∗4
b − γ 4

b ] → N1(0,μ4
b) as n → ∞,

where, again,

μ4
b = γ 8

b − (γ 4
b )2 − 8γ 3

b γ 5
b + 16γ 2

b (γ 3
b )2

and

μ∗4
ε = γ 8

ε − (γ 4
ε )2 − 8γ 3

ε γ 5
ε + ( 9

4c + 55
4

)
γ 2
ε (γ 3

ε )2 + 9
4γ 2

ε (γ 3
ε )2x′

0�
−1x0.

Remark 3.3. Our earlier Remarks 3.1 and 3.2 also apply to fourth moments. This more or less
led us to look for the new estimators studied in Section 2.

Remark 3.4. We will now discuss the results of this paper in a qualitative way. Suppose that
all the bi ’s and εij ’s are known to the observer. Then, rather than computing residuals, they
could be used directly to nonparametrically estimate the (central) moments of interest. Simple
computations then show that the variances of these estimators equal μk

b and μk
ε , respectively. In

the case where only residuals are available, the improper weighting in γ̂ ∗k
ε yields variances which

heavily depend on the design (via x′
0�

−1x0), the group sizes (via the constants c and d) and the
noise variables bi (via γ 2

b ). In such a situation, Theorems 2.3 and 2.4 provide new estimators
which also attain the minimum variance in the ε-case and are less vulnerable to the model design.

4. Simulation study

To demonstrate the usefulness of our estimation procedures, a small simulation study will be
carried out. The data sets are generated from the model (2.1) with α = 1 and β = (1,2)′. To
estimate the model parameters and the third and fourth moments using the methods developed
in this paper, the group values are randomly drawn from a Poisson distribution with mean 5.
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Table 1. The true values of the 2nd–4th moments of the ran-
dom and group errors

c.d.f 2nd 3rd 4th

0.5N(0,1) 0.25 0 0.1875
0.5t (8) 0.333 0 0.5
0.5�(1,1) − 0.5 0.25 0.25 0.5625

The design matrices are generated from a zero-mean normal distribution with covariance matrix(
1 0.8
0.8 1

)
. For the random effects bi and the errors εij , we consider the following five cases:

(a) εij ∼i.i.d. 0.5N1(0,1) and bi ∼i.i.d. 0.5N1(0,1);
(b) εij ∼i.i.d. 0.5N1(0,1) and bi ∼i.i.d. 0.5t (8);
(c) εij ∼i.i.d. 0.5N1(0,1) and bi ∼i.i.d. 0.5�(1,1) − 0.5;
(d) εij ∼i.i.d. 0.5t (8) and bi ∼i.i.d. 0.5t (8);
(e) εij ∼i.i.d. 0.5t (8) and bi ∼i.i.d. 0.5�(1,1) − 0.5.

The true values of the 2nd–4th moments of the errors and random effects are given in Table 1.
N1, � and t correspond to the normal, gamma and t distributions, respectively.

The following simulation results are based on 1000 samples of data {(xij , yij ) : i = 1, . . . , n,

j = 1, . . . , li} with n = 50,100. The estimated mean, standard deviation and root mean squared
error of the estimators suggested above are reported in Tables 2 and 3. Table 2 presents the results
for the model parameters and second moments. For the purposes of comparison, we also include
the results for the MLE. Table 3 presents the results for the minimum variance estimators of the
third and fourth moments.

In Table 2, the comparison with the MLE shows that our estimators are very competitive,
although such a comparison is actually in favor of the MLE when we assume that the distribution
is parametric. In fact, empirical studies in the literature also show that the assumption concerning
the distribution of the random effects hardly influences the parameter estimates; see Butler and
Louis [1] and Verbeke and Lesaffre [6] for details. This indicates that the estimation of moments
for the model parameters performs very well.

Appendix

Proof of Theorem 2.1. We first study β̂ . It follows from (2.1) and (2.3) that

β̂ − β = 1∑n
i=1 li

n∑
i=1

li∑
j=1

�̂−1
n (xij − x̄i·)εij , (5.1)
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Table 2. The results for α̂, β̂ , γ̂ 2
ε and γ̂ 2

b
in cases (a)–(e) (the numbers in brackets correspond to the MLE)

Case n Result α̂ β̂1 β̂2 γ̂ 2
ε γ̂ 2

b

(a) 50 mean 1.0004 (1.0005) 0.9986 (0.9984) 2.0009 (2.0012) 0.2497 (0.2480) 0.2451 (0.2449)

std 0.0748 (0.0749) 0.0428 (0.0424) 0.0430 (0.0427) 0.0177 (0.0177) 0.0550 (0.0549)

rmse 0.0748 (0.0749) 0.0428 (0.0424) 0.0430 (0.0427) 0.0178 (0.0178) 0.0552 (0.0552)

100 mean 0.9965 (0.9964) 1.0000 (0.9999) 1.9995 (1.9996) 0.2496 (0.2496) 0.2476 (0.2473)

std 0.0544 (0.0544) 0.0307 (0.0304) 0.0302 (0.0300) 0.0128 (0.0128) 0.0392 (0.0393)

rmse 0.0545 (0.0546) 0.0307 (0.0304) 0.0302 (0.0300) 0.0128 (0.0128) 0.0393 (0.0394)

(b) 50 mean 1.0022 (1.0023) 1.0004 (1.0002) 2.0010 (2.0014) 0.2490 (0.2490) 0.3301 (0.3296)

std 0.0860 (0.0860) 0.0438 (0.0438) 0.0427 (0.0427) 0.0184 (0.0184) 0.0978 (0.0978)

rmse 0.0861 (0.0860) 0.0438 (0.0438) 0.0427 (0.0427) 0.0185 (0.0184) 0.0979 (0.0979)

100 mean 1.0026 (1.0026) 0.9991 (0.9991) 2.0005 (2.0004) 0.2489 (0.2489) 0.3322 (0.3319)

std 0.0598 (0.0598) 0.0299 (0.0296) 0.0299 (0.0296) 0.0128 (0.0127) 0.0652 (0.0651)

rmse 0.0598 (0.0598) 0.0299 (0.0296) 0.0299 (0.0296) 0.0128 (0.0128) 0.0652 (0.0651)

(c) 50 mean 0.9988 (0.9988) 1.0004 (1.0003) 1.9962 (1.9960) 0.2485 (0.2485) 0.2421 (0.2418)

std 0.0754 (0.0754) 0.0430 (0.0426) 0.0418 (0.0415) 0.0178 (0.0178) 0.0981 (0.0981)

rmse 0.0754 (0.0754) 0.0430 (0.0426) 0.0420 (0.0417) 0.0179 (0.0179) 0.0984 (0.0984)

100 mean 0.9974 (0.9974) 0.9993 (0.9993) 2.0005 (2.0007) 0.2481 (0.2481) 0.2437 (0.2440)

std 0.0527 (0.0528) 0.0298 (0.0294) 0.0302 (0.0298) 0.0121 (0.0121) 0.0731 (0.0730)

rmse 0.0527 (0.0528) 0.0298 (0.0294) 0.0302 (0.0298) 0.0123 (0.0123) 0.0733 (0.0733)

(d) 50 mean 1.0008 (1.0007) 0.9992 (0.9992) 2.0001 (2.0011) 0.3298 (0.3297) 0.3239 (0.3232)

std 0.0843 (0.0842) 0.0479 (0.0474) 0.0484 (0.0479) 0.0294 (0.0294) 0.0896 (0.0894)

rmse 0.0843 (0.0842) 0.0479 (0.0474) 0.0484 (0.0480) 0.0296 (0.0296) 0.0900 (0.0900)

100 mean 1.0004 (1.0003) 1.0006 (1.0004) 1.9996 (1.9996) 0.3315 (0.3315) 0.3305 (0.3303)

std 0.0618 (0.0618) 0.0336 (0.0334) 0.0351 (0.0350) 0.0213 (0.0213) 0.0697 (0.0697)

rmse 0.0618 (0.0618) 0.0336 (0.0334) 0.0351 (0.0350) 0.0214 (0.0214) 0.0697 (0.0697)

(e) 50 mean 1.0025 (1.0023) 1.0016 (1.0012) 1.9977 (1.9977) 0.3311 (0.3313) 0.2433 (0.2425)

std 0.0670 (0.0670) 0.0488 (0.0488) 0.0494 (0.0492) 0.0297 (0.0298) 0.1010 (0.1014)

rmse 0.0670 (0.0671) 0.0489 (0.0488) 0.0495 (0.0493) 0.0297 (0.0298) 0.1012 (0.1017)

100 mean 1.0007 (1.0006) 0.9994 (0.9993) 2.0011 (2.0010) 0.3323 (0.3323) 0.2446 (0.2442)

std 0.0537 (0.0536) 0.0348 (0.0344) 0.0335 (0.0330) 0.0220 (0.0220) 0.0708 (0.0707)

rmse 0.0537 (0.0536) 0.0348 (0.0344) 0.0335 (0.0330) 0.0220 (0.0220) 0.0710 (0.0709)

where �̂n is given in (2.5). To show (2.9), we fix a ∈ R
p . It suffices to prove that

N1/2a′(β̂ − β) → N1(0, γ 2
ε a′�−1a) in distribution.

Since, according to (5.1), β̂ − β is a sum of zero-mean independent random vectors, it remains
to check the variance and verify Lindeberg’s condition. The variance of N1/2a′(β̂ − β) equals

γ 2
ε

N

n∑
i=1

li∑
j=1

[a′�̂−1
n (xij − x̄i·)]2 = γ 2

ε a′�̂−1
n a → γ 2

ε a′�−1a,
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Table 3. The results for γ̂ k
ε and γ̂ k

b
(k = 3,4) in cases (a)–(e)

Case n Result γ̂ 3
ε γ̂ 4

ε γ̂ 3
b

γ̂ 4
b

(a) 50 mean −0.0004 0.1852 −0.0003 0.1813
std 0.0170 0.0325 0.0519 0.0974
rmse 0.0170 0.0326 0.0519 0.0976

100 mean −0.0002 0.1867 0.0005 0.1835
std 0.0125 0.0234 0.0362 0.0688
rmse 0.0125 0.0234 0.0362 0.0689

(b) 50 mean 0.0002 0.1866 −0.0003 0.5054
std 0.0171 0.0331 0.1948 0.8577
rmse 0.0171 0.0331 0.1948 0.8578

100 mean 0.0002 0.1858 0.0076 0.5003
std 0.0121 0.0239 0.1276 0.4835
rmse 0.0121 0.0240 0.1278 0.4835

(c) 50 mean 0.0007 0.1864 0.2290 0.4962
std 0.0174 0.0335 0.2235 0.7649
rmse 0.0174 0.0335 0.2244 0.7678

100 mean 0.0002 0.1848 0.2380 0.5317
std 0.0123 0.0216 0.1778 0.6445
rmse 0.0123 0.0216 0.1782 0.6445

(d) 50 mean 0.0001 0.4754 0.0033 0.4477
std 0.0557 0.1832 0.1520 0.4510
rmse 0.0557 0.1848 0.1520 0.4542

100 mean 0.0007 0.4862 0.0014 0.4796
std 0.0403 0.1611 0.1098 0.4100
rmse 0.0403 0.1617 0.1098 0.4102

(e) 50 mean −0.0011 0.4832 0.2278 0.5007
std 0.0578 0.2068 0.2311 0.8052
rmse 0.0578 0.2075 0.2322 0.8075

100 mean 0.0001 0.4979 0.2385 0.5355
std 0.0427 0.1726 0.1753 0.6569
rmse 0.0427 0.1726 0.1757 0.6575

by (2.6). To verify Lindeberg’s condition, we first fix δ > 0. The Lindeberg function then equals

Ln(δ) = N−1
n∑

i=1

li∑
j=1

[a′�̂−1
n (xij − x̄i·)]2

∫
{|a′�̂−1

n (xij −x̄i·)||εij |≥δ
√

�li }
ε2
ij dP.

Recall that, by (2.8),

Cn = maxi,j ‖xij − x̄i·‖
N1/2

→ 0 as n → ∞.
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We conclude, by the Cauchy–Schwarz inequality and (2.6), that

Ln(δ) ≤ a′�̂−1
n a

∫
{‖a′�̂−1

n ‖|ε|≥δC−1
n }

ε2 dP → 0,

as required. This proves (2.9). For α̂, we immediately get from (2.4) that

α̂ − α = 1

n

n∑
i=1

bi + ε̄ − 1

n

n∑
i=1

x̄′
i·(β̂ − β).

From (2.7), it follows that n1/2ε̄ → 0 in squared mean and hence in probability.
Furthermore, by (2.7)–(2.9),

n−1/2
n∑

i=1

x̄′
i·(β̂ − β) → 0 in probability.

Summarizing,

n1/2(α̂ − α) = n−1/2
n∑

i=1

bi + oP(1) → N1(0, γ 2
b ).

This shows (2.10) and thereby completes the proof of Theorem 2.1. �

Proof of Theorem 2.2. From the definition of γ̂ 2
ε and (2.11), we readily get

Nγ̂ 2
ε =

n∑
i=1

1

li − 1

{
li

li∑
j=1

[
ε2
ij + (

z′
ij (β − β̂)

)2 + 2εij z
′
ij (β − β̂)

]

−
li∑

j=1

li∑
k=1

[εij + z′
ij (β − β̂)][εik + z′

ik(β − β̂)]
}

=
n∑

i=1

li∑
j=1

ε2
ij −

n∑
i=1

1

li − 1

∑
j �=k

εij εik + 2
n∑

i=1

li∑
j=1

εij z
′
ij (β − β̂)

+
n∑

i=1

li

li − 1

li∑
j=1

(
z′
ij (β − β̂)

)2 −
n∑

i=1

1

li − 1

li∑
j=1

li∑
k=1

[z′
ij (β − β̂)][z′

ik(β − β̂)]

−
n∑

i=1

2

li − 1

∑
j �=k

εij z
′
ik(β − β̂)

≡ I − II + III + IV − V − VI.
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Of these six terms, only the first will be a leading term, while the others are remainders. For
example, II is a sum of centered independent random variables with variance

2(γ 2
ε )2

n∑
i=1

li

li − 1
≤ 4n(γ 2

ε )2.

We conclude, in view of (2.7), that

N−1/2II → 0 in probability.

To show the same for III, it suffices to prove, because of (2.9), that

N−1
n∑

i=1

li∑
j=1

εij zij → 0 in probability.

Again, this is a sum of centered random vectors with covariance

γ 2
ε

[∑n
i=1 li (x̄i· − x̄)(x̄i· − x̄)′

N2
+ �̂n

N

]
→ 0.

Similarly, the convergence of N−1/2IV , N−1/2V and N−1/2VI to zero follows from (2.6)–(2.9).
All together, this shows that

N1/2[γ̂ 2
ε − γ 2

ε ] = N−1/2

[
n∑

i=1

li∑
j=1

(ε2
ij − γ 2

ε )

]
+ oP(1)

and hence (2.12), by a simple application of the central limit theorem. To show (2.13), we note
that

γ̂ 2
b = 1

n

n∑
i=1

1

li (li − 1)

∑
j �=k

êij êik.

Again using (2.11) and applying similar arguments to those used before, we obtain

γ̂ 2
b = 1

n

n∑
i=1

b2
i + oP(n−1/2),

from which it follows that (2.13) holds. �

Proof of Theorem 2.3. We first deal with γ̂ 3
b . Simple algebraic manipulations yield

γ̂ 3
b = 1

n

n∑
i=1

1

li (li − 1)(li − 2)

∑
j �=k �=l

êij êik êil .
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Expanding êij into êij = εij + bi − (b̄ + ε̄) + z′
ij (β − β̂), we may again neglect all contributions

involving the z′
ij (β − β̂). Hence, up to an oP(n−1/2) term,

γ̂ 3
b = 1

n

n∑
i=1

1

li (li − 1)(li − 2)

∑
j �=k �=l

εij εikεil

+ 1

n

n∑
i=1

1

li (li − 1)

∑
j �=k

[3biεij εik − 3(b̄ + ε̄)εij εik]

+ 1

n

n∑
i=1

1

li

∑
j

[3b2
i εij − 6bi(b̄ + ε̄)εij + 3(b̄ + ε̄)2εij ]

+ 1

n

n∑
i=1

[b3
i − 3(b̄ + ε̄)b2

i ] + 3b̄(b̄ + ε̄)2 − (b̄ + ε̄)3.

Under the assumptions of the theorem, the first three sums are negligible, as are the last two
terms. Hence,

n1/2[γ̂ 3
b − γ 3

b ] = n−1/2
n∑

i=1

[b3
i − γ 3

b − 3(b̄ + ε̄)b2
i ] + oP(1)

= n−1/2
n∑

i=1

[b3
i − γ 3

b − 3γ 3
b bi] + oP(1).

The conclusion for γ̂ 3
b now readily follows from the central limit theorem. For γ̂ 3

ε , we may write

Nγ̂ 3
ε =

∑
i

2

(li − 1)(li − 2)

∑
j �=k �=l

êij êik êil

−
∑

i

3

li − 1

∑
j �=k

ê2
ij êik +

∑
i

∑
j

ê3
ij .

If we once again ignore the higher order terms of z′
ij (β − β̂), we find that in the expansion of γ̂ 3

ε ,
we have

Nγ̂ 3
ε =

∑
i

2

(li − 1)(li − 2)

∑
j �=k �=l

εij εikεil

−
∑

i

3

li − 1

∑
j �=k

ε2
ij εik +

∑
i

∑
j

ε3
ij + oP([�li]1/2)

=
∑

i

∑
j

[ε3
ij − 3γ 2

ε εij ] + oP(N1/2).
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The conclusion for γ̂ 3
ε now follows easily from the central limit theorem after centering the ε3

ij . �

Proof of Theorem 2.4. For γ̂ 4
b , we check that

nγ̂ 4
b =

n∑
i=1

1

li (li − 1)(li − 2)(li − 3)

∑
j �=k �=l �=m

êij êik êil êim.

Again neglecting all terms that contain z′
ij (β − β̂), we get, with vi = bi − (b̄ + ε̄),

nγ̂ 4
b =

n∑
i=1

1

li (li − 1)(li − 2)(li − 3)

∑
j �=k �=l �=m

εij εikεilεim

+ 4
n∑

i=1

vi

li(li − 1)(li − 2)

∑
j �=k �=l

εij εikεil

+ 6
n∑

i=1

v2
i

li (li − 1)

∑
j �=k

εij εik + 4
n∑

i=1

v3
i

li

∑
j

εij

+
n∑

i=1

v4
i .

Since the first four sums are all oP(n1/2), we obtain

n1/2[γ̂ 4
b − γ 4

b ] = n−1/2
n∑

i=1

[v4
i − γ 4

b ] + oP(1).

The distributional convergence of γ̂ 4
b now readily follows from the central limit theorem after an

expansion of the last sum into

n−1/2
n∑

i=1

[b4
i − γ 4

b − 4γ 3
b bi] + oP(1).

For γ̂ 4
ε , we check that

Nγ̂ 4
ε = −3

n∑
i=1

1

(li − 1)(li − 2)(li − 3)

∑
j �=k �=l �=m

êij êik êil êim

− 4
n∑

i=1

n∑
i=1

1

li − 1

∑
j �=k

ê3
ij êik + 6

n∑
i=1

1

(li − 1)

1

(li − 2)

∑
j �=k �=l

ê2
ij êik êil

+
n∑

i=1

∑
j

ê4
ij .
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Similarly to the proof of Theorem 2.3, it can be shown that

N(γ̂ 4
ε − γ 4

ε ) =
∑

i

∑
j

[ε4
ij − γ 4

ε − 4γ 3
ε εij ] + oP(N1/2),

from which the conclusion follows. �

Proof of Theorem 3.1. We first deal with γ̂ ∗3
b . By definition,

γ̂ ∗3
b = 1

n

n∑
i=1

1

li (li − 1)

∑∑
j �=k

ê2
ij êik.

Our goal will be to use (2.11) in order to express the last double sum in terms of bi , εij and
negligible remainders. Actually, in view of (2.7)–(2.9), since the standardizing factor of γ̂ ∗3

b is
n1/2 = o(N1/2), all terms in the expansion of γ̂ ∗3

b containing z′
ij (β − β̂) are negligible. In other

words,

γ̂ ∗3
b = 1

n

n∑
i=1

1

li (li − 1)

∑∑
j �=k

(
bi + εij − (b̄ + ε̄)

)2(
bi + εik − (b̄ + ε̄)

) + oP(n−1/2).

After some simple but tedious rearrangements, this becomes

γ̂ ∗3
b = 1

n

n∑
i=1

1

li (li − 1)

[∑
j �=k

(ε2
ij − γ 2

ε )εik + 2bi

∑
j �=k

εij εik − 2(b̄ + ε̄)
∑
j �=k

εij εik

]

+ 1

n

n∑
i=1

1

li

[
bi

∑
j

(ε2
ij − γ 2

ε ) + 3(b3
i − γ 2

b )
∑
j

εij

− (b̄ + ε̄)
∑
j

(ε2
ij − γ 2

ε ) − (b̄ + ε̄)6bi

∑
j

εij

]

− 3(b̄ + ε̄)
1

n

n∑
i=1

(b2
i − γ 2

b ) + 2(b̄ + ε̄)3 + 1

n

n∑
i=1

b3
i − 3b̄γ 2

b + oP(n−1/2).

To identify remainders, we note that n1/2(b̄ + ε̄) = OP(1). Also, all summands in the double
and triple sums are centered and independent. Computation of variances shows that they are all
negligible. In summary, we get

n1/2[γ̂ ∗3
b − γ 3

b ] = n−1/2
n∑

i=1

[b3
i − γ 3

b − 3γ 2
b bi] + oP(1).

This i.i.d. representation of γ̂ ∗3
b is the key tool for (3.2) – just apply the central limit theorem to

the leading sum.
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We will only study γ̂ ∗3
ε briefly. First, by definition,

Nγ̂ ∗3
ε =

n∑
i=1

li∑
j=1

ê3
ij −

n∑
i=1

∑
j �=k ê2

ij êik

li − 1
.

To expand the two expressions into leading terms and remainders, recall that the final standard-
izing factor in (3.1) will be N1/2, which is the same as in (2.9). We conclude that, under the
conditions of the theorem, terms containing higher orders of z′

ij (β − β̂) are negligible. Hence,
up to remainders,

n∑
i=1

li∑
j=1

ê3
ij =

n∑
i=1

li∑
j=1

(
εij − ε̄ + bi − b̄ + z′

ij (β − β̂)
)3

=
n∑

i=1

li∑
j=1

ε3
ij +

n∑
i=1

li∑
j=1

3ε2
ij (−ε̄ + bi − b̄) +

n∑
i=1

li∑
j=1

3εij (−ε̄ + bi − b̄)2

+
n∑

i=1

li∑
j=1

(−ε̄ + bi − b̄)3 +
n∑

i=1

li∑
j=1

3ε2
ij z

′
ij (β − β̂)

+
n∑

i=1

li∑
j=1

3(−ε̄ + bi − b̄)2z′
ij (β − β̂) +

n∑
i=1

li∑
j=1

6εij (−ε̄ + bi − b̄)z′
ij (β − β̂).

A detailed study of these sums yields

N1/2(γ̂ ∗3
ε − γ 3

ε )

= N−1/2
n∑

i=1

{
2γ 2

ε (li − l̄n)bi +
li∑

j=1

[
ε3
ij − γ 3

ε + 2bi(ε
2
ij − γ 2

ε )

− γ 2
ε

(
1 + 2l̄n

li
+ 2x′

0�̂
−1
n (xij − x̄i·)

)
εij

]}
+ oP(1).

The leading part is a sum of centered independent random variables to which the central limit
theorem may be applied. Its variance satisfies

E[ε3 − γ 3
ε ]2 + 4γ 2

b E[ε2 − γ 2
ε ]2 + 4(γ 2

ε )2γ 2
b d

− 6γ 2
ε Eε4 + (γ 2

ε )3[5 + 4c + 4x′
0�

−1x0] + o(1)

→ μ∗3
ε + 4γ 2

b

(
γ 4
ε − (1 − d)(γ 2

ε )2),
as desired. This completes the proof of Theorem 3.1. �
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Proof of Theorem 3.2. The necessary arguments are similar to those used before and are there-
fore omitted. Details may be obtained from the authors. �
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