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Discrete stability extends the classical notion of stability to random elements in discrete spaces by defin-
ing a scaling operation in a randomised way: an integer is transformed into the corresponding binomial
distribution. Similarly defining the scaling operation as thinning of counting measures we characterise the
corresponding discrete stability property of point processes. It is shown that these processes are exactly
Cox (doubly stochastic Poisson) processes with strictly stable random intensity measures. We give spectral
and LePage representations for general strictly stable random measures without assuming their independent
scattering. As a consequence, spectral representations are obtained for the probability generating functional
and void probabilities of discrete stable processes. An alternative cluster representation for such processes
is also derived using the so-called Sibuya point processes, which constitute a new family of purely random
point processes. The obtained results are then applied to explore stable random elements in discrete semi-
groups, where the scaling is defined by means of thinning of a point process on the basis of the semigroup.
Particular examples include discrete stable vectors that generalise discrete stable random variables and the
family of natural numbers with the multiplication operation, where the primes form the basis.

Keywords: cluster process; Cox process; discrete semigroup; discrete stability; random measure; Sibuya
distribution; spectral measure; strict stability; thinning

1. Introduction

Stability for random variables was introduced by Paul Lévy and thereafter became one of the
key concepts in probability. A random vector ξ (or its probability law) is called strictly α-stable
(notation: StαS) if for any positive numbers a and b the following identity is satisfied:

a1/αξ ′ + b1/αξ ′′ D= (a + b)1/αξ,

where ξ ′, ξ ′′ are independent vectors distributed as ξ and
D= denotes equality in distribution.

Non-trivial distributions satisfying this exist only for α ∈ (0,2]. Using t = a/(a + b) in the
above definition, the stability property can be equivalently expressed as

t1/αξ ′ + (1 − t)1/αξ ′′ D= ξ (1)
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for any t ∈ [0,1].
The recent work Davydov, Molchanov and Zuyev [8] explored the notion of strict stability for

a much more general situation of random elements taking values in a commutative semigroup
X. The stability property relies on two basic operations defined on X: the semigroup operation,
addition, and the rescaling that plays a role of multiplication by numbers. Many properties of
the classical stability still hold for this general situation, but there are many notable differences
related to specific algebraic properties of X; for instance, the validity of distributivity laws, re-
lation between the zero and the neutral elements, compactness, etc. Most important, the stable
random elements arise as a sum of points of a Poisson process whose intensity measure has a
specific scalable form. In the classical case of d-dimensional vectors, this result turns into the
LePage representation of strictly α-stable laws: any such law corresponds to the distribution of
the sum of points of a Poisson process �α in R

d with the density (intensity) function having a
product form θα(dρ)σ (ds) in the polar coordinates (ρ, s). Here σ is any finite measure on the
unit sphere S

d−1, called the spectral measure, and θα((r,∞)) = r−α . The underlying reason is
that the process �α is itself stable with respect to scaling and superposition, that is,

t1/α�′
α + (1 − t)1/α�′′

α
D= �α; (2)

this property being granted by the measure θα that scales in a ‘right’ way and the superposition
property of Poisson processes. This fundamental stability property leads to a characterisation of
strictly stable laws in very general Abelian semigroups forming a cone with respect to rescaling
with a continuous argument t ≥ 0; see [8].

The case of discrete spaces, however, cannot be treated the same way since the scaling by
a continuous argument cannot be defined in such spaces. While infinite divisibility of random
elements in general semigroups, at least in the commutative case, is well understood (see [26,
27]), a systematic exploration of stable laws on possibly discrete semigroups is not available.
This prompts us to define rescaling as a direct transformation of probability distributions rather
than being inherited from rescaling of the underlying phase space of the random elements.

Prior to the current work, the family Z+ of non-negative integers with addition was the
only discrete semigroup for which stability was defined. The discrete stability concept for non-
negative integer-valued random variables was introduced by [29], who defined the result t ◦ n

of rescaling of n ∈ Z+ by t ∈ [0,1] to be the binomial probability measure Bin(n, t) with the
convention that 0 ◦ n = 0 for any n. Since Bin(n, t) corresponds to the sum of n independent
Bernoulli random variables Bin(1, t) with parameter t , one can view t ◦ n as the total count of
positive integers between 1 and n where each number is counted with probability t independently
of others. Thus a Z+-valued random variable ξ is mapped to a random variable t ◦ ξ having dis-
tribution of

∑ξ
n=0 βn, where {βn} is a sequence of independent Bin(1, t) random variables. Thus

t ◦ ξ can also be viewed as a doubly stochastic random variable whose distribution depends on
realisations of ξ . This multiplication operation, though in a different context, goes back to [24].

In terms of the probability generating function (p.g.f.), if gξ (s) = Esξ denotes the p.g.f. of ξ ,
then the p.g.f. of t ◦ ξ is given by the composition of gξ and the p.g.f. of the Bernoulli Bin(1, t)

law:

gt◦ξ (s) = gξ

(
1 − t (1 − s)

)
. (3)
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Similarly to (1), a random variable ξ is called discrete α-stable if for all 0 ≤ t ≤ 1 the following
identity is satisfied

t1/α ◦ ξ ′ + (1 − t)1/α ◦ ξ ′′ D= ξ, (4)

where ξ ′, ξ ′′ are independent copies of ξ . The full characterisation of discrete α-stable random
variables (denoted by DαS in the sequel) is provided in [29] namely the laws satisfying (4) exist
only for α ∈ (0,1] and each such law has a p.g.f. of the form

Esξ = exp{−c(1 − s)α} (5)

for some c > 0.
It has also been shown that the above multiplication, defined using the Binomial distribu-

tion, can be embedded in the family of multiplication operations that correspond to branching
processes or, alternatively, to semigroups of probability generating functions; see [13]. A variant
of this operation for integer-valued vectors with multiplication defined by operator-scaling of the
probability generating function was studied by Van Harn and Steutel [14] in view of queueing
applications. This setting has been extended to some functional equations for discrete random
variables in [15,23].

In this paper we show that the discrete stability of non-negative integer random variables is a
particular case of stability with respect to the thinning operation of point processes defined on
a rather general phase space. If the phase space consists of one element, a point process may
have multiple points – the total number of which is a non-negative integer random variable –
and the thinning of the points is equivalent to the above-defined scaling operation ◦ on discrete
random variables. All known properties of discrete stable laws have their more general counter-
parts in point process settings. In particular, we show in Section 3 that α-stable point processes
with respect to thinning are, in fact, Cox processes (see, e.g., Chapter 6.2 in [5]) with the (ran-
dom) parametric measure being a positive α-stable measure with α ∈ (0,1] on the phase space.
Because of this, we first address general strictly stable random measures in Section 2. Note in
this relation that, so far, only independently scattered stable measures have received much at-
tention in the literature; see [28] and, more recently, [7,16] on the subject. It should be noted
that Cox processes driven by various random measures are often used in spatial statistics (see
[17,21,22]). A particularly novel feature of discrete stable processes is that the point counts have
discrete α-stable distributions, which have infinite expectations unless for the degenerate case
of α = 1. Thus, these point processes open new possibilities for modelling point patterns with
non-integrable point counts and non-existing moment measures of all orders.

It is known that discrete stable random variables can be represented as the sum of a Poisson
number of Sibuya distributed integer random variables; see [10]. In Section 4 we show that an
analogous cluster representation of finite discrete stable point processes also holds. The clusters
are Sibuya point processes, which seem to be a new class of point processes not considered so
far.

Some of our results for general point processes, especially defined on non-compact spaces,
become trivial or do not have counterparts for discrete random variables. This concerns the results
of Section 5, which draws an analogy with infinitely divisible point processes.
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Another important model arising from the point process setting is the case of random ele-
ments in discrete semigroups that possess an at most countable basis. We show in Section 6 that
the uniqueness of representation of each element as a linear finite combination with natural co-
efficients of the basis elements is a necessary condition to be able to define discrete stability. We
give characterisation of DαS elements in these semigroups and establish a discrete analogue of
their LePage representation.

The presentation of the theoretical material is complemented by examples from random mea-
sures, point processes and discrete semigroups all over the text. In particular, in Section 6 we
introduce a new concept of multiplicatively stable natural numbers that is interesting on its own
right and characterise their distributions.

2. Strictly stable random measures

Let X be a locally compact second countable space with the Borel σ -algebra B. The family of
Radon measures on B is denoted by M. These are measures that have finite values on the family
B0 of relatively compact Borel sets, that is, the sets with compact topological closure. Note
that all measures considered in this paper are assumed to be non-negative. The zero measure is
denoted by 0.

A random measure is a random element in the measurable space [M, M], where the σ -algebra
M is generated by the following system of sets:

{μ ∈ M :μ(Bi) ≤ ti , i = 1, . . . , n}, Bi ∈ B, ti ≥ 0.

The distribution of a random measure ζ can be characterised by its finite-dimensional distrib-
utions, that is, the distributions of (ζ(B1), . . . , ζ(Bn)) for each finite collection of disjoint sets
B1, . . . ,Bn ∈ B0.

It is well known (see, e.g., [6], Chapter 9.4) that the distribution of ζ is uniquely determined
by its Laplace functional

Lζ [h] = E exp

{
−

∫
X

h(x)ζ(dx)

}
(6)

defined on non-negative bounded measurable functions h : X �→ R+ with compact support (de-
noted by h ∈ BM(X)). From now on we adapt a shorter notation

〈h,μ〉 =
∫

X

h(x)μ(dx), μ ∈ M.

The family M can be endowed with the operation of addition and multiplication by non-
negative numbers as

(μ1 + μ2)(·) = μ1(·) + μ2(·); (7)

(tμ)(·) = tμ(·), t ≥ 0. (8)

If μ is a finite non-negative measure, it is possible to normalise it by dividing it by its total mass
and so arriving at a probability measure. The normalisation procedure can be extended to all
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locally finite measures as follows. Let B1,B2, . . . be a fixed countable base of the topology on
X that consists of relatively compact sets. Append B0 = X to this base. For each μ ∈ M \ {0}
consider the sequence of its values (μ(B0),μ(B1),μ(B2), . . .), possibly starting with infinity,
but otherwise finite. Let i(μ) be the smallest non-negative integer i for which 0 < μ(Bi) < ∞;
in particular, i(μ) = 0 if μ is a finite measure. The set

S = {
μ ∈ M :μ

(
Bi(μ)

) = 1
}

(9)

is measurable, since

S = M1 ∪
∞⋃

n=1

{μ ∈ M :μ(B0) = ∞,μ(B1) = · · · = μ(Bn−1) = 0,μ(Bn) = 1},

where M1 is the family of all probability measures on X. Note that S ∩ {μ :μ(X) < ∞} = M1.
Furthermore, every μ ∈ M\{0} can be uniquely associated with the pair (μ̂,μ(Bi(μ))) ∈ S×R+,
so that μ = μ(Bi(μ))μ̂. It is straightforward to check that the mapping μ �→ (μ(Bi(μ)), μ̂) is
measurable. Hence we have the following polar decomposition: M = S × R+.

Definition 1. A random measure ζ is called strictly α-stable (notation StαS) if

t1/αζ ′ + (1 − t)1/αζ ′′ D= ζ (10)

for all 0 ≤ t ≤ 1, where ζ ′, ζ ′′ are independent copies of the random measure ζ .

Definition 1 yields that for any B1, . . . ,Bn ∈ B0, the vector (ζ(B1), . . . , ζ(Bn)) is a non-
negative StαS n-dimensional random vector implying that α ∈ (0,1]. It is well known that one-
sided – that is, concentrated on R+ – strictly stable laws corresponding to α = 1 are degenerated
so that StαS measures with α = 1 are deterministic; see, for example, [28].

Theorem 2. A locally finite random measure ζ is StαS if and only if ζ is deterministic in the
case α = 1 and in the case α ∈ (0,1) if and only if its Laplace functional is given by

Lζ [h] = exp

{
−

∫
M\{0}

(
1 − e−〈h,μ〉)
(dμ)

}
, h ∈ BM(X), (11)

where 
 is a Lévy measure, that is, a Radon measure on M \ {0} such that∫
M\{0}

(
1 − e−〈h,μ〉)
(dμ) < ∞ (12)

for all h ∈ BM(X), and 
 is homogeneous of order −α, that is, 
(tA) = t−α
(A) for all
measurable A ⊂ M \ {0} and t > 0.

Proof. Sufficiency. It is obvious that each deterministic measure is StαS with α = 1. Consider
now h1, . . . , hk ∈ BM(X) and the image 
̃ of 
 under the map μ �→ (〈h1,μ〉, . . . , 〈hk,μ〉). It
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is easy to see that 
̃ is a homogeneous measure on R
k+. Then Lζ [∑k

i=1 tihi] as a function of
t1, . . . , tk is the Laplace transform of a totally skewed to the right (i.e., almost surely positive)
strictly stable random vector (〈h1, ζ 〉, . . . , 〈hk, ζ 〉) with the Lévy measure 
̃. If we show that
(11) defines a Laplace functional of a random measure this would imply its stability.

We have Lζ [0] = 1 and Lζ [hn] → Lζ [h] if hn ↑ h pointwise. To see this, Hn(μ) = 〈hn,μ〉 ↑
〈h,μ〉 = H(μ) by the monotone convergence theorem. In its turn, 〈Hn,
〉 converges to 〈H,
〉
again by the monotone convergence. Now, by an analogue of [6], Theorem 9.4.II, for the Laplace
functional, (11) indeed is the Laplace functional of a random measure.

Necessity. Strictly stable random measures can be treated by means of the general theory
of strictly stable laws on semigroups developed in [8]. Consider the cone M of locally finite
measures with the addition and scaling operation defined by (7) and (8). In the terminology of [8],
this set becomes a pointed cone with the origin and neutral element being the zero measure. The
second distributivity law holds and the gauge function ‖μ‖ = μ(Bi(μ)), μ ∈ M, is homogeneous
with respect to multiplication of measures by a number. As in [8], Example 8.6, we argue that
the characters on M

χh(μ) = exp{−〈h,μ〉}, h ∈ BM(X),

have a strictly separating countable subfamily and are continuous, so that condition (C) of [8]
holds. Furthermore, χh(sμ) → 1 as s ↓ 0 for all μ ∈ M, so that condition (E) of [8] is also sat-
isfied. By Davydov, Molchanov and Zuyev [8], Theorem 5.16, the log-Laplace transform of a
StαS measure satisfies Lζ [sh] = sαLζ [h] for s > 0, where α ∈ (0,1] by Davydov, Molchanov
and Zuyev [8], Theorem 5.20(ii). If α = 1, this identity implies that the values of ζ are deter-
ministic. By Davydov, Molchanov and Zuyev [8], Theorems 6.5(ii) and 6.7(i), the log-Laplace
functional of a StαS random measure with α ∈ (0,1) can be represented as the integral similar
to (11) with the integration taken with respect to the Lévy measure of ζ over the second dual
semigroup, that is, the family of all characters acting on functions from BM(X).

In order to reduce the integration domain to M \ {0}, it suffices to show that the convergence
〈h,μk〉 → g(h) for all h ∈ BM(X) implies that g(h) = 〈h,μ〉 for some μ ∈ M. Taking h =
1B here implies convergence and hence boundedness of the sequence {μk(B), k ≥ 1} for each
B ∈ B0. By Daley and Vere-Jones [5], Corollary A2.6.V, the sequence {μk, k ≥ 1} is relatively
compact in the vague topology. Given that 〈h,μk〉 converges for each h ∈ BM(X), in particular
for all continuous h ∈ BM(X), we obtain that all vaguely convergent subsequences of {μk, k ≥ 1}
share the same limit that can be denoted by μ and used to represent g(h) = 〈h,μ〉 for continuous
h. However, convergence μn → μ also happens in the strong local topology corresponding to
test functions h from whole BM(X). Indeed, if two subsequences μi1,μi2, . . . and μj1,μj2, . . .

have different limits in this topology, say, μ′ and μ′′, then there is h ∈ BM(X) such that 〈h,μ′〉 �=
〈h,μ′′〉. Then for the subsequence μi1,μj1,μi2,μj2, . . . (possibly after removing the repeating
members) the limit of the integrals of h does not exist, contradicting the assumption. Now (11)
follows from [8], Theorem 7.7. �

The properties of StαS measure ζ are determined by its Lévy measure 
. For instance, if
X = R

d , then ζ is stationary if and only if 
 is invariant with respect to the map μ(·) �→ μ(·+a)
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for all a ∈ R
d and all μ from the support of 
. Note also that (12) is equivalent to∫

M\{0}
(
1 − e−μ(B)

)

(dμ) < ∞ (13)

for all B ∈ B0.
Because of homogeneity, it is also useful to decompose 
 into the radial and directional

components using the polar decomposition of M described above. Note that the map μ �→
(μ̂,μ(Bi(μ))) is measurable. Introduce a measure σ̂ such that

σ̂ (A) = 
({tμ :μ ∈ A, t ≥ 1})
for all measurable A ⊂ S. Then 
(A × [a, b]) = σ̂ (A)(a−α − b−α), so that 
 is represented as
the product of σ̂ and the radial component given by the measure θα defined as θα([r,∞)) = r−α ,
r > 0. By the reason which will become apparent in the proof of Theorem 3 below, it is more
convenient to scale σ̂ by the value �(1−α) of the gamma function. The measure σ = �(1−α)̂σ

will be called the spectral measure of ζ in the sequel. Note that σ is not necessarily finite unless X

is compact.
Condition (13) can be reformulated for the spectral measure σ as∫

S

μ(B)ασ (dμ) < ∞ (14)

for all B ∈ B0. Note that σ can also be defined on any other reference sphere S
′ ⊂ M, provided

each μ ∈ M \ {0} can be uniquely represented as tμ′ for some μ′ ∈ S
′.

Theorem 3. Let σ be the spectral measure of a StαS random measure ζ with Lévy measure 
.
Then

Lζ [h] = exp

{
−

∫
S

〈h,μ〉ασ (dμ)

}
, h ∈ BM(X). (15)

Furthermore,

(i) ζ is a.s. finite if and only if its Lévy measure 
 (resp., spectral measure σ ) is supported
by finite measures and σ(S) = σ(M1) is finite.

(ii) The Laplace functional (11) defines a non-random measure if and only if α = 1. In this
case ζ = μ(·) = ∫

S
μ(·)σ (dμ).

Proof. The representation (15) follows from (11), since∫
M\{0}

(
1 − e−〈h,μ〉)
(dμ) =

∫
S

∫ ∞

0

(
1 − e−t〈h,μ〉)θα(dt )̂σ (dμ)

= �(1 − α)

∫
S

〈h,μ〉ασ̂ (dμ),

implying (15).
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(i) Taking hn = 1Xn , n ≥ 1, where Xn ∈ B0 form a nested sequence of relatively compact
sets such that X = ⋃

n Xn, we obtain that the Laplace transform of ζ(X) is

lim
n

Lζ [hn] = exp

{
−

∫
M\{0}

(
1 − e−μ(X)

)

(dμ)

}
,

where the integral is finite if and only if 
 is supported by finite measures. If this is the case, the
spectral measure σ is defined on M1 and

lim
n

Lζ [hn] = exp{−σ(M1)}

defines a finite random variable if and only if σ(M1) is finite.
(ii) If ζ is StαS with α = 1, then its values on all relatively compact sets are deterministic,

and so ζ is a deterministic measure. Furthermore, (10) clearly holds with α = 1 for any deter-
ministic ζ . Finally, (15) with α = 1 yields

Lζ [h] = exp

{
−

∫
S

〈h,μ〉σ(dμ)

}
= exp{−〈h,μ〉}. �

If the spectral measure is degenerate, the corresponding StαS measure has a particularly simple
structure.

Theorem 4. Assume that the spectral measure σ of a StαS measure ζ with 0 < α < 1 is con-
centrated on a single measure so that σ = cδμ for some μ ∈ S and c > 0. Then ζ can be rep-
resented as ζ = c1/αζαμ, where ζα is a positive StαS random variable with Laplace transform
Ee−zζα = exp{−zα}.

Proof. It suffices to verify that the Laplace transforms of both measures coincide and equal
Lζ [h] = exp{−c〈h,μ〉α}. �

Example 5. Let X = R
d and let σ be concentrated on the Lebesgue measure �. By Theorem 4,

the corresponding StαS measure ζ is stationary and proportional to ζα�.

If X is compact, then all measures μ ∈ M are finite and condition (14) implies that σ(M1) is
finite, so that the spectral measure is defined on the family of probability measures on X.

Example 6 (Finite phase space). In the special case of a finite X = {x1, . . . , xd} the family of
probability measures becomes the unit simplex �d = {x ∈ R

d+ :
∑

xi = 1} and a StαS random
measure ζ is nothing else but a d-dimensional totally skewed (or one-sided) strictly stable ran-
dom vector ζ = (ζ1, . . . , ζn). Its Laplace transform is given by

Ee−〈h,ζ 〉 = exp

{
−

∫
�d

〈h,x〉ασ (dx)

}
, h ∈ R

d+, (16)
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where σ is a finite measure on the unit simplex. Alternatively, the integration can be taken over
the unit sphere. It is shown in [20] that this Laplace functional can be written as

Ee−〈h,ζ 〉 = e−HK(hα), h ∈ R
d+, (17)

where hα = (hα
1 , . . . , hα

d ) and HK is the support function of a certain convex set K that appears
to be a generalisation of zonoids.

Example 7 (StαS random measures on R
d ). Fix a probability measure μ on X = R

d and let
σ be the image under the map x �→ μ(· − x) of a Radon measure ν. The corresponding StαS
random measure ζ has the Laplace transform

Lζ [h] = exp

{
−

∫
Rd

(∫
Rd

h(x + y)μ(dx)

)α

ν(dy)

}
.

To ensure condition (14) it is necessary to assume that∫
Rd

(
μ(B − y)

)α
ν(dy) < ∞ (18)

for all relatively compact B . In particular,

Ee−zζ(B) = exp

{
−zα

∫
Rd

(
μ(B − x)

)α
ν(dx)

}
, B ∈ B0. (19)

A similar construction applies if μ is a general Radon measure. Since, in this case, it is difficult
to ensure that measures μ(· − x) belong to S, the spectral measure σ is defined as the projection
onto S of the image of ν.

Example 8 (Stationary StαS random measures on R
d ). Consider the group Ty of shifts on

M1 acting as Tyμ(·) = μ(· − y). Call centroid any measurable map C : M1 �→ R
d such that

C(Tyμ) = C(μ)+ y for every y ∈ R
d and μ ∈ M1. For example, if μ1, . . . ,μd are the marginals

of μ, the ith component of C(μ) is Ci(μ) = inf{t :μi(−∞, t] ≥ 1/2}. Let M
0
1 denote the set of

probability measures with centroid C(μ) in the origin. A StαS random measure with the spectral
measure supported by M1 is stationary if and only if the spectral measure σ is invariant with
respect to Ty , that is, when it is decomposable into the product � × σ 0 of the d-dimensional
Lebesgue measure and a measure on M

0
1 satisfying∫

M
0
1

μ(B)ασ 0(dμ) < ∞ for all B ∈ B0.

Then the Laplace transform of a stationary StαS measure on R
d has the following form:

Lζ [h] = exp

{
−

∫
M

0
1

∫
Rd

(∫
Rd

h(x + y)μ(dx)

)α

dy σ 0(dμ)

}
. (20)
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In particular, if σ 0 charges only one probability measure μ, we obtain ζ from Example 7 with ν

being the Lebesgue measure.
More generally, take a homogeneous of order −(α + d) measure 
0 on M \ {0} and set


(dμ) = ∫
Rd 
0(dμ − x)dx. Provided (13) is satisfied, 
 is the Lévy measure of a stationary

StαS measure.

Note that usually in the literature, and particularly in [28], Section 3.3, the term α-stable mea-
sure is reserved for an independently scattered measure, that is, a measure with independent
α-stable values on disjoint sets. Our notion is more general as the following proposition shows.

Theorem 9. A StαS random measure with α ∈ (0,1) is independently scattered if and only if its
spectral measure σ is supported by the set {δx :x ∈ X} ⊆ S of Dirac measures.

Proof. Sufficiency. The Laplace functional (15) of ζ becomes

Lζ [h] = exp

{
−

∫
X

hα(x)σ̃ (dx)

}
,

where σ̃ is the image of σ under the map δx �→ x. It is easy to see that Lζ [∑n
i=1 hi] =∏n

i=1 Lζ [hi] for all functions h1, . . . , hn with disjoint supports, meaning, in particular, that
for any disjoint Borel sets B1, . . . ,Bn the variables ζ(Bi) with Laplace transforms Lζ [zi1Bi

],
i = 1, . . . , n, are independent, so that ζ is independently scattered.

Necessity. Take two disjoint sets B1,B2 from an at most countable base of the topology on X.
Since ζ(B1) and ζ(B2) are independent, we have that

Lζ [1B1 + 1B2 ] = Lζ [1B1 ]Lζ [1B2 ].

By (15), ∫
S

[
μα(B1) + μα(B2) − (

μ(B1) + μ(B2)
)α]

σ(dμ) = 0.

Since α ∈ (0,1), the integrand is a non-negative expression whatever μ(B1),μ(B2) ≥ 0 are.
Since σ is a positive measure, the integral is zero only if the integrand vanishes on the support
of σ , that is, for σ -almost all μ either μ(B1) = 0 or μ(B2) = 0. Since this is true for all disjoint
B1,B2 from the base, μ is concentrated at a single point. �

Along the same lines it is possible to prove the following result.

Theorem 10. The values ζ(B1), . . . , ζ(Bn) of a StαS random measure ζ with α ∈ (0,1) on
disjoint sets B1, . . . ,Bn are independent if and only if the support of the spectral measure σ (or
of the Lévy measure 
) does not include any measure that has positive values on at least two sets
from B1, . . . ,Bn.
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Example 11 (Self-similar random measures). Recently, Vere-Jones [31] has introduced a wide
class of self-similar random measures on R

d , that is, the measures satisfying

ζ(B)
D= a−H ζ(aB) (21)

for all Borel B , all positive a and some H, which is then called the similarity index. These
measures are generally not independently scattered although stationary independently scattered
StαS measures are self-similar with index H = 1/α.

Introduce operation Da on measures μ ∈ M by setting (Daμ)(B) = μ(aB), B ∈ B, and the
corresponding operation (D̃aσ )(M) = σ(DaM) uplifted to σ on measurable M ⊂ S. Assume
that the spectral measure is supported by M1. Since

La−H Daζ [h(x)] = Lζ [a−H h(a−1x)],
then writing property (21) for the Laplace transform (15), we obtain∫

S

〈h(x),μ〉ασ (dμ) =
∫

S

〈a−H h(a−1x),μ〉ασ (dμ)

= a−αH

∫
M1

〈h,Daμ〉ασ (dμ) = a−αH

∫
M1

〈h,μ〉α(D̃a−1σ)(dμ),

where in the last equality we used the fact that that DaM1 = M1. Therefore a StαS random
measure is self-similar with index H if and only if σ = a−αH D̃a−1σ .

As in the proof of Theorem 9 above, in the case of independently scattered StαS measures the
last identity could be written as σ̃ (dx) = a−αH D̃a−1 σ̃ (dx) = a−αH σ̃ (a dx) for the image σ̃ of
σ under the map δx �→ x. In particular, in the stationary case σ̃ is necessarily proportional to the
Lebesgue measure and the corresponding random measure becomes self-similar if and only if
α = 1/H .

The following theorem provides a LePage representation of a StαS random measure.

Theorem 12. A random measure ζ is StαS if and only if

ζ
D=

∑
μi∈�

μi, (22)

where � is the Poisson process on M \ {0} driven by an intensity measure 
 satisfying (12) and
such that 
(tA) = t−α
(A) for all t > 0 and any measurable A. In this case 
 is exactly the
Lévy measure of ζ . Convergence of the series in (22) is in the sense of the vague convergence of
measures.

If the spectral measure σ corresponding to 
 satisfies c = σ(S) < ∞, then

ζ
D= b

∞∑
k=1

γ
−1/α
k εk, b =

(
c

�(1 − α)

)1/α

, (23)
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where ε1, ε2, . . . are i.i.d. random measures with distribution c−1σ and γk = ξ1 +· · ·+ ξk , k ≥ 1,
for a sequence of independent exponentially distributed random variables ξk with mean one.

Proof. Consider a continuous function h ∈ BM(X) and define a map μ �→ 〈h,μ〉 from M to
R+ = [0,∞). The image of � under this map becomes a Poisson process {xi, i ≥ 1} on R+ with
intensity measure θ that satisfies

θ([r,∞)) = 
({μ : 〈h,μ〉 ≥ r}).
Since 1 − e−x ≥ a1x≥r for any r > 0 and some constant a > 0, Condition (12) implies that
θ([r,∞)) < ∞. Then the homogeneity property of 
 yields that θ([r,∞)) = cr−α for all r > 0
and some constant c > 0.

It is well known (see [8,28]) that for such intensity measure θ the sum
∑

i xi converges almost
surely. Thus,

∑
μi∈�〈h,μi〉 converges for each continuous h ∈ BM(X), so that the series (22)

converges in the vague topology to a random measure see [25], equation (3.14).
By Resnick [25], Proposition 3.19, a sequence of random measures converges weakly if and

only if the values of their Laplace functionals on any continuous function converge. This is seen
by noticing that the Laplace functional (11) of ζ coincides with the Laplace functional of the
right-hand side of (22), where the latter can be computed as the probability generating functional
(p.g.fl.) of a Poisson process, see (25).

Finally, (23) follows from the polar decomposition for 
. �

3. Discrete stability for point processes

Point processes are counting random measures, that is, random elements with realisations in the
set of locally finite counting measures. Each counting measure ϕ can be represented as the sum
ϕ = ∑

δxi
of unit masses, where we allow for the multiplicity of the support points {xi, i ≥ 1}.

The distribution of a point process � can be characterised by its p.g.fl. defined on functions
u :X �→ (0,1] such that 1 − u ∈ BM(X) by means of

G�[u] = E exp{〈logu,�〉} = E
∏

xi∈supp�

u(xi)
�({xi }) = L�[− logu] (24)

with the convention that the product is 1 if � is a null measure (i.e., the realisation of the process
contains no points). The p.g.fl. can be extended to pointwise monotone limits of the functions
from BM(X) at the expense of allowing for infinite and zero values; see, for example, [6], Chap-
ter 9.4.

A Poisson process �μ with intensity measure μ is characterised by the property that for any
finite collection of disjoint sets B1, . . . ,Bn ∈ B0 the variables �μ(B1), . . . ,�μ(Bn) are mutually
independent Poisson distributed random variables with means μ(B1), . . . ,μ(Bn). The p.g.fl. of
a Poisson process �μ is given by

G�μ[u] = exp{−〈1 − u,μ〉}. (25)
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If the intensity measure itself is a random measure ζ , then the obtained (doubly stochastic) point
process is called a Cox process. Its p.g.fl. is given by

G�ζ [u] = E exp{−〈1 − u, ζ 〉} = Lζ [1 − u]. (26)

Note that the Cox process is stationary if and only if the random measure ζ is stationary.
Addition of counting measures is well defined and leads to the definition of the superposi-

tion operation for point processes. However, multiplication of the counting measure by positive
numbers cannot be defined by multiplying its values – they no longer remain integers for arbi-
trary multiplication factors. In what follows we define a stochastic multiplication operation that
corresponds to the thinning operation for point processes. Namely, each unit mass δxi

in the rep-
resentation of the counting measure ϕ = ∑

i δxi
is removed with probability 1 − t and retained

with probability t independently of other masses. The resulting counting measure t ◦ ϕ becomes
random (even if ϕ is deterministic) and is known under the name of independent thinning in the
point process literature; see, for example, [6], Chapter 11.3, or [19], Chapter 7, where relations
to cluster and Cox processes were established.

To complement this pathwise description, it is possible to define the thinning operation on
probability distributions of point processes. Namely, the thinned process t ◦ � has the p.g.fl.

Gt◦�[u] = G�[tu + 1 − t] = G�[1 − t (1 − u)]; (27)

see, for example, [6], page 155. From this, it is easy to establish the following properties of the
thinning operation.

Theorem 13. The thinning operation ◦ is associative, commutative and distributive with respect
to superposition of point processes, that is,

t1 ◦ (t2 ◦ �)
D= (t1t2) ◦ �

D= t2 ◦ (t1 ◦ �)

and

t ◦ (� + �′) D= (t ◦ �) + (t ◦ �′)

for any t, t1, t2 ∈ [0,1] and any independent point processes � and �′. For disjoint Borel sets
B1 and B2, random variables (t ◦ �)(B1) and (t ◦ �)(B2) are conditionally independent given
� and there exists a coupling of � and t ◦ � (described above) such that (t ◦ �)(B) ≤ �(B)

almost surely for any B ∈ B.

If the phase space X consists of one point, the point process � becomes a non-negative integer
random variable �(X). Since (27) turns into (3), the thinning operation becomes the classical
discrete multiplication operation acting on positive integer random variables. Keeping this in
mind, we can define the notion of discrete stability for point processes.

Definition 14. A point process � (or its probability distribution) is called discrete α-stable or
α-stable with respect to thinning (notation DαS), if for any 0 ≤ t ≤ 1 one has

t1/α ◦ �′ + (1 − t)1/α ◦ �′′ D= �, (28)
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where �′ and �′′ are independent copies of �.

Definition 14 and (27) yield that � is DαS if and only if its p.g.fl. possesses the property:

G�[1 − t1/α(1 − u)]G�[1 − (1 − t)1/α(1 − u)] = G�[u] (29)

for any positive function u such that 1 − u ∈ BM(X) and all 0 < t < 1.
Relation (28) implies that �(B) is a discrete α-stable random variable for any B ∈ B. Hence

DαS point processes exist only for α ∈ (0,1] due to the already mentioned result (5). Now we
come to the main result of this section.

Theorem 15. A point process � is DαS if and only if it is a Cox process �ζ with a StαS intensity
measure ζ .

Proof. Sufficiency. If ζ is a StαS random measure, then the corresponding Cox process �ζ has
the p.g.fl.

G�ζ [u] = Lζ [1 − u] = exp

{
−

∫
M\{0}

(
1 − e−〈1−u,μ〉)
(dμ)

}
. (30)

Thus,

G�[1 − t (1 − u)] = exp

{
−

∫
M\{0}

(
1 − e−〈1−u,tμ〉)
(dμ)

}
= exp

{
−tα

∫
M\{0}

(
1 − e−〈1−u,μ〉)
(dμ)

}
by the homogeneity of 
. Then (29) clearly holds.

Necessity. By iterating (28) m times we arrive at

m−1/α ◦ �1 + · · · + m−1/α ◦ �m
D= �

for i.i.d. �,�1, . . . ,�m, implying that DαS point processes are necessarily infinitely divisible
and (

G�[1 − m−1/α(1 − u)])m = G�[u] (31)

for all m ≥ 2.
The crucial step of the proof aims to show that the functional

L[u] = G�[1 − u], u ∈ BM(X), (32)

is the Laplace functional of a StαS random measure ζ . While the functional L on the left-hand
side should be defined on all (bounded) functions with compact supports, it is apparent that the
p.g.fl. G� on the right-hand side of (32) may not be well defined on 1 − u. Indeed, in contrast
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to (24), 1 − u does not necessarily take values from the unit interval. To overcome this difficulty,
we employ (31) and define

L[u] = (G�[1 − m−1/αu])m. (33)

Since u ∈ BM(X), for sufficiently large m the function 1 − m−1/αu does take values in [0,1]
and equals 1 outside a compact set. Since (33) holds for all m, it is possible to pass to the limit
as m → ∞ to see that

L[u] = exp
{
− lim

m→∞m(1 − G�[1 − m−1/αu])
}
.

By the Schoenberg theorem (see, e.g., [3], Theorem 3.2.2) L is positive definite if 1 − G�[1 −
m−1/αu] is negative definite, that is,

n∑
i,j=1

cicj

(
1 − G�[1 − m−1/α(ui + uj )]

) ≤ 0

for all n ≥ 2, u1, . . . , un ∈ BM(X) and c1, . . . , cn with
∑

ci = 0. In view of the latter condition,
we need to show the inequality

n∑
i,j=1

cicjG�[1 − m−1/α(ui + uj )] ≥ 0.

Note that

lim
m→∞

1 − m−1/αu

e−m−1/αu
= 1.

Denote vi = e−m−1/αui , i = 1, . . . , n. Referring to the continuity of the p.g.fl. G�, it suffices to
check that

n∑
i,j=1

cicjG�[vivj ] ≥ 0,

which is exactly the positive definiteness of G�.
Thus, Lζ [∑k

i=1 tihi] as a function of t1, . . . , tk ≥ 0 is the Laplace transform of a random
vector. Arguing as in the proof of sufficiency in Theorem 2, it is easy to check the continuity of
L, so that L is indeed the Laplace functional of a random measure ζ . Condition (29) rewritten
for L means that ζ is StαS. �

By Theorem 3, a StαS random measure ζ has the characteristic exponent α = 1 if and only
if ζ is deterministic. Respectively, a DαS processes with α = 1 is a Poisson process driven by
(non-random) intensity measure ζ .

Using decomposition 
 = σ̂ × θα , the first identity in (30) and (15), we obtain the following
result.
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Corollary 16 (Spectral representation). A point process � is DαS with α ∈ (0,1] if and only
if its p.g.fl. has the form

G�[u] = exp

{
−

∫
S

〈1 − u,μ〉ασ (dμ)

}
, 1 − u ∈ BM(X), (34)

for some locally finite spectral measure σ on S that satisfies (14).

The number of points �(B) of a DαS process � in a relatively compact Borel set B has the
p.g.f.

Es�(B) = exp

{
−(1 − s)α

∫
S

μ(B)ασ (dμ)

}
(35)

and so �(B) is either zero a.s. or has infinite expectation for 0 < α < 1, while E�(B) is finite in
the Poisson case α = 1. Furthermore, the avoidance probability is given by

P{�(B) = 0} = exp

{
−

∫
S

μ(B)ασ (dμ)

}
,

so that (14) guarantees that the avoidance probabilities are positive. In other words, a DαS point
process does not have fixed points.

Theorems 12 and 15 immediately imply the following result.

Corollary 17 (LePage representation of a DαS process). A DαS process � with Lévy measure

 can be represented as a Cox process:

�
D=

∑
μi∈�

�μi
, (36)

where � is a Poisson process on M \ {0} with intensity measure 
. In particular, if its spectral
measure σ is finite, then

�
D=

∞∑
k=1

�
bγ

−1/α
k εk

, (37)

where εk , γk and b are defined in Theorem 12 and the sum in (37) almost surely contains only
finitely many terms.

Proof. By Theorem 15, � is a Cox process �ζ , where ζ is representable as (22). Conditioned
on a realisation of � , we have that �ζ = ∑

i �μi
by the superposition property of a Poisson

process. Now the statement easily follows.
The finiteness of the sum in (37) follows from the Borel–Cantelli lemma, since

P{�
bγ

−1/α
k εk

(X) > 0 | γk} = 1 − exp{−bγ
−1/α
k } = O(k−1/α)

for almost all realisations of {γk}. �
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Corollary 18 (see [11]). A random variable ξ with non-negative integer values is discrete α-
stable if and only if ξ is a mixture of Poisson laws with parameter given by a positive strictly
stable random variable. The p.g.f. of ξ is given by

Esξ = e−c(1−s)α , u ∈ (0,1],
for some c > 0.

Example 19 (Discrete stable vectors, cf. Example 6). A point process � on a finite space X can
be described by a random vector (ξ1, . . . , ξd) of dimension d with non-negative integer compo-
nents. If � is DαS then (ξ1, . . . , ξd) are said to form a DαS random vector. For instance, if � is a
DαS point process in any space X, then the point counts �(B1), . . . ,�(Bn) form a DαS random
vector for B1, . . . ,Bn ∈ B0.

Theorem 15 implies that ξ = (ξ1, . . . , ξd) is DαS if and only if its components are mixtures
of Poisson random variables with parameters ζ = (ζ1, . . . , ζd) and are conditionally independent
given ζ , where ζ is a strictly stable non-negative random vector with the Laplace transform (16).
Notice that, in general, the components of ξ are dependent DαS random variables unless the
spectral measure σ of ζ is supported by the vertices of the simplex �d only. In view of (17), the
p.g.f. of ξ can be represented as

E
d∏

i=1

s
ξi

i = exp

{
−

∫
�d

〈1 − s,μ〉ασ (dμ)

}
= e−HK((1−s)α),

where s = (s1, . . . , sd) and 1 = (1, . . . ,1). Thus, the distribution of ξ is determined by the values
of the support function of HK and its derivatives at 1.

Example 20 (Mixed Poisson process with stable intensity, cf. Example 5). Let X = R
d and let

σ attach a mass c to the measure a�, where � is the Lebesgue measure on R
d and a > 0 is chosen

so that a� ∈ S. Then G�[u] = exp{−caα〈1 − u, �〉α}, which is the p.g.fl. of a stationary Cox
process with a StαS density, that is, a stationary Poisson process in R

d driven by the random
intensity measure ac1/αζα�, where ζα is a positive StαS random variable with Laplace transform
Ee−zζα = e−zα

. This type of Cox process is also known as a mixed Poisson process. In particular,
if c = a−1/α , then Es−�(B) = e−(1−s)α�(B)α , so that P{�(B) = 0} = e−�(B)α for all B ∈ B0. Note
that this point process has an infinite intensity measure.

Discrete α-stable point processes appear naturally as limits for thinned superpositions of point
processes. Let � be a point process on X and let Sn = �1 + · · · + �n be the sum of independent
copies of � . The p.g.fl. of the thinned point process an ◦ Sn is given by

Gan◦Sn [1 − h] = (G� [1 − anh])n,
where an → 0 is a certain normalising sequence. On the other hand, the superposition can be
normalised by scaling its values as anSn, so that the result of scaling is a random measure,
but no longer counting. The following basic result establishes a correspondence between the
convergence of the thinned and the scaled superpositions.
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Theorem 21. Let {Sn, n ≥ 1}, be a sequence of point processes. Then for some sequence {an},
anSn weakly converges to a non-trivial random measure that is necessarily StαS with a spectral
measure σ if and only if an ◦Sn weakly converges to a non-trivial point process that is necessarily
DαS with the same spectral measure σ .

If Sn is the sum of n independent copies of a process � , the measure σ can be defined by its
finite-dimensional distributions: if ξ = (�(B1), . . . ,�(Bd)) for B1, . . . ,Bd ∈ B0, then

σ
({μ : (μ1, . . . ,μd) ∈ A}) = �(1 − α) lim

n→∞nP{ξ/‖ξ‖1 ∈ A; ‖ξ‖1 > an} (38)

for all measurable A from the unit �1-sphere {x ∈ R
d+ :‖x‖1 = 1}.

Proof. The equivalence of the convergence statements is established in [18], Theorem 8.4; see
also [6], Theorem 11.3.III.

Finally, (38) is the standard condition for anSn to have a limit that is valid in a much more
general setting than for random measures; see [8], Theorem 4.3, and [1]. The gamma factor
stems from the particular normalisation of the spectral measure adopted in Section 2. �

If a point process � has a finite intensity measure, then the strong law of large numbers applied
to its values on any relatively compact set implies that the limit of n−1Sn is a deterministic
measure, so that the limiting DαS process is, in fact, Poisson. Therefore a DαS limit with α ∈
(0,1) is only possible for a point process � with infinite intensity. If X consists of one point, then
we recover the result of [4] concerning a relationship between discrete stable random variables
and conventional stable laws.

Remark 22. Note that not all point processes can give a non-trivial limit in the above schemes.
Consider, for instance, a point process � defined on X = {1,2, . . .} with the point multiplic-
ities �(i) being independent discrete stable random variables with characteristic exponents
αi = 1/2 + 1/(2i), i = 1,2, . . . . Then n−1/α ◦ Sn for α ≤ 1/2 gives null process as the limit,
while for larger α the limiting process is infinite on all sufficiently large i.

4. Sibuya point process and cluster representation

Recall that a general cluster process is defined by means of a centre point process Nc in some
phase space Y and a countable family of independent daughter point processes N(·|y) in a phase
space X indexed by the points of Y . Their superposition in X defines a cluster process. The
p.g.fl. G[h] of a cluster process is then a composition Gc[Gd [h|·]] of the centre and the daughter
processes; see, for example, [5], Proposition 6.3.II.

Noting (25), the form of p.g.fl. (30) suggests that a DαS process can be regarded as a clus-
ter process with centre processes being Poisson with intensity measure 
 in Y = M \ {0} and
daughter processes being also Poisson parametrised by their intensity measure μ ∈ supp
. We
will embark on exploration of the general case in the next section, but here we concentrate on
the case when measure 
 charges only finite measures and give an alternative explicit cluster
characterisation of such DαS processes.
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Definition 23. Let μ be a probability measure on X. A point process ϒ on X defined by the
p.g.fl.

Gϒ [u] = Gϒ(μ)[u] = 1 − 〈1 − u,μ〉α (39)

is called the Sibuya point process with exponent α and parameter measure μ. Its distribution is
denoted by Sib(α,μ).

If X consists of one point, then the point multiplicity is a random variable η with the p.g.f.

Ezη = 1 − (1 − z)α, z ∈ (0,1].

In this case we say that η has the Sibuya distribution and denote it by Sib(α). The Sibuya distri-
bution corresponds to the number of trials to get the first success in a series of Bernoulli trials
with probability of success in the kth trial being α/k; see also [10,11] for efficient algorithms of
its simulation.

In particular, (39) implies that ϒ(B) with B ∈ B0 has the p.g.f.

Euϒ(B) = 1 − μα(B)(1 − u)α.

Note that ϒ(B) has infinite expectation if μ(B) does not vanish. Furthermore,

P{ϒ(B) = 0} = 1 − μα(B),

P{ϒ(B) = 1} = αμα(B) = q1(α)μα(B),

P{ϒ(X) = n} = (1 − α)

(
1 − α

2

)
· · ·

(
1 − α

n − 1

)
α

n
μα(B)

def= qn(α)μα(B), n ≥ 2.

Therefore, conditioned to be non-zero, ϒ(B) has the Sibuya distribution with parameter α jus-
tifying the chosen name for this process ϒ . In the terminology of [4], ϒ(B) has μα(B)-scaled
Sibuya distribution. In particular, ϒ(X) is non-zero a.s. and follows Sib(α) distribution.

Developing the p.g.fl. (39) makes it possible to get insight into the structure of a Sibuya
process:

Gϒ [u] = E
∏
xi∈ϒ

u(xi) = 1 − (1 − 〈u,μ〉)α =
∞∑

n=1

qn(α)〈u,μ〉n

=
∞∑

n=1

qn(α)

∫
Xn

u(x1) · · ·u(xn)μ(dx1) · · ·μ(dxn).

Therefore, as we have already seen, the total number of points of ϒ follows Sibuya distribution
and, given this total number, the points are independently identically distributed according to the
distribution μ. This also justifies the fact that (39) indeed is a p.g.fl. of a point process constructed
this way. This type of processes is called purely random in [19], page 104.
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Assume now that the Lévy measure 
 of a StαS random measure ζ is supported by finite
measures. Then (15) holds with the spectral measure σ defined on M1, so that the p.g.fl. of the
corresponding DαS process takes the form

G�[u] = exp

{∫
M1

(
Gϒ(μ)[u] − 1

)
σ(dμ)

}
(40)

with Gϒ(μ)[u] given by (39). Thus we have shown the following result.

Theorem 24. A DαS point process � with the Lévy measure supported by finite measures (equiv-
alently, with a spectral measure σ supported by M1) can be represented as a cluster process with
a Poisson centre process on M1 driven by intensity measure σ and daughter processes being
Sibuya processes Sib(α,μ),μ ∈ M1. Its p.g.fl. is given by (40).

As a by-product, we have established the following fact: Since Sibuya processes are finite with
probability 1, the cluster process is finite or infinite depending on the finiteness of the Poisson
processes of centres.

Corollary 25. A DαS point process is finite if and only if its spectral measure σ is finite and is
supported by finite measures.

If α = 1, then the Sibuya process consists of one point distributed according to μ and the
cluster process represents a Poisson process with intensity measure μ(·) = ∫

M1
μ(·)σ (dμ), which

is clearly discrete 1-stable.
By Corollary 18, ξ is discrete α-stable if and only if ξ can be represented as a sum of a Poisson

number of independent Sibuya distributed random variables, which is proved for discrete stable
laws in [11].

Later on we make use of Theorem 24 for the case of an infinite countable phase space X. The
finite case is considered below.

Definition 26. Let μ = (μ1, . . . ,μd) be a d-dimensional probability distribution. A random vec-
tor ϒ has multivariate Sibuya distribution with parameter measure μ and exponent α ∈ (0,1] if
its p.g.f. has the following form:

E
d∏

n=1

zϒn
n = 1 −

(
d∑

n=1

(1 − zn)μn

)α

. (41)

If d = 1 and μ = 1, then the multivariate Sibuya distribution becomes the ordinary Sibuya
distribution with exponent α. For d ≥ 2, the marginals ϒn of a multivariate Sibuya vector ϒ =
(ϒ1, . . . ,ϒd) have the p.g.f. given by

Ezϒn
n = 1 − μn(1 − zn)

α, n = 1, . . . , d.

Thus ϒn takes value 0 with probability 1 − μn but, conditional on being non-zero, it is Sib(α)-
distributed.
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Example 27 (DαS random vectors). Let ξ = (ξ1, . . . , ξd) be a DαS vector. By Theorem 24, it
can be represented as a sum of multivariate Sibuya Sib(α,μi) vectors, where μi are chosen from
a finite Poisson point process on �d with some intensity measure σ .

Example 28 (Stationary DαS processes). As in Example 7, let X = R
d with ν being propor-

tional to the Lebesgue measure and μ being the uniform distribution on the unit ball centred at
the origin. Then the corresponding DαS process is a cluster process that can be described by the
following procedure. First, the Boolean model of unit balls in R

d is generated with the centres
following the Poisson point process with intensity measure ν; see [30]. Then a Sib(α) number of
points is thrown into each such ball uniformly and independently from the other balls. The set of
thus generated points is a realisation of the DαS process.

In a more general model, the uniform distribution on the unit ball can be replaced by any
probability distribution kernel P(dy, x), x ∈ X. A typical realisation of such a process in R

2

with ν being proportional to the Lebesgue measure on [0,1]2 and P(dy, x) being the Gaussian
distribution centred at x with i.i.d. components of a certain variance s2 is presented in Figure 1.
The avoidance probabilities of the obtained point process are given by

P{�(B) = 0} = exp

{
−

∫
Rd

(
μ0

(
s−1(B + x)

))α dx

}
,

where μ0 is the standard Gaussian measure in R
2.

Figure 1 shows that realisations of such a process are highly irregular. Many clusters with
small numbers of points appear alongside huge clusters, so that the resulting point process has an
infinite intensity measure. In view of this, DαS point processes can help to model point patterns
with point counts exhibiting heavy-tail behaviour.

5. Regular and singular DαS processes

We have shown in the proof of Theorem 15 that a DαS point process is necessarily infinitely
divisible. It is known (see, e.g., [6], Theorem 10.2.V) that the p.g.fl. of an infinitely divisible
point process admits the following representation

G�[u] = exp

{∫
N0

[
e〈logu,ϕ〉 − 1

]
Q(dϕ)

}
, (42)

where N0 is the space of locally finite non-empty point configurations on X and Q is a locally
finite measure on it satisfying

Q
({ϕ ∈ N0 :ϕ(B) > 0}) < ∞ for all B ∈ B0(X). (43)

This measure Q is called the KLM measure (canonical measure in the terminology of [19]) and
it is uniquely defined for a given infinitely divisible point process �. Such point process � is
called regular if its KLM measure is supported by the set {ϕ ∈ N0 :ϕ(X) < ∞}; otherwise it is
called singular.
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Figure 1. A realisation of a DαS stationary process with the Gaussian kernel. Different shades of gray
correspond to different clusters.

It is easy to see that the expression (30) for the p.g.fl. of DαS process combined with (25) has
the form (42) with

Q(·) =
∫

M\{0}
Pμ(·)
(dμ), (44)

where Pμ is the distribution of a Poisson point process driven by intensity measure μ. Moreover,
the requirement (43) is exactly the property (12) of the Lévy measure with h = 1B . The Sibuya
cluster representation of DαS processes from Section 4 arises from (44) by integrating out the
radial component in the polar decomposition M1 × R+, where 
 is concentrated in the regular
case.
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The following decomposition result is inherited from the corresponding decomposition known
for infinitely divisible processes; see, for example, [6], Theorem 10.2.VII. Let Mf = {μ ∈ M \
{0} :μ(X) < ∞} and M∞ = {μ ∈ M :μ(X) = ∞}.

Theorem 29. A DαS point process with Lévy measure 
 and spectral measure σ can be rep-
resented as a superposition of two independent infinitely divisible processes: a regular and a
singular one. The regular process is a cluster process having a p.g.fl. given by (40) with spectral
measure σ |M1 = σ(·1M1) and the singular process is a cluster process with a p.g.fl. given by (30)
corresponding to Lévy measure 
|M∞ (or by (34) with spectral measure σ |S\M1 ).

Proof. Represent 
 as the sum 
|Mf
+ 
|M∞ of two orthogonal measures: 
 restricted on the

set Mf and on M∞. Then Q also decomposes into two orthogonal measures: the one concen-
trated on finite configurations and the one concentrated on infinite point configurations (because
the corresponding Poisson process �μ is finite or infinite with probability 1, correspondingly).
Finally, G�[u] in (42) separates into the product of p.g.fl.’s corresponding to the cluster process
studied in the previous section and the second one with p.g.fl. (30) with 
 replaced by 
|M∞ . �

Recall that a measure μ is called diffuse if μ({x}) = 0 for any x ∈ X. Representation (44) of
the KLM measure immediately gives rise to the following results analogous to the properties of
infinitely divisible processes.

Theorem 30. A DαS point process � with Lévy measure 
 and spectral measure σ is

(i) Simple if and only if 
 (resp., σ ) is supported by diffuse measures, cf. [19], Proposi-
tion 2.2.9.

(ii) Independently scattered if and only if σ is supported by the set {δx :x ∈ X} ⊂ S of Dirac
measures, cf. [19], Proposition 2.2.13.

(iii) The distribution P1 of a DαS process �1 with spectral measure σ2 is absolutely continu-
ous with respect to the distribution P2 of another DαS process �2 with spectral measure
σ2 and the same α if and only if there exists a measurable set A ⊆ M∞ ∩ S = S∞ such
that σ1|S∞ = σ2|A∩S∞ and σ1|M1 � σ2|M1 .

If X is compact, then all DαS processes are regular. In the settings of Example 32, � is singular
if and only if μ is infinite.

Consider the practically important case of stationary DαS processes.

Theorem 31. A stationary DαS process � in R
d with spectral measure σ is:

(i) Mixing if and only if

σ {μ :μ(B + x) �→ 0 as ‖x‖ → ∞ for some B ∈ B0} = 0.

(ii) Ergodic (or weak mixing) if and only if

n−d

∫
[−n/2,n/2]d

(
1 − e−μ(B+x)

)
dx → 0 as n → ∞
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for all B ∈ B0 and all μ from the support of σ .

Regular stationary DαS processes are mixing and ergodic.

Proof. According to [6], Proposition 12.4.V, � is mixing if and only if for all A,B ∈ B0

Q{ϕ ∈ N0 :ϕ(A) > 0 and ϕ(B + x) > 0} → 0 as ‖x‖ → ∞.

In view of (44), choosing sufficiently large ‖x‖ such that A ∩ (B + x) = ∅, this condition writes∫
M\{0}

(
1 − e−μ(A)

)(
1 − e−μ(B+x)

)

(dμ) → 0.

By (12) and the dominated convergence theorem, � is mixing if and only if μ(B + x) → 0 as
‖x‖ → ∞ for all B ∈ B0 and all μ from the support of the spectral measure σ . This is clearly
the case if σ is supported by finite measures, that is, for regular DαS processes. Similarly, the
ergodicity condition follows from [6], Proposition 12.4.V. �

Example 32 (Regular stationary DαS processes on R
d ). Consider a StαS random measure ζ

from Example 8. Using the notation from this example, the corresponding DαS process � has
the p.g.fl.

G�[u] = exp

{
−

∫
M

0
1

∫
Rd

(∫
R

(
1 − u(x + y)

)
μ(dx)

)α

dy σ 0(dμ)

}
,

where M
0
1 is the set of ‘centred’ probability measures and σ 0 is the measure on it arising from

the Haar factorisation of the spectral measure σ = � × σ 0.
The avoidance probabilities for � are given by

P{�(B) = 0} = exp

{
−

∫
M

0
1

∫
Rd

(
μ(B − y)

)α dy σ 0(dμ)

}
.

The simplest case is when σ 0 is concentrated on a single measure μ. We then obtain a DαS
process corresponding to the StαS process from Examples 7 and 28 with ν being the Lebesgue
measure �.

6. Discrete stability for semigroups

Let (S,⊕) be an Abelian semigroup with binary operation ⊕ and the neutral element e. We
require that S possesses a (Hamel) basis X ⊂ S \{e} such that each element s ∈ S \{e} is uniquely
represented by a finite linear combination with positive integer coefficients

s = n1x1 ⊕ · · · ⊕ nkxk, (45)
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where {x1, . . . , xk} ⊆ X. Here and below, ns stands for the sum s ⊕ s ⊕· · ·⊕ s of n ≥ 0 identical
elements s ∈ S with convention 0s = e. Equip X with the topology that makes it a locally com-
pact second countable space; for instance the discrete topology if X is at most countable. Note
that {x1, . . . , xk} with multiplicities {n1, . . . , nk} can be regarded as a finite counting measure
on X, so that (45) establishes a bijection I between S and the family of finite counting measures
on X. Define a σ -algebra on S as the inverse image of the σ -algebra on the space of count-
ing measures under the map I . An S-valued random element ξ is defined with respect to the
constructed σ -algebra. Then the corresponding counting measure �(ξ) becomes a point process
on X.

The sum of random elements in S is defined directly by the ⊕-addition. The multiplication
t ◦ ξ of a random element ξ by t ∈ (0,1] is defined as the random element that has the basis
decomposition t ◦�(ξ), the latter obtained by independent thinning of �(ξ). By Theorem 13 and

the uniqueness of the representation, the corresponding operation satisfies t1 ◦ (t2 ◦ ξ)
D= (t1t2)◦ ξ

for t1, t2 ∈ (0,1] and

t ◦ (ξ ⊕ ξ ′) D= (t ◦ ξ) ⊕ (t ◦ ξ ′) (46)

for independent ξ and ξ ′. Note also that t ◦ e = e for all t ∈ (0,1].
The imposed distributivity property (46) is essential to define the stability property on a semi-

group (even for deterministic ξ and ξ ′), and so it also rules out the possibility of extending the
scaling operation to the cases where the decomposition (45) is not unique or the coefficients are
allowed to be negative. For instance, assume that a ⊕ b = e for some non-trivial a, b ∈ S, which
is the case if S is a group. Then t ◦ (a ⊕ b) = e, while t ◦ a ⊕ t ◦ b is the sum of two non-trivial
independent random elements and so it cannot be e almost surely. This observation explains
why the classical notion of discrete stability cannot be extended to the class of all integer-valued
random variables.

Similar difficulties arise when defining discrete stability for the max-scheme being an example
of an idempotent semigroup. Indeed, if S is the family of non-negative integers with maximum
as the semigroup operation, then a ⊕ a = a. After scaling by t ∈ (0,1) we obtain that t ◦ a is the
maximum of two independent random elements distributed as t ◦ a, which is impossible.

Definition 33. An S-valued random element ξ is called discrete stable with exponent α (notation:
DαS) if

t1/α ◦ ξ ′ ⊕ (1 − t)1/α ◦ ξ ′′ D= ξ (47)

for any t ∈ [0,1], where ξ ′, ξ ′′ and ξ are independent identically distributed.

Thus, ξ is DαS if and only if the corresponding point process �(ξ) is DαS; see Definition 14.
Thus, the distributions of DαS random elements in S are characterised by Theorem 15. Since
the basis decomposition (45) is finite, �(ξ) is a finite point process, meaning that the spectral
measure σ is finite and supported by the set M1 of probability measures on X; see Corollary 25.

A random element υ in S is said to have Sibuya distribution if �(υ) is a Sibuya point process
on X. Theorem 24 and the LePage representation from Corollary 17 immediately imply the
following result.
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Theorem 34. A random element ξ in S is DαS if and only if ξ can be represented as the sum of
a Poisson number of i.i.d. Sibuya random elements. Alternatively, ξ is DαS if and only if it can
be represented as an a.s.-finite sum

∑
i≥1 bγ

−1/α
k ◦ εi , where γk, εk and b are defined in (23).

When the basis X is finite, (45) establishes a homomorphism between S and Z
d+, that is,

the family of d-dimensional vectors with non-negative integer components and addition as the
semigroup operation. Thus, all random elements in semigroups with a finite basis can be treated
as random vectors in Z

d+; see Example 27.
Now consider the case of a discrete semigroup with an infinite countable basis X.

Example 35 (Natural numbers with multiplication). Consider the semigroup of natural num-
bers with the multiplication operation. Its basis X is the family P of prime numbers. A random
natural number ξ corresponds to a point process on P ; for example, ξ = 1 if this point process is
empty. Otherwise ξ is the multiple of prime numbers raised to their multiplicities as

ξ� =
∏
p∈P

p�(p).

Then t ◦ ξ is obtained by independently taking out the prime divisors of ξ with probability
1 − t . Consequently, a class of discrete multiplicatively stable distributions can be defined as the
distributions of G-valued random variables ξ satisfying

(t1/α ◦ ξ ′) · ((1 − t)1/α ◦ ξ ′′) = ξ,

where, as before, ξ ′, ξ ′′ are independent copies of ξ . Then ξ = ξ� is multiplicatively α-stable if
the corresponding process � on P has p.g.fl. given by (34).

Extend the domain of the p.g.fl. to the class of monotone pointwise limits of the functions u

such that 1 − u ∈ BM(P ), allowing for infinite values of the p.g.fl., and consider hs : P �→ (0,1)

such that h(p) = ps for some s. Then

Eξ s
� = E

∏
p∈P

ps�(p) = G�[hs] = exp

{
−

∫
M1

(
1 −

∑
p∈P

psμp

)α

σ (dμ)

}
,

where M1 is the set of probability distributions on P . The expression above is finite at least for
all s < 0 and can be used to numerically evaluate the distribution of ξ� by the inverse Mellin
transform.

Now consider the case of independently scattered �, where σ is concentrated on degener-
ated distributions (see Theorem 30(ii)) and thus can be identified with a sequence {σp,p ∈ P }.
Then � is a sequence indexed by p ∈ P of doubly stochastic Poisson random variables νζp with
parameters ζp , which are independent positive StαS random variables with the Laplace trans-
forms Ee−hpζp = exp{−hα

pσp}. Now the distribution of ξ� can be explicitly characterised: if
n = ∏

p∈P pkp , then

P{ξ� = n} = P{νζp = kp ∀p ∈ P } =
∏
p∈P

E
[
ζ

kp
p

kp! e−ζp

]
.
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In particular, for any q ∈ P we have that

P{ξ� = q} =
∏
p �=q

P{νζp = 0}E[ζqe−ζq ] = e−σ(P )+σq E[ζqe−ζq ].

If α = 1/2, then the density of ζp is given by

fζp (t) = σp

2
√

πt3/2
exp{−σp/(4t)}, t ≥ 0,

leading to

P{ξ� = q} = e−σ(P )+σq 1
2σqe−σq = 1

2σqe−σ(P ), q ∈ P .

The above construction can be extended for an arithmetical semigroup generated by a count-
able subset P = {p1,p2, . . .} called the generalised primes – for example, Beurling’s generalised
prime numbers with the so-called Delone property, which implies the uniqueness of the factori-
sation; see [2,9].

Example 36. Consider the family S of all finite Abelian groups with the semigroup operation
being the direct product. The main theorem on Abelian groups states that each such group can be
uniquely decomposed into the direct product of cyclic groups with orders being prime numbers
and their natural powers; see, for example, [12], Theorem 7.2. Thus, the basis X is the family of
prime numbers and all powers of prime numbers. The multiplication of a cyclic group of order p

by real number t ∈ (0,1] is defined as a random group where each factor from its decomposition
is eliminated with probability 1 − t . A spectral measure defined on the set M1 of probability
distributions on X then determines the distribution of a random stable finite group.
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