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Adaptivity and optimality of the monotone
least-squares estimator
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In this paper, we will consider the estimation of a monotone regression (or density) function in a fixed point
by the least-squares (Grenander) estimator. We will show that this estimator is locally asymptotic minimax,
in the sense that, for each f0, the attained rate of the probabilistic error is uniform over a shrinking L2-
neighborhood of f0 and there is no estimator that attains a significantly better uniform rate over these
shrinking neighborhoods. Therefore, it adapts to the individual underlying function, not to a smoothness
class of functions. We also give general conditions for which we can calculate a (non-standard) limiting
distribution for the estimator.
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1. Introduction

There exists an extensive literature on the problem of estimating a monotone increasing regres-
sion function or monotone decreasing density. Our results will concern the NPMLE or Grenan-
der estimator for a monotone density, see [7], and the least-squares estimator for a monotone
regression function. Prakasa Rao obtained the rate and the limiting distribution for the Grenan-
der estimator in a fixed point in [13], and in [1] a similar result was obtained for the least-squares
estimator, both under differentiability conditions on the underlying function. Results for global
measures of convergence were obtained in [8] and [11] for the density case and in [4] for the
regression case. A unified approach that incorporates some other well-known monotone estima-
tors is given in [5]. A common problem with the global results is that they can only be proved
under quite strong conditions, in which case there exist other non-isotonic estimators with faster
rates.

We will focus on the pointwise convergence of the least-squares (or Grenander) estimator for
general underlying monotone functions (or densities) and show a specific type of adaptivity and
optimality of this estimator. We will start by giving our result, and then compare it to other results
available in the literature. In this paper, we will consider the white noise model:

Y(t) =
∫ t

0
f0(s)ds + 1√

n
W(t),

for t ∈ [−1,1] and W(t) standard two-sided Brownian motion. Here, f0 will be a monotone
non-decreasing function. However, our results can be generalized to three other models, namely
monotone regression with measurements on a grid (not necessarily with normal errors), mea-
surements on random design points and a sample from a decreasing density. Since the general
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arguments are very similar for all these models, the exact statements and proofs for the other
three models can be found in the technical report [3]. The proofs in the white noise model show
the important ideas most clearly.

Denote the least-squares estimator at 0 by f̂ (0). Let Fm be the space of monotone increasing
functions on [−1,1], and define B(f0, ε) as the L2-ball around f0 with radius ε.

Theorem 1.1. Let f0 ∈ Fm be continuous at 0. Choose two significance levels, α ∈ (0,1) and
β ∈ (0,1/2). There exist δ > 0 and η > 0, such that for all n large enough, we can find a rate γn

with

lim sup
n→∞

sup
f ∈Fm∩B(f0;δn−1/2)

Pf

(|f̂ (0) − f (0)| ≥ γn

) ≤ α

and

lim inf
n→∞ inf

θ̂

sup
f ∈Fm∩B(f0;δn−1/2)

Pf

(|θ̂ (Y ) − f (0)| ≥ η · γn

)
> β,

where θ̂ (Y ) is any estimator of f (0) based on the data Y .

There are several aspects of this result that deserve our attention. In words, our result could be
formulated as: The rate of the estimator at f0 is uniform for L2-neighborhoods of size O(n−1/2),
and on these shrinking neighborhoods, no estimator can attain a significantly better uniform
rate (the rate γn depends explicitly on f0 (and α), and will be specified in Section 3). The idea
of using the minimax concept for shrinking neighborhoods was used by Hájek in [9] when he
introduced local asymptotic minimax risk bounds. His result, when restricted to estimating a
one-dimensional parameter θ0, was formulated as follows: Under suitable regularity conditions
(LAN) and a symmetric loss function l, there exists a Fisher information I (θ0), such that for any
sequence of estimators Tn,

lim
δ→0

lim inf
n→∞ sup

|θ−θ0|<δ

Eθ

(
l
(√

n(Tn − θ0)
)) ≥ E(l(Z)), (1.1)

where Z ∼ N(0, I (θ0)
−1). An important difference with our approach is the fact that the rate,√

n, is fixed here (it does not depend on θ0). This approach has also been extended to semi-
parametric models with non-smooth rates (see [6]), but there the rate is fixed through a restriction
of the parameter space over which the supremum is taken. The strength of the local asymptotic
mimimax result of Hájek is not the rate; it’s the fact that the constant is optimal. This might be the
reason for the limited number of papers we found applying this concept in semi-parametric setups
with non-smooth parameters. In those cases, it is usually not feasible to control the constants.
We prove optimality with respect to the rate, in which case the concept might be more widely
applicable.

Another difference between (1.1) and Theorem 1.1 is that our neighborhoods shrink with n,
which leads to a stronger result. However, this has also been done for the classical smooth para-
metric setup in [14], page 118. He extends Hájek’s result, under similar conditions, such that if
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I denotes all finite subsets of R, then for any bowl-shaped loss function l,

sup
I∈I

lim inf
n→∞ sup

h∈I

Eθ0+h/
√

nl

(√
n

(
Tn − θ0 − h√

n

))
≥ El(Z). (1.2)

Here we see the shrinking neighborhoods of order 1/
√

n. However, the supremum inside the
lim inf is not over a full neighborhood, but merely over a finite subset. In Section 3 we will prove
a slightly stronger version of Theorem 1.1, where the full neighborhood is replaced by only two
functions (depending on n). Also note that in our result, the infimum over all estimators is taken
inside the liminf over n, which is stronger than the result in (1.2). We expect that we are able to
get this stronger result because we concentrate only on the rate and not on optimal constants.

An important difference from previous applications is also that Theorem 1.1 gives a lower
bound for all estimators of the probabilistic error, instead of the expected risk of some loss
function. Note that a lower bound on the probabilistic error implies a lower bound for (the rate
of) the risk of all increasing loss functions; for example, the Lq -loss

Pf

(|θ̂ (Y ) − f (0)| ≥ η · γn

)
> β ⇒ Ef |θ̂ (Y ) − f (0)|q > ηqγ

q
n β.

The drawback is that Theorem 1.1 does not show that the least-squares estimator f̂ (0) attains the
rate γn for the Lq -loss. However, we can show, under mild conditions, that f̂ (0) does attain the
same rate in Lq -loss; see the technical report [3].

Considering the rate in terms of the probabilistic error is essential if we wish to get the full
generality of our results, as was also observed in [2]. In that paper, they consider the white noise
model where f0 (now not necessarily monotone) is an element of a union of k convex parameter
classes Fi . Then they consider the classes Gj = ⋃

i≤j Fi , which are now not necessarily convex.
They construct an estimator for a linear functional Tf0 (e.g., f0(0)) that attains an optimal rate
(which they describe in terms of the modulus of continuity of T ) for the probabilistic error for
each of the classes Gj simultaneously. It is known that this type of adaptivity is not possible
in general for the Lq error rate. Although their result is very general, it considers only a finite
number of classes, and they consider the supremum of the probabilistic error over the entire class
Gj . Our results give more detailed information about the rate at any specific f0, and about the
local optimality of that rate.

Another approach that addresses the adaptive estimation of a monotone function at a fixed
point can be found in [12]. Here the authors define an estimation procedure f̂n for f0(0), where
f0 is a monotone regression function in the white noise model. This estimation procedure is
rate-adaptive in a minimax sense with respect to a Lipschitz parameter α. This means that if we
define

Fm(α,M) = {f ∈ Fm: ∀x, y ∈ [−1,1]: |f (x) − f (y)| ≤ M|x − y|α},
then they show that there exist constants C > 0 and 0 < α0 < 1 such that

sup
f ∈Fm(α,M)

Ef |f̂n − f (0)|2 ≤ CM2/(2α+1)n−2α/(2α+1),
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for all α0 ≤ α ≤ 1 and M ≥ 1. It was already known that there exists a constant D > 0 such that
for any estimator δn, we have

sup
f ∈Fm(α,M)

Ef |δn − f (0)|2 ≥ DM2/(2α+1)n−2α/(2α+1).

A serious drawback of this procedure compared to the estimator we consider, is that it does not,
in general, give a monotone function as an estimate when the procedure is applied to an interval
of fixed points. Furthermore, the rate is described in terms of a global Lipschitz parameter, and
the adaptivity is only shown for α ∈ [α0,1], whereas we will show in Section 3 that the rate of
the LSE f̂ (0) depends on the local behavior of f0 around 0. This will result in, for example, fast
rates when the function f0 has derivative 0 in 0. Also, we will allow (locally optimal) rates that
cannot be described by the Lipschitz parameter alone (think of logarithmic corrections), or even
functions that are not Lipschitz at all. Finally, we show adaptivity in the sense of local asymptotic
minimax without any restriction on f0 other than monotonicity and continuity at 0.

An attractive feature of our results is that the rate is described explicitly for each f0, so that we
do not need smoothness classes to specify the rate. This is natural for our setup, since no matter
how smooth f0 is, in the L2 sense (which is equivalent in this case to the Hellinger distance
between the different models) there are a lot of very non-smooth increasing functions close to
f0. In fact, we believe that when we replace the parameter space Fm by a different convex and
compact subset K of L2[−1,1], and we consider a linear functional that is continuous on K, it
might be possible to prove the analogue of Theorem 1.1 for the least-squares plug-in estimator
under some regularity conditions on K. However, this is future work.

We feel that Theorem 1.1 is the most important result of the paper. However, in proving this
theorem, we will also give an explicit expression for the rate γn of the least-squares estimator
in terms of the local behavior of the underlying f0. This result can be found in Theorem 3.1
of Section 3, just before the proof of Theorem 1.1. Furthermore, in Section 4, we give weak
regularity conditions on f0 near 0, under which we can determine the non-standard limiting
distribution of the least-squares estimator. These conditions imply that f0 behaves similarly on
each scale in a neighborhood of 0, and they are weaker than differentiability conditions. The
limiting distributions found for the least-squares estimator in [1] and [15] are special cases of our
result. Section 2 is preliminary, and describes properties of certain left- and right-scale functions
of f0 that play an important role in our proofs.

2. The scale functions ψr and ψl

Without loss of generality, we will assume in the rest of the paper that f0(0) = 0. Define

F0(t) =
∫ t

0
f0(s)ds.

Note that this function is convex, and due to the continuity of f0 in 0 (without which, we cannot
estimate f0(0) consistently), we have that F ′

0(0) = 0. We are interested in how F0 behaves close
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to 0, and, therefore, we define the functions ψl and ψr by

ψr(s) = lim sup
t↓0

F0(st)

F0(t)
and ψl(s) = lim sup

t↑0

F0(st)

F0(t)
(s ∈ [0,1]). (2.1)

If F0(t) = 0 for some t > 0, we define ψr(s) = 0 for s ∈ [0,1) and ψr(1) = 1, and likewise for
ψl . In this section, we will take a closer look at the functions ψr and ψl defined in (2.1). We will
concentrate on ψr , since completely analogous statements will hold for ψl . Since the function
s �→ F0(st) is convex and increasing for all t > 0, we get that ψr(s) is also an increasing and
convex function on [0,1] (this is true for the lim sup of convex functions, not necessarily for the
lim inf). Furthermore, we clearly have that ψr(0) = 0 and ψr(1) = 1. Finally, since F0 is convex,
we know that for s ∈ [0,1],

F0(st) ≤ sF0(t) + (1 − s)F0(0) = sF0(t).

This shows that for any F0 we have that ψr(s) ≤ s.

Lemma 2.1. For each τ ∈ [0,1), there exists a positive continuous non-decreasing function η

with

F0(t) = 0 ⇒ η(t) = 0 (∀t ∈ [0,1]),
such that for all t ∈ (0,1] and for all s ∈ [0, τ ]

F0(st) ≤ (
ψr(s) + η(t)

)
F0(t).

Proof. Suppose F0(t) > 0 for all t > 0. Define the auxiliary functions

Gt(s) = sup
u≤t

F0(su)

F0(u)
.

These functions are all convex and they decrease pointwise to ψr on [0,1]. Since Gt(0) = 0 for
all t > 0, we conclude that Gt converges uniformly to ψr on [0, τ ]. Define

η(0) = 0 and η(t) = sup
s∈[0,τ ]

|ψr(s) − Gt(s)| (t ∈ (0,1])

and note that

F0(st)

F0(t)
≤ Gt(s) ≤ ψr(s) + η(t),

to conclude the statement of the lemma (note that ψr is continuous on [0, τ ], so η is indeed a
continuous increasing function). Now suppose that F0(t) = 0 for some t > 0. We defined ψr(s) =
0 for s ∈ [0,1) in this case. Define

r0 = sup{t ∈ [0,1]: F0(t) = 0}.
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If r0 = 1, then the statement of the lemma holds with η = 0. Suppose r0 < 1. Since s ≤ τ , we
have for each t ≤ r0/τ , F0(st) = 0. Define η(t) = 0 for t ∈ [0, r0], η(t) = 1 for t ∈ [r0/τ,1], and
continuous in between, and the statement of the lemma holds trivially. �

Let {Ws : s ∈ R} be a two-sided Brownian motion. We will encounter the probabilities in the
next lemma throughout the rest of the paper.

Lemma 2.2. For any F0 we have that

P

(
inf
s≤0

Ws − Cs ≤ inf
0≤s≤1

Ws − C
(
s − ψr(s)

)) ≤ 1√
2πC

.

If there exists s ∈ (0,1) such that ψr(s) < s, then there exist τ ∈ (0,1) and ρ ∈ (0,1] such that

P

(
inf
s≤0

Ws − Cs ≤ inf
0≤s≤1

Ws − C
(
s − ψr(s)

)) ≤
√

2

πτ

1

Cρ(2 − ρ)
e−C2τρ2/2.

Proof. First note that the left-hand side and the right-hand side of two-sided Brownian motion
are independent. It is, therefore, enough to consider the two sides within the probability sepa-
rately. It is well known that

P

(
inf
s≤0

Ws − Cs ≤ −v
)

= P

(
sup
s≥0

Ws − Cs ≥ v
)

= e−2Cv.

This follows from the hitting time of a linear boundary. Since, for all F0, we have that ψr(s) ≤ s,
we also need that

P

(
inf

0≤s≤1
Ws ≤ −w

)
= P

(
sup

0≤s≤1
Ws ≥ w

)
= 2

(
1 − �(w)

)
,

where � is the distribution function of the standard normal distribution. We get

P

(
inf
s≤0

Ws − Cs ≤ inf
0≤s≤1

Ws − C
(
s − ψr(s)

)) ≤ P

(
inf
s≤0

Ws − Cs ≤ inf
0≤s≤1

Ws

)

= 2√
2π

∫ ∞

0
e−2Cwe−w2/2 dw

= 2e2C2(
1 − �(2C)

)
≤ 1√

2πC
.

Now suppose that for some s ∈ (0,1), ψr(s) < s. Since ψr is convex, ψr(0) = 0 and ψr(1) = 1,
this implies that for any τ ∈ (0,1) and any s ∈ (0, τ ], ψr(s) ≤ sψr(τ )/τ < s. Choose τ ∈ (0,1)

and define ρ = 1 − ψr(τ)/τ > 0. Then

∀s ∈ [0, τ ]: s − ψr(s) ≥ ρs.
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Now use that

P

(
inf
s≤0

Ws − Cs ≤ inf
0≤s≤1

Ws − C
(
s − ψr(s)

)) ≤ P

(
inf
s≤0

Ws − Cs ≤ inf
0≤s≤τ

Ws − Cρs
)

≤ P

(
inf
s≤0

Ws − Cs ≤ Wτ − Cρτ
)
.

This last probability we can calculate exactly:

P

(
inf
s≤0

Ws − Cs ≤ Wτ − Cρτ
)

= 1 − �
(
C

√
τρ

) + 1√
2πτ

∫ ∞

0
e−2Cve−(v−Cτρ)2/(2τ) dv

(2.2)
= 1 − �

(
C

√
τρ

) + (
1 − �

(
C

√
τ(2 − ρ)

))
eC2τ(2−ρ)2/2e−C2τρ2/2

≤
√

2

πτ

1

Cρ(2 − ρ)
e−C2τρ2/2. �

We will now consider the case where F0(st)/F0(t) actually has a limit. This is comparable to
saying that F0 is a regularly varying function in 0, but we have the extra information that F0 is
convex.

Lemma 2.3. Suppose for each s ∈ (0,1] we have F0(s) > 0 and

lim
t↓0

F0(st)

F0(t)
= ψr(s).

Then either ψr(s) = 0 on [0,1), or ψr(s) = sα , for some α ≥ 1. In the latter case, we have that
for each τ > 0 (also for τ ≥ 1)

sup
s∈[0,τ ]

(
F0(st)

F0(t)
− sα

)
t↓0−→ 0.

Proof. Suppose 0 ≤ u ≤ s ≤ 1. Then

ψr(us) = lim
t↓0

F0(ust)

F0(t)
= lim

t↓0

F0(ust)

F0(st)

F0(st)

F0(t)
= ψr(u)ψr(s).

Since ψr is continuous and convex on [0,1) and ψr(0) = 0, we conclude that either ψr(s) = 0
on [0,1) or ψr(s) = sα with α ≥ 1. In this last case, choose s > 1. Then

lim
t↓0

F0(st)

F0(t)
=

(
lim
t↓0

F0(t)

F0(st)

)−1

=
(

lim
t↓0

F0(s
−1t)

F0(t)

)−1

= sα.

The family of convex functions {s �→ F0(st)/F0(t)} converges pointwise to the convex function
s �→ sα , and all functions are 0 in 0, so the convergence is actually uniform on compact subsets
of [0,∞). �
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3. Local asymptotic minimax optimality

Our data Y(t) satisfies

dY(t) = f0(t)dt + n−1/2 dW(t),

where f0 is a monotone L2-function on [−1,1] and W(t) is standard two-sided Brownian mo-
tion. We wish to study the least-squares estimator, but we will define for a realization of W(t),

Y(t) =
∫ t

0
f0(t)dt + n−1/2W(t),

and the convex function

F̂ (t) = sup{φ(t): φ affine and ∀s ∈ [−1,1]: φ(s) ≤ Y(s)}.
So F̂ is the greatest convex minorant of Y . Now we define the estimator f̂ as the left-derivative
of the convex function F̂ , so for t ∈ (−1,1)

f̂ (t) = lim
h↓0

F̂ (t) − F̂ (t − h)

h
.

This is a monotone function and can be seen as a limit of least-squares estimators over the class
of monotone functions absolutely bounded by M , as M → ∞.

As stated before, we will assume without loss of generality that f0(0) = 0. Furthermore, to
ensure that our estimator f̂ (0) is consistent as n → ∞, we assume that f0 is continuous at 0. We
are interested in the probability of the event {f̂ (0) ≥ a}, for a > 0. Remember that

F0(t) =
∫ t

0
f0(s)ds.

Fix C > 0 not depending on n, and choose a, b > 0 and ra, rb > 0 such that

F0(ra) = ara, F0(−rb) = brb and r
1/2
a a = r

1/2
b b = Cn−1/2. (3.1)

Since F0 is convex and continuous, and f0 is continuous at 0, this can always be done if F0(1) > 0
and F0(−1) > 0, simply by choosing n large enough. We will consider the special (and simpler)
case f0(t) = 0 for all t > 0 (or for all t < 0) separately.

The sequence max(a, b) = max(a(n), b(n)) will constitute the rate of the least-squares esti-
mator f̂ (0); see Theorem 3.1 below. We would, therefore, like to give some feel for equations
(3.1). Suppose f0 is Lipschitz continuous at 0 with parameter α > 0, so for x in a neighbourhood
of 0, we have (remember that f0(0) = 0)

|f0(x)| � |x|α.

Here, g(x) � h(x) denotes that there exists a constant M > 0 such that g(x) ≤ Mh(x) for all
relevant x. Then F0(x) � |x|α+1, so (3.1) gives us

ara � rα+1
a .
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This means that r−1
a � a−1/α . Together with the second equality for a in (3.1),

a � r
−1/2
a n−1/2,

this leads to

a � n−α/(2α+1).

For b we can derive the same bound. This corresponds to the rate found in [12]. Another inter-
esting case is when lima→0 ra = r0 > 0. This means that f0 is flat to the right of 0 on the interval
[0, r0). Then

a � r
−1/2
0 n−1/2,

so this corresponds to a parametric rate.

Theorem 3.1. With the notations as above, we have that

lim sup
n→∞

P
(
f̂ (0) ≥ a

) ≤ P

(
inf
s≤0

Ws − Cs ≤ inf
0<s≤1

Ws − C
(
s − ψr(s)

)) ≤ 1

C
√

2π

and

lim sup
n→∞

P
(
f̂ (0) ≤ −b

) ≤ P

(
inf
s≤0

Ws − Cs ≤ inf
0<s≤1

Ws − C
(
s − ψl(s)

)) ≤ 1

C
√

2π
.

Since both probabilities tend to zero when C → ∞, it follows that equations (3.1) determine an
upper bound for the rate of convergence of f̂ (0).

Proof. We will only show the result for a; the proof for b is similar. Note that we have the
following “switch relation” for the greatest convex minorant:

{f̂ (0) ≥ a} =
{

inf−1≤t≤0

(
n−1/2Wt + F0(t) − at

) ≤ inf
0<t≤1

(
n−1/2Wt + F0(t) − at

)}
. (3.2)

We can rewrite (3.2) as follows:

{f̂ (0) ≥ a} =
{

inf
−r−1

a ≤s≤0

(
r
−1/2
a Wras + n1/2r

−1/2
a F0(ras) − n1/2r

1/2
a as

)
(3.3)

≤ inf
0<s≤r−1

a

(
r
−1/2
a Wras + n1/2r

−1/2
a F0(ras) − n1/2r

1/2
a as

)}
.

Define

W̃s = r
−1/2
a Wras .

Clearly, W̃s is also a two-sided Brownian motion. Now we can use Lemma 2.1: For any τ ∈ (0,1)

there exists a positive continuous function η with F0(t) = 0 ⇒ η(t) = 0, such that

inf
0<s≤r−1

a

(
r
−1/2
a Wras + n1/2r

−1/2
a F0(ras) − n1/2r

1/2
a as

) ≤ inf
0<s≤τ

W̃s − C
(
s − ψr(s)

) + Cη(ra).
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Now remark that for s < 0, F0(s) ≥ 0, so that

inf
−r−1

a ≤s≤0

(
r
−1/2
a Wras + n1/2r

−1/2
a F0(ras) − Cs

) ≥ inf
s≤0

(W̃s − Cs).

In view of (3.3), we have shown that

P
(
f̂ (0) ≥ a

) ≤ P

(
inf
s≤0

(W̃s − Cs) ≤ inf
0<s≤τ

W̃s − C
(
s − ψr(s)

) + Cη(ra)
)
. (3.4)

Define r0 = lima↓0 ra . Since we always have that F0(r0) = 0, we conclude that lima↓0 η(ra) = 0,
so

lim sup
n→∞

P
(
f̂ (0) ≥ a

) ≤ P

(
inf
s≤0

(W̃s − Cs) ≤ inf
0<s≤τ

W̃s − C
(
s − ψr(s)

))
.

Since this is true for all τ ∈ (0,1), and since ψr is increasing on [0,1], we conclude that

lim sup
n→∞

P
(
f̂ (0) ≥ a

) ≤ P

(
inf
s≤0

(W̃s − Cs) ≤ inf
0<s≤1

W̃s − C
(
s − ψr(s)

))
.

The final inequality of the theorem is given in Lemma 2.2.
When f0(t) = 0 for all t > 0, we choose a = Cn−1/2, and (3.2) implies that

P
(
f̂ (0) ≥ a

) ≤ P

(
inf−1≤t≤0

(Wt − Ct) ≤ inf
0<t≤1

(Wt − Ct)
)
.

This shows that in this case, the upper confidence limit for f̂ (0) is of order n−1/2 (parametric
rate). This also happens when r0 > 0, which is the case when f0 is flat to the right of 0. �

We wish to show that the rate for the least-squares estimator is local asymptotic minimax; see
the Introduction for a discussion of this concept. Remember that Fm denotes the space of all
monotone increasing L2-functions on [−1,1], and that B(f0; ε) denotes the L2-ball around f0

of radius ε.

Proof of Theorem 1.1. We will show the following stronger version of Theorem 1.1: Let f0 ∈
Fm be continuous at 0. Choose two significance levels α ∈ (0,1) and β ∈ (0,1/2). There exist
δ > 0 and η > 0, such that for all n large enough, we can find a rate γn with

lim sup
n→∞

sup
f ∈Fm∩B(f0;δn−1/2)

Pf

(|f̂ (0) − f (0)| ≥ γn

) ≤ α (3.5)

and a sequence of functions fn ∈ Fm ∩ B(f0; δn−1/2) such that

lim inf
n→∞ inf

θ̂

max
i=0,n

Pfi

(|θ̂ (Y ) − fi(0)| ≥ η · γn

)
> β, (3.6)

where θ̂ (Y ) is any estimator of f (0) based on the data Y .
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Remark 1. For a general concept of local optimality, it might be more natural to replace the last
statement by

lim inf
n→∞ inf

θ̂

sup
f ∈Fm∩B(f0;δn−1/2)

Pfi

(|θ̂ (Y ) − fi(0)| ≥ η · γn

)
> β,

as was done in Theorem 1.1. Clearly, (3.6) is stronger, since the sequence fn is the same for all
possible estimators θ̂ .

Remark 2. Choose an event A ⊂ C([−1,1]) such that Pf0(Y ∈ A) ≥ 1/2 and Pf1(Y /∈ A) ≥ 1/2.
Define the estimator

θ̂ (Y ) = f0(0)1A(Y ) + f1(0)1Ac(Y ).

Then for any choice of η and γ , we would have

max
i=0,1

Pfi

(|θ̂ (Y ) − fi(0)| ≥ η · γ ) ≤ 1

2
,

which is why we choose β ∈ (0,1/2).

Without loss of generalization, we can assume f0(0) = 0. Choose n large enough such that the
equations

F0(ra) = ara, F0(−rb) = brb and r
1/2
a a = r

1/2
b b = Cn−1/2

have solutions for some fixed C > 0 with

1

2
√

2πC
≤ α.

Define

γn = 4 max(a, b).

Fix δ ∈ (0,C] and suppose f1 ∈ Fm ∩ B(f0; δn−1/2). Define

F̃1(t) =
∫ t

0
f1(s)ds.

Note that

∣∣∣∣ 1

ra

∫ ra

0

(
f1(t) − f0(t)

)
dt

∣∣∣∣ ≤
√

1

ra

∫ ra

0

(
f1(t) − f0(t)

)2 dt

≤ δn−1/2r
−1/2
a

= δa/C.
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This means that

F̃1(ra) ≤ 2ara. (3.7)

Analogously, we conclude that

F̃1(−rb) ≤ 2brb.

Since

F̃1(ra) ≥ f1(0)ra and F̃1(−rb) ≥ −rbf1(0),

we conclude that

f1(0) ≤ 2a and f1(0) ≥ −2b.

Now define

F1(t) =
∫ t

0

(
f1(s) − f1(0)

)
ds.

Since F1(t) = F̃1(t) − f1(0)t , we get

F1(ra) ≤ γnra and F1(−rb) ≤ γnrb.

Now use equation (3.3) for the situation where the underlying function is f1:

{f̂ (0) − f1(0) ≥ γn} =
{

inf
−r−1

a ≤s≤0

(
r
−1/2
a Wras + n−1/2r

−1/2
a F1(ras) − n−1/2r

1/2
a γns

)
≤ inf

0<s≤r−1
a

(
r
−1/2
a Wras + n−1/2r

−1/2
a F1(ras) − n−1/2r

1/2
a γns

)}
.

Again we have that F1(s) ≥ 0 for s ≤ 0. Also, since F1 is convex, F1(ras) ≤ γnras for all s ∈
[0,1]. Now we can follow the exact same steps as in the proof of Theorem 3.1, starting at equation
(3.3) and realizing that n−1/2r

1/2
a γn ≥ 4C, to conclude that

Pf1

(
f̂ (0) − f1(0) ≥ γn

) ≤ 1

4
√

2πC
.

Analogously, we can prove that

Pf1

(
f̂ (0) − f1(0) ≤ −γn

) ≤ 1

4
√

2πC
.

This clearly shows that

Pf1

(|f̂ (0) − f1(0)| > γn

) ≤ α.

So we have shown that our rate γn satisfies (3.5).
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Now we choose our sequence fn. For fixed n, suppose a ≥ b; the case b > a can be handled
analogously by perturbing f0 to the left of 0. Define

fn(t) =
{

δa/C, if t ≥ 0 and f0(t) ≤ δa/C,
f0(t), otherwise.

Then fn is a monotone L2-function. Note that fn will be discontinuous at 0 and that γn = 4a. To
show that fn ∈ B(f0, δn

−1/2), define sa = inf{t ≥ 0: f0(t) ≥ a}. Clearly,

F0(sδa/C) ≤ δaC−1sδa/C.

Since F0(ra) = ara and F0 is convex, we would get for s > ra :

F0(s) > as ≥ δaC−1s.

This proves that sδa/C ≤ ra . Therefore,

∫ 1

−1

(
fn(t) − f0(t)

)2 dt ≤ δ2C−2a2sδa/C ≤ δ2C−2a2ra ≤ δ2n−1.

Define μ as the probability measure on C([−1,1]) that corresponds to standard two-sided
Brownian motion, and denote with P0 and Pn the measures corresponding to the model with f0
and fn, respectively. It is well known that

dPi

dμ
(W) = exp

(
n1/2

∫
fi(t)dW(t) − 1

2
n

∫
fi(t)

2 dt

)
.

Therefore,

dPn

dP0
(W) = exp

(
n1/2

∫ (
fn(t) − f0(t)

)
dW(t) − 1

2
n

∫
fn(t)

2 dt + 1

2
n

∫
f0(t)

2 dt

)
.

This means that

‖Pn − P0‖2
1 ≤ EP0

(
dPn

dP0
(W) − 1

)2

= EP0

(
dPn

dP0
(W)

)2

− 1

= Eμ

(
exp

(
n1/2

∫ (
2fn(t) − f0(t)

)
dW(t)

− n

∫
fn(t)

2 dt + 1

2
n

∫
f0(t)

2 dt

))
− 1

= exp

(
1

2
n

∫ (
2fn(t) − f0(t)

)2 dt − n

∫
fn(t)

2 dt + 1

2
n

∫
f0(t)

2 dt

)
− 1

= exp

(
n

∫ (
fn(t) − f0(t)

)2 dt

)
− 1.
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Since ∫ (
f1(t) − f0(t)

)2 dt ≤ δ2n−1,

we conclude that

‖P1 − P0‖ ≤
√

exp(δ2) − 1.

Choose δ ∈ (0,C] small enough, such that ‖P1 − P0‖ < 2 − 4β . Choose η = δ/8C. Denote with
pi the density of Pi with respect to μ (i = 0,1). We have that for any estimator θ̂

max
i=0,n

Pfi

(|θ̂ (Y ) − fi(0)| ≥ 4ηa
) ≥ 1

2

∑
i=0,n

Pfi

(|θ̂ (Y ) − fi(0)| ≥ 4ηa
)

= 1

2
Eμ

(
1{|θ̂ (Y )|≥4ηa}p0(W) + 1{|θ̂ (Y )−δa/C|≥4ηa}p1(W)

)
≥ 1

2
Eμ(min(p0(W),p1(W)))

= 1

2

(
1 − 1

2
‖P1 − P0‖

)
> β.

This proves (3.6). �

4. Limiting distribution of the least-squares estimator

Our methods also allow us to derive non-standard limiting distributions for the least-squares
estimator. These limiting distributions only exist when f0 is somehow “regular” near 0. The
precise conditions are described in the following theorem and will use Lemma 2.3. We start with
the rate equations: For n > 0 and C > 0, we define a, ra, b and rb by

F0(ra) = ara, F0(−rb) = brb and r
1/2
a a = r

1/2
b b = Cn−1/2.

Theorem 4.1. Suppose that

lim
n→∞

ra

rb
= γ, (4.1)

with γ ∈ [0,∞). Furthermore, suppose that for s ≥ 0,

lim
t↓0

F0(st)

F0(t)
= sα (4.2)
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for α > 1 (see also Lemma 2.3). Then, if Ws (s ∈ R) denotes two-sided standard Brownian
motion,

lim
n→∞ P

(
f̂ (0) > a

) = P

(
inf
s≤0

(Ws + Cγ α−1/2|s|α − Cs) ≤ inf
s≥0

(Ws + C|s|α − Cs)
)
.

If limn→∞ ra/rb = +∞, then

lim
n→∞ P

(
f̂ (0) > 0

) = 0.

Remark. Condition (4.1) says that the rates to the left and the right of 0 are well behaved with
respect to each other, which is a natural condition for a limiting distribution to exist. Furthermore,
Condition (4.2) says that F0 scales properly near 0, which is another natural condition. We do
not want different behavior of F0 for different scales.

Proof of Theorem 4.1. We start with assuming that γ > 0. Since ra/rb → γ and ar
1/2
a = br

1/2
b ,

we see that a/b → γ −1/2 and F0(ra)/F0(−rb) → γ 1/2 (since F0(ra) = ara and F0(−rb) = brb).
For each η > 0, we have that (γ − η)rb ≤ ra ≤ (γ + η)rb , for n large enough. Therefore,

lim sup
n→∞

F0(ra)

F0(γ rb)
≤ lim

n→∞
F0((γ + η)rb)

F0(γ rb)
=

(
γ + η

γ

)α

.

We used that, since ψr(s) > 0 for s ∈ (0,1], we have that ra → 0 and rb → 0. The inequality
holds for all η > 0, and we can show a similar inequality for the lim inf, which means that

lim
n→∞

F0(ra)

F0(γ rb)
= 1.

Since ra and rb are decreasing continuous functions of n, we have shown that

lim
t↓0

F0(γ t)

F0(−t)
= γ 1/2.

This implies that

lim
t↓0

F0(−st)

F0(−t)
= lim

t↓0

F0(+γ st)

F0(+γ t)
= sα.

So the rescaled behavior of F0 to the left of zero is equal to the behavior of F0 to the right of
zero.

The rest of the proof is based on equation (3.3):

P
(
f̂ (0) ≥ a

) = P

(
inf

−r−1
a ≤s≤0

(
Ws + n1/2r

−1/2
a F0(ras) − Cs

)

≤ inf
0<s≤r−1

a

(
Ws + n1/2r

−1/2
a F0(ras) − Cs

))
.
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Here, Ws is two-sided Brownian motion. Note that we can rewrite this equation as

P
(
f̂ (0) ≥ a

) = P

(
arg min

s∈[−r−1
a ,r−1

a ]

(
Ws + n1/2r

−1/2
a F0(ras) − Cs

) ≤ 0
)
.

Using Lemma 2.3, we conclude that there exists a family of functions ηt (s) on [0,∞), such that
ηt → 0 uniformly on compacta as t → 0, with

F0(st) = sαF0(t) + ηt (s)F0(t)(t ∈ R).

This shows that for s ∈ [0,∞), we have

Ws + n1/2r
−1/2
a F0(ras) − Cs = Ws + Csα + Cηt (s) − Cs

→ Ws + Csα − Cs,

uniformly on compacta. For s ∈ (−∞,0], we have to be a bit more careful:

n1/2r
−1/2
a F0(ras) = n1/2r

−1/2
a

(
ra

rb

)α

|s|αF0(−rb) + n1/2r
−1/2
a ηt (|s|ra/rb)F0(−rb)

=
(

ra

rb

)α−1/2

|s|αn1/2r
1/2
b b +

(
ra

rb

)−1/2

ηt (|s|ra/rb)n
1/2r

1/2
b b

→ Cγ α−1/2|s|α,

uniformly on compacta. We have shown that uniformly on compacta

Ws + n1/2r
−1/2
a F0(ras) − Cs →

{
Ws + Csα − Cs, for s ≥ 0,
Ws + Cγ α−1/2|s|α − Cs, for s ≤ 0.

Now we wish to use Theorem 2.7 from [10], page 198. This theorem implies that the location
of the minimum of the process Ws + n1/2r

−1/2
a F0(ras) − Cs converges in distribution to the

location of the minimum of its limiting process, provided that this location is Op(1). To show
this last condition, we consider for M > 1

P

(
arg min

s∈[−r−1
a ,r−1

a ]

(
Ws + n1/2r

−1/2
a F0(ras) − Cs

)
> M

)

≤ P

(
inf

s≥M

(
Ws + n1/2r

−1/2
a F0(ras) − Cs

)
< 0

)
.

Now we use that for n large enough, F0(Mra) ≥ MαF0(ra) − F0(ra). So for s ≥ M , using
convexity of F0, we get

F0(sra) ≥ sF0(Mra)/M ≥ Mα−1aras − aras/M.
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Using this, we get

P

(
inf

s≥M

(
Ws + n1/2r

−1/2
a F0(ras) − Cs

)
< 0

)
≤ P

(
inf

s≥M
(Ws + CMα−1s − Cs/M − Cs) < 0

)
.

Clearly, this last probability goes to zero exponentially fast as M → +∞, since α > 1. Now we
have to check the lower bound for the location of the minimum:

P

(
arg min

s∈[−r−1
a ,r−1

a ]

(
Ws + n1/2r

−1/2
a F0(ras) − Cs

)
< −M

)

≤ P

(
inf

s≤−M

(
Ws + n1/2r

−1/2
a F0(ras) − Cs

)
< 0

)

≤ P

(
inf

s≤−M
(Ws − Cs) < 0

)
.

This last probability again goes to zero exponentially fast as M → +∞. This proves the theo-
rem for γ > 0. When γ = 0, so ra/rb → 0, the above reasoning goes through, except for the
convergence of the process Ws + n1/2r

−1/2
a F0(ras) − Cs for s ∈ (−∞,0]. We need to show that

n1/2r
−1/2
a F0(ras) → 0,

uniformly on compact subsets of (−∞,0]. Fix a compact set [−M,0] and choose n so large that
Mra ≤ rb . Then, for all s ∈ [−M,0],

|n1/2r
−1/2
a F0(ras)| ≤ n1/2r

−1/2
a F0(−rb)|s| ra

rb

≤ C

(
ra

rb

)1/2

M

→ 0.

Finally we need to prove the last statement. For this, we directly use equation (3.2):

P
(
f̂ (0) ≥ 0

) = P

(
inf−1≤t≤0

(
n−1/2Wt + F0(t)

) ≤ inf
0<t≤1

(
n−1/2Wt + F0(t)

))
.

Now we take the usual rescaling, replacing t with ras and multiplying with r
−1/2
a :

P
(
f̂ (0) ≥ 0

) = P

(
inf

−r−1
a ≤s≤0

(
Ws + n1/2r

−1/2
a F0(ras)

) ≤ inf
0<s≤r−1

a

(
Ws + n1/2r

−1/2
a F0(ras)

))
.

Choose n large such that ra ≥ rb . Then if s ≤ −rb/ra , we have F0(ras) ≥ |s|F0(−rb)ra/rb ,
whereas if −rb/ra ≤ s ≤ 0, we still have that F0(ras) ≥ 0, so

P
(
f̂ (0) ≥ 0

) ≤ P

(
inf

−r−1
a ≤s≤−rb/ra

(
Ws +

(
ra

rb

)1/2

C|s|
)

≤ inf
0<s≤1

Ws + Cs

)

+ P

(
inf−rb/ra≤s≤0

Ws ≤ inf
0<s≤1

Ws + Cs
)
.
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Since ra/rb → +∞, these two probabilities clearly go to zero, since inf0≤s≤1 Ws + Cs < 0 with
probability 1. Note that for this last result, we do not need any other assumptions on F0. �

We introduce the auxiliary function G0 and H0 on a full neighborhood of 0: fix δ > 0 and for
t ∈ (−δ, δ)

G0(t) = F0(t)/t and H0(t) = t

√
|G−1

0 (t)|.
We have that both G0 and H0 are strictly increasing functions on (−δ, δ). We also know that the
rate equations (3.1) imply that

H0(a) = Cn−1/2 and H0(−b) = −Cn−1/2.

Corollary 4.2. Suppose Conditions (4.1) and (4.2). If Ws (s ∈ R) denotes two-sided standard
Brownian motion, define the process

X(s) =
{

Ws + sα, for s ≥ 0,
Ws + γ α−1/2|s|α, for s ≤ 0,

and the process X̂(s) as the greatest convex minorant of X. Then

n1/2H0(f̂ (0))
d−→ sgn

(
dX̂

ds
(0)

)∣∣∣∣dX̂

ds
(0)

∣∣∣∣
(2α−1)/(2α−2)

.

Here, sgn(x) denotes the sign of x ∈ R.

Proof. We start by considering P(n1/2H0(f̂ (0)) ≥ C), for C > 0. We get

P
(
n1/2H0(f̂ (0)) ≥ C

) = P
(
f̂ (0) ≥ a

)
→ P

(
inf
s≤0

(Ws + Cγ α−1/2|s|α − Cs) ≤ inf
s≥0

(Ws + C|s|α − Cs)
)
,

according to Theorem 4.1. Now replace s by C2/(1−2α)s, multiply left and right by C−1/(1−2α)

and use Brownian scaling to get

P
(
n1/2H0(f̂ (0)) ≥ C

)
→ P

(
inf
s≤0

(
Ws + γ α−1/2|s|α − C(2α−2)/(2α−1)s

) ≤ inf
s≥0

(
Ws + |s|α − C(2α−2)/(2α−1)s

))
.

Using the switch relation for the greatest convex minorant, we see that

P
(
n1/2H0(f̂ (0)) ≥ C

) → P

(
dX̂

ds
(0) ≥ C(2α−2)/(2α−1)

)

= P

(
sgn

(
dX̂

ds
(0)

)∣∣∣∣dX̂

ds
(0)

∣∣∣∣
(2α−1)/(2α−2)

≥ C

)
.
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When γ = 0, the proof is finished, since in that case

P

(
dX̂

ds
(0) ≥ 0

)
= 1.

Now suppose γ > 0. We have seen in the proof of Theorem 4.1 that the scaling of F0 to the left
of 0 is the same as the scaling to the right, so for all s ≥ 0

lim
t→0

F0(st)

F0(t)
= sα.

Consider for C > 0

P
(
n1/2H0(f̂ (0)) ≤ −C

) = P
(
f̂ (0) ≤ −b

)
→ P

(
inf
s≤0

(Ws + Cγ −α+1/2|s|α − Cs) ≤ inf
s≥0

(Ws + C|s|α − Cs)
)
,

using Theorem 4.1 for the left-hand side of the origin (that is, interchange a and b and replace γ

with 1/γ ). Now replace s with −γC2/(1−2α)s, multiply left and right by γ −1/2C−1/(1−2α) and
use Brownian scaling to get

P
(
n1/2H0(f̂ (0)) ≤ −C

)
→ P

(
inf
s≥0

(
Ws + |s|α + C(2α−2)/(2α−1)s

) ≤ inf
s≤0

(
Ws + γ α−1/2|s|α + C(2α−2)/(2α−1)s

))
.

Note that the two infima have switched sides because of the scaling with a negative constant.
Again, using the switch relation, we get

P
(
n1/2H0(f̂ (0)) ≤ −C

) → P

(
dX̂

ds
(0) ≤ −C(2α−2)/(2α−1)

)

= P

(
sgn

(
dX̂

ds
(0)

)∣∣∣∣dX̂

ds
(0)

∣∣∣∣
(2α−1)/(2α−2)

≤ −C

)
.

This proves the corollary. �

The condition that F0 is regularly varying around 0 with parameter α > 1 implies that the
function H0 is regularly varying around 0 with parameter β = (2α − 1)/(2α − 2); so for all
s ≥ 0

lim
t→0

H0(st)

H0(t)
= sβ .

It is well known from the theory of regularly varying functions that this limit is uniform for
s ∈ [1/M,M], for any M > 1. This will help us prove the next corollary.
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Corollary 4.3. With the conditions and notations from Corollary 4.2, we can show that

f̂ (0)+
H−1

0 (n−1/2)

d−→ dX̂

ds
(0)+ and

f̂ (0)−
−H−1

0 (−n−1/2)

d−→ dX̂

ds
(0)−.

Proof. We wish to show that

H0(f̂ (0))

n−1/2
·
∣∣∣∣H

−1
0 (sgn(f̂ (0))n−1/2)

f̂ (0)

∣∣∣∣
β

sgn(f̂ (0)) → 1 in probability. (4.3)

Suppose η > 0. Using Corollary 4.2, there exists M > 1 such that for all n large enough

P
(
H0(f̂ (0)) ∈ [−n−1/2M,−n−1/2/M] ∪ [n−1/2/M,n−1/2M]) ≥ 1 − η.

If H0(f̂ (0)) ∈ [n−1/2/M,n−1/2M], we know that

H−1
0 (n−1/2/M)

H−1
0 (n−1/2)

≤ f̂ (0)

H−1
0 (n−1/2)

≤ H−1
0 (n−1/2M)

H−1
0 (n−1/2)

.

Since H−1
0 is regularly varying around 0 with parameter 1/β , we then know that for n large

enough,

1

2
M−1/β ≤ f̂ (0)

H−1
0 (n−1/2)

≤ 2M1/β .

A similar reasoning shows that if H0(f̂ (0)) ∈ [−n−1/2/M,−n−1/2M], then for n large enough,

1

2
M−1/β ≤ f̂ (0)

H−1
0 (−n−1/2)

≤ 2M1/β .

Now consider

n1/2H0(f̂ (0)) = sgn(f̂ (0))H0

(
H−1

0 (sgn(f̂ (0))n−1/2)
f̂ (0)

H−1
0 (sgn(f̂ (0))n−1/2)

)
/

H0(H
−1
0 (sgn(f̂ (0))n−1/2)).

Since H0(st)/H0(t) → sβ uniform for s in compact subsets of (0,∞), we can conclude with
probability higher than 1 − η, that for n large enough,∣∣∣∣n1/2H0(f̂ (0)) − sgn(f̂ (0))

(
f̂ (0)

H−1
0 (sgn(f̂ (0))n−1/2)

)β ∣∣∣∣ < η/M

and

|n1/2H0(f̂ (0))| ≥ 1/M.
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This proves (4.3). Corollary 4.2 then immediately shows that

sgn(f̂ (0))f̂ (0)

H−1
0 (sgn(f̂ (0))n−1/2)

d−→ dX̂

ds
(0).

This can be written in a nicer way when we look at f̂ (0)+ and f̂ (0)−:

f̂ (0)+
H−1

0 (n−1/2)

d−→ dX̂

ds
(0)+

and

f̂ (0)−
−H−1

0 (−n−1/2)

d−→ dX̂

ds
(0)−. �

Suppose f0 is differentiable in 0 with f ′
0(0) > 0. Then

F0(st)

F0(t)
= s2t2f ′

0(0)/2 + o(t2)

t2f ′
0(0)/2 + o(t2)

→ s2 (t → 0).

Furthermore, G0(t) = F0(t)/t = 1
2f ′

0(0)t +o(t), which implies that G−1
0 (t) = 2f ′

0(0)−1t +o(t),
so

H0(t) = √
2f ′

0(0)−1/2t3/2 + o(t3/2).

This means that

H−1
0 (n−1/2) =

(
1

2
f ′

0(0)

)1/3

n−1/3 + o(n−1/3).

Define X(s) = Ws +s2, with Ws two-sided Brownian motion, and define X̂ as the greatest convex
minorant of X. Then Corollary 4.3 tells us that

(
1

2
f ′

0(0)

)−1/3

n1/3f̂ (0)
d−→ dX̂

ds
(0),

in accordance with the classical result by Brunk in [1], when translated to the white noise model,
except that we do not need a continuous derivative of f0 in a neighborhood of 0, we just need
the existence of the derivative in 0. Also the limit distributions derived in [15], where f0(x) =
A|x|α(1 + o(x)), follow from our general approach. Note that even when F0 is regularly varying
near 0, it is still possible to have rates that contain slowly varying functions, like logarithmic
corrections; apparently, these corrections do not change the limiting distribution itself, only the
rate.
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