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Multivariate distributions are explored using the joint distributions of marginal sample quantiles. Limit
theory for the mean of a function of order statistics is presented. The results include a multivariate central
limit theorem and a strong law of large numbers. A result similar to Bahadur’s representation of quantiles
is established for the mean of a function of the marginal quantiles. In particular, it is shown that
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as n → ∞, where γ̄ is a constant and Zn,i are i.i.d. random variables for each n. This leads to the central
limit theorem. Weak convergence to a Gaussian process using equicontinuity of functions is indicated. The
results are established under very general conditions. These conditions are shown to be satisfied in many
commonly occurring situations.

Keywords: central limit theorem; Cramér–Wold device; lost association; quantiles; strong law of large
numbers; weak convergence of a process

1. Introduction

Let {(X(1)
i ,X

(2)
i , . . . ,X

(d)
i ), i = 1,2, . . .} be a sequence of random vectors such that for

each j (1 ≤ j ≤ d), {X(j)

1 ,X
(j)

2 , . . .} forms a sequence of independent and identically dis-
tributed (i.i.d.) random variables. For 1 ≤ j, k ≤ d , let Fj and Fj,k denote the distributions

of X
(j)

1 and (X
(j)

1 ,X
(k)
1 ), respectively. Let X

(j)
n : i denote the ith order statistic ( i

n
th quantile) of

{X(j)

1 ,X
(j)

2 , . . . ,X
(j)
n }. The vector (X

(1)
n : i , . . . ,X

(d)
n : i ) corresponds to the ith marginal order sta-

tistics. In this article, we study the asymptotic behavior of the mean of a function of marginal
sample quantiles:

1

n

n∑
i=1

φ
(
X

(1)
n : i , . . . ,X

(d)
n : i

)
(1.1)

as n → ∞, where φ : Rd → R satisfies some mild conditions.
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Our results, Theorems 1.1 and 1.2 stated below, were motivated in part by one of the au-
thors considering [10] the problem of estimating the parameters in a linear regression model,
Y = α + βX + ε, when the linkage between the variables X and Y was either partially or com-
pletely lost. Were the linkage not lost, then the least-squares estimator for β would be given
by (

∑n
i=1 XiYi − nX̄nȲn)/

∑n
i=1(Xi − X̄n)

2, where X̄n and Ȳn denote the sample means of
(X1, . . . ,Xn) and (Y1, . . . , Yn). When the linkage is lost, a natural candidate to estimate β is the
average of this expression over all possible permutations of the Yi ’s. As the term in the denom-
inator and the second term in the numerator are permutation invariant, it remains to consider
1
n!

∑
π∈Sn

1
n

∑n
i=1 XiYπ(i). This expression is bounded above by 1

n

∑n
i=1 Xn : iYn : i and below by

1
n

∑n
i=1 Xn : iYn : n−i+1, by the well-known rearrangement inequality of Hardy–Littlewood–Pólya

(see [8], Chapter 10). The asymptotic behavior of the lower bound can be deduced from that of
the upper bound. The upper bound, 1

n

∑n
i=1 Xn : iYn : i , is a special case of (1.1). The problem of

the loss of association among paired data has attracted a lot of attention in various contexts, such
as the broken sample problem, file linkage problem and record linkage (see, e.g., [2,4,7]). See
item (3) in Section 4 for further results and a very brief review of the literature.

We shall first introduce some notation. We shall reserve {Ui} for a sequence of indepen-
dent random variables distributed uniformly on (0,1). Let Un : i be the ith order statistic of
of (U1, . . . ,Un). For a probability distribution function F and 0 < t < 1, define F−1(t) =
inf{x :F(x) ≥ t}.

Let φ be a real-valued measurable function on R
d . For 0 < x,x1, . . . , xd < 1, x = (x1, . . . , xd),

and 1 ≤ j, k ≤ d , define

ψ(x) := φ(F−1
1 (x1), . . . ,F

−1
d (xd)), (1.2)

γ (x) := ψ(x, x, . . . , x), (1.3)

ψj (x) := ∂ψ(x)

∂xj

∣∣∣∣
(x,...,x)

, (1.4)

ψj,k(x) := ∂2ψ(x)

∂xj ∂xk

, (1.5)

ψ̃j,k(x) := ψj,k(x, . . . , x). (1.6)

We shall now introduce conditions on φ that are used in the results:

(C1) The function ψ(u1, . . . , ud) is continuous at u1 = · · · = ud = u,0 < u < 1. That is, ψ is
continuous at each point on the diagonal of (0,1)d . The function ψ need not be bounded.

(C2) There exist K and c0 > 0 such that

|ψ(x1, . . . , xd)| ≤ K

(
1 +

d∑
j=1

|γ (xj )|
)

for (x1, . . . , xd) ∈ (0, c0)
d ∪ (1 − c0,1)d .

(C3) Let μn:i = i/(n + 1). For 1 ≤ j, k ≤ d ,

1

n

n∑
i=1

(
μn : i (1 − μn : i )

)3/2
(ψj (μn : i ))

2 −→
∫ 1

0

(
x(1 − x)

)3/2
(ψj (x))2 dx < ∞
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and

1

n

n∑
i=1

(
μn : i (1 − μn : i )

)3/2|ψ̃j,k(μn : i )| −→
∫ 1

0

(
x(1 − x)

)3/2|ψ̃j,k(x)|dx < ∞.

(C4) For all large m, there exist K = K(m) ≥ 1 and δ > 0 such that

|ψ(y) − ψ(x) − 〈y − x,∇ψ(x)〉| ≤ K

d∑
j,k=1

|(yj − x)(yk − x)|(1 + |ψj,k(x)|),
whenever ‖y−x‖�1 < δ and min1≤j≤d yj (1 − yj ) > x(1 − x)/m, where x = (x, . . . , x),
y = (y1, . . . , yd) ∈ (0,1)d . Here, ‖y‖�1 := |y1|+ · · ·+ |yd | denotes the �1-norm of y and
∇ψ(x) denotes the gradient of ψ .

Condition (C3) holds if the functions (x(1 − x))3/2(ψj (x))2 and (x(1 − x))3/2|ψ̃j,k(x)| are
Riemann integrable over (0,1) and satisfy K-pseudo convexity for 1 ≤ j, k ≤ d . A function g is
said to be K-pseudo convex if g(λx + (1 − λ)y) ≤ K(λg(x) + (1 − λ)g(y)).

To state the main results, recall the definition of γ in (1.3).

Theorem 1.1. Let {(X(1)
i ,X

(2)
i , . . . ,X

(d)
i ), i = 1,2, . . .} be a sequence of random vectors such

that for each j (1 ≤ j ≤ d), {X(j)

1 ,X
(j)

2 , . . .} forms a sequence of i.i.d. random variables. Sup-
pose φ satisfies conditions (C1)–(C2), Fj is continuous for 1 ≤ j ≤ d and γ is Riemann inte-
grable. Then,

1

n

n∑
i=1

φ
(
X

(1)
n : i , . . . ,X

(d)
n : i

) a.s.−→ γ̄

as n → ∞, where γ̄ = ∫ 1
0 γ (y)dy.

Note that we need only the independence of the j th marginal random variables, for each j .
The result does not depend on the joint distribution of (X

(1)
1 , . . . ,X

(d)
1 ).

Theorem 1.2. Let Xi = (X
(1)
i , . . . ,X

(d)
i ) be i.i.d. random vectors. Suppose φ satisfies conditions

(C1)–(C4), Fj is continuous for 1 ≤ j ≤ d and γ is Riemann integrable. Then,

1√
n

n∑
i=1

φ
(
X

(1)
n : i , . . . ,X

(d)
n : i

) − √
nγ̄ = 1√

n

n∑
�=1

Zn,� + oP (1), (1.7)

where Zn,� = 1
n

∑n
i=1

∑d
j=1 Wj,�(i/n)ψj (i/(n + 1)), Wj,�(x) = I (U

(j)

� ≤ x) − x for 1 ≤ � ≤ n

and γ̄ is defined as in Theorem 1.1. Further, as n → ∞,

1√
n

n∑
i=1

φ
(
X

(1)
n : i , . . . ,X

(d)
n : i

) − √
nγ̄

dist−→N(0, σ 2), (1.8)
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where Gj,k(x, y) = Fj,k(F
−1
j (x),F−1

k (y)) and

σ 2 = lim
n→∞ Var(Zn,1) = 2

d∑
j=1

∫ 1

0

∫ y

0
x(1 − y)ψj (x)ψj (y)dx dy

+ 2
∑

1≤j<k≤d

∫ 1

0

∫ 1

0

(
Gj,k(x, y) − xy

)
ψj (x)ψk(y)dx dy.

This theorem can be extended to m functions φ1, . . . , φm simultaneously using the Cramér–
Wold device (see [3]), as in the corollary below. Let ψj(x; r) denote the partial derivative of
φr(F

−1
1 (x1), . . . ,F

−1
d (xd)) with respect to xj evaluated at x1 = · · · = xd = x.

Corollary 1.1. Let φ1, . . . , φm satisfy conditions (C1)–(C4). For 1 ≤ r ≤ m, if we define
Tn(φr) = ∑n

i=1 φr(X
(1)
n : i , . . . ,X

(d)
n : i ) and γ̄r = Eφr(F

−1
1 (U),F−1

2 (U), . . . ,F−1
d (U), then

1√
n
(Tn(φ1), . . . , Tn(φm)) − √

n(γ̄1, . . . , γ̄m)
dist−→N(0,�) as n → ∞,

where the (r, s)th element σr,s of �, is given by

d∑
j=1

∫ 1

0

∫ y

0
x(1 − y)

(
ψj (x; r)ψj (y; s) + ψj(x; s)ψj (y; r))dx dy

+
∑

1≤j<k≤d

∫ 1

0

∫ 1

0

(
Gj,k(x, y) − xy

)(
ψj (x; r)ψk(y; s) + ψj(x; s)ψk(y; r))dx dy.

Proof. Use the Cramér–Wold device and Theorem 1.2. In computing σr,s , we used

2σr,s = lim
n→∞

(
Var(Zn,1,r + Zn,1,s) − Var(Zn,1,r ) − Var(Zn,1,s )

)
,

where Zn,1,r = 1
n

∑n
i=1

∑d
j=1 Wj,1(i/n)ψj (i/(n + 1); r). �

Our results can be adapted to provide a suitable test statistic for testing equality of marginal
distributions against various alternative hypotheses using suitable choices for φ.

Remark 1.1. Since the finite-dimensional distributions converge to multivariate normal distrib-
utions, the weak convergence to a Gaussian process indexed by t ∈ T (T being an interval of R)
can be established under a condition such as equicontinuity of {φt : t ∈ T }.

Remark 1.2. In Theorem 1.1, we just require i.i.d. for each component. No further assumptions
are made on how the components are related. We need a stronger assumption in Theorem 1.2,
namely, that the rows are i.i.d. random vectors. Interestingly, the variance of the limiting normal
only depends on the 2-dimensional marginal distributions.
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Remark 1.3. Conditions (C1) and (C2) are, in general, easy to verify. Condition (C3) is used to
control the behavior of the function ψ around the neighborhood of (0, . . . ,0) and (1, . . . ,1) in
(0,1)d . For example, if we suppose that X

(j)

1 is uniformly distributed over (0,1) for j = 1,2 and
φ(x, y) := ((x + y)/2)−α(1 − (x + y)/2)−α , then (C3) holds if 0 < α < 1/4. However, the first
limit in (C3) fails if α ≥ 1/4 and the second limit in (C3) fails if α ≥ 1/2.

Remark 1.4. By a compactness argument, condition (C1) is shown to be equivalent to

(C1′) For any c ∈ (0, 1
2 ), limδ→0 ω(c, δ) = 0, where

ω(c, δ) := sup{|ψ(x1, . . . , xd) − γ (y)| : |xi − y| < δ, c < y,
(1.9)

xi < 1 − c,1 ≤ i ≤ d}.

Proofs of Theorems 1.1 and 1.2 are given in Sections 2 and 3, respectively. The results are
illustrated by means of examples and counterexamples in the last section.

2. Proof of Theorem 1.1

The main idea of the proof of Theorem 1.1 comes from the observation that

1

n

n∑
i=1

φ
(
X

(1)
n : i , . . . ,X

(d)
n : i

) = 1

n

n∑
i=1

ψ
(
U

(1)
n : i , . . . ,U

(d)
n : i

) ≈
∫ 1

0
ψ(u, . . . , u)du.

The cases where i is close to 1 or n need to be carefully analyzed as ψ could be unbounded
near 0 and 1.

Proof of Theorem 1.1. Let U
(j)
i = Fj (X

(j)
i ) for 1 ≤ i ≤ n,1 ≤ j ≤ d . Therefore, {U(j)

1 ,U
(j)

2 ,

. . .} forms a sequence of i.i.d. uniformly distributed random variables and F−1
j (U

(j)
i ) = X

(j)
i

with probability 1. Recall that U
(j)
n : i denotes the ith order statistic of U

(j)

1 , . . . ,U
(j)
n . We write

μn : i = EU
(j)
n : i = i/(n + 1). Recall, also, that ψ(x1, . . . , xd) = φ(F−1

1 (x1), . . . ,F
−1
d (xd)) and

that γ (x) = ψ(x, . . . , x). For any ε ∈ (0, c0),

1

n

n∑
i=1

φ
(
X

(1)
n : i , . . . ,X

(d)
n : i

) = 1

n

n∑
i=1

ψ
(
U

(1)
n : i , . . . ,U

(d)
n : i

) = �n + Rn,1 + Rn,2 + Rn,3 (2.1)

almost surely, where

�n = 1

n

n∑
i=1

γ (μn : i ),

Rn,1 = 1

n

∑
1≤i<εn

(
ψ

(
U

(1)
n : i , . . . ,U

(d)
n : i

) − γ (μn : i )
)
,
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Rn,2 = 1

n

∑
εn≤i≤(1−ε)n

(
ψ

(
U

(1)
n : i , . . . ,U

(d)
n : i

) − γ (μn : i )
)
,

Rn,3 = 1

n

∑
(1−ε)n<i≤n

(
ψ

(
U

(1)
n : i , . . . ,U

(d)
n : i

) − γ (μn : i )
)
.

Since γ is Riemann integrable, the Riemann sum

�n →
∫ 1

0
γ (y)dy = E(φ(F−1

1 (U), . . . ,F−1
d (U))) as n → ∞.

Thus, it remains to show that Rn,i −→a.s. 0 as n → ∞ for i = 1,2 and 3.

For 1 ≤ j ≤ d , by then Glivenko–Cantelli lemma, supx∈(0,1) |F̂n;j (x)−x|−→a.s. 0 as n → ∞,

where F̂n;j is the empirical distribution function of {U(j)
i : 1 ≤ i ≤ n}. For 1 ≤ i ≤ n,1 ≤ j ≤ d ,

we have

∣∣U(j)
n : i − μn : i

∣∣ ≤
∣∣∣∣U(j)

n : i − i

n

∣∣∣∣ + 1

n
= ∣∣U(j)

n : i − F̂n;j
(
U

(j)
n : i

)∣∣ + 1

n
≤ 1

n
+ sup

x∈(0,1)

|x − F̂n;j (x)|.

Hence, it follows that as n → ∞,

δn := max
{∣∣U(j)

n : i − μn : i

∣∣,1 ≤ i ≤ n,1 ≤ j ≤ d
} a.s.−→0. (2.2)

Recall the definition of ω(c, δ) in (1.9). Since U
(j)
n : i ∈ (μn : i − δn,μn : i + δn) for 1 ≤ j ≤ d

and for each integer i in the interval [nε,n(1 − ε)], we have |ψ(U
(1)
n : i , . . . ,U

(d)
n : i ) − γ (μn : i )| ≤

ω(ε, δn), provided δn < ε/2. Hence, if δn < ε/2, by (2.2) and (C1′) (which is equivalent to (C1)
by Remark 1.4 in Section 1), we have

|Rn,2| ≤ 1

n

∑
εn≤i≤(1−ε)n

∣∣ψ(
U

(1)
n : i , . . . ,U

(d)
n : i

) − γ (μn : i )
∣∣ ≤ ω(ε, δn)

a.s.−→0

as n → ∞. By (C2),

|Rn,1| ≤ K

d∑
j=1

Rn,1,j + 1

n

∑
1≤i<εn

|γ (μn : i )| + Kε,

where Rn,1,j = n−1 ∑
1≤i<εn |γ (U

(j)
n : i )| for 1 ≤ j ≤ d . Clearly, if U

(j)

n : (εn)+1 ≤ 2ε, then

Rn,1,j ≤ n−1
∑

1≤i≤n

∣∣γ (
U

(j)
i

)∣∣I(
U

(j)
i ≤ 2ε

)
.
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Note that, with probability 1, U
(j)

n : (εn)+1 ≤ 2ε for all large n and the right-hand side of the above

inequality goes to
∫ 2ε

0 |γ (y)|dy a.s. as n → ∞. Hence,

lim sup
n→∞

|Rn,1| ≤ (Kd + 1)

(
ε +

∫ 2ε

0
|γ (y)|dy

)
a.s.

As |γ | is integrable, letting ε tend to zero, we conclude that Rn,1 −→a.s. 0. A similar argument
will show that Rn,3 −→a.s. 0 as n → ∞. This completes the proof of Theorem 1.1. �

3. Proof of Theorem 1.2

As in the proof of Theorem 1.1, we introduce U
(j)
i = Fj (X

(j)
i ) for 1 ≤ i ≤ n,1 ≤ j ≤ d . It fol-

lows that (U
(1)
i , . . . ,U

(d)
i ),1 ≤ i ≤ n, are i.i.d. random vectors. For 1 ≤ j, k ≤ d , note that Gj,k

is the joint distribution of (U
(j)

1 ,U
(k)
1 ). In particular, Gj,j (x, y) = min{x, y}, for 1 ≤ j ≤ d . Us-

ing the notation introduced in Section 1, we outline some key approximations used in the proof
of Theorem 1.2. In particular, (1.7) follows from

1√
n

n∑
i=1

ψ
(
U

(1)
n : i , . . . ,U

(d)
n : i

) − √
nγ̄

≈ 1√
n

n∑
i=1

(
ψ

(
U

(1)
n : i , . . . ,U

(d)
n : i

) − γ (μn,i)
)

≈ 1√
n

n∑
i=1

d∑
j=1

(
U

(j)
n : i − μn,i

)
ψj(μn : i )

≈ 1√
n

n∑
i=1

d∑
j=1

n∑
�=1

(
I
(
U

(j)

� − i/n
))

ψj(μn : i ).

The proof of the first approximation, which is about
√

n times the difference between the Rie-
mann sum and the integral γ̄ , is non-trivial and is handled in Lemma 3.3. We use Bahadur’s
representation of quantiles in the last approximation. We start with some technical lemmas, the
first of which is well known (see [6], page 36).

Lemma 3.1. Suppose that Un : 1 ≤ · · · ≤ Un : n denote the order statistics of n independent ran-
dom variables that are uniformly distributed over (0,1). Then, for 1 ≤ i ≤ n,

Var(Un : i ) = μn : i (1 − μn : i )

(n + 2)
≤ 1

n
.

Lemma 3.2. Under condition (C3), the limiting variance σ 2 is well defined.
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Proof. It suffices to show that for 1 ≤ j, k ≤ d ,

β1 :=
∫ ∫

0<x<y<1
|Gj,k(x, y) − xy||ψj(x)ψk(y)|dx dy < ∞, (3.1)

β2 :=
∫ ∫

0<y<x<1
|Gj,k(x, y) − xy||ψj(x)ψk(y)|dx dy < ∞. (3.2)

To prove (3.1), we introduce Wj(x) := I (U
(j)

1 ≤ x) − x. Here, Wj(x) has mean 0 and variance
x(1 − x). Furthermore, EWj(x)Wk(y) = Gj,k(x, y) − xy. Thus, EWj(x)Wj (y) = x(1 − y)

when x < y. By the Cauchy–Schwarz inequality, β2
1 is bounded above by

(
E

∫ 1

0

∫ y

0

(
x/(1 − y)

)1/4|ψj (x)||Wj(x)|((1 − y)/x
)1/4|ψk(y)||Wk(y)|dx dy

)2

≤ E

∫ 1

0

∫ y

0

(
x/(1 − y)

)1/2
(ψj (x))2(Wj (x))2 dx dy

× E

∫ 1

0

∫ y

0

(
(1 − y)/x

)1/2
(ψk(y))2(Wk(y))2 dx dy

=
∫ 1

0

∫ y

0
x3/2(1 − x)(1 − y)−1/2(ψj (x))2 dx dy

×
∫ 1

0

∫ y

0
x−1/2y(1 − y)3/2(ψk(y))2 dx dy

= 4
∫ 1

0
x3/2(1 − x)3/2(ψj (x))2 dx

×
∫ 1

0
y3/2(1 − y)3/2(ψk(y))2 dx < ∞.

Similarly, we can prove (3.2). This completes the proof of Lemma 3.2. �

Lemma 3.3. Let φ : (0,1)d → R satisfy condition (C3). Suppose that the function γ associated
with φ and defined in (1.3) is Riemann integrable. We then have

1√
n

n∑
i=1

γ (μn : i ) − √
n

∫ 1

0
γ (x)dx → 0

as n → ∞.
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Proof. As γ ′(x) = ψ1(x) + · · · + ψd(x), condition (C3) implies that (x(1 − x))3/2(γ ′(x))2 is
Riemann integrable. We have

1√
n

n∑
i=1

γ (μn : i ) − √
n

∫ 1

0
γ (x)dx

= √
n

n∑
i=1

∫ i/n

(i−1)/n

(
γ (μn : i ) − γ (x)

)
dx

= √
n

n∑
i=1

(∫ μn : i

(i−1)/n

∫ μn : i

x

γ ′(y)dy dx −
∫ i/n

μn : i

∫ μn : i

x

γ ′(y)dy dx

)

= √
n

∫ 1

0
gn(y)γ ′(y)dy,

where

gn(y) =
{

y − (i − 1)/n, if (i − 1)/n ≤ y < i/(n + 1),1 ≤ i ≤ n,

y − i/n, if i/(n + 1) ≤ y < i/n,1 ≤ i ≤ n.

Note that

|gn(y)| ≤
⎧⎨
⎩

y, if 0 < y ≤ 1/n,

1/n, if 1/n < y < 1 − 1/n,

1 − y, if 1 − 1/n ≤ y < 1.

Therefore, (
1√
n

n∑
i=1

γ (μn : i ) − √
n

∫ 1

0
γ (x)dx

)2

= n

(∫ 1

0
gn(y)γ ′(y)dy

)2

≤ n

∫ 1

0
(gn(y))2(y(1 − y)

)−3/2 dy

∫ 1

0

(
y(1 − y)

)3/2
(γ ′(y))2 dy.

Since the second term above is finite by (C3), Lemma 3.3 will follow if we can show that the
first term goes to 0 as n → ∞. Note that

n

∫ 1

0
(gn(y))2(y(1 − y)

)−3/2 dy

≤ 23/2n

(∫ 1/n

0

√
y dy +

∫ 1

1−1/n

√
1 − y dy

)
+ 1

n

∫ 1−1/n

1/n

y−3/2(1 − y)−3/2 dy

≤ 8
√

2

3
√

n
+ (1 − n−1)−3/4n−1/4

∫ 1

0
y−3/4(1 − y)−3/4 dy → 0. �
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Lemma 3.4. Let Un : i denote the ith order statistic of an i.i.d. sample of size n from the uniform
distribution over (0,1). Define Am,n = ⋂

1≤i≤n{Un : i (1 − Un : i ) > μn : i (1 − μn : i )/m}. We then
have limm→∞ supn≥1 P(Am,n) = 1.

Proof. By symmetry considerations, we only need to prove

lim
m→∞ sup

n≥1
P

( ⋂
1≤i≤n/2

{Un : i (1 − Un : i ) > μn : i (1 − μn : i )/m}
)

= 1. (3.3)

For any ε > 0, we can choose n0 such that for all n > n0, P(Un : ((n+1)/2) ≥ 2/3) < ε/2 and

P

( ⋂
1≤i≤n/2

{Un : i (1 − Un : i ) > μn : i (1 − μn : i )/m}
)

≥ P

( ⋂
1≤i≤n/2

{Un : i > 3μn : i/m}
)

− P
({

Un : ((n+1)/2) ≥ 2/3
})

≥ P

( ⋂
1≤i≤n/2

{Un : i > 3μn : i/m}
)

− ε/2.

Obviously, we can find a constant m0 such that for all m > m0,

sup
1≤n≤n0

P

( ⋂
1≤i≤n/2

{Un : i (1 − Un : i ) > μn : i (1 − μn : i )/m}
)

> 1 − ε.

If we can choose a constant m1 such that for all m > m1,

sup
n>n0

P

( ⋂
1≤i≤n/2

{Un : i > 3μn : i/m}
)

≥ 1 − ε/2,

then, for all m > max(m0,m1),

sup
n≥1

P

( ⋂
1≤i≤n/2

{Un : i (1 − Un : i ) > μn : i (1 − μn : i )/m}
)

> 1 − ε.

Therefore, the proof of Lemma 3.4 reduces to establishing that

lim
m→∞ sup

n>1
P

( ⋂
1≤i≤n/2

{Un : i > μn : i/m}
)

= 1. (3.4)

Recall the representation formula for the order statistics from a sequence of uniform random

variables, Un : i
dist= Si/Sn+1, where e1, . . . , en+1 are i.i.d. exponentially distributed random vari-

ables with E(ei) = 1 and Si = e1 + · · · + ei . If

M = inf
1≤i≤n<∞

Si/i

Sn+1/(n + 1)
>

1

m
,
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then, for all 1 ≤ i ≤ n/2, we have Si/i
Sn+1/(n+1)

> 1/m. This, in turn, implies that, as m → ∞,

lim
m→∞ sup

n≥1
P

( ⋂
1≤i≤n/2

{
Si/i

Sn+1/(n + 1)
>

1

m

})
≥ lim

m→∞P(M > 1/m) = P(M > 0).

Since Sn/n−→a.s. 1 as n → ∞, we have P(M > 0) = 1. This implies (3.4) and hence
Lemma 3.4 follows. �

Proof of Theorem 1.2. We write

1√
n

n∑
i=1

ψ
(
U

(1)
n : i , . . . ,U

(d)
n : i

) − √
nγ̄ = In + εn = Sn,1 + Sn,2 + εn,

where

In = n−1/2
n∑

i=1

(
ψ

(
U

(1)
n : i , . . . ,U

(d)
n : i

) − γ (μn : i )
)
,

Sn,1 = n−1/2
d∑

j=1

n∑
i=1

(
U

(j)
n : i − μn : i

)
ψj (μn : i ),

Sn,2 = In − Sn,1,

εn = n−1/2
n∑

i=1

γ (μn : i ) − √
n

∫ 1

0
γ (x)dx.

By Lemma 3.3, εn → 0 as n → ∞. We shall now show that Sn,2 →P 0 as n → ∞.

Since max{|U(j)
n : i − μn : i | : 1 ≤ i ≤ n,1 ≤ j ≤ d}−→a.s. 0, by (C4) we have

|Sn,2|IAm,n
≤ K(m)√

n

d∑
j,k=1

n∑
i=1

∣∣(U(j)
n : i − μn : i

)(
U

(k)
n : i − μn : i

)∣∣(1 + |ψ̃j,k(μn : i )|
)
.

By condition (C3), Lemma 3.1 and the Cauchy–Schwarz inequality, we obtain

1√
n

n∑
i=1

E
∣∣(U(j)

n : i − μn : i

)(
U

(k)
n : i − μn : i

)∣∣(1 + |ψ̃j,k(μn : i )|
)

≤ 1

n3/2

n∑
i=1

μn : i (1 − μn : i )|ψ̃j,k(μn : i )| + 1√
n

:= J1 + J2 + J3 + 1√
n
,
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where J1 = n−3/2 ∑
1≤i≤√

n μn : i (1 − μn : i )|ψ̃j,k(μn : i )| and J2, J3 are similarly defined over√
n < i < n − √

n and n − √
n ≤ i ≤ n, respectively. We have

J1 ≤ 2

n

∑
1≤i≤√

n

(
μn : i (1 − μn : i )

)3/2|ψ̃j,k(μn : i )|

∼ 2
∫ 1/

√
n

0

(
x(1 − x)

)3/2|ψ̃j,k(x)|dx → 0

as n → ∞. Similarly, J3 → 0 as n → ∞. Also, as n → ∞,

J2 ≤ 1

n5/4

∑
√

n<i<n−√
n

(
μn : i (1 − μn : i )

)3/2|ψ̃j,k(μn : i )| → 0.

That is, we have shown that as n → ∞, for any given large m, Sn,2IAm,n
→P 0. We can now

choose a sequence of m = mn → ∞ such that Sn,2IAm,n
→P 0 as n → ∞. By Lemma 3.4,

IAc
m,n

→P 0 and hence Sn,2IAc
m,n

→P 0 as m → ∞. Therefore, Sn,2 →P 0.

Define Wj,�(x) = I (U
(j)

� ≤ x) − x for 1 ≤ j ≤ d and 1 ≤ � ≤ n. Observe that Wj,1 is Wj

defined in the proof of Lemma 3.2 and that F̂−1
n;j (

i
n
) = U

(j)
n : i . By Bahadur’s representation of

quantiles (see, e.g., [1] or [9]),

sup
0<t<1

|F̂n;j (t) − t + F̂−1
n;j (t) − t | = O(n−3/4 logn) a.s. for 1 ≤ j ≤ d.

Hence,

Sn,1 = 1√
n

n∑
�=1

Zn,� + o(1) a.s.,

where, for each n,

Zn,� = 1

n

n∑
i=1

d∑
j=1

Wj,�(i/n)ψj (μn : i )

are i.i.d. random variables with mean zero and

Var(Zn,1) =
d∑

j,k=1

1

n2

n∑
h,i=1

Cov
(
Wj(h/n),Wk(i/n)

)
ψj(μn : h)ψk(μn : i )

=
d∑

j,k=1

1

n2

n∑
h,i=1

(
Gj,k(h/n, i/n) − hin−2)ψj(μn : h)ψk(μn : i )

→
d∑

j,k=1

∫ 1

0

∫ 1

0

(
Gj,k(x, y) − xy

)
ψj(x)ψk(y)dx dy.
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Recall that Gj,k is the joint distribution of (U
(j)

1 ,U
(k)
1 ) and that Gj,j (x, y) = min(x, y). To

establish the convergence above, fix j, k and split the second sum above into cases according to
whether h, or i, is: less than εn; between εn and (1 − ε)n; greater than (1 − ε)n. For example,
when we sum over εn ≤ h, i ≤ (1 − ε)n, then it converges to

∫ 1−ε

ε

∫ 1−ε

ε
H(x, y)dx dy, where

H(x,y) = (Gj,k(x, y) − xy)ψj (x)ψk(y). The sum over 1 ≤ h < εn and εn ≤ i ≤ (1 − ε)n can

be shown to converge to
∫ ε

0

∫ 1−ε

ε
H(x, y)dx dy, which, from the method of proof of Lemma 3.2

and condition (C3), can be shown to converge to 0 as ε → 0. Similar convergences hold for other
ranges of h and i.

It is now easy to see that the limit above can be written in the form of σ 2 as stated in The-
orem 1.2. Note that |Zn,1| ≤ ∑d

j=1
1
n

∑n
i=1 |ψj (μn : i )|. If (1/

√
n) 1

n

∑n
i=1 |ψj (μn : i )| → 0 for

j = 1,2, . . . , d, then the Lindeberg–Lévy condition holds. To see this, note that

(
1

n

n∑
i=1

|ψj(μn : i )|
)2

≤ 1

n

n∑
i=1

(
μn : i (1 − μn : i )

)−3/2 1

n

n∑
i=1

(
μn : i (1 − μn : i )

)3/2
(ψj (μn : i ))

2.

By (C3), it is enough to establish that In = 1
n2

∑n
i=1(

i
n+1 (1 − i

n+1 ))−3/2 → 0. Since

In ≤ 4(n + 1)3/2

n2

( ∑
1≤i≤(n+1)/2

i−3/2 +
∑

(n+1)/2≤i≤n

(n + 1 − i)−3/2
)

→ 0,

we have, by the Lindeberg–Lévy central limit theorem,

1√
n

n∑
�=1

Zn,�
dist−→N(0, σ 2).

Hence, Sn,1 →dist N(0, σ 2), which completes the proof of Theorem 1.2. �

4. Examples and counterexamples

We give some examples to show our results and counterexamples to illustrate that conditions (C1)
and (C2) are necessary for Theorem 1.1 to hold.

(1) Let Z be a random variable with a continuous distribution function F . Let gj ,1 ≤
j ≤ d , be continuous monotonically increasing functions. For each 1 ≤ j ≤ d , suppose
X

(j)

1 ,X
(j)

2 , . . . are independent random variables having the same distribution as gj (Z).
Applying Theorem 1.1 and assuming necessary integrability conditions, we get, after
changing the variable y = F(x),

1

n

n∑
i=1

φ
(
X

(1)
n : i , . . . ,X

(d)
n : i

) a.s.−→Eφ(g1(Z), . . . , gd(Z)) as n → ∞.



684 Babu, Bai, Choi and Mangalam

(2) Let (X
(1)
1 , . . . ,X

(d)
1 ), (X

(1)
2 , . . . ,X

(d)
2 ), . . . be independent random vectors having the

same distribution as (U1, . . . ,Ud), where the Uj ’s are uniformly distributed over (0,1).
Let Fj,k be the joint distribution of Uj and Uk . Suppose φ : (0,1)d → R is defined by
φ(x1, . . . , xd) = x

α1
1 x

α2
2 · · ·xαd

d , where αj ≥ 1. Let M = α1 + · · · + αd . Then ψ = φ,
γ (x) = xM and ψj (x) = αjx

M−1 for 1 ≤ j ≤ d . We have

1

n

n∑
i=1

(
X

(1)
n : i

)α1 · · · (X(d)
n : i

)αd a.s.−→ 1

M + 1

and

n−1/2

(
n∑

i=1

(
X

(1)
n : i

)α1 · · · (X(d)
n : i

)αd − n

M + 1

)
dist.−→N(0, σ 2),

where

σ 2 = 2

M2

∑
1≤j<k≤d

αjαk Cov(UM
j ,UM

k ) + 1

(M + 1)2(2M + 1)

d∑
j=1

α2
j .

(3) The study of the statistical properties when there is a loss of association among paired data
has attracted a lot of attention in various contexts, such as the broken sample problem,
file linkage problem and record linkage. For example, DeGroot and Goel initiated the
investigation of estimating the correlation coefficient of a bivariate normal distribution
based on a broken random sample in [7]. Copas and Hilton proposed statistical models to
measure the evidence that a pair of records relates to the same individuals in [4]. Chan and
Loh considered an approximation of the likelihood computation for large broken sample
in [5]. Bai and Hsing, in [2], proved that there does not exist any consistent discrimination
rule for the correlation coefficient, ρ, between X and Y when the paired sample is broken,
that is, the association between X and Y is lost. When pairing is lost, the X’s and Y ’s
behave as if they were independent as far as first order asymptotics, such as the law of
large numbers (see Theorem 1.1), are concerned.

Example 1. This example shows that condition (C1) is necessary for Theorem 1.1 to hold. Let

φ(x, y) =
{

1, if 0 < x = y < 1,

0, if 0 < x �= y < 1.

Let {(Xi, Yi) : 1 ≤ i ≤ n} be a sequence of i.i.d. random vectors. We further suppose that Xi

and Yi are independent and uniformly distributed over (0,1). Since φ is bounded, (C2) holds,
whereas (C1) does not hold. We further note that P(Xn : i �= Yn : i ) = 1 for 1 ≤ i ≤ n. Hence,∑n

i=1 φ(Xn : i , Yn : i ) = 0, but
∫ 1

0 φ(x, x)dx = 1.

Example 2. This example shows that condition (C2) is necessary for Theorem 1.1 to hold. Let
S̃0 = (0,1)2 and, for m ≥ 1, define S̃m = ( m

m+1 ,1)2, Sm = S̃m−1 \ S̃m. Let Lm be the union of
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three line segments:

Lm =
{(

m

m + 1
, y

)
:

m

m + 1
≤ y ≤ 1

}
∪

{(
x,

m

m + 1

)
:

m

m + 1
≤ x ≤ 1

}

∪
{
(x, x) :

m − 1

m
≤ x ≤ m

m + 1

}
.

Let Cm be the region inside Sm which is distance εm within Lm, where εm is chosen so that the
area of Cm is m−8. Write Am = Sm \ Cm. Let φ be a continuous on (0,1)2 satisfying φ = 1 on
the diagonal, φ = m3 on Am and 1 ≤ φ ≤ m3 on Cm.

Let {Ui,Vj : 1 ≤ i, j ≤ n} be independent and uniformly distributed on (0,1). Define Wn =
(Un : n,Vn : n) and an = �n1/2�. Observe that

1

n

n∑
i=1

φ(Un : i , Vi : n) ≥ 1

n
φ(Wn) ≥ 1

n

∑
m≥√

n

m3I (Wn ∈ Am)

≥ √
n

∑
m≥√

n

(
I (Wn ∈ Sm) − I (Wn ∈ Cm)

)
(4.1)

≥ √
n

(
I (Wn ∈ S̃an) − I

(
Wn ∈

⋃
m≥√

n

Cm

))
.

We now claim that

I (Wn ∈ S̃an) −→ 1 a.s., (4.2)

I

(
Wn ∈

⋃
m≥√

n

Cm

)
−→ 0 a.s. (4.3)

as n → ∞. To prove (4.2), observe that

P(Wn /∈ S̃an) ≤ 2P
(
Un : n ≤ an/(1 + an)

) = 2

(
1 − 1

1 + an

)n

≈ 2e−√
n.

This yields
∞∑

n=1

P(Wn /∈ S̃an) < ∞,

which, by the Borel–Cantelli lemma, implies that I (Wn /∈ S̃an i.o.) = 0, proving (4.2). To
prove (4.3), it suffices to show that

∞∑
n=1

P

(
Wn ∈

⋃
m≥√

n

Cm

)
< ∞. (4.4)
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We again consider the nth term in the series in (4.4):

P

(
Wn ∈

⋃
m≥√

n

Cm

)
≤

∑
m≥√

n

P (Wn ∈ Cm)

≤
∑

m≥√
n

P
(
(Ui,Vj ) ∈ Cm for some 1 ≤ i, j ≤ n

)

≤ n2
∑

m≥√
n

P
(
(U1,V1) ∈ Cm

) = n2
∑

m≥√
n

m−8 ≤ Cn−3/2

and hence the infinite series in (4.4) is finite. This completes the proof of (4.3). Thus, by (4.1),
1
n

∑n
i=1 φ(Un : i , Vi : n) diverges. Furthermore, it is easy to see that condition (C2) does not hold.

If (C2) were satisfied, that would imply boundedness of γ over (1 − c0,1)2, which is not the
case. This completes the construction of the counterexample.
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