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The estimation of the Lévy density, the infinite-dimensional parameter controlling the jump dynamics of
a Lévy process, is considered here under a discrete-sampling scheme. In this setting, the jumps are latent
variables, the statistical properties of which can be assessed when the frequency and time horizon of ob-
servations increase to infinity at suitable rates. Nonparametric estimators for the Lévy density based on
Grenander’s method of sieves was proposed in Figueroa-López [IMS Lecture Notes 57 (2009) 117–146]. In
this paper, central limit theorems for these sieve estimators, both pointwise and uniform on an interval away
from the origin, are obtained, leading to pointwise confidence intervals and bands for the Lévy density.
In the pointwise case, our estimators converge to the Lévy density at a rate that is arbitrarily close to the
rate of the minimax risk of estimation on smooth Lévy densities. In the case of uniform bands and discrete
regular sampling, our results are consistent with the case of density estimation, achieving a rate of order
arbitrarily close to log−1/2(n) · n−1/3, where n is the number of observations. The convergence rates are
valid, provided that s is smooth enough and that the time horizon Tn and the dimension of the sieve are
appropriately chosen in terms of n.

Keywords: confidence bands; confidence intervals; Lévy processes; nonparametric estimation; sieve
estimators

1. Introduction

1.1. Motivation and preliminary background

In the past decade, Lévy processes have received a great deal of attention, fueled by numerous
applications in the area of mathematical finance, to the extent that Lévy processes have become
a fundamental building block in the modeling of asset prices with jumps (see, e.g., [9] and [13]
for further information about this field). The simplest of these models postulates that the price
of a commodity (say a stock) at time t is given as an exponential function of a Lévy process
X := {Xt }t≥0. Even this simple extension of the classical Black–Scholes model, in which X

is simply a Brownian motion with drift, is able to account for several fundamental empirical
features commonly observed in time series of asset returns, such as heavy tails, high kurtosis
and asymmetry. Lévy processes, as models capturing some of the most important features of
returns and as “first-order approximations” to other more accurate models, are fundamental for
developing and testing successful statistical methodologies. However, even in such parsimonious
models, there are several issues concerning the performing of statistical inference by standard
likelihood-based methods.

A Lévy process is the “discontinuous sibling” of a Brownian motion. Concretely, X = {Xt }t≥0
is a Lévy process if X has independent and stationary increments, its paths are right-continuous
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with left limits and it has no fixed jump times. The later condition means that, for any t >

0, P[�Xt �= 0] = 0, where �Xt := X(t) − lims↗t Xs is the magnitude of the “jump” of X

at time t . Any Lévy process can be constructed from the superposition of a Brownian motion
with drift, σWt + bt , a compound Poisson process and the limit process resulting from making
the jump intensity of a compensated compound Poisson process, Yt − EYt , go to infinity while
simultaneously allowing jumps of smaller sizes. Formally, X admits a decomposition of the form

Xt = bt + σBt + lim
ε↘0

∫ t

0

∫
ε≤|x|≤1

x(μ − μ̄)(dx,ds) +
∫ t

0

∫
|x|>1

xμ(dx,ds), (1.1)

where B is a standard Brownian motion and μ is an independent Poisson measure on R+ ×
R\{0} with mean measure μ̄(dx,dt) := ν(dx)dt . Thus, Lévy processes are determined by three
parameters: a nonnegative real σ 2, a real b and a measure ν on R\{0} such that

∫
(x2 ∧1)ν(dx) <

∞. The measure ν controls the jump dynamics of the process X, in that ν(A) gives the average
number of jumps (per unit time) whose magnitudes fall in a given set A ∈ B(R). A common
assumption in Lévy-based financial models is that ν is determined by a function s : R\{0} →
[0,∞), called the Lévy density, as follows:

ν(A) =
∫

A

s(x)dx ∀A ∈ B(R\{0}).

Intuitively, the value of s at x0 provides information on the frequency of jumps with sizes “close”
to x0.

1.2. The statistical problem and methodology

We are interested in estimating, in a nonparametric fashion, the Lévy density s over a window of
estimation D := [a, b] ⊂ R\{0}, based on discrete observations of the process on a finite interval
[0, T ]. In general, s can blow up around the origin and, hence, we consider only domains D

that are “separated” from the origin, in the sense that D ∩ (−ε, ε) = ∅ for some ε > 0. If the
whole path of the process were available (and, hence, the jumps of the process would be observ-
able), the problem would be identical to the estimation of the intensity of a nonhomogeneous
Poisson process on a fixed time interval, say [0,1], based on [T ] independent copies of the
process. Unfortunately, under discrete-sampling, the times and magnitudes of jumps are latent
(unobservable) variables. Nevertheless, it is expected that the statistical property of the jumps
can be inferred when the frequency and time horizon of observations increase to infinity, which
is precisely the sampling scheme we adopt in this paper.

Nonparametric estimators for the Lévy density were proposed in [14], under continuous sam-
pling of the process, and in [11], under discrete sampling, using the method of sieves. The method
of sieves was originally proposed by Grenander [17] and has been applied more recently by
Birgé, Massart and others (see, e.g., [1,4]) to several classical nonparametric problems, such as
density estimation and regression. This approach consists of the following general steps. First,
choose a family of finite-dimensional linear models of functions, called sieves, with good ap-
proximation properties. Common sieves are splines, trigonometric polynomials and wavelets.
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Second, specify a “distance” metric d between functions, relative to which the best approxima-
tion of s in a given linear model S will be characterized. That is, the best approximation s⊥ of s

on S is given by d(s, s⊥) = infp∈S d(s,p). Finally, devise an estimator ŝ, called the projection
estimator, for the best approximation s⊥ of s in S .

The sieves considered here are of the general form

S := {β1ϕ1 + · · · + βdϕd :β1, . . . , βd ∈ R}, (1.2)

where ϕ1, . . . , ϕd are orthonormal functions with respect to the inner product 〈p,q〉D :=∫
D

p(x)q(x)dx. In the sequel, ‖·‖ := ‖·‖D stands for the associated norm 〈·, ·〉1/2
D on L

2(D,dx).
We recall that, relative to the distance induced by ‖ · ‖, the element of S closest to s, that is, the
orthogonal projection of s on S , is given by

s⊥(x) :=
d∑

j=1

β(ϕj )ϕj (x), (1.3)

where β(ϕj ) := 〈ϕj , s〉D = ∫
D

ϕj (x)s(x)dx. Thus, under this setting, the method of sieves re-
duces to the estimation of the functional

β(ϕ) =
∫

D

ϕ(x)s(x)dx

for certain functions ϕ. In Section 3, we propose estimators for β(ϕ) and, as a by-product, we
develop projection estimators ŝ on S .

Following [11], we further specialize our approach and take regular piecewise polynomials
as sieves, although similar results will hold true if we take other typical classes of sieves, such
as smooth splines, trigonometric polynomials or wavelets. For future reference, let us formally
define the sieves.

Definition 1.1. Sk,m stands for the class of functions ϕ such that for each i = 0, . . . ,m−1, there
exists a polynomial qi,k of degree at most k such that ϕ(x) = qi,m(x) for all x in (xi−1, xi], where
xi = a + i(b − a)/m.

It is easy to build an orthonormal basis for Sk,m using the orthonormal Legendre polynomials
{Qj }j≥0 on L

2([−1,1],dx). Indeed, the functions

ϕ̂i,j (x) :=
√

2j + 1

xi − xi−1
Qj

(
2x − (xi + xi−1)

xi − xi−1

)
1[xi−1,xi )(x), (1.4)

with i = 1, . . . ,m and j = 0, . . . , k, form an orthonormal basis for Sk,m. For future reference, let
us recall that

|Qj(x)| ≤ 1 and |Q′
j (x)| ≤ Q′

j (1) = j (j + 1)

2
. (1.5)
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We now review a few points of [11] in order to motivate the results in this paper. It is proved
in [11] that by appropriately choosing the number of classes m and the sampling frequency high
enough (both choices determined as a function of the time horizon T ), the resulting projection
estimator on Sm,k attains the same rate of convergence in T as the minimax risk on a certain
class � of smooth functions. Specifically, the referred minimax risk, defined by

inf
ŝT

sup
s∈�

Es

[∫ b

a

(
ŝT (x) − s(x)

)2 dx

]
, (1.6)

where the infimum is over all estimators ŝT based on {Xt }t≤T , converges to 0 at a rate
O(T −2α/(2α+1)) as T → ∞ (see [11], Theorem 4.2). The parameter α characterizes the smooth-
ness of the Lévy densities s ∈ � on the interval [a, b], in that if s is r-times differentiable on
(a, b) (r = 0, . . .) and ∣∣s(r)(x) − s(r)(y)

∣∣≤ L|x − y|κ (1.7)

for all x, y ∈ (a, b) and some L < ∞ and κ ∈ (0,1], then the smoothness parameter of s is
α := r + κ . In [11], Proposition 3.5, we show that there exists a critical mesh δT > 0 such that if
the time span between consecutive sampling observations is at most δT and mT := [T 1/(2α+1)],
then the resulting projection estimator, denoted by s̃T , is such that

lim sup
T →∞

T 2α/(2α+1) sup
s∈�

E‖s − s̃T ‖2 < ∞. (1.8)

Of course, an “explicit” estimate of δT is necessary for practical reasons. In Section 2, we show
that it is sufficient that δT = O(T −1), improving a former result in [11] (see Proposition 3.7
therein).

Note that the convergence in (1.8) is in the integrated mean square sense. A natural question,
one which we consider in this paper, is whether or not projection estimators ŝT on Sk,m can be
devised such that

T α/(2α+1)
(
ŝT (x) − s(x)

) D−→ σ̄ (x)Z (1.9)

holds for a standard normal random variable Z, for each fixed x ∈ D. We were unable to
obtain (1.9) due to the fact that the bias of the estimator ŝT , namely EŝT (x) − s(x), is just
O(T −α/(2α+1)). However, for any β < α

2α+1 , we can devise a projection estimator ŝ
β
T such that

T β
(
ŝ
β
T (x) − s(x)

) D−→ σ̄ (x)Z. (1.10)

The idea is to use “undersmoothing” to make the effect of bias negligible. Our results are in
keeping with those obtained in other standard nonparametric problems, such as density estima-
tion and functional regression, using local nonparametric methods such as kernel estimation (see,
e.g., [18]). We were unable to find a reference where undersmoothing is used in a global non-
parametric method such as the sieves method and, hence, this could be an additional contribution
of the results presented here.
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An important extension of the pointwise central limit theorems is the development of global
measures of deviation or asymptotic confidence bands for the Lévy density. In this paper, we es-
tablish these methods for piecewise constant and piecewise linear regular polynomials (although
we believe the result holds true for a general degree), following ideas of the seminal work of
Bickel and Rosenblatt [3]. There are some important differences, however, starting from the fact
that Bickel and Rosenblatt considered kernel estimators for probability densities, while, here, we
consider a global nonparametric method. In spite of these differences, our results are consistent
with the case of density estimation, achieving a convergence rate of order arbitrarily close to
log−1/2(n) · n−1/3, where n is the number of observations. Again, the rate is valid provided that
the time horizon Tn and the dimension of the sieves is appropriately chosen.

The paper is structured as follows. In Section 2, we derive a short-term ergodic property of
a Lévy process, which plays a fundamental role in our results. In Section 3, we introduce the
projection estimators for the Lévy densities and show pointwise central limit theorems for them.
The uniform case and the resulting confidence bands are developed in Section 4. Section 5 il-
lustrates the performance of the projection estimators and confidence bands using a simulation
experiment in the case of a variance gamma Lévy model. Finally, two appendices collect the
technical details of our results.

2. An useful small-time asymptotic result

The critical time span δT required for the validity of (1.8) was characterized in [11] by the
property that

sup
y∈D

∣∣∣∣ 1

�
P[X� ≥ y] − ν([y,∞))

∣∣∣∣< k
1

T
(2.1)

for all 0 < � < δT , where k is a constant (independent of T and �). For practical reasons, an
“explicit” estimate of this critical mesh is necessary. The following proposition shows that δT =
T −1 suffices and serves as the fundamental property of Lévy processes used for the asymptotic
theory developed in this paper. The proof of the proposition is provided in Appendix A; also,
see [15] for related higher order polynomial expansions for P(Xt ≥ y).

Proposition 2.1. Suppose that the Lévy density s of X is Lipschitz in an open set D0 containing
D = [a, b] ⊂ R\{0} and that s(x) is uniformly bounded on |x| > δ for any δ > 0. Then, there
exist a k > 0 and a t0 > 0 such that, for all 0 < t < t0,

sup
y∈D

∣∣∣∣1t P[Xt ≥ y] − ν([y,∞))

∣∣∣∣< kt. (2.2)

3. Pointwise central limit theorem

Throughout this paper, we assume that the Lévy process {Xt }t≥0 is being sampled over a time
horizon [0, T ] at discrete times 0 = t0

T < · · · < t
nT

T = T . We also use the notation πT := {tkT }nT

k=0
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and π̄T := maxk{tkT − tk−1
T }, where we will sometimes drop the subscript T . The following sta-

tistics are the main building blocks for our estimation:

β̂πT (ϕ) := 1

T

nT∑
k=1

ϕ(XtkT
− X

tk−1
T

). (3.1)

In the case of a quadratic function ϕ(x) = x2,
∑nT

k=1 ϕ(XtkT
− X

tk−1
T

) is the so-called realized

quadratic variation of the process. Thus, the statistics (3.1) can be interpreted as the realized
ϕ-variation of the process per unit time based on the observations Xt0

T
, . . . ,X

t
nT
T

. The estima-

tors (3.1) were proposed independently by Woerner [25] and Figueroa-López [10].
The main virtue of the statistics (3.1) lies in its application to recover β(ϕ) := ∫

ϕ(x)s(x)dx

as T → ∞ and π̄T → 0 for bounded ν-continuous functions ϕ such that ϕ(x) → 0 fast enough
as x → 0. This result was obtained in [25] (Theorem 5.1 therein) for regular sampling schemes
and in [12] (Proposition 2.2 therein) for general sampling schemes and a more general class of
functions ϕ (see also [11], Theorem 2.3, for related central limit theorems). The consistency of
β̂π (ϕ) for β(ϕ) leads us to propose

ŝπ (x) :=
d∑

j=1

β̂π (ϕj )ϕj (x) (3.2)

as a natural estimator for the orthogonal projection s⊥ defined in (1.3). The nonparametric es-
timator (3.2) was proposed in [10], where the problem of model selection was also considered
under continuous-time sampling.

As was discussed in the Introduction, one can construct a projection estimator s̃T on the regular
piecewise polynomials S = Sk,m of Definition 1.1 that converges to s, under the integrated mean
square distance, at a rate at least as good as T −2α/(2α+1). Such a rate can be ensured by “tuning”
the number of classes m in the sieve, as well as the sampling frequency π̄ , to both the degree
of smoothness α of s and the time horizon T . It is natural to wonder whether it is possible to
construct a projection estimator ŝT such that

T α/(2α+1)
(
ŝT (x) − s(x)

) D−→ σ̄Z

as T → ∞, for Z ∼ N (0,1) and a constant σ̄ . We are unable to obtain this result due to the fact
that the bias EŝT (x) − s(x) of any projection estimator ŝT is, at best, O(T −α/(2α+1)). However,
in this section, we show that for any 0 < β < α

2α+1 , there exists a projection estimator ŝ
β
T such

that

c′
T

(
ŝ
β
T (x) − s(x)

) D−→ σ̄Z

for a normalizing constant c′
T � T β (i.e., kT β ≤ c′

T ≤ k̄T β for some constants k, k̄ ∈ (0,∞)

independent of T ). As it is often the case, our approach consists of first obtaining a central
limit theorem for ŝ(x) centered at Eŝ(x) with normalizing constants c′

T � T β and, subsequently,
making the bias Eŝ(x) − s(x) to be o(c−1

T ). The central limit theorem for ŝ(x) follows from a
classical central limit theorem for row-wise independent arrays.
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Below, Legendre polynomials {Qj }j≥0 on L
2([−1,1],dx) are used to devise an orthonormal

basis for the sieve Sk,m of Definition 1.1. Also, we consider Lévy densities s whose restrictions
to D := [a, b] belong to the Besov class Bα∞(L∞([a, b])) (i.e., functions satisfying (1.7) with
r ∈ N and κ ∈ (0,1] such that α = r + κ). The following is the main theorem of this section. Its
proof is deferred to Appendix B.

Theorem 3.1. Suppose that the Lévy density s of X satisfies the conditions of Proposition 2.1
and belongs to Bα∞(L∞([a, b])) for some α ≥ 1. Let cT be a normalizing constant and let ŝT be
the projection estimator on Sk,mT

based on sampling times πT such that the following conditions
are satisfied:

(i) cT
T →∞−→ ∞; (ii)

c2
T mT

T

T →∞−→ 1; (iii) cT mT π̄T
T →∞−→ 0;

(iv) cT m−α
T

T →∞−→ 0; (v) k ≥ α − 1.

Then, for any fixed x ∈ (a, b) for which s(x) > 0,

cT

bk,mT
(x)

(
ŝT (x) − s(x)

) D−→ σ̄ (x)Z, (3.3)

where

Z ∼ N (0,1), σ̄ 2(x) := (b − a)−1s(x),

b2
k,m(x) :=

k∑
j=0

(2j + 1)

m∑
i=1

Q2
j

(
2x − (xi + xi−1)

xi − xi−1

)
1[xi−1,xi )(x).

Also, for any fixed 0 < β < α
2α+1 , the resulting projection estimator ŝT with mT = [T 1−2β ] is

such that

T β

bk,mT
(x)

(
ŝT (x) − s(x)

) D−→ σ̄ (x)Z,

provided that π̄T = T −γ with γ > 1 − β .

Remark 3.2.

(1) In view of (1.5), 1 ≤ bk,m ≤∑k
j=0(2j + 1) and, hence, the normalizing constant c′

T :=
cT /bk,mT

� cT . Also, note that bk,m ≡ 1 in the piecewise constant case (k = 0).
(2) Theorem 3.1 will allow us to construct approximate confidence intervals for s(x). Con-

cretely, the 100(1 − α)% interval for s(x) is approximately given by

ŝT (x) ± bk,mT
(x)

cT (b − a)1/2
ŝ

1/2
T (x)zα/2,

where zα/2 is the α/2 normal quantile.
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4. Confidence bands for Lévy densities

In this section, we address the problem of constructing confidence bands for the Lévy density s of
a Lévy process using projection estimators ŝn

T on Sk,m based on n evenly-spaced observations of
the process at t0 = 0 < · · · < tn = T on [0, T ]. Confidence bands entail the limit in distribution
of the uniform norm

‖ŝn
T − s‖[a,b] := sup

x∈[a,b]
|ŝn

T (x) − s(x)|,

but, as before, we will first work with the uniform norm of

Yn
T (x) := ŝn

T (x) − Eŝn
T (x), x ∈ [a, b], (4.1)

and then estimate the uniform norm of the bias Eŝn
T (x) − s(x). We follow ideas from the sem-

inal paper of Bickel and Rosenblatt [3], wherein confidence bands for probability densities are
constructed based on kernel estimators. There are two fundamental general directions in Bickel
and Rosenblatt’s approach:

(1) the statistics of interest are expressed in terms of the so-called uniform standardized em-
pirical process

Z0
n(x) := n1/2{F ∗

n (x) − x}, x ∈ [0,1], (4.2)

where, denoting by Ft the distribution of Xt and by δn := ti − ti−1 the time span between
observations, F ∗

n (·) is the empirical distribution of {Fδn(Xti − Xti−1)}i≤n;
(2) the empirical process Z0

n is approximated by a Brownian bridge Z0 and the error is esti-
mated using Brillinger’s result [5] or the Komlós, Major and Tusnády construction [19].

Once the statistic of interest is related to the Brownian bridge Z0, we will carry over several
successive approximations (see Appendix C for the details), which will allow the distribution of
‖Yn

T ‖[a,b] to be connected with the limiting distribution of the extreme value

M̄m := max
1≤j≤m

{
ζ

(k)
j

}
of independent copies {ζ (k)

j }j of the random variable

ζ (k) := sup
x∈[−1,1]

∣∣∣∣∣
k∑

j=0

√
2j + 1Qj(x)Zj

∣∣∣∣∣, (4.3)

where Zj are i.i.d. standard normal random variables. The problem is then reduced to finding
the extreme value distribution of a random sample from (4.3). For instance, in the case k = 0,

ζ
(0)
j

i.i.d.∼ |Z0|, which is known to satisfy

lim
n→∞ P

(
max

1≤j≤m

∣∣ζ (0)
j

∣∣≤ y

am

+ bm

)
= e−2e−y

(4.4)
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for any y > 0, where

am = (2 logm)1/2, (4.5)

bm = (2 logm)1/2 − 1
2 (2 logm)−1/2(log logm + log 4π). (4.6)

We are also able to tackle the case k = 1, where ζ (1) = |Z0| + √
3|Z1|, but the general case is

still under investigation. Our assumptions are as follows.

Assumption 1.

(1) s is positive and continuous on [a, b].
(2) s is differentiable in (a, b) and, moreover, the derivative of s1/2 is bounded in absolute

value on (a, b).

We are ready to present the main result of this section. We defer its proof to Appendix C.

Theorem 4.1. Suppose that ν(R) = ∞ or σ �= 0. Also, suppose that the Lévy density s satisfies
the conditions of Proposition 2.1 and the Assumption 1. Let Tn → ∞ and mn → ∞ be such that

(i) δn log δn · mn logmn
n→∞−→ 0, (ii)

log2 n

Tn

· mn logmn
n→∞−→ 0,

where δn := Tn/n. Then, for k ∈ {0,1}, the deviation process Yn
Tn

of (4.1) satisfies

lim
n→∞ P

(
amn

{
κT̄

1/2
n sup

x∈[a,b]
|s−1/2(x)Y n

Tn
(x)| − bmn

}
≤ y

)
= e−κ ′e−y

, (4.7)

where T̄n := Tn/mn, am and bm are defined as in (4.5)–(4.6) and (κ, κ ′) = ((b−a)1/2,2) if k = 0
or (κ, κ ′) = ((b − a)1/22−1,4) if k = 1.

The previous result shows that

amn

{
κT̄

1/2
n sup

x∈[a,b]
s−1/2(x)|ŝn

Tn
(x) − Eŝn

T (x)| − bmn

}
converges to a Gumbel distribution. The final step in constructing our confidence bands consists
of finding conditions for replacing Eŝn

T with s. The following result shows this step. Its proof is
presented in Appendix C.

Corollary 4.2. Suppose that the conditions of Theorem 4.1 hold true, that the restriction of s to
[a, b] is a member of Bα∞(L∞([a, b])) and also that

(iii) Tnm
1−2α
n log2 mn

n→∞−→ 0. (4.8)
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Then,

lim
n→∞ P

(
amn

{
κT̄

1/2
n sup

x∈[a,b]
1

s1/2(x)
|ŝn

Tn
(x) − s(x)| − bmn

}
≤ y

)
= e−κ ′e−y

, (4.9)

where we have used the same notation for κ and κ ′ as in Theorem 4.1.

The previous corollary allows us to construct confidence bands for s on [a, b] based on the
projection estimators ŝ on regular piecewise linear (or constant) polynomials. Indeed, suppose
that y∗

α is such that exp{−k′e−y∗
α } = 1 − α and let

dn := 1√
2κ

(
y∗
α

amn

+ bmn

)
T̄

−1/2
n .

Then, as n → ∞,

s(x) ∈ (ŝn
Tn

(x) + {
d2
n ±

√(
ŝn
Tn

(x) + d2
n

)2 − (ŝn
Tn

(x))2
})

, (4.10)

with 100(1 − α)% confidence. The above interval is asymptotically equivalent to the following,
simpler, interval:

s(x) ∈
(

ŝn
Tn

(x) ± 1

κ

(
y∗
α

amn

+ bmn

)
T̄

−1/2
n (ŝn

Tn
(x))1/2

)
. (4.11)

We conclude this section with some final remarks.

Remark 4.3. In the case where Tn := cn · nα1 and mn = [dn · nα2], for some α1, α2 > 0, cn � 1
and dn � 1, the conditions (i)–(ii) of Theorem 4.1 are satisfied if 0 < α1 < 1 and 0 < α2 <

(1 − α1) ∧ α1. Also, it can be checked that condition (iii) of Corollary 4.2 is met if

0 < α1 <
2α + 1

3α + 2
and

α1

1 + 2α
< α2 < (2 − 3α1) ∧ α1. (4.12)

Note that (α2 −α1)/2 can be made arbitrarily close to −α/(3α +1) on the range of values (4.12)
and, thus, amnT̄

−1/2
n can be made to vanish at a rate arbitrarily close to (logn)−1/2n−α/(3α+1),

provided that α is large enough. In particular, if 0 < ε � 1 and s is smooth enough, then mn and
Tn can be chosen such that

‖ŝn
Tn

− s‖[a,b] = O(log−1/2(n)n−1/3+ε).

5. A numerical example

Variance gamma processes (VG) were proposed in [20] and [7] as substitutes for Brownian mo-
tion in the Black–Scholes model. Since their introduction, VG processes have received a great
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dealt of attention, even in the financial industry. A variance gamma process X = {X(t)}t≥0 is a
time-changed Brownian motion with drift of the form

X(t) = θU(t) + σW(U(t)), (5.1)

where {W(t)}t≥0 is a standard Brownian motion, θ ∈ R, σ > 0 and U = {U(t)}t≥0 is an inde-
pendent gamma Lévy process such that E[U(t)] = t and Var[U(t)] = νt . Since gamma processes
are subordinators, the process X is itself a Lévy process (see [23], Theorem 30.1) and its Lévy
density takes the form

s(x) =

⎧⎪⎪⎨⎪⎪⎩
α

|x| exp

(
− |x|

β−

)
, if x < 0,

α

x
exp

(
− x

β+

)
, if x > 0,

(5.2)

where α > 0, β− ≥ 0 and β+ ≥ 0 with |β−| + |β+| > 0 (see, e.g., [9] for expressions for β±, α

in terms of θ , σ and ν). In that case, α controls the overall jump activity, while β+ and β−
take charge of the intensity of large positive and negative jumps, respectively. In particular, the
difference between 1/β+ and 1/β− determines the frequency of drops relative to rises, while
their sum measures the frequency of large moves relative to small ones.

The performance of projection estimation for the variance gamma Lévy process was illustrated
in [11] via simulation experiments. In this section, we want to further extend this analysis to show
the performance of confidence bands. As in [11], we take as sieve the class S0,m, namely, the
span of the indicator functions χ[x0,x1], . . . , χ(xm−1,xm], where x0 < · · · < xm is a regular partition
of an interval D ≡ [a, b], with 0 < a or b < 0. We take parameter values which are partially
motivated by the empirical findings of [7] based on daily returns of the S&P500 index from
January 1992 to September 1994 (see their Table I). Using maximum likelihood methods, the
annualized estimates of the parameters for the variance gamma model were reported to be θ̂ML =
−0.00056256, σ̂ 2

ML = 0.01373584 and ν̂ML = 0.002, from which it can easily be found that

α̂ = 500, β̂+ = 0.0037056 and β̂− = 0.0037067. (5.3)

These parameter values seem to be consistent with other empirical studies (see, e.g., [24]), al-
though we admit that parameter values fitted to intraday high-frequency data would have been
preferable.

We simulate 100 samples of the VG process with a maximal time horizon of T = 10 years
and a sampling span between observations of δ = 1/(252 × 6.5 × 60 × 12). Assuming a business
calendar year of 252 days and a trading day of 6.5 hours, the time span between observations
corresponds to 5 seconds. Intraday data of such characteristics is available via financial databases
such as NASDAQ TAQ.

We estimate the sample coverage probabilities

cα := P
(
s(·) ∈ the 100(1 − α)% confidence band on [a, b]),

based on the 100 simulations for two sampling frequencies δ = 1/(252 × 6.5 × 60 × 12) (5 sec-
onds) and δ = 1/(252 × 6.5 × 60) (1 minute), and maturities of T = 1,3,5 and 10 years. We
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Table 1. Empirical coverage probabilities of 95% confidence bands on the interval [0.001,0.1] based on
a piece-wise projection estimator with m classes

δ\T 1 year 3 years 5 years 10 years

5 s 0.97 (m = 40) 0.99 (m = 40) 0.97 (m = 40) 0.97 (m = 40)
0.98 (m = 35) 0.95 (m = 25) 0.80 (m = 25)

1 min 0.93 (m = 40) 0.94 (m = 40) 0.98 (m = 40) 0.87 (m = 40)
0.97 (m = 35) 0.75 (m = 25) 0.60 (m = 25) 0.94 (m = 50)

use two possible numbers of classes: m = 40 and the data-driven selected m proposed in [11].
Concretely, the selection criterion is given by

m̂ := argmin
m

{−‖ŝπ
m‖2 + penπ (Sk,m)}, (5.4)

where ŝπ
m is given according to (3.2) and penπ is given by

penπ (Sk,m) = 2

T 2

n∑
i=1

∑
i,j

ϕ̂2
i,j (Xti − Xti−1). (5.5)

The quantity to be minimized in (5.4) is a discrete-time version of an unbiased estimator of the
shifted risk E‖s − ŝπ

m‖2 − ‖s‖2 (see [11], Section 5, for more details).
The Table 1 shows the coverage probabilities for the interval [a, b] = [0.001,0.1] (based on

100 simulations). Overall, the coverage probabilities of the confidence bands for m = 40 are
good. In the case of the data-driven selected m, there are some values of m for which probabilities
are quite low. Such cases occur (only) when the band does not contain the density very near
a = 0.001. It seems more reasonable to take an average between different classes with values
of m which are reasonably close in terms of the quantity in (5.5).

To illustrate how close the estimated Lévy density is to the true Lévy density and the over-
all width of the confidence bands, Figure 1 shows the actual Lévy density (solid blue line), the
mean of the penalized projection estimator (solid red line) and the means of the lower and up-
per 95%-confidence bands (dashed lines). All the means are computed using 100 confidence
bands based on δ = 5 seconds and time horizons of T = 3 and T = 10 years. The analogous
figures with a sampling time span of δ = 1 minute are shown in Figure 2. In our empirical re-
sults (not shown here for the sake of space), we found that high-frequency data is crucial to
estimate the Lévy density near the origin. For instance, the confidence bands near the origin
do not perform well when taking 30-minute observations in a time period of 10 years. The Ta-
ble 2 gives the estimated coverage probabilities on the interval [0.005,0.2] based on 30-minute
returns.

Let us finish with two remarks. First, from an algorithmic point of view, the estimation for
the variance gamma model using penalized projection is not different from the estimation of
the gamma Lévy process. We can simply estimate both tails of the variance gamma process
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Figure 1. Means of projection estimators and corresponding confidence bands for the VG model based on
100 simulations with a sampling time span of 1/(252 × 6.5 × 60 × 12) (about 5 seconds) during 3 years
(left panel) and 10 years (right panel).

separately. However, from the point of view of maximum likelihood estimation (MLE), the prob-
lem is numerically challenging. Even though the marginal density functions have “closed” form
expressions (see [7]), there are well-documented issues with MLE (see, e.g., [21]). Finally, it
worth pointing out that applying an efficient estimation method to a misspecified model could
lead to quite undesirable results, as was illustrated in [11], where MLE was applied to a CGMY
model (see [6]) with parameter values quite close to those of a gamma process. The numerical
experiments in [11] show that a modestly efficient robust nonparametric method is sometimes
preferable to a very efficient estimation method.

Appendix A: Proof of Proposition 2.1

Without loss of generality, we assume that a > 0. Consider the process

X̃ε
t :=

∫ t

0

∫
R

x1{|x|≥ε}μ(dx,ds) (A.1)

for 0 < ε < 1, which is well known to be a compound Poisson process with intensity of
jumps λε := ν({|x| ≥ ε}) and jump distribution 1

λε
1{|x|≥ε}ν(dx). The remainder process, Xε :=

X − X̃ε , is then a Lévy process with jumps bounded by ε. Concretely, Xε has Lévy triplet
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Figure 2. Means of projection estimators and corresponding confidence bands for the VG model based on
100 simulations with a sampling time span of 1/(252 × 6.5 × 60) (about 1 minute) during 3 years (left
panel) and 10 years (right panel).

Table 2. Empirical coverage probabilities of 95% confidence bands on the interval [0.005,0.2] based on
a piece-wise projection estimator with m classes

δ\T 1 year 3 years 5 years 10 years

30 min 0.34 (m = 40) 0.73 (m = 40) 0.87 (m = 40) 0.97 (m = 40)
0.43 (m = 10) 0.71 (m = 35) 0.85 (m = 35) 0.97 (m = 25)

(σ 2, bε,1{|x|≤ε}ν(dx)), where bε = b − ∫
ε<|x|≤1 xν(dx). The following tail estimate will play an

important role in the sequel:

P(|Xε
t | ≥ z) ≤ exp{αz0 log z0} exp{αz − αz log z}tzα, (A.2)

valid for an arbitrary, but fixed, positive real α ∈ (0, ε−1) and for any t, z > 0 such that t < z−1
0 z,

where z0 depends only on α (see [22], Lemma 3.2, or [23], Section 26, for a proof).
Define

Ay(t) := 1

t

{
1

t
P[Xt ≥ y] − ν([y,∞))

}
,
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which, for ε <
y
2 ∧ 1 and after conditioning on the number of jumps, can be written as

Ay(t) = 1

t2
Efy(X

ε
t )e

−λεt + e−λεt

∫
|x|≥ε

1

t
{Efy(X

ε
t + x) − fy(x)}ν(dx)

− 1 − e−λεt

t

∫
x>y

fy(x)ν(dx) + e−λεt
∞∑

n=2

(λε)
ntn−2

n! Efy

(
Xε

t +
n∑

i=1

ξi

)
,

where fy(x) = 1x≥y . The first term on the right-hand side of the above expression is bounded
uniformly for y ∈ [a, b] and t < t0, for certain t0(α) > 0, because of (A.2) taking z = a and α ∈
(2a−1, ε−1). The last two terms in the same expression are uniformly bounded in absolute value
by ν(x ≥ a) and ν(|x| ≥ ε)2, respectively. We need to show that the second term is uniformly
bounded. Define By(t) := ∫

|x|≥ε
{Efy(X

ε
t + x) − fy(x)}ν(dx). Clearly,

By(t) :=
∫ y

y−ε

P{Xε
t ≥ y − x}s(x)dx −

∫ y+ε

y

P{Xε
t < y − x}s(x)dx

+
∫

{x<y−ε,|x|≥ε}
P{Xε

t ≥ y − x}s(x)dx −
∫ ∞

y+ε

P{Xε
t < y − x}s(x)dx.

Since s is bounded and integrable away from the origin, the last two terms in the expression for
By(t) can be bounded in absolute value by ν{|x| ≥ ε}P{|Xε

t | ≥ ε}. Dividing by t , this converges
to 0 in light of the well-known limit

lim
t→0

1

t
P(Zt ≥ z) = ν([z,∞)), (A.3)

valid for any Lévy process Z with Lévy measure ν and any point z of continuity of ν (see, e.g.,
Bertoin [2], Chapter 1). The other two terms can be bounded as follows:∣∣∣∣∫ y

y−ε

P{Xε
t ≥ y − x}s(x)dx −

∫ y+ε

y

P{Xε
t < y − x}s(x)dx

∣∣∣∣
≤ K1

∫ ε

0
P{|Xε

t | ≥ u}udu + K0

∣∣∣∣∫ ε

0
P{Xε

t ≥ u}du −
∫ ε

0
P{Xε

t < −u}du

∣∣∣∣,
where K1 is the Lipschitz constant of s in D0 and K0 := supx∈D0

|s(x)|. Next, applying Fubini’s
theorem, we can write the expression in the last line above as follows:

K1
1
2E{(|Xε

t | ∧ ε)2} + K0|Eh(Xε
t )|,

where h(x) = x1|x|≤ε − ε1x<−ε + ε1x>ε . Using the formulas for the variance and mean of a
Lévy process, we obtain that

sup
0<t≤1

1

t
E{(|Xε

t | ∧ ε)2} ≤ σ 2 +
∫

|x|≤ε

x2ν(dx) + bε < ∞.
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Also, ∣∣∣∣1t Eh(Xε
t )

∣∣∣∣≤ ∣∣∣∣1t EXε
t

∣∣∣∣+ ∣∣∣∣1t EXε
t 1{|Xε

t |>ε}
∣∣∣∣+ ε

1

t
P{|Xε

t | > ε}.

The last term above converges to 0 by (A.2). The second term also vanishes since

1

t

∣∣EXε
t 1{|Xε

t

∣∣>ε}
∣∣≤ {

1

t
P{|Xε

t | > ε}
}1/2{1

t
E(Xε

t )
2
}1/2

→ 0

as t → 0. Finally, using the formula for the mean of Xε
t , we have

lim
t→0

1

t
Eh(Xε

t ) ≤ lim
t→0

1

t
|EXε

t | = |bε|.

We conclude that there exists a t0 and K > 0 such that for t ≤ t0, supy∈D |By(t)|/t ≤ K. This
completes the proof since all other terms in Ay(t) can be easily bounded uniformly in D.

Appendix B: Proofs of the pointwise central limit theorem

Throughout this section, we shall use the orthonormal basis {ϕ̂i,j }1≤i≤m,0≤j≤k of (1.4). We start
our proof with following easy lemma.

Lemma B.1. Suppose that ϕ has support [c, d] ⊂ R+\{0}, where ϕ is continuous with continu-
ous derivative. Then,∣∣∣∣Eϕ(X�)

�
− β(ϕ)

∣∣∣∣≤ (
|ϕ(c)| +

∫ d

c

|ϕ′(u)|du

)
M�([c, d]),

where β(ϕ) := ∫
ϕ(x)s(x)dx and M�([c, d]) := supy∈[c,d] | 1

�
P[X� ≥ y] − ν([y,∞))|.

Proof. The result is clear from the identities

Eϕ(X�) = ϕ(c)P[X� ≥ c] +
∫ ∞

c

ϕ′(u)P[X� ≥ u]du,∫
ϕ(x)ν(dx) = ϕ(c)ν([c,∞)) +

∫ ∞

c

ϕ′(u)ν([u,∞))du,

which are standard consequences of Fubini’s theorem. �

Our first result shows a central limit theorem for ŝ(x) centered at Eŝ(x). Let us remark that
the fact that the Legendre polynomial Qj is not constant for j > 0 poses some difficulty since
the relative position of x inside its class changes greatly with m.
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Lemma B.2. Under the notation and assumptions of Theorem 3.1, it follows that

cT

bk,mT
(x)

(
ŝT (x) − EŝT (x)

) D−→ σ̄Z.

Proof. We apply a central limit theorem version for row-wise independent arrays of random
variables (see, e.g., the corollary following [8], Theorem 7.1.2). Note that

ST := cT

bmT

(
ŝT (x) − EŝT (x)

)
= cT

T bmT

∑
i

k∑
j=0

ϕ̃j,T (x){ϕ̃j,T (XtiT
− X

ti−1
T

) − Eϕ̃j,T (X�i
T
)},

where ϕ̃j,T (·) is of the form√
2j + 1

bT − aT

Qj

(
2 · −(aT + bT )

bT − aT

)
1[aT ,bT )(·)

with aT , bT such that x ∈ [aT , bT ) and bT − aT = (b − a)/mT . In that case, σ̄ 2
T := VarST is

given by

σ̄ 2
T := c2

T

T 2b2
mT

∑
i

k∑
j1,j2=0

ϕ̃j1,T (x)ϕ̃j2,T (x)Cov(ϕ̃j1,T (X�i
T
), ϕ̃j2,T (X�i

T
)), (B.1)

where we have used �i
T := t iT − t i−1

T . Let us analyze the above covariances, scaled by �i
T .

First, applying Lemma B.1, (1.5) and Proposition 2.1, there exists a t0 > 0 and K > 0 such that
whenever � < t0,∣∣∣∣ 1

�
Eϕ̃j1,T (X�)ϕ̃j2,T (X�) −

∫
ϕ̃j1,T (y)ϕ̃j2,T (y)s(y)dy

∣∣∣∣≤ K�

bT − aT

.

Similarly, using the additional fact that | ∫ ϕ̃j,T (y)s(y)dy| ≤ ‖s‖, there exists a t0 > 0 and K > 0
such that whenever � < t0, ∣∣∣∣ 1

�
Eϕ̃j1,T (X�)Eϕ̃j2,T (X�)

∣∣∣∣≤ K�.

Thus, using assumption (iii) of Theorem 3.1, we have

1

�i
T

Cov(ϕ̃j1,T (X�i
T
), ϕ̃j2,T (X�i

T
)) = oT (1) +

∫
ϕ̃j1,T (x)ϕ̃j2,T (y)s(y)dy,
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where oT (1) → 0 uniformly in i as T → ∞. Thus, in view of the fact that bmT
≥ 1, (1.5) and

assumption (ii) of Theorem 3.1, we have σ̄ 2
T − σ̂ 2

T

T →∞−→ 0, where

σ̂ 2
T := c2

T

T b2
mT

k∑
j1,j2=0

ϕ̃j1,T (x)ϕ̃j2,T (x)

∫
ϕ̃j1,T (y)ϕ̃j2,T (y)s(y)dy.

Next, the continuity of s at x, assumption (ii) of Theorem 3.1 and the fact that the support of
ϕ̃j,T contains x and shrinks to 0 collectively yield that

lim
T →∞

c2
T

T b2
mT

k∑
j1,j2=0

ϕ̃j1,T (x)ϕ̃j2,T (x)

∫
ϕ̃j1,T (y)ϕ̃j2,T (y)

(
s(y) − s(x)

)
dy = 0.

This implies that limT →∞ σ̂ 2
T = limT →∞ σ̄ 2

T = s(x)/(b − a), in view of condition (ii) and the
definition of bk . Finally, we consider the “standardized” sum ZT := ST /σ̄T . By the corollary
following [8], Theorem 7.1.2, ZT will converge to N (0,1) because

sup
i

cT

T σ̄T bmT

k∑
j=0

|ϕ̃j,T (x)ϕ̃j,T (XtiT
− X

ti−1
T

)|

≤ cT mT

T σ̄T bmT
(b − a)

→ 0

as T → ∞, in view of assumptions (i)–(ii) and the fact that bm ≥ 1. This implies the proposition
since σ̄ 2

T → s(x)(b − a)−1. �

The last step is to estimate the rate of convergence of the bias term.

Lemma B.3. Under the notation and assumptions of Theorem 3.1, EŝT (x) − s(x) = o(bmT
/cT )

as T → ∞ for any fixed x ∈ (a, b) such that s(x) > 0.

Proof. We use the same notation as in the proof of Lemma B.2. Obviously,

cT

bmT

|EŝT (x) − s(x)| ≤ 1

T

∑
i

�i
T AT (�i

T ),

where

AT (�) := cT

bmT

∣∣∣∣∣ 1

�

k∑
j=0

ϕ̃j,T (x)Eϕ̃j,T (X�) − s(x)

∣∣∣∣∣.
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It then suffices to show that maxi AT (�i
T ) → 0 as T → ∞. Note that

AT (�) ≤ cT

bmT

∣∣∣∣∣
k∑

j=0

ϕ̃j,T (x)

{
1

�
Eϕ̃j,T (X�) −

∫
ϕ̃j,T (y)s(y)dy

}∣∣∣∣∣
+ cT

bmT

∣∣∣∣∣
∫ k∑

j=0

ϕ̃j,T (x)ϕ̃j,T (y)
(
s(y) − s(x)

)
dy

∣∣∣∣∣,
where we have used the fact that

∫
ϕ̃j,T (y)dy = δ0(j). We shall show that each of the two terms

on the right-hand side of the above inequality, which we denote A1
T (�) and A2

T , respectively,
vanish as T → ∞. Using (1.5), Lemma B.1 and Proposition 2.1, there exist a K > 0 and T0 > 0
such that, for T > T0,

A1
T (�i

T ) ≤ K
cT �i

T

bmT
(bT − aT )

≤ K
cT mT π̄T

(b − a)
→ 0

as T → ∞, due to (i)–(iii). To deal with the term A2
T , we treat the two cases α = 1 and α > 1

separately. Suppose that α = 1. Using the Cauchy–Schwarz inequality twice (for summation and
for the integral) and the fact that

∑k
j=0 ϕ̃2

j,T (x) = b2
mT

(x)/(bT − aT ), we have

A2
T ≤ cT√

bT − aT

{
k∑

j=0

∫ bT

aT

(
s(y) − s(x)

)2 dy

}1/2

≤ KcT (bT − aT )

for some constant K < ∞. In light of assumption (iv) of Theorem 3.1, A2
T

T →∞−→ 0. Let us now
assume that α > 1. We first note that

∫ k∑
j=0

ϕ̃j,T (x)ϕ̃j,T (y)(y − x)j
′
dy = 0

for j ′ = 1, . . . , k. This is because the left-hand side is p⊥(x), where p⊥(y) is the orthogonal
projection of the function p(y) := (y − x)j

′
on Sk,mT

and, clearly, p⊥(x) = p(x) = 0. Also, by
Taylor’s theorem,

s(y) − s(x) =
r∑

j ′=1

s(j ′)(x)

j ′! (y − x)j
′ +

∫ y

x

(
s(r)(v) − s(r)(x)

) (y − v)r−1

(r − 1)! dv,
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where r := �α�, the largest integer that is (strictly) smaller than α. Since k ≥ α − 1, we have that
k ≥ r and

∫ k∑
j=0

ϕ̃j,T (x)ϕ̃j,T (y)
(
s(y) − s(x)

)
dy

=
∫ k∑

j=0

ϕ̃j,T (x)ϕ̃j,T (y)

∫ y

x

(
s(r)(v) − s(r)(x)

) (y − v)r−1

(r − 1)! dv dy.

Again applying the Cauchy–Schwarz inequality twice (for summation and for the integral), we
have

A2
T ≤ cT

bmT

k∑
j=0

|ϕ̃j,T (x)|
∣∣∣∣∫ ϕ̃j,T (y)

∫ y

x

(
s(r)(v) − s(r)(x)

) (y − v)r−1

(r − 1)! dv dy

∣∣∣∣
≤ cT√

bT − aT

{
k∑

j=0

∫ bT

aT

{∫ y

x

(
s(r)(v) − s(r)(x)

) (y − v)r−1

(r − 1)! dv

}2

dy

}1/2

.

Finally, by the Hölder condition (1.7), A2
T ≤ KcT m−α

T

T →∞−→ 0. �

Appendix C: Proofs of the uniform central limit theorem

In this section, we show the results of Section 4. We recall that the estimators ŝn
T are based on

observation of the process at evenly-spaced times πn
T : t0 = 0 < · · · < tn = T . The time span

between observations is δn := δn
T := T/n.

Let us first remark that under the assumption that σ �= 0 or ν(R) = ∞, the distribution Ft(x)

is continuous for all t > 0 (see [23], Theorem 27.4). In particular, {Fδn(Xti − Xti−1)}i≤n is nec-
essarily a random sample of uniform random variables and, hence, Z0

n of (4.2) is indeed the
standardized empirical process of a uniform random sample. Also, note that

Z0
n(Fδn(x)) = n1/2{Fn(x) − Fδn(x)} ∀x ∈ R,

where Fn := Fn
T is the empirical process of {Xti − Xti−1 : i = 0, . . . , n}. The following transfor-

mation will be useful in the sequel:

L(x;m,κ,H) = κ

m∑
i=1

k∑
j=0

ϕ̂i,j (x)

{
ϕ̂i,j (xi)

(
H(xi) − H(xi−1)

)
−
∫ xi

xi−1

ϕ̂′
i,j (u)

(
H(u) − H(xi−1)

)
du

}
,
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where ϕ̂i,j is the basis element in (1.4) and H : R → R is a locally integrable function. Note that
if H is a function of bounded variation, then

L(x;m,κ,H) = κ

m∑
i=1

k∑
j=0

ϕ̂i,j (x)

∫ xi

xi−1

ϕ̂i,j (u)dH(u).

The following estimate follows easily from (1.5):

sup
x∈[a,b]

|L(x;m,κ,H)| ≤ K · κ · m · ω
(

H ; [a, b], b − a

m

)
, (C.1)

where K is a constant (depending only on k) and ω is the modulus of continuity of H defined by

ω(H ; [a, b], δ) = sup{|H(u) − H(v)| :u,v ∈ [a, b], |u − v| < δ}.
Let us write the estimator (3.2) in terms of Fn

T as follows:

ŝn
T (x) :=

m∑
i=1

k∑
j=0

β̂πn
T (ϕ̂i,j )ϕ̂i,j (x) = L

(
x;m,

n

T
,Fn

T (·)
)

. (C.2)

Note that Eŝn
T (x) admits a similar expression with Fn

T replaced by Fδn
T

. Thus, it follows that a.s.

Yn
T (x) := ŝn

T (x) − Eŝn
T (x) = L(x;m,n1/2T −1,Z0

n(Fδn(·))) (C.3)

for all x. As was explained in Section 4, one of the key ideas of the approach of Bickel and
Rosenblatt [3] consists of approximating Z0

n by a Brownian bridge Z0. To this end, we use the
following result, which follows from the Komlós, Major and Tusnády construction [19].

Theorem C.1. There exists a probability space (�̃, F̃ , P̃), equipped with a standard Brownian
motion Z̃, on which one can construct a version Z̃0

n of Z0
n such that

‖Z̃0
n − Z̃0‖[0,1] = Op(n−1/2 logn),

where Z̃0(x) := Z̃(x) − xZ̃(1) is the corresponding Brownian bridge.

Since we are looking for the asymptotic distribution of supx |Yn
T (x)|, properly scaled and cen-

tered, we can work with the process Z̃0
n instead of Z0

n. Thus, with some abuse of notation, we
drop the tilde in all of the processes of Theorem C.1. The following is an easy estimate. Again
abusing notation, the process 0Y

n
T in the following lemma is actually the process resulting from

replacing Z0
n(Fδn(·)) in (C.3) by Z̃0

n(Fδn(·)).

Lemma C.2. Let 0Y
n
T (x) = L(x;m,n1/2T −1,Z0(Fδn(·))). It then follows that ‖0Y

n
T −

Yn
T ‖[a,b] = Op(m logn/T ) as n → ∞.
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Proof. Clearly, ω(H ; [a, b], δ) ≤ 2‖H‖[a,b] for any process H . Thus, we get the result
from (C.1) and Theorem C.1. �

As in [3], our approach is to devise successive approximations of 0Y
n
T (x), denoted by

1Y
n
T , . . . ,N Y n

T , such that the asymptotic distribution of the supremum supx∈[a,b] |NYn
T (x)|, prop-

erly centered and scaled by certain constants bn
T and an

T , is easy to determine and such that the
error of the successive approximations is negligible when multiplied by an

T . We proceed to carry
out this program.

First, note that since a Brownian bridge satisfies {Z0(x)}x≤1
D={Z0(1 − x)}x≤1, we have

{0Y
n
T (x)}x∈[a,b]

D={1Y
n
T (x)}x∈[a,b],

where 1Y
n
T (x) := L(x;m,n1/2T −1,Z0(F̄δn(·)) and F̄ := 1 − F . The following is our first esti-

mate.

Lemma C.3. Suppose that the assumptions of Proposition 2.1 are satisfied. There exist constants
K and t0 > 0 such that if T/n < t0, then

2Y
n
T (x) = L(x;m,n1/2T −1,Z(F̄δn(·)))

is such that

‖1Y
n
T − 2Y

n
T ‖[a,b] ≤ Kn−1/2

(
mT

n
∨ 1

)
|Z(1)|

for a constant K < ∞.

Proof. Clearly,

2Y
n
T (x) − 1Y

n
T (x) = L(x;n,T ,m,n1/2T −1,Z(1)F̄δn(·)).

Thus, by (C.1),

‖1Y
n
T − 2Y

n
T ‖[a,b] ≤ K

mn1/2

T
ω(F̄δn; [a, b], dm)|Z(1)|,

where dm = (b − a)/m. In view of Proposition 2.1, for n and T such that T/n < t0, there are
constants k and k′ such that

|F̄δn(u) − F̄δn(v)| ≤ 2k(δn)2 + 2k′δnm−1,

provided that u,v ∈ [a, b] and |v − u| < dm. �

Let us now work with 2Y
n
T . Because of the self-similarity of the Brownian motion, we have

that

{2Y
n
T (x)}x∈[a,b]

D={3Y
n
T (x)}x∈[a,b],
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where

3Y
n
T (x) := L

(
x;m,T −1/2,Z

(
1

δn
F̄δn(·)

))
.

The following estimate results from Lévy’s modulus of continuity theorem.

Lemma C.4. Let 4Y
n
T (x) = L(x;m,T −1/2,Z(

∫∞
· s(u)du)). If Tn is such that δn := Tn

n
→ 0,

then, for n large enough,

‖3Y
n
Tn

− 4Y
n
Tn

‖[a,b] ≤ m · Op

(
n−1/2 log1/2 n

Tn

)
for a constant K < ∞.

Proof. It is not hard to see that there exists a constant K such that

‖3Y
n
T − 4Y

n
T ‖ ≤ KT −1/2m sup

x∈[a,b]

∣∣∣∣Z( 1

δn
F̄δn(x)

)
− Z

(∫ ∞

x

s(u)du

)∣∣∣∣.
By Proposition 2.1, there exist constants k > 0 and t0 > 0 such that for all 0 < δ < t0,

sup
y∈D

∣∣∣∣1δ P[Xδ ≥ y] − ν([y,∞))

∣∣∣∣< kδ. (C.4)

Thus, there exists a constant K > 0 such that, for large enough n,

‖3Y
n
T − 4Y

n
T ‖ ≤ Kn−1/2m log1/2 n

Tn

a.s. �

We now note that{
Z

(∫ ∞

x

s(u)du

)}
x∈[a,b]

D=
{∫ ∞

x

s1/2(u)dZ(u)

}
x∈[a,b]

and, hence,

{4Y
n
T (x)}x∈[a,b]

D={5Y
n
T (x)}x∈[a,b],

where

5Y
n
T (x) := L

(
x;m,T −1/2,

∫ ∞

·
s1/2(u)dZ(u)

)
.

Using integration by parts, one can simplify 5Y
n
T (x) as follows:

5Y
n
T (x) = T −1/2

m∑
i=0

k∑
j=0

ϕ̂i,j (x)

∫ xi

xi−1

s1/2(u)ϕ̂i,j (u)dZ(u).

The following is the last estimate.
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Lemma C.5. Suppose that the Assumptions 1 in Section 4 hold true. Let

6Y
n
T (x) := (b − a)1/2T −1/2

m∑
i=0

k∑
j=0

ϕ̂i,j (x)

∫ xi

xi−1

ϕ̂i,j (u)dZ(u).

There then exists a random variable M such that

‖6Y
n
T (·) − (b − a)1/2s−1/2(·)5Y

n
T (·)‖ ≤ MT −1/2.

Proof.
Let q(x) = s1/2(x) and c = (b − a)1/2. Using integration by parts, we have

Hi,j (x) := s−1/2(x)

∫ xi

xi−1

s1/2(u)ϕ̂i,j (u)dZ(u) −
∫ xi

xi−1

ϕ̂i,j (u)dZ(u)

= q−1(x)
{
ϕ̂i,j (xi)

(
q(xi) − q(x)

)
Z(xi) − ϕ̂i,j (xi−1)

(
q(xi−1) − q(x)

)
Z(xi−1)

}
− q−1(x)

∫ xi

xi−1

{
ϕ̂′

i,j (u)
(
q(u) − q(x)

)− ϕ̂i,j (u)q ′(u)
}
Z(u)du.

Since q−1(·) and q ′(·) are bounded on [a, b], there exists a constant K such that

sup
x∈[xi−1,xi ]

|Hi,j (x)| ≤ Km−1/2 sup
u∈[xi−1,xi ]

|Z(u)|.

Thus,

‖6Y
n
T (·) − cs−1/2(·)5Y

n
T (·)‖ ≤

(
T

b − a

)−1/2 m∑
i=0

k∑
j=0

sup
x∈[xi−1,xi ]

|Hi,j (x)ϕ̂i,j (x)|

≤ KT −1/2 sup
u∈[a,b]

|Z(u)|. �

The latter approximation, 6Y
n
T , is simple enough to try determining its asymptotic distribution

(appropriately centered and scaled). Indeed,

M(T,n,m) := sup
x∈[a,b]

|6Yn
T (x)| D=T −1/2m1/2 max

1≤j≤m

{
ζ (k)
m

}
, (C.5)

where {ζ (k)
j }i are independent copies of the r.v. ζ (k) defined in (4.3). The following result obtains

the asymptotic distributions of M̄m := max1≤j≤m{ζ (k)
j } for the cases k = 0 and k = 1.

Lemma C.6. Let an and bn be as in (4.5)–(4.6). The following limits then hold:

lim
m→∞ P

(
max

1≤j≤m

{
ζ (0)
m

}≤ y

amn

+ bmn

)
= e−2e−y

, (C.6)
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lim
m→∞ P

(
2−1 max

1≤j≤m

{
ζ (1)
m

}≤ y

amn

+ bmn

)
= e−4e−y

(C.7)

for all y ∈ R+.

Proof. The limit (C.6) follows from the well-known identity

lim
m→∞m

(
1 − �(um(y))

)= e−y, (C.8)

where � is the normal distribution and um(y) = y/am + bm. Indeed, for large enough m, the
probability in (C.6) can be written as follows:

(
2�(um(y)) − 1

)m =
(

1 − 2m(1 − �(um(y)))

m

)m

−→ e−2e−y

.

To handle the case k = 1, we embed the problem into the theory of multivariate extreme values
(see, e.g., [16]). Consider independent copies {Vi}i of the following vector of jointly standard
Gaussian variables:

V :=
(

1

2
Z0 +

√
3

2
Z1,

1

2
Z0 −

√
3

2
Z1

)′
. (C.9)

Since ζ (1) = |Z0| +
√

3|Z1|, we can see that{
2−1 max

1≤j≤m

{
ζ (1)
m

}≤ y

am

+ bm

}
=
{

max
i≤m

Vi ≤ â−1
m y + b̂m,min

i≤m
Vi ≥ −â−1

m y − b̂m

}
,

where y := (y, y)′, b̂m := (bm, bm)′, âm := (am, am)′ and all operations are pointwise. Then,
(C.7) will follow from the following identity:

lim
m→∞ P

(
max

1≤i≤m
Vi ≤ â−1

m y + b̂m, min
1≤i≤m

Vi ≥ −â−1
m z − b̂m

)
(C.10)

= e−e−y1−e−y2−e−z1 −e−z1

for any y = (y1, y2)
′ and z = (z1, z2)

′. To show (C.10), first note that the probability therein can
be written as

An := {
P
(−un(z1) ≤ V1 ≤ un(y1),−un(z2) ≤ V2 ≤ un(y2)

)}n
,

where V := (V1,V2)
′ is defined in (C.9) and un(x) := x/an + bn. Let

F̄n(y, z;X,Y) := P
(
X ≥ un(y),Y ≥ un(z)

)
, F̄n(y;X) := P

(
X ≥ un(y)

)
,
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where X and Y represent random variables. We recall the following results valid for any jointly
normal variables X and Y and arbitrary y and z (see [16], Example 5.3.1):

lim
n→∞nF̄n(y, z;X,Y) = 0, lim

n→∞nF̄n(y;X) = e−y.

Then, (C.10) follows once we note that A
1/n
n can be written as follows:

A
1/n
n = 1 − 1

n
{nF̄n(z1;V1) + nF̄n(z2;V2) + nF̄n(y1;−V1) + nF̄n(y2;−V2)

− nF̄n(z1, z2;V1,V2) − nF̄n(y1, z2;−V1,V2) − nF̄n(z1, y2;V1,−V2)}. �

In view of (C.5), the following are easy consequences of the above lemma:

lim
n→∞ P

(
T

1/2
n m

−1/2
n sup

x∈[a,b]
|6Yn

Tn
(x)| ≤ y

amn

+ bmn

)
= e−2e−y

, (C.11)

lim
n→∞ P

(
2−1T

1/2
n m

−1/2
n sup

x∈[a,b]
|6Yn

Tn
(x)| ≤ y

amn

+ bmn

)
= e−4e−y

, (C.12)

valid for all y ∈ R+, Tn > 0 and mn such that mn → ∞. We are now ready to prove the main
theorem of Section 4:

Proof of Theorem 4.1. The idea is to use the following simple observations. Let Ln be a func-
tional on D[a, b] such that

|Ln(ω1) − Ln(ω2)| ≤ Mn‖ω1 − ω2‖ (C.13)

and let An,Bn be processes with values on D[a, b] such that ‖An − Bn‖ = op(1/Mn). Then, if
Ln(An) converges in distribution to F , Ln(Bn) will also converge to F . Throughout this proof,

Ln(ω) := amn

{
κ · c

d
· T

1/2
n

m
1/2
n

· sup
x∈[a,b]

|s−1/2(x)ω(x)| − bmn

}
,

which satisfies the Lipschitz condition (C.13) with Mn = κc
d

amnT
1/2
n /m

1/2
n . From Lemma C.5,

in order for (C.12) to hold with 6Y
n
Tn

replaced by 5Y
n
Tn

, it suffices that

lim
n→∞

T
1/2
n

m
1/2
n

amnT
−1/2
n = lim

n→∞

(
2 logmn

mn

)1/2

= 0,

which is obvious since mn → ∞. Since 4Y
n
Tn

has the same law as 5Y
n
Tn

, (C.12) also holds for
4Y

n
Tn

. In the light of Lemma C.4, (C.12) will hold for 3Y
n
Tn

(and, hence, for 2Y
n
Tn

as well) since

lim
n→∞

T
1/2
n

m
1/2
n

amnmnn
−1/2 log1/2 n

Tn

= c lim
n→∞

(
mn logmn · Tn

n
log

n

Tn

)1/2

= 0,
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which follows from condition (ii) in the statement of Theorem 4.1. Similarly, in view of
Lemma C.3, (C.12) will hold for 1Y

n
Tn

(and hence, for 0Y
n
Tn

as well) since

lim
n→∞

T
1/2
n amnn

−1/2

m
1/2
n

(
mnTn

n
∨ 1

)
= 0.

Indeed,the above expression is upper bounded by (Tnmn

n
)1/2 log1/2 mn

mn
, which converges to 0 be-

cause of assumption (i) and the fact that mn → ∞. Finally, in the light of Lemma C.2, in order
for (C.12) to hold for Yn

Tn
, it suffices that

lim
n→∞

T
1/2
n

m
1/2
n

amn

mn

Tn

logn = 0,

which follows from assumption (ii) in the statement of Theorem 4.1. �

Proof of Corollary 4.2. Using the same reasoning as in the proof of Theorem 3.1, it turns out
that

sup
x∈[a,b]

|Eŝn
Tn

(x) − s(x)| ≤ K

(
mnTn

n
∨ m−α

n

)
for an absolute constant K . As in the proof of Theorem 4.1, to show (4.9), it suffices that

lim
n→∞

T
1/2
n

m
1/2
n

amn

(
mnTn

n
∨ m−α

n

)
= 0,

which holds in light of assumption (iii) in the statement of Corollary 4.2. �
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