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We show that a large subclass of variograms is closed under products and that some desirable stability
properties, such as the product of special compositions, can be obtained within the proposed setting. We
introduce new classes of kernels of Schoenberg–Lévy type and demonstrate some important properties of
rotationally invariant variograms.
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1. Introduction

Positive and conditionally positive definite functions on groups or semigroups have a long his-
tory and appear in many applications in probability theory, operator theory, potential theory,
moment problems and various other areas. They constitute an important chapter in all treatments
of harmonic analysis and their origins can be traced back to papers by Carathéodory, Herglotz,
Bernstein and Matthias (see [3] and references therein), culminating in Bochner’s theorem from
1932; see the surveys by Berg [3] and Sasvári [28]. Schoenberg’s theorem explains the possi-
bility of constructing rotationally invariant positive definite and (the negatives of) conditionally
positive definite functions on Euclidean spaces via completely monotone functions and Bernstein
functions. Positive and conditionally positive definite functions are a cornerstone of spatial statis-
tics where they are known, respectively, as covariances (or kernels) and variograms. The theory
of random fields, which began in the 1940s with the early works of Kolmogorov (see [10] and
references quoted therein) and was further developed by Gandin [13] and Matheron [24], among
others, is based on the specification of these classes. In particular, the kriging predictor, that is to
say, the best linear unbiased predictor, depends exclusively on the underlying covariance or vari-
ogram and we refer to the tour de force in Stein [33] for a rigorous assessment of this framework.

Let {Z(ξ), ξ ∈ Rd} be a stationary Gaussian random field. The associated covariance function
C : Rd → R is positive definite, that is, for any finite collection of points {ξi}ni=1 ∈ R

d , the matrix
(C(ξi − ξj ))

n
i,j=1 is positive definite:

for all a1, a2, . . . , an ∈ C

n∑
i,j=1

aiC(ξi − ξj )aj ≥ 0.
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Thus, a function C : Rd → R is positive definite if and only if there exists a stationary Gaussian
random field having C(·) as covariance function. If C(·) is rotationally invariant, then the asso-
ciated Gaussian random field is called isotropic.

It is well known that the family of covariance functions is a convex cone which is closed under
products, pointwise convergence and scale mixtures; for these basic facts, the reader is referred
to standard textbooks on geostatistics such as Chilès and Delfiner [10].

A variogram γ : Rd → R is the variance of the increments of an intrinsically stationary random
field, that is, for any two points ξ1, ξ2 ∈ R

d , Var(Z(ξ1)−Z(ξ2)) := γ (ξ1 − ξ2). Note that γ (0) =
0, γ (ξ) = γ (−ξ) and that −γ is conditionally positive definite, that is, for any finite collection
of points {ξi}ni=1 ∈ R

d , we have

for all a1, . . . , an ∈ C such that
n∑

i=1

ai = 0, −
n∑

i,j=1

aiγ (ξi − ξj )aj ≥ 0. (1)

With a slight abuse of notation, we will also use the name variogram for a function γ : Rd → R

with γ (0) ≥ 0 and such that γ (ξ) − γ (0) is the variance of the increments of an intrinsically
stationary random field.

There is a close relationship between variograms γ and stationary covariance functions C.
The elementary estimate |C(ξ)| ≤ C(0) =: VarZ shows that stationary covariance functions are
necessarily bounded; in particular, γ (ξ) := C(0) − C(ξ) is a variogram. Indeed, variograms
may be unbounded, as in the case of fractional Brownian motion. If, however, the variogram is
bounded, then it is necessarily of the form C(0) − C(ξ), ξ ∈ Rd , for some stationary covariance
function C(·); see, for instance, [10] or [4], Proposition 7.13, and for a more general result due
to Harzallah, see [18].

The terminology concerning positive and conditional positive definiteness is not uniform
throughout the literature; it depends very much on the mathematical context or the scientific
application. Christakos [11] and many other applied scientists use the notion of permissibility for
both concepts. We will use both conventions alongside each other whenever no confusion can
arise.

In this paper, we are mainly interested in rotationally invariant covariances and variograms.
This means that the associated Gaussian random field is weakly or intrinsically stationary and
isotropic. Isotropy and stationarity are independent assumptions, but we will assume both to keep
things simple. An isotropic covariance function, rescaled by its value at the origin, is the char-
acteristic function of a rotationally symmetric random vector on the sphere of Rd . This class of
covariances is well understood and we refer to Gneiting [14,15] and the references therein for an
extensive survey of this topic. Much less is known about variograms. For instance, it is common
knowledge that the class of variograms is a convex cone which is closed in the weak topology of
pointwise convergence, but the product of two variograms is not necessarily a variogram. This is
a point that deserves a thorough discussion, in the light of a recent beautiful result in [23], The-
orem 3(i), where a simple permissibility condition is given for the product of two exponential
variograms composed with a homogeneous function.

We shall give a general answer to this question, as well as a complete characterization of those
variograms whose product is again permissible. We shall then focus on other challenging prob-
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lems related to special compositions of variograms, as well as to quasi-arithmetic compositions
of them.

The use of kernels of Schoenberg–Lévy type has been persistently emphasized in both old and
recent literature. In this paper, we give new forms of kernels of this type that may be appealing
for modeling in spatial statistics.

Another crucial problem faced in this paper regards the potential trade-off between, on the
one hand, the computational advantages induced by the use of compactly supported kernels and,
on the other hand, the fact that compactly supported kernels can be positive definite only on
finite-dimensional spaces, by a striking and beautiful result due to Wendland [35]. We consider
this problem from the point of view of variograms; this makes sense since variograms, which are
possibly unbounded, represent a larger class than covariance functions.

The paper is organized as follows. Section 2 contains the basic material required for a self-
contained exposition and for understanding the technical proofs of our statements. Section 3
assesses new stability properties of the variogram class, while Section 4 is dedicated to kernels
of Schoenberg–Lévy type.

2. Complete Bernstein functions and complete monotonicity

This section is mainly expository and we collect here some basic material needed later. We will
frequently use the following characterization of variograms, for which a proof can be found in
[4], Proposition 7.5.

Theorem 1. A function γ : Rd → R is a variogram if and only if the following three conditions
are satisfied:

(i) γ (0) ≥ 0;
(ii) γ (ξ) = γ (−ξ);

(iii) −γ is conditionally positive definite, that is, equation (1) holds for all ξ1, . . . , ξn ∈ R
d .

Let us remark that in harmonic analysis, functions satisfying conditions (i)–(iii) of Theorem 1
are often called negative definite functions. We will not use this notion in this paper.

Often, Pólya’s theorem (see [4], Theorem 5.4) is useful if one wants to construct concrete
examples of variograms.

Theorem 2. A continuous function φ : R → [0,∞) which is even (i.e., φ(x) = φ(−x)), decreas-
ing and convex on the interval (0,∞) is positive definite.

Clearly, φ(0) − φ(x) is increasing, concave and a variogram; see, for example, [4], Corol-
lary 7.7.

Recall that a function f : (0,∞) → R is called completely monotone if it is arbitrarily often
differentiable and

(−1)nf (n)(x) ≥ 0 for x > 0, n = 0,1, . . . .
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By Bernstein’s theorem, the set C M of completely monotone functions coincides with the set of
Laplace transforms of positive measures μ on [0,∞), that is,

f (x) = Lμ(x) =
∫

[0,∞)

e−xt dμ(t),

where we only require that e−xt is μ-integrable for any x > 0. C M is a convex cone which is
closed under multiplication and pointwise convergence.

Definition 3. A function f : (0,∞) → R is called a Stieltjes function if it is of the form

f (x) = a +
∫

[0,∞)

dμ(t)

x + t
, (2)

where a ≥ 0 and μ is a positive measure on [0,∞) such that
∫
[0,∞)

(1 + t)−1 dμ(t) < ∞.

The following properties of the family S of Stieltjes functions can be found in [4], Section 14,
and [3]. S is a convex cone such that S ⊂ C M. For every f ∈ S , the fractional power f α ∈
S ⊂ C M, 0 < α ≤ 1, is again a Stieltjes function. Thus, for f ∈ S , we see that f α is completely
monotone for any α > 0, so f belongs to the set L of logarithmically completely monotone
functions discussed in, for example, [3], Section 2.6. The formula

1

x(1 + x2)
=

∫
[0,∞)

e−xt (1 − cos t)dt

shows that x−1(1 + x2)−1 is completely monotone; however, it cannot be a Stieltjes function
since it has poles at ±i and (2) indicates that a Stieltjes function has a holomorphic extension
to the cut plane C \ (−∞,0]. From the integral representation of f , it is immediate that this
extension satisfies Im z Imf (z) ≤ 0, that is, f maps the upper complex half-plane to the lower
and vice versa.

Definition 4. A function f : (0,∞) → [0,∞) is called a Bernstein function if it is infinitely often
differentiable and f ′ ∈ C M.

The set of Bernstein functions is denoted B F ; it is a convex cone which is closed under
pointwise convergence. Since a Bernstein function is non-negative and increasing, it has a non-
negative limit f (0+). Integrating the Bernstein representation of the completely monotone func-
tion f ′ gives the following integral representation of f ∈ B F :

f (x) = αx + β +
∫

(0,∞)

(1 − e−xt )ν(dt), (3)

where α,β ≥ 0 are constants and ν is the Lévy measure, that is, a positive measure on (0,∞)

satisfying ∫
(0,∞)

t

1 + t
ν(dt) < ∞.
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The following composition result will be useful throughout the paper; see [3].

Theorem 5. Let X be either of the sets B F , C M. Then

f ∈ X , g ∈ B F 	⇒ f ◦ g ∈ X .

If we assume that the representing measure ν(dt) in (3) is of the form ν(dt) = m(t)dt , where
m(t) is completely monotone, then we get the family of complete Bernstein functions. We denote
the collection of all complete Bernstein functions by C B F . It is not hard to see that C B F is, like
B F , a convex cone which is closed under pointwise limits. Complete Bernstein functions are
widely used in various fields and they are closely related to the following concepts: Bondesson
T2-class (see [9] for the original definition and [5] for further information), operator-monotone
functions (the classical source is [12]) and Pick functions (which are also known as Nevanlinna
functions, i.e., holomorphic functions in the upper half-plane with non-negative imaginary part
there). A detailed survey can be found in [29], and short introductions in [3,20,30]. Among the
most prominent examples of complete Bernstein functions are

x �→ λx

λ + x
(λ > 0), x �→ xα (0 < α < 1),

x �→ log(1 + x), x �→ √
x arctan

1√
x

.

Further examples are given below in Table 1. Many Bernstein functions given in closed form are
already in C B F . There are not many known examples of functions in B F \ C B F and they are all
finite or infinite sums of the form

∑
i pi(1−e−λix); see [3]. Some interesting examples are given

in terms of the q-versions of the digamma function ψq(x) and Euler’s constant γq : the function
x �→ ψq(x + 1) + γq is in B F \ C B F ; see [22].1

The following statements are taken from [29].

Table 1. Examples of complete Bernstein functions (
(a;x) := ∫ ∞
x ta−1e−t dt is the incomplete Gamma

function)

Function Parameter restrictions Function Parameters restriction

1 − 1
(1+xα)β

0 < α,β ≤ 1 ex − x(1 + 1
x )x − x

x+1

( xρ

1+xρ )γ 0 < γ,ρ < 1 1
a − 1

x log(1 + x
a ) a > 0

xα−x(1+x)α−1

(1+x)α−xα 0 < α < 1
√

x
2

sinh2
√

2x

sinh(2
√

2x)√
x(1 − e−2a

√
x) a > 0 x1−νeax
(ν;ax) a > 0,0 < ν < 1

x(1−e−2
√

x+a)√
x+a

a > 0 xνea/x
(ν; a
x ) a > 0,0 < ν < 1

1We are grateful to a referee supplying this reference.
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Theorem 6. A function f : (0,∞) → [0,∞) such that f (0+) exists is a complete Bernstein
function if and only if it has an analytic extension to the cut complex plane C\ (−∞,0] such that
Im z · Imf (z) ≥ 0, that is, f preserves upper and lower half-planes. In particular, all complete
Bernstein functions are of the form

f (z) = bz + a +
∫

(0,∞)

z

z + t
σ (dt) (4)

with a, b ≥ 0 and a measure σ satisfying
∫
(0,∞)

(1 + t)−1 dt < ∞.

Proofs of this classic result can also be found in [3,20,30]. Theorem 6 can be used to show
that, for any f �≡ 0,

f ∈ C B F ⇐⇒
[
x �→ f (x)

x

]
∈ S ⇐⇒

[
x �→ x

f (x)

]
∈ C B F ⇐⇒ 1

f
∈ S.

(5)
Let us briefly indicate the argument: if f ∈ C B F , then we can use (4) and divide by z. Comparing
the resulting formula with (2) reveals that f (z)/z is (the extension to C \ (−∞,0] of) a Stieltjes
function. Therefore (see the comment following Definition 3), we know that f (z)/z maps the
upper to the lower complex half-plane. Consequently, the inverse g(z) := z/f (z) preserves up-
per and lower half-planes and is, by Theorem 6, in C B F . Using the integral representation (4)
for g and dividing by z, we get that g(z)/z = 1/f (z) is (the extension of) a Stieltjes function.
As before, we see that f = 1/(1/f ) preserves upper and lower half-planes and is, therefore,
a complete Bernstein function. This proves all equivalences in (5).

Using the fact that (the extensions of) functions in C B F preserve, and those in S swap, com-
plex half-planes, we immediately get the following result. If we let X be either C B F or S , then

f,g ∈ X 	⇒ f ◦ g ∈ C B F .

The following stability properties are less obvious.

Theorem 7. Let f,g,h ∈ C B F and f �≡ 0. Then:

(i) (f α(x) + gα(x))1/α ∈ C B F for all α ∈ [−1,1] \ {0};
(ii) (f (xα) + g(xα))1/α ∈ C B F for all α ∈ [−1,1] \ {0};

(iii) f (xα) · g(x1−α) ∈ C B F for all α ∈ [0,1];
(iv) h(f (x)) · g( x

f (x)
) ∈ C B F .

Assertion (iv) was discovered by Uchiyama [34], Lemma 2.1, and since fractional powers
f (x) = xα , 0 ≤ α ≤ 1, are in C B F , (iv) implies (iii). For positive α > 0, assertions (i), (ii) are
in [26] – his proofs are easily adapted to α < 0 since f ∈ C B F if and only if 1/f ∈ S ; see (5).
A unified approach will appear in [29].

Letting α → 0 in Theorem 7 proves limα↓0(
1
2f α + 1

2gα)1/α = √
fg and since pointwise limits

of complete Bernstein functions are complete Bernstein, we see that
√

fg ∈ C B F whenever
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f,g ∈ C B F . From this, we can easily deduce a new proof of the so-called log-convexity of the
convex cone C B F :

f,g ∈ C B F , α ∈ [0,1] 	⇒ f α · g1−α ∈ C B F . (6)

Alternative proofs can be found in [2] and [29].
Indeed, if α is a dyadic number of the form α = ∑n

i=1 αi2−i with αi ∈ {0,1} and αn = 1, then
α′ = 1 − α is of the same type with α′

n = 1. This is because

α′ =
∞∑
i=1

2−i −
n∑

i=1

αi2
−i =

n−1∑
i=1

(1 − αi)2
−i +

∞∑
i=n+1

2−i =
n−1∑
i=1

α′
i2

−i + 2−n

with α′
i = 1 − αi , i = 1, . . . , n − 1. This means that

f αg1−α =
n∏

i=1

2i
√

f αi gα′
i =

√√√√
h1

√
h2 · · ·

√
hn−2

√
hn−1

√
fngn,

where hi stands for either fi or gi if αi = 1 or αi = 0, respectively. Thus, repeated applications
of (6) with α = α′ = 1

2 lead to (6) for all dyadic α ∈ (0,1). Since (0,1) � α �→ f α is continuous,
we get (6) for all α ∈ (0,1).

3. Variograms and their stability properties

As already emphasized in Section 1, the starting point for this work is a result in [23], Theo-
rem 3(i), which is reported below with a short alternative proof.

Theorem 8 ([23]). Let γ : Rd → R be a homogeneous function. Then

(
1 − e−a1γ (ξ)

)(
1 − e−a2γ (ξ)

)
, (7)

ai > 0, i = 1,2, is a variogram if and only if γ (ξ) = |Aξ | for the Euclidean norm | · | and a d ×d

matrix A.

It is natural to ask whether Ma’s theorem works only for the exponential class of variograms or
whether it can be generalized. The subsequent result gives an answer to this problem, supplying
a wide class of variograms closed under products.

Here and hereafter, we will use a famous result of Schoenberg and Bochner; see [31] (in the
context of covariance functions and complete monotonicity) and [8], page 99 (in the context of
variograms and Bernstein functions). We restate Bochner’s version in the setting of the current
paper. Alternative proofs can be found in the Appendix of Jacob and Schilling [21] and Steerne-
man and van-Perlo-ten Kleij [32].
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Lemma 9. All variograms γ which are rotationally invariant and permissible in all (or at least
infinitely many) dimensions d = 1,2, . . . are of the form γ (ξ) = f (|ξ |2) with a Bernstein function
f ∈ B F .

The next result is not only a generalization of Ma’s result, but also the key to a simple proof
of Theorem 8.

Theorem 10. Let g1, g2 be Bernstein functions and 0 ≤ α1, α2 such that α1 + α2 ≤ 1. Then
g1(x

α1)g2(x
α2) is a Bernstein function.

Proof. Set hα,β(x) := g1(x
α) · g2(x

β), x > 0. It is enough to show that h′
α,β ∈ C M. Clearly,

h′
α,β(x) = xα+β−1

(
αg′

1(x
α)

g2(x
β)

xβ
+ βg′

2(x
β)

g1(x
α)

xα

)
.

Since gi ∈ B F , we have that g′
i ∈ C M and x−1gi(x) ∈ C M. This will also be the case for

the compositions g′
1(x

α) and g′
2(x

β), g1(x
α)/xα and g2(x

β)/xβ , by a straightforward applica-
tion of Theorem 5. Moreover, for α + β ≤ 1, x �→ xα+β−1 is completely monotone. The proof
is completed since completely monotone functions form a convex cone which is closed under
products. �

Corollary 11. Let R
d � ξ �→ γi(ξ) = gi(|ξ |2) be rotationally invariant variograms for all d ∈ N,

i = 1,2. Let α,β ∈ [0,1] be such that α + β ≤ 1 and let A be a d × d matrix. Then

fα,β(ξ) := g1(|Aξ |2α)g2(|Aξ |2β)

is still a variogram on R
d for all d ∈ N.

Remark 12. The result of Theorem 10 extends immediately to the product of n Bernstein func-
tions: for

∑n
i=1 αi ≤ 1, αi ≥ 0 and gi ∈ B F , the function h(x) := ∏n

i=1 gi(x
αi ) is again in B F .

This generalizes the case where αi = 1
n

, gi = g, i = 1, . . . , n, leading to h(x) = (g(x1/n))n,
which is due to [7].

The proof of the result above offers a considerably easier way to show Ma’s result.

Proof of Theorem 8. If γ (ξ) = |Aξ |, Corollary 11 with gi(x) = 1 − exp(−aix), i = 1,2 and
α = β = 1

2 shows that (7) is a variogram.
Now, assume that (7) is a variogram. Then

ξ �→ (1 − e−a1γ (ξ))

a1
· (1 − e−a2γ (ξ))

a2
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is a variogram for all a1, a2 > 0 and so is its pointwise limit γ 2(ξ) as a1, a2 → 0; thus, γ 2(ξ) is
a real-valued variogram. As such, it has a Lévy–Khinchine representation

γ 2(ξ) = Qξ · ξ +
∫

x �=0

(
1 − cos(x · ξ)

)
ν(dx),

where Q ∈ R
d×d is positive semi-definite and ν is a measure with

∫
x �=0 |x|2 ∧1ν(dx) < ∞. Since

γ (ξ) is homogeneous, we get

γ 2(ξ) = γ 2(nξ)

n2
n→∞−→ Qξ · ξ = ∣∣√Qξ

∣∣2

for the uniquely determined, positive semidefinite square root A = √
Q of Q. �

Several examples of Bernstein functions may be found in [3,4] or in [21]; an extensive list
will be included in the monograph [29]. Three celebrated classes of Bernstein functions are well
known in the spatial statistics literature:

(1) the Matérn class [25] fα,ν = 1 − 21−ν/
(ν)(α
√

x)νKν(α
√

x), x > 0, for α, ν > 0 and
where Kν is the modified Bessel function of the second kind of order ν;

(2) the Cauchy class [16] fα,β(x) := 1 − (1 + xα)−β , x > 0, where 0 < α ≤ 1 and 0 < β;
(3) the Dagum class [6] fρ,γ (x) := ( xρ

1+xρ )γ , x > 0, where ρ,γ ∈ (0,1).

Let us mention a few more stability properties that make some classes of functions appealing
for their use in spatial statistics. We again work within the framework of rotationally invariant
functions.

Proposition 13. Let γ : Rd → R be rotationally invariant for all dimensions d = 1,2, . . . such
that γ (ξ) = g(|ξ |2) for some g ∈ C B F . Then:

(i) R
d � ξ �→ |ξ |2

g(|ξ |2) is a rotationally invariant variogram which is permissible for every d ∈
N;

(ii) R
d � ξ �→ 1

g(1/|ξ |2) and ξ �→ |ξ |2g( 1
|ξ |2 ) are rotationally invariant variograms which are

permissible for every d ∈ N.

Proof. Part (i) is a simple application of the first equivalence in (5) which states that g ∈ C B F if
and only if g(x)/x is a Stieltjes function.

Part (ii) follows immediately by noting that, for g ∈ C B F , the function x �→ 1/g(1/x) is
a composition of the type σ ◦ g ◦ σ(x), where σ is the Stieltjes function x �→ 1

x
. Since the

composition σ ◦ g is a Stieltjes function and since the composition of two Stieltjes functions is
in C B F , we have the first assertion of part (ii). If we apply part (i) to this variogram, the second
assertion follows. �

For further (stability) properties of the class C B F , the reader is referred to [29]; some examples
of complete Bernstein functions are given below.
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Another interesting problem arises when quasi-arithmetic operators, in the sense of Hardy,
Littlewood and Pólya [17], are applied to variograms. This means that we seek conditions which
preserve the permissibility of the underlying structure. This has been considered in [27] for quasi-
arithmetic composition of covariance functions. We believe that the same question in connection
with variograms is even more challenging from the mathematical point of view and is equally
important as far as statistics are concerned.

Recall that a power mean is a mapping of the form (u, v) �→ ψα(u, v) := (uα + vα)1/α for
(u, v) ∈ R

2 and α ∈ R \ {0}.

Proposition 14. Let γi : Rd → R, i = 1,2, be rotationally invariant variograms for all dimen-
sions d ∈ N. We write gi for the radial function such that γi(ξ) = gi(|ξ |2):

(i) If g1, g2 ∈ C B F , then ξ �→ (γ α
1 (ξ) + γ α

2 (ξ))1/α is a variogram for all α ∈ [−1,1] \ {0}.
(ii) If g1, g2 ∈ C B F , then ξ �→ (g1(|ξ |2α)+g2(|ξ |2α))1/α is a variogram for all α ∈ [−1,1] \

{0}.
(iii) ξ �→ g1(|ξ |2α)g2(|ξ |2−2α) is a variogram for all 0 < α < 1.

Proof. Since, by Lemma 9, gi ∈ B F , assertion (iii) is a simple consequence of Corollary 11. We
should mention at this point that for g1, g2 ∈ C B F , the resulting rotationally invariant variogram
would again be of the form h(|ξ |2) with h ∈ C B F ; see Theorem 7(iv). Both (i) and (ii) follow
immediately from 7(i) and (ii), respectively. �

Finally, we combine two aspects treated separately until now. Given two or three isotropic var-
iograms, we seek permissibility conditions for the products of special compositions. The propo-
sition below results from a simple application of Theorem 7(iv) with h(s) = s, f = g1, g = g2,
respectively, h = g3, f = g1, g = g2.

Proposition 15. Let R
d � ξ �→ γi(ξ), i = 1,2,3, be rotationally invariant and isotropic vari-

ograms for all d ∈ N and assume that γi(ξ) = gi(|ξ |2), where gi ∈ C B F . Then

ξ �→ γ1(ξ)γ2

(
ξ√

γ1(ξ)

)
and γ3

(√
γ1(ξ)

)
γ2

(
ξ√

γ1(ξ)

)

are still permissible for all d ∈ N and of the form h(|ξ |2) with some h ∈ C B F .

We conclude this section by presenting another curious way to construct continuous vari-
ograms and, more generally, complex-valued conditionally positive definite functions, with the
help of Bernstein functions. The interesting fact in the example below is the product structure,
which is quite unusual for conditionally positive definite functions.

Proposition 16. Let f be a Bernstein function such that the representing measure ν in the Lévy–
Khinchine formula (3) has a monotone decreasing density m, that is, f (x) = α+βx+∫

(0,∞)
(1−

e−xt )m(t)dt .
Then ξ �→ iξf (iξ) is conditionally positive definite and ξ �→ −Re(iξf (iξ)) is a continuous

variogram.
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Proof. By the monotonicity of m, we see that m(t) = ν[t,∞) for a (Lévy) measure ν, that is,
a measure ν on (0,∞) satisfying

∫
(0,∞)

t (1 + t)−1ν(dt). The integration properties of ν become
clear from the calculation below since we have only used Fubini’s theorem for positive integrands
to swap integrals. For x ≥ 0, we get

xf (x) = αx + βx2 +
∫ ∞

0
x(1 − e−xt )

∫ ∞

t

ν(ds)dt

= αx + βx2 +
∫ ∞

0

∫ ∞

t

x(1 − e−xt )ν(ds)dt

= αx + βx2 +
∫ ∞

0

∫ s

0
x(1 − e−xt )dtν(ds)

= αx + βx2 +
∫ ∞

0
[e−xs − 1 + sx]ν(ds),

which, as by-product, shows that
∫ ∞

0 s2 ∧ sν(ds) < ∞. We may, therefore, plug in z = iξ and
get

iξf (iξ) = −
(

−iαξ + βξ2 +
∫ ∞

0
[1 − e−isξ − isξ ]ν(ds)

)
.

Thus, −γ (ξ) := iξf (iξ) is conditionally positive definite and Reγ (ξ) is a variogram. �

4. Kernels and variograms of the Schoenberg–Lévy type

This section explores some results that may be obtained when working with kernels of the
Schoenberg–Lévy type. These kernels are extensively used in the literature and we refer to Ma
[23] and the references therein. For ξ1, ξ2 ∈ R

d , these are non-stationary covariance functions
obtained from a non-negative function g : [0,∞) → [0,∞) such that g(0) = 0 through the linear
combination

g(|ξ1|) + g(|ξ2|) − g(|ξ1 − ξ2|).
A celebrated example is the fractional Brownian sheet [1] with g(ξ) = |ξ |α , α ∈ (0,2]. Ma [23]
shows that for a fixed ξ0 ∈ Rd , the function

Cξ0(ξ) := g(|ξ + ξ0|) + g(|ξ − ξ0|) − 2g(|ξ |)

is a covariance function, provided that g(|ξ |) is a variogram. Indeed, we are going to show that
this is a simple consequence of the following, more general, result.

Lemma 17. Let γ : Rd → R be a continuous variogram and let ξ, η ∈ R
d , d ∈ N. Then

φη(ξ) := γ (ξ + η) + γ (ξ − η) − 2γ (ξ)
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is a continuous covariance function as a function of ξ . Moreover, if

γη(ξ) := 2γ (η) + 2γ (ξ) − γ (ξ + η) − γ (ξ − η),

then ξ �→ γη(ξ) is a continuous variogram.

Note that in Lemma 17, we have γη(ξ) = γξ (η), that is, η �→ γη(ξ) is also a continuous vari-
ogram.

Proof of Lemma 17. Recall the following elementary formula for the cosine: cos(a + b) +
cos(a − b) = 2 cosa cosb. Since γ (ξ) has the Lévy–Khinchine representation

γ (ξ) = Qξ · ξ +
∫

x �=0
(1 − cosx · ξ)ν(dx),

we find that

φη(ξ) = Q(ξ + η) · (ξ + η) + Q(ξ − η) · (ξ − η) − 2Qξ · ξ

+
∫

x �=0

(
2 cosx · ξ − cosx · (ξ + η) − cosx · (ξ − η)

)
ν(dx)

= 2Qη · η +
∫

x �=0
(2 cosx · ξ − 2 cosx · ξ cosx · η)ν(dx)

= 2Qη · η + 2
∫

x �=0
(1 − cosx · η) cosx · ξν(dx).

This shows that ξ �→ φη(ξ) is symmetric and positive definite, hence a covariance function. Now,
consider

γη(ξ) = 2γ (η) − φη(ξ)

= 2a + 2Qη · η + 2
∫

x �=0
(1 − cosx · η)ν(dx)

− 2Qη · η − 2
∫

x �=0
(1 − cosx · η) cosx · ξν(dx)

= 2a + 2
∫

x �=0
(1 − cosx · η)(1 − cosx · ξ)ν(dx).

Thus, γη(ξ) is a variogram in ξ . The proof is thus complete. �

Lemma 17 has an obvious extension to continuous complex-valued functions γ : Rd → C sat-
isfying γ (0) ≥ 0, γ (ξ) = γ (−ξ) and the permissibility condition (1) for all ξ1, . . . , ξn ∈ R

d .
Since such functions also enjoy a (complex) Lévy–Khinchine representation (see [4]), exactly



Pick–Nevanlinna variograms 453

the same argument as in the proof of Lemma 17 shows that for every fixed ξ0 ∈ R
d ,

γξ0(ξ) := 2γ (ξ) + 2 Reγ (ξ0) − γ (ξ − ξ0) − γ (ξ + ξ0)

is permissible and has the Lévy–Khinchine representation

γξ0(ξ) = 2
∫

y �=0
(1 − eiy·ξ )

(
1 − cos(y · ξ0)

)
ν(dy),

where ν is the Lévy measure of γ . Lemma 17 is a very special case of [4], Proposition 18.2,
which goes back to Harzallah [19].
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