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We explore statistical inference in self-similar conservative fragmentation chains when only approximate
observations of the sizes of the fragments below a given threshold are available. This framework, introduced
by Bertoin and Martinez [Adv. Appl. Probab. 37 (2005) 553–570], is motivated by mineral crushing in
the mining industry. The underlying object that can be identified from the data is the step distribution
of the random walk associated with a randomly tagged fragment that evolves along the genealogical tree
representation of the fragmentation process. We compute upper and lower rates of estimation in a parametric
framework and show that in the nonparametric case, the difficulty of the estimation is comparable to ill-
posed linear inverse problems of order 1 in signal denoising.
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1. Introduction

1.1. Motivation

Random fragmentation models, commonly used in a variety of physical models, have their the-
oretical roots in the works of Kolmogorov [11] and Filippov [8] (see also [1,5,12,13] and the
references therein). Informally, we imagine an object that falls apart randomly as time passes.
The resulting particles break independently of each other in a self-similar way. A thorough ac-
count on random fragmentation processes and chains is given in the book by Bertoin [5], a key
reference for this paper.

In this work, we adopt the perspective of statistical inference. We focus on the quite specific
class of self-similar fragmentation chains. The law of a self-similar fragmentation chain is deter-
mined by two components:

• the dislocation measure, which governs the way that the fragments split;
• the index of self-similarity, which determines the rate of splitting;

see the definition in Section 2.1. In this paper, we postulate a specific observation scheme, moti-
vated by the mining industry, where the goal is to separate metal from non-valued components in
large mineral blocks by a series of blasting, crushing and grinding operations. In this setting, one
observes, approximately, the fragments arising from an initial block of size m only when they
reach a size smaller than some screening threshold, say η > 0; see [6] and the references therein.
Asymptotics are taken as the ratio ε := η/m vanishes.
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1.2. Organization and results of the paper

In Section 2, we recall the basic tools for the construction of conservative fragmentation chains,
closely following the book by Bertoin [5]. For statistical purposes, our main tool is the empirical
measure Eε of the size of fragments when they reach a size smaller than a threshold ε in the limit
ε → 0. We highlight the fact that Eε captures information about the dislocation measure through
the Lévy measure π of a randomly tagged fragment associated with the fragmentation process.

In Section 3, we give a rate of convergence for the empirical measure Eε toward its limit in
Theorem 1, extending former results (under more stringent assumptions) of Bertoin and Mar-
tinez [6]. The rate is of the form ε1/2−�(π), where �(π) > 0 can be made arbitrarily small un-
der suitable exponential moment conditions for π . We additionally consider the more realistic
framework of observations with limited accuracy, where each fragment is actually known up to
a systematic stochastic error of order σ � ε. We construct estimators related to functionals of π

in the absolutely continuous case. In the parametric case (Theorem 3), we establish that the best
achievable rate is ε1/2, in the particular case of binary fragmentations, where a particle splits
into two blocks at each step exactly. We construct a convergent estimator in a general setting
(Theorem 2) with an error of order ε1/2−�′(π) for another �′(π) > 0 that can be made arbitrarily
small under appropriate assumptions on the density of π near 0 and +∞. In the nonparametric
case, we construct an estimator that achieves (Theorem 4) a rate of the form (ε1−�′′(π))s/(2s+3),
where s > 0 is the local smoothness of the density of π , up to appropriate rescaling. Except for
the factor �′′(π) > 0, we obtain the same rate as for ill-posed inverse problems of degree 1.

2. Statistical model

2.1. Fragmentation chains

A fragmentation chain can be constructed as follows. We start with a state space

S ↓ :=
{

s = (s1, s2, . . .), s1 ≥ s2 ≥ · · · ≥ 0,

∞∑
i=1

si ≤ 1

}
.

A point s ∈ S ↓ is interpreted as the collection of (decreasing) sizes of fragments originating from
a single (unit) mass. We also specify the following two quantities:

• a finite dislocation measure ν, that is, a finite measure ν(ds) on S ↓;
• a parameter of self-similarity, α ≥ 0.

A fragmentation chain with parameter of self-similarity α and dislocation measure ν is a Markov
process X = (X(t), t ≥ 0) with value in S ↓. Its evolution can be described as follows: a fragment
with size x lives for an exponential time with parameter xαν(S ↓) and then splits and gives rise to
a family of smaller fragments distributed as xξ , where ξ is distributed according to ν(·)/ν(S ↓).
We denote by Pm the law of X started from the initial configuration (m,0, . . .) with m ∈ (0,1].
Under Pm, the law of X is entirely determined by α and ν(·); see Theorem 3 of Bertoin [4].
To ensure that everything is well defined, the following assumptions on the dislocation measure
ν(ds) of X are in force throughout the paper.
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Assumption A. We have ν(S ↓) = 1 and ν(s1 ∈ (0,1)) = 1.

In our setting, Assumption A is standard; see Bertoin [5]. We will repeatedly use the represen-
tation of fragmentation chains as random infinite marked trees. Let

U :=
∞⋃

n=0

N
n

denote the infinite genealogical tree (with N
0 := {∅}) associated with X as follows: to each node

u ∈ U , we set a mark

(ξu, au, ζu),

where ξu is the size of the fragment labeled by u, au is its birth-time and ζu is its life-time. We
have the following identity between point measures on (0,+∞):

∞∑
i=1

1{Xi(t)>0}δXi(t) =
∑
u∈U

1{t∈[au,au+ζu)}δξu, t ≥ 0,

with X(t) = (X1(t),X2(t), . . .) and where δx denotes the Dirac mass at x. Finally, X has the
following branching property: for every fragment s = (s1, . . .) ∈ S ↓ and every t ≥ 0, the dis-
tribution of X(t) given X(0) = s is the same as the decreasing rearrangement of the terms of
independent random sequences X(1)(t), X(2)(t), . . . , where, for each i, X(i)(t) is distributed as
X(t) under Psi .

2.2. Observation scheme

Keeping in mind the motivation of mineral crushing, we consider the fragmentation under P :=
P1, initiated with a unique block of size m = 1, and we observe the process stopped at the time
when all the fragments become smaller than some given threshold ε > 0, so we have data ξu, for
every u ∈ Uε , with

Uε := {u ∈ U , ξu− ≥ ε, ξu < ε},
where we denote by u− the parent of the fragment labeled by u. We will further assume that the
total mass of the fragments remains constant through time, as follows.

Assumption B (Conservative property). We have ν(
∑∞

i=1 si = 1) = 1.

We next consider a test function g(·) integrated against the empirical measure

Eε(g) :=
∑
u∈Uε

ξug(ξu/ε).
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Indeed, under Assumption B, we have∑
u∈Uε

ξu = 1 P-almost surely, (1)

so Eε(g) appears as a weighted empirical version of g(·). Note that the empirical measure Eε

depends only on the size of the fragmentation and is thus independent of the self-similarity
parameter α. Bertoin and Martinez show in [6], Corollary 1, that under mild assumptions on
ν(·), the random variable Eε(g) converges to

E (g) := 1

c(ν)

∫ 1

0

g(a)

a

∫
S ↓

∞∑
i=1

si1{si<a}ν(ds)da

in L1(P) as ε → 0, with c(ν) = − ∫
S ↓
∑∞

i=1 si log siν(ds), tacitly assumed to be well defined.
This suggests a strategy for recovering information about ν(·) by choosing suitable test functions
g(·). In Section 3.1, we will show that the convergence also holds in L2(P) and we will exhibit a
rate of convergence, which is a crucial issue if statistical results are sought.

2.3. First estimates

From now on, we assume that we have data

Xε := (ξu, u ∈ Uε) (2)

and we specialize in the estimation of ν(·). Clearly, the data give no information about the para-
meter of self-similarity α that we consider as a nuisance parameter. Assumptions A and B are in
force. At this stage, we can relate E (g) to a more appropriate quantity by means of the so-called
tagged fragment approach.

The randomly tagged fragment. Let us first consider the homogenous case α = 0. Assume that
we can “tag” a point at random according to a uniform distribution on the initial fragment and
imagine that we can follow the evolution of the fragment that contains this point. Let us denote
by (χ(t), t ≥ 0) the process of the size of the fragment that contains the randomly chosen point.
This fragment is a typical observation in our data set Xε and it appears at time

Tε := inf{t ≥ 0, χ(t) < ε}.
Bertoin [5] shows that the process ζ(t) := −logχ(t) is a subordinator with Lévy measure

π(dx) := e−x
∞∑
i=1

ν(−log si ∈ dx). (3)

We can anticipate that the information we get from Xε is actually information about the Lévy
measure π(dx) of ζ(t) obtained via ζ(Tε). The dislocation measure ν(ds) and π(dx) are related
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by (3), which reads ∫
S ↓

∞∑
i=1

sif (si)ν(ds) =
∫

(0,+∞)

f (e−x)π(dx) (4)

for any suitable f (·) : [0,1] → [0,+∞). In particular, by Assumption B and the fact that
ν(S ↓) = 1, π(dx) is a probability measure, hence ζ(t) is a compound Poisson process. Infor-
mally, a typical observation takes the form ζ(Tε), which is the value of a subordinator with Lévy
measure π(dx) at its first passage time strictly above −log ε. The case α 
= 0 is a bit more in-
volved and reduces to the homogenous case by a time change; see Bertoin [4,5]. In terms of the
limit of the empirical measure Eε(g), we equivalently have

E (g) = 1

c(π)

∫ 1

0

g(a)

a
π(−loga,+∞)da = 1

c(π)

∫ +∞

0
g(e−x)π(x,+∞)dx

with c(π) = ∫
(0,+∞)

xπ(dx). The representation of E (g) as an integral with respect to π will
prove technically convenient. Except in the binary case (a particular case of interest, see Sec-
tion 4.1), knowledge of π(·) does not, in general, allow us to recover ν(·).

Measurements with limited accuracy. It is unrealistic to assume that we can observe exactly the
sizes ξu of the fragments. This becomes even more striking if the dislocation splits at a given time
into infinitely many fragments of non-zero size, a situation that we do not discard in principle.
Therefore, we replace (2) by the more realistic observation scheme Xε,σ := (ξ

(σ )
u , u ∈ Uε,σ ) with

Uε,σ := {
u ∈ U , ξ

(σ )
u− ≥ ε, ξ (σ )

u < ε
}

and

ξ (σ )
u := ξu + σUu. (5)

The random variables (Uu,u ∈ U ) are identically distributed and account for a systematic exper-
imental microstructure noise in the measurement of Xε , independent of Xε . We assume, further-
more, that for every u ∈ U ,

|Uu| ≤ 1 and E[Uu] = 0.

The noise level 0 ≤ σ = σ(ε) � ε is assumed to be known and represents the accuracy level of
the statistician. The observations ξu + σUu are further discarded below a threshold σ ≤ tε ≤ ε,
beyond which they become irrelevant, leading to the modified empirical measure

Eε,σ (g) :=
∑

u∈Uε,σ

1{ξ (σ)
u ≥tε}ξ

(σ )
u g

(
ξ (σ )
u /ε

)
.

In the sequel, we take tε = γ0ε for some (arbitrary) 0 < γ0 < 1 and assume further that σ ≤ 1
2 tε .
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3. Main results

3.1. A rate of convergence for the empirical measure

Definition 1. For κ > 0, we say that a non-lattice probability measure π(dx) defined on [0,+∞)

belong to �(κ) if
∫
[0,+∞)

eκxπ(dx) < +∞. We set �(∞) :=⋂
κ>0 �(κ).

For m > 0, let

C(m) :=
{
g : [0,1] → R, continuous, ‖g‖∞ := sup

x
|g(x)| ≤ m

}
and

C′(m) :=
{
g ∈ C(m) : [0,1] → R, differentiable, ‖g′‖∞ := sup

x
|g′(x)| ≤ m

}
.

Our first result exhibits explicit rates in the convergence Eε(g) → E (g) as ε → 0, extending
Bertoin [5], Proposition 1.12.

Theorem 1. We work under Assumptions A and B. Let 1 < κ ≤ ∞ and assume that π ∈ �(κ).

• For every m > 0 and 1 ≤ μ < κ , we have

sup
g∈C(m)

E
[(

Eε(g) − E (g)
)2]= o

(
εμ/(μ+1)

)
. (6)

• The convergence (6) remains valid if we replace Eε(·) by Eε,σ (·) and C(m) by C′(m). The
following additional error term must then be incorporated: for any 0 < μ < κ , we have

sup
g∈C′(m)

E
[(

Eε,σ (g) − Eε(g)
)2]= o(εμ/2) + O(σε−1). (7)

3.2. Statistical estimation

We study the estimation of π(·) by constructing estimators based on Eε(·) or, rather, Eε,σ (·). We
need the following regularity assumption.

Assumption C. The probability π(dx) is absolutely continuous with respect to the Lebesgue
measure: π(dx) = π(x)dx. Moreover, its density function x � π(x) is continuous on (0,+∞)

and satisfies lim supx→+∞ eϑxπ(x) < +∞ for some ϑ ≥ 1.

We distinguish two cases: the parametric case, where we estimate a linear functional of π(·)
of the form

mk(π) :=
∫ +∞

0
xkπ(x)dx, k = 1,2, . . . ,
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and the nonparametric case, where we estimate the function x � π(x) pointwise. In the latter
case, it will prove convenient to assess the local smoothness properties of π(·) on a logarithmic
scale. Henceforth, we consider the mapping

a � β(a) := a−1π(−loga), a ∈ (0,1). (8)

In the nonparametric case, we estimate β(a) for every a ∈ (0,1).

3.3. The parametric case

Preliminaries. For k ≥ 1, we estimate

mk(π) :=
∫ +∞

0
xkπ(x)dx =

∫ 1

0
log(1/a)kβ(a)da

by the correspondence (8), implicitly assumed to be well defined. We first focus on the case
k = 1. Choose a sufficiently smooth test function f (·) : [0,1] → R such that f (1) = 0 and let
g(a) := −af ′(a). Clearly,

E (g) = 1

c(π)

∫ 1

0

g(a)

a
π(−loga,+∞)da

(9)

= − 1

m1(π)

∫ 1

0
f ′(a)

∫ a

0
β(u)duda = 1

m1(π)

∫ 1

0
f (a)β(a)da.

Formally, taking f (·) ≡ 1 would identify 1/m1(π) since β(·) integrates to one, but this choice
is forbidden by the boundary condition f (1) = 0. We shall instead consider a family of regular
functions that are close to the constant function 1 while satisfying f (1) = 0.

Construction of the approximating functions. Let fγ : [0,1] → R with 0 < γ < 1 be a family
of smooth functions satisfying the following conditions:

• we have fγ (a) = 1 for a ≤ 1 − γ and fγ (1) = 0;
• we have

sup
γ>0

(‖fγ ‖∞ + γ ‖f ′
γ ‖∞ + γ 2‖f ′′

γ ‖∞) < +∞; (10)

• for every k ≥ 1 and some δ > 0, we have

sup
γ>0

sup
a∈(0,1)

{
γ 2|loga|k(a−1|fγ (1 − a)| + |f ′

γ (1 − a)|)+
(

γ

a

)1+δ

fγ (1 − a)

}
(11)

< +∞.

The family (fγ , γ > 0) mimics the behaviour of the target function f0(a) = 1 for 0 ≤ a < 1 and
f0(1) = 0 as γ → 0. Condition (11) is technical (and probably not optimal). An explicit choice
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of a family (fγ , γ > 0) satisfying (10) and (11) is given by

fγ (a) :=

⎧⎪⎨⎪⎩
1 if a ≤ 1 − γ ,

10

(
1 − a

γ

)3

− 15

(
1 − a

γ

)4

+ 6

(
1 − a

γ

)5

if 1 − γ ≤ a < 1,

0 if a = 1,

but other choices are obviously possible.
Construction of an estimator. We are now ready to give an estimator of the first moment m1(π)

of π and, more generally, of any moment mk(π), k ≥ 1. For a parametrization γ := γε → 0 to
be specified later, we set

gγε (a) := −af ′
γε

(a), a ∈ (0,1).

By Theorem 1, we expect Eσ,ε(gγε ) to be close to E (gγε ) which, in turn, is equal to

m1(π)−1
∫ 1

0 fγε (a)β(a)da, by (9). Since fγε ≈ 1 and β(·) is a density function, by appropri-
ate regularity assumptions on π , we may further expect this last quantity to be close to 1/m1(π).
We therefore set

m̂1,ε := 1

Eε,σ (gγε )
(12)

for an estimator of m1(π). More generally, for k > 1, we define successive moment estimators
as follows. Set hγε (a) := fγε (1 − a) log(1/a)k and g̃γε (a) := −ah′

γε
(a). The same heuristics as

before lead to the estimator

m̂k,ε := Eε,σ (g̃γε )

Eε,σ (gγε )
.

Upper rates of convergence. We can describe the performance of m̂k,ε under an additional
decay condition on π(·) near the origin.

Definition 2. For κ > 0, we say that the probability π(·) belong to the class R(κ) if
lim supx→0 x−κ+1π(x) < +∞. We set R(∞) :=⋂

κ>0 R(κ).

We obtain the following upper bound, under more stringent regularity assumptions on π than
in Theorem 1.

Theorem 2. We work under Assumptions A, B and C.

• For the estimation of m1(π), assume κ1 ≥ 4 and κ2 > 1.
• For the estimation of mk(π) with k ≥ 2, assume κ1 ≥ 4 and κ1 > κ2 > 1.

For any 1 ≤ μ < κ1, let m̂k,ε be specified by γε := εμ/(μ+1)(2κ2+1). The family(
ε−μ/(μ+1)

)κ2/(2κ2+1)(
m̂k,ε − mk(π)

)
is tight provided that

π ∈ �(κ1) ∩ R(κ2)
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and σε−3 remains bounded.

Some remarks: The convergence of m̂k,ε to mk(π) is of course no surprise, by (6). However,
the dependence on ε in the test function gγε (·) (in particular, gγε (·) is unbounded as ε → 0)
requires a slight improvement of Theorem 1. This can be done thanks to Assumption C; see
Proposition 2 in Section 5.3. The requirement σε−3 = O(1) ensures that the additional term
coming from the approximation of Eε(·) by Eσ,ε(·) is negligible.

Lower rates of convergence. Our next result shows that the exponent

μ

μ + 1

κ2

2κ2 + 1
≤ 1

2

in the rate of convergence of Theorem 2 is nearly optimal, to within an arbitrarily small polyno-
mial order.

Definition 3. Let π0(·) satisfy the assumptions of Theorem 2. The rate 0 < vε → 0 is a lower rate
of convergence for estimating mk(π0) if there exists a family πε(·) satisfying the assumptions of
Theorem 2 and a constant c > 0 such that

lim inf
ε→0

inf
Fε

max
π∈{π0,πε}

P[v−1
ε |Fε − mk(π)| ≥ c] > 0, (13)

where the infimum is taken (for every ε) over all estimators constructed from Xε,σ at level ε.

Definition 3 expresses a kind of local min–max information bound: given π0(·), one can find
πε(·) such that no estimator can discriminate between π0(·) and πε(·) at a rate faster than vε . We
further restrict our attention to binary fragmentations; see Section 4.1. In that case, the dislocation
measure satisfies ν(s1 + s2 
= 1) = 0 and, because of the conservation Assumption B, can be
represented as

ν(ds) = ρ(ds1)δ1−s1(ds2), (14)

where ρ(·) is a probability measure on [1/2,1].

Assumption D (Binary case). The probability measure ρ(·) associated with π(·) is absolutely
continuous and its density function is bounded away from zero.

Theorem 3. Assume that the fragmentation is binary and work under Assumption D. In the same
setting as in Theorem 2, the rate ε1/2 is a lower rate of convergence for estimating mk(π).

3.4. The nonparametric case

Preliminaries. Under local smoothness assumptions on the function β(·), we estimate β(a) for
every a ∈ (0,1). Given s > 0, we say that β(·) belongs to the Hölder class �(s) if there exists a
constant c > 0 such that ∣∣β(n)(y) − β(n)(x)

∣∣≤ c|y − x|{s}
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with s = n + {s}, where n is a non-negative integer and {s} ∈ (0,1]. We also need to relate β(·)
to the decay of its corresponding Lévy measure π(·). Again abusing notation, we identify �(κ)

with the set of β(·) such that exβ(e−x)dx ∈ �(κ), thanks to the inverse of (8), and likewise for
R(κ).

Construction of an estimator. We construct an estimator of β(·) in the same way as for the
parametric case: for a ∈ (0,1) and a normalizing factor 0 < γε → 0, set

ϕγε,a(x) := γ −1
ε ϕ

(
(x − a)/γε

)
,

where ϕ is a smooth function with support in (0,1) that satisfies the following oscillating prop-
erty: for some integer N ≥ 1,∫ 1

0
ϕ(a)da = 1,

∫ 1

0
akϕ(a)da = 0, k = 1, . . . ,N. (15)

The function ϕγε,a thus plays the role of a kernel centred around a. Set

ha,ε(x) = −xϕ′
γε,a

(x), x ∈ (0,1).

We have

E (ha,ε) = 1

m1(π)

∫ 1

0
ϕγε,a(x)β(x)dx,

by (9). By letting hε → 0 with an appropriate rate as ε → 0, we expect this term to be close
to β(a)/m1(π). Eventually, we can eliminate the denominator by means of our preliminary
estimator m̂1,ε . Our nonparametric estimator of β(a) thus takes the form

β̂ε(a) := m̂1,ε Eε,σ (ha,ε), a ∈ (0,1),

where m̂1,ε is the estimator of m1(π) defined in (12).
Upper rates of convergence. We have the following result.

Theorem 4. We work under Assumptions A, B and C. Let κ1 ≥ 4 and κ2 > 1. For any 1 ≤ μ <

κ1, let β̂ε(·) be specified by γε := εμ/(μ+1)(2s+3). For every a ∈ (0,1), the family(
ε−μ/(μ+1)

)s/(2s+3)(
β̂ε(a) − β(a)

)
is tight, provided that

β ∈ �(s) ∩ �(κ1) ∩ R(κ2)

for 0 < s < min{N,3κ2} and σε−3 remains bounded.

A proof of the (near) optimality, in the sense of the lower bound Definition 3 and in the spirit
of Theorem 3, is presumably a delicate problem that lies beyond the scope of the paper; see
Section 4.3.



Statistical analysis of fragmentation chains 405

4. Discussion

4.1. Binary fragmentations

The case of binary fragmentations is the simplest, yet is an important model of random frag-
mentation, where a particle splits into two blocks at each step (see, e.g., [7,8]). By using repre-
sentation (14), if we further assume that ρ(ds1) = ρ(s1)ds1 is absolutely continuous, then so is
π(dx) = π(x)dx and we have

π(x) = e−2x
(
ρ(e−x)1[0,log 2](x) + ρ(1 − e−x)1(log 2,+∞)(x)

)
(16)

for x ∈ [0,+∞) and

β(a) = a
(
ρ(a)1[1/2,1](a) + ρ(1 − a)1[0,1/2)(a)

)
, a ∈ [0,1]. (17)

In particular, the regularity properties of β(·) are obtained from the local smoothness of ρ(·) and
its behaviour near 1. For instance, if ρ(1 − a) = O(aκ−1) near the origin, for some κ > 0, then

π ∈ �(κ) ∩ R(κ).

4.2. Concerning Theorem 1

Theorem 1 readily extends to error measurements of the form E[|Eε(g)− E (g)|p] with 1 ≤ p ≤ 2.
The rate becomes ε−μp/2(μ+1) in (6) and σpε−p in (7) under the less stringent condition μ <

κ/2p.
Generally speaking, in (6), we obtain the (normalized) rate εμ/2(μ+1) for any μ < κ . Intu-

itively, we have a number of observations that should be of order ε−1, so the expected rate would
rather be ε1/2. Why can we not obtain the rate ε1/2, or simply εκ/2(κ+1)? The proof in Section 5.2
shows that we lose quite a lot of information when applying Sgibnev’s result (see Proposition 1
in Section 5.1) on the key renewal theorem for a random walk with step distribution π(·) in the
limit log(1/ε) → +∞.

Proposition 1 ensures that if π(·) has exponential moments up to order κ , then we can guaran-
tee in the renewal theorem the rate o(εμ) for any μ < κ with some uniformity in the test function,
a crucial point for the subsequent statistical applications. It is presumably possible to improve
this rate to O(εκ) by using Ney’s result [14]. However, a careful glance at the proof of Theorem 1
shows that we would then lose an extra logarithmic term when replacing εμ/2(μ+1) by εκ/(2κ+1).
More generally, exhibiting exact rates of convergence in Theorem 1 remains a delicate issue: the
key renewal theorem is sensitive to a modification of the distribution outside a neighbourhood of
+∞; see, for example, Asmussen [2], page 196.

4.3. Concerning Theorems 2 and 4

In the parametric case, we obtain the rate(
εμ/(μ+1)

)κ2/(2κ2+1) for all μ < κ1,
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which can be made arbitrary close to the lower bound ε1/2 by assuming κ1 and κ2 to be large
enough. The factor μ/(μ + 1) comes from Theorem 1, whereas the factor κ2/(2κ2 + 1) arises
when using the technical assumption π ∈ R(κ2). We do not know how to improve this.

In the nonparametric case, the situation is a bit different than in the parametric case: we now
obtain the rate (

εμ/(μ+1)
)s/(2s+3)

for all μ < κ1 (18)

for the estimation of β(a) for any a ∈ (0,1). In the limit κ1 → +∞, it becomes εs/(2s+3), which
can be related to more classical models in the nonparametric literature. Informally, a function
of d variables with degree of smoothness s observed in noise under the action of a smoothing
operator of degree ν (e.g., ν-fold integration) can be recovered with optimal rate εs/(2s+2ν+d);
see, for instance, [16]. Here, we have d = 1 and ν = 1 by the representation (9), so formula (18)
is consistent with the general nonparametric theory. This advocates in favour of the (near) opti-
mality of the result in the sense of Definition 3, but a complete proof lies beyond the scope of the
paper.

4.4. The Crump–Mode–Jagers alternative

As suggested by a referee, the statistical problem can be reformulated alternatively in terms
of the Crump–Mode–Jagers (CMJ) branching process. Consider a transformed point process
(τ1, τ2, . . .) defined by τi = −log si for s = (s1, s2, . . .) ∈ S ↓. The sequence (τ1, τ2, . . .) describes
the consecutive ages at childbearing for the individual assumed to be born at time zero. In our
setting, the resulting CMJ process is supercritical with Malthusian parameter 1 since e−τ1 +
e−τ2 + · · · = 1.

Let σu = −log ξu. We may now interpret σu as the individual forming the coming generation
at time t = −log ε. The empirical measure Eε now has the representation

Eε(g) =
∑

u∈U ,σu−τu≤t<σu

e−σug(e−σu+t )

= e−t
∑

u∈U ,σu−τu≤t<σu

e−σu+t g(e−σu+t )

and the last sum can be expressed in terms of a population size with random characteristics;
see [10]. This yields another interpretation of our statistical approach in terms of branching
processes, presumably more useful in other settings.

5. Proofs

We will repeatedly use the convenient notation aε � bε if 0 < aε ≤ cbε for some constant c > 0
which may depend on π(·) and on the constant m appearing in the definition of the class C(m)

or C′(m). Any other dependence on other ancillary quantities will be obvious from the context.
A function g ∈ C(m) is tacitly defined on the whole real line by setting g(a) = 0 for a /∈ [0,1].
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5.1. Preliminaries: Rates of convergence in the key renewal theorem

We state a special case of Sgibnev’s result [15] on uniform rates of convergence in the key
renewal theorem, an essential tool for this paper. Let F(dx) be a non-lattice probability distrib-
ution with positive mean m and renewal function F =∑∞

n=0 Fn� with F 0� := δ0, F 1� := F and
F (n+1)� := F � Fn�, n ≥ 0. We denote by T (F ) the σ -finite measure with density function∫

(x,+∞)

F (du)1[0,+∞)(x) −
∫

(−∞,x]
F(du)1(−∞,0)(x)

and define T 2(F ) := T (T (F )). Let ϕ(·) : R → [0,+∞) be a submultiplicative function, that is,
such that ϕ(0) = 1, ϕ(x + y) ≤ ϕ(x)ϕ(y). We then have (see, e.g., [9], Section 6)

−∞ < r1 := lim
x→−∞

logϕ(x)

x

≤ lim
x→+∞

logϕ(x)

x
=: r2 < +∞.

Assumption E. We have r1 ≤ 0 ≤ r2 and there exists r : R → R, an integrable function such that
the following conditions are fulfilled:

sup
x

|r(x)|ϕ(x) < +∞, lim|x|→∞ r(x)ϕ(x) = 0,

lim
x→+∞ϕ(x)

∫
[x,+∞)

r(u)du = lim
x→−∞ϕ(x)

∫
(−∞,x]

r(u)du = 0

and
∫

R
ϕ(x)T 2(F )(dx) < ∞. We call ϕ(·) a rate function and r(·) a dominating function.

Sgibnev’s result takes the following form.

Proposition 1 ([15], Theorem 5.1). We work under Assumption E. Then

lim|t |→∞ϕ(t) sup
ψ,|ψ(x)|≤|r(x)|

∣∣∣∣ψ � F(t) − m−1
∫

R

ψ(x)dx

∣∣∣∣= 0.

5.2. Proof of Theorem 1

Step 1: A preliminary decomposition. We first use the fact that for η > ε, during the fragmentation
process, the unobserved state Xη necessarily anticipates the state Xε . The choice η = η(ε) will
follow later. This yields the following representation:

Eε(g) =
∑
v∈Uη

ξv

∑
w∈U

1{ξv ξ̃
(v)
w−≥ε,ξv ξ̃

(v)
w <ε}ξ̃

(v)
w g

(
ξvξ̃

(v)
w /ε

)
,
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where, for each label v ∈ Uη and conditional on Xη, a new independent fragmentation chain

(ξ̃
(v)
w ,w ∈ U ) is started, thanks to the branching property; see Section 2.1. Now, define

λη(v) := 1{ξv−≥η,ξv<η}ξv

and

Yε(v, g) :=
∑
w∈U

1{ξv ξ̃
(v)
w−≥ε,ξv ξ̃

(v)
w <ε}ξ̃

(v)
w g

(
ξvξ̃

(v)
w /ε

)
.

We obtain the decomposition of Eε(g) − E (g) as the sum of a centred and a bias term:

Eε(g) − E (g) = Mε,η(g) + Bε,η

with

Mε,η(g) :=
∑
v∈U

λη(v)
(
Yε(v, g) − E[Yε(v, g)|λη(v)])

and

Bε,η(g) :=
∑
v∈U

λη(v)
(
E[Yε(v, g)|λη(v)] − E (g)

)
,

where we have used the conservative property (1) in order to incorporate the limit term E (g) into
the sum in v.

Step 2: The term Mε,η(g). Conditional on the σ -field generated by the random variables
(1{ξv−≥η}ξv, v− ∈ U ), the variables (Yε(v, g), v ∈ U ) are independent. Therefore,

E[Mε,η(g)2] ≤
∑
v∈U

E[λη(v)2
E[Yε(v, g)2|λη(v)]]. (19)

Thus, we first need to control the conditional variance of Yε(v, g)2 given λη(v) = u, for 0 ≤ u ≤
η, since P-almost surely, λη(v) ≤ η. Moreover, we have Yε(v, g) = 0 on the event {λη(v) < ε},
hence we may assume that ε ≤ u ≤ η.

To this end, we will use the following representation property.

Lemma 1. Let f (·) : [0,+∞) → [0,+∞). Then

E

[∑
v∈Uη

ξvf (ξv)

]
= E

�[f (χ(Tη))], (20)

where χ(t) = exp(−ζ(t)) and (ζ(t), t ≥ 0) is a subordinator with Lévy measure π(·) defined on
an appropriate probability space (��,P

�) and

Tη := inf{t ≥ 0, ζ(t) > −logη}.
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The proof readily follows the construction of the randomly tagged fragment as elaborated in
the book by Bertoin [3] and is thus omitted. We plan to bound the right-hand side of (19) using
Lemma 1. For 0 < ε ≤ u ≤ η, we have

E[Yε(v, g)2|λη(v) = u] = E

[( ∑
w∈Uε/u

ξ̃ (v)
w g

(
εu−1ξ̃ (v)

w

))2∣∣∣λη(v) = u

]

≤ E

[ ∑
w∈Uε/u

ξ̃ (v)
w g

(
εu−1ξ̃ (v)

w

)2
∣∣∣λη(v) = u

]
,

where we have used Jensen’s inequality combined with (1). Applying Lemma 1, we derive

E[Yε(v, g)2|λη(v) = u] ≤ E
�
[
g
(
uε−1e−ζ(Tε/u)

)2]
. (21)

Let U(·) denote the renewal function associated with the subordinator (ζ(t), t ≥ 0). By [3],
Proposition 2, Chapter III, the right-hand side of (21) is equal to∫

[0,−log(ε/u))

dU(s)

∫
(−log(ε/u)−s,+∞)

g(uε−1e−x−s)2π(dx)

=
∫

[0,−log(ε/u))

dU(s)

∫
S ↓

∞∑
i=1

si1{si<εu−1es }g(siuε−1e−s)2ν(ds)

� 1

c(π)
‖g‖2∞ log(u/ε),

where we have successively used the representation (4) and the upper bound U(s) � s/c(π); see,
for instance, [3], Proposition 1, Chapter III. Therefore, for ε ≤ u ≤ η,

E[Yε(v, g)2|λη(v) = u] � 1

c(π)
‖g‖2∞ log(η/ε).

Going back to (19), since λη(v)2 ≤ ηλη(v) and again using (1), we readily derive

E[Mε,η(g)2] � 1

c(π)
‖g‖2∞η log(η/ε) � η log(η/ε). (22)

Step 3: The bias term Bε,η(g). First, note that

E[Yε(v, g)|λη(v)] = ξ−1
v Eξv [Eε(g)],

P-almost surely, so

Bε,η(g) =
∑
v∈U

λη(v)
(
ξ−1
v Eξv [Eε(g)] − E (g)

)
. (23)
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Conditioning on the mark of the parent v− = ω of v and applying the branching property, we get
that Eξv [Eε(g)] can be written as

Eξv

[∑
ω∈U

1{̂ξω≥ε}̂ξω

∫
S ↓

∞∑
i=1

1{̂ξωsi<ε}sig(̂ξωsiε
−1)ν(ds)

]
,

where the (̂ξw,w ∈ U ) are the sizes of the marked fragments of a fragmentation chain with same
dislocation measure ν(·), independent of (ξv, v ∈ U ). Set

Hg(z) :=
∫

S ↓

∞∑
i=1

1{si<e−z}sig(sie
z)ν(ds), z ≥ 0.

It follows that Eξv [Eε(g)] is equal to

Eξv

[ ∞∑
n=0

∑
|ω|=n

1{log ξ̂ω≥log ε}̂ξωHg(log ξ̂ω − log ε)

]

= ξvE

[ ∞∑
n=0

∑
|ω|=n

1{log ξ̂ω≥log(ε/ρ)}̂ξωHg

(
log ξ̂ω − log(ε/ρ)

)]
ρ=ξv

,

by self-similarity, with the notation |ω| = n if ω = (ω1, . . . ,ωn) ∈ U . Using [5], Proposition 1.6,
we finally obtain

Eξv [Eε(g)] = ξv

∞∑
n=0

E
[
1{Sn≤log(ρ/ε)}Hg

(
log(ρ/ε) − Sn

)]
ρ=ξv

,

where Sn is a random walk with step distribution π(dx). Note that this can also be written as

ξ−1
v Eξv [Eε(g)] = F � ψ

(
log(ξv/ε)

)
, (24)

where F = ∑∞
n=0 πn� denotes the renewal measure associated with the probability measure π

and ψ(z) = 1z≤0Hg(−z). In order to bound

ξ−1
v Eξv [Eε(g)] − E (g),

we plan to apply a version of the renewal theorem with explicit rate of convergence as given
in Sgibnev [15]; see Proposition 1 in Section 5.1. We take a rate function ϕ(z) := exp(μ′z) for
some arbitrary μ′ < κ/2, a dominating function r(z) := e−κ|z| and set F := π in Proposition 1.
We can write, for z < 0,

Hg(−z) = 1{z≤0}
∫

(−z,+∞)

g(e−x−z)π(dx),
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by (4). Since g(·) has support in [0,1] and π ∈ �(κ),

|Hg(−z)| ≤
∫

(−z,+∞)

|g(e−x−z)|π(dx) � eκz.

Therefore, |1{z≤0}Hg(−z)| � r(z) for all z ∈ R. Since κ > 2μ′, Assumption E of Proposition 1 is
readily checked. Now, let A > 0 (depending only on κ , m and π(·)) such that, if log(ξv/ε) ≥ A,
then, by Proposition 1,

∣∣∣∣ξ−1
v Eξv [Eε(g)] − 1

E�[S1]
∫ +∞

0
Hg(z)dz

∣∣∣∣≤ (
ε

ξv

)μ′

. (25)

We next note that

1

E�[S1]
∫ +∞

0
Hg(z)dz = E (g).

Introducing the family of events {log(ξv/ε) ≥ A} in the sum (23), we obtain the following de-
composition:

Bε,η(g)2 � I + II

with

I :=
∑
v∈Uη

ξv1{log(ξv/ε)>A}
(
ξ−1
v Eξv [Eε(g)] − E (g)

)2

and

II :=
∑
v∈Uη

ξv1{log(ξv/ε)≤A}
(
ξ−1
v Eξv [Eε(g)] − E (g)

)2
.

By (25), we have

I ≤ ε2μ′ ∑
v∈Uη

1{−log ξv<−A+log(1/ε)}ξv exp
(
2μ′(−log ξv)

)
.

Integrating with respect to P and applying Lemma 1, in the same way as in step 2, we have

E[I ] ≤ ε2μ′
E

�
[
e2μ′ζ(Tη)

]
= ε2μ′

∫
[0,−logη)

dU(s)

∫
(−logη−s,+∞)

e2μ′(s+x)π(dx)

≤ ε2μ′
∫

[0,−logη)

e2μ′s dU(s) � (εη−1)2μ′
log(1/η)
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for small enough ε and where we have used π ∈ �(κ) with 2μ′ < κ . For the term II, we first
note that by (1) and self-similarity,

Eξv

[∑
u∈Uε

ξ̂u

]
= ξv, Pξv -almost surely,

hence (
ξ−1
v Eξv [Eε(g)] − E (g)

)2 ≤ 4‖g‖2∞, Pξv -almost surely. (26)

In the same way as for the term I , we derive

E[II] � E

[∑
v∈Uη

ξv1{−log ξv≥−A+log(1/ε)}
]

= P
�[ζ(Tη) ≥ −A + log(1/ε)]

≤
∫

[0,−logη)

dU(s)

∫
(−A+log(1/ε)−s,+∞)

π(dx)

� εμ′
log(1/η)

for small enough ε. Using all of the estimates together, we conclude that

E[Bε,η(g)2] �
(
εμ′ + (εη−1)2μ′)

log(1/η). (27)

Step 4: Proof of (6). Using the estimates (22) and (27), we have

E
[(

Eε(g) − E (g)
)2] � E[Mε,η(g)2] + E[Bε,η(g)2]

� η log(η/ε) + (εη−1)2μ′
log(1/η) + εμ′

log(1/η).

The choice η(ε) := ε2μ′/(2μ′+1) yields the rate

εmin{2μ′/(2μ′+1),μ′} log(1/ε) for any 0 < μ′ < κ/2.

We thus obtain a rate of the form o(εμ/(μ+1)) for any 1 ≤ μ < κ . The conclusion follows.
Step 5: Proof of (7). We plan to use the following decomposition:

Eε,σ (g) − Eε(g) = I + II

with

I :=
∑
u∈U

(
1{ξ (σ)

u− ≥ε,ξ
(σ)
u <ε} − 1{ξu−≥ε,ξu<ε}

)̃
ξ (σ )
u g

(
ξ (σ )
u /ε

)
and

II :=
∑
u∈Uε

(̃
ξ (σ )
u g

(
ξ (σ )
u /ε

)− ξug(ξu/ε)
)
,
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where we have set ξ̃
(σ )
u := ξ

(σ )
u 1{ξ (σ)

u ≥tε}. Clearly,∣∣1{ξ (σ)
u− ≥ε,ξ

(σ)
u <ε} − 1{ξu−≥ε,ξu<ε}

∣∣ ≤ 1{ξ (σ)
u− ≥ε,ξu−<ε} + 1{ξ (σ)

u <ε,ξu≥ε}
+ 1{ξu−≥ε,ξ

(σ)
u− <ε} + 1{ξu<ε,ξ

(σ)
u ≥ε}.

Let δ > σ/ε and ω = u or u−. Since |Uω| ≤ 1 for every ω, we can readily check that{
ξ (σ )
ω ≥ ε, ξω < ε

}⊂ {(1 − δ)ε ≤ ξω < ε}
and {

ξω ≥ ε, ξ (σ )
ω < ε

}⊂ {ε ≤ ξω < (1 + δ)ε}.
It follows that |I | ≤ III + IV with

III :=
∑
u∈U

1{(1−δ)ε≤ξu−≤ε(1+δ)}
∣∣̃ξ (σ )

u g
(
ξ (σ )
u /ε

)∣∣
and

IV :=
∑
u∈U

1{(1−δ)ε≤ξu≤(1+δ)ε}
∣∣̃ξ (σ )

u g
(
ξ (σ )
u /ε

)∣∣.
By choosing δ to be small enough, we may (and will) assume that ξ̃

(σ )
u � ξu. Conditioning on

the mark of the parent u− = v of u, using the branching property, Jensen’s inequality and the
conservative Assumption 1, we conclude that E[III2] is less than

E

[∑
v∈U

1{(1−δ)ε≤ξv≤ε(1+δ)}ξv

∫
S ↓

∞∑
i=1

sig
(
ε−1(ξvsi + σUv)

)2
ν(ds)

]

= E

[∑
ω∈U

1{(1−δ)ε≤ξω≤ε(1+δ)}ξωG1(ξω)

]

with

G1(a) :=
∫

S ↓

∞∑
i=1

siE
[
g
(
ε−1(asi + σU)

)2]
ν(ds)

and U distributed as the Uω. Likewise,

E[IV2] � E

[∑
u∈U

1{(1−δ)ε≤ξu≤ε(1+δ)}ξuG2(ξu)

]

with G2(a) := E[g(ε−1(a + σU))2]. For i = 1,2, the crude bound |Gi(a)| ≤ ‖g‖2∞ and the
genealogical representation argument used in step 3 enable us to bound either E[III2] or E[IV2]
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by

‖g‖2∞
∞∑

n=0

P
�[−log(1 + δ) ≤ Sn − log(1/ε) ≤ −log(1 − δ)],

where Sn is a random walk with step distribution π(·). We proceed as in step 3 and apply Propo-
sition 1. The above term converges to

m1(π)−1 log

(
1 + δ

1 − δ

)
� δ

uniformly in δ, provided that δ is bounded, at rate εμ′
for any 0 < μ′ < κ/2, and is thus of order

δ + εμ′
. We next turn to the term II. We have II := V + VI + VII with

V :=
∑
u∈Uε

ξu

(
g
(
ξ (σ )
u /ε

)− g(ξu/ε)
)
,

VI := σ
∑
u∈Uε

Uu1{ξ (σ)
u ≥tε}g

(
ξ (σ )
u /ε

)
,

VII := −
∑
u∈Uε

ξu1{ξ (σ)
u <tε}g

(
ξ (σ )
u /ε

)
.

From g ∈ C′(m), (1), Jensen’s inequality and a Taylor expansion, we derive that

E[V 2] ≤ ‖g′‖2∞σ 2ε−2.

From |Uu| ≤ 1 and the inclusion {ξ (σ )
u ≥ tε} ⊂ {ξu ≥ tε − σ }, we derive

E[VI2] ≤ ‖g‖2∞
σ 2

(tε − σ)2
E

[(∑
u∈Uε

ξu

)2]
� σ 2

ε2
,

where we have used the fact that tε = γ0ε with 0 < γ0 < 1 and σ ≤ tε/2. Likewise, the inclusion
{ξ (σ )

u < tε} ⊂ {ξu ≤ tε + σ } and Lemma 1 yield

E[VII2] ≤ ‖g‖2∞P
�[−logχ(Tε) > −log(tε + σ)] � εμ′

log(1/ε)

for any 0 < μ′ < κ/2, along the same lines as for the bound of the right-hand side of (21) in
step 2. Putting all of the estimates together with, for instance, δ := σ/2ε, we finally obtain a rate
of the form

εμ′
log(1/ε) + σε−1 for any 0 < μ′ < κ/2,

which can be written as o(εμ/2) + O(σε−1) for any 0 < μ < κ . We thus obtain (7) and the proof
of Theorem 1 is complete.



Statistical analysis of fragmentation chains 415

5.3. Proof of Theorem 2

Preliminaries. We begin with a technical lemma.

Lemma 2. We work under Assumption C. Assume, moreover, that π ∈ R(κ2) with κ2 > 1. We
have

sup
a∈(0,1)

β(a) < +∞.

Proof. By Assumption C, x � π(x) is continuous on (0,+∞), hence β(a) = a−1π(−loga) is
continuous on (0,1) and it suffices to show that β(·) is bounded in the vicinity of 0 and 1. By
assumption, π(x) � e−ϑx for some ϑ ≥ 1 near +∞, so β(a) � aϑ−1 near the origin and this
term remains bounded as a → 0. By assumption, we also have π ∈ R(κ2), so π(x) � xκ2−1 near
the origin, therefore β(a) � (−loga)κ2−1 near 1 and this term remains bounded as a → 1 since
κ2 > 1. �

Let 0 < bε → 0 as ε → 0. For m > 0, define the class

C̃bε (m) := {g ∈ C(m), |supp(g)| ≤ mbε}.
We have the following extension of Theorem 1.

Proposition 2. We work under Assumptions A, B and C. Assume that π ∈ �(κ1) ∩ R(κ2) with
κ1, κ2 > 1. Then, for every 1 ≤ μ < κ1 + 1,

sup
g∈C̃bε (m)

E
[(

Eε(g) − E (g)
)2]= o

(
εμ/(μ+1)bε

)
.

Proof. We carefully revisit steps 2–4 of the proof of Theorem 1, under the additional Assumption
C, and we write g(·) = gε(·) to emphasize that g(·) may now depend on the asymptotics.

In step 2, the right-hand side of (21) is now bounded by the following chain of inequalities:∫ −log(ε/u)

0
dU(s)

∫ +∞

−log(ε/u)−s

gε(uε−1e−x−s)2π(x)dx

=
∫ −log(ε/u)

0
dU(s)

∫ εu−1es

0
gε(xuε−1e−s)2β(x)dx

≤ sup
a∈(0,1)

β(a)u−1ε

∫
[0,−log(ε/u))

es dU(s)

∫ 1

0
gε(x)2 dx � bε log(u/ε),

where we have used Lemma 2, the fact that | supp(gε)| � bε and U(s) � s/c(π) again. Therefore,

E[Yε(v, g)2|λη(v) = u] � bε log(η/ε),
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hence

E[Mε,η(g)2] � bεη log(η/ε).

In step 3, we replace g(·) by gε(·) in Eε(g) and E (g). We first consider the term I . We need to be
careful when applying Proposition 1 because Hgε(z) now depends on ε. By the Cauchy–Schwarz
inequality, for z < 0,

|Hgε(−z)| ≤
(∫ +∞

−z

gε(e
−x−z)2π(x)dx

)1/2(∫ +∞

−z

π(x)dx

)1/2

� ez/2
(∫ 1

0
gε(y)2β(yez)dy

)1/2

eκ1z/2 � b1/2
ε ez(1+κ1)/2,

again using the fact that supa β(a) � 1. We can therefore apply Proposition 1 when 0 < μ′ <

(1 + κ1)/2 with rate function ϕ(z) := exp(μ′z), dominating function r(z) := e−(1+κ1)|z|/2, test
function ψ(z) := b

−1/2
ε 1z≤0Hg(z) and F := π . We then obtain, along the same lines as in step 3,

for 0 < μ′ < (1 + κ1)/2, the estimate

E[I ] � b1/2
ε (εη−1)2μ′

log(1/η).

For the term II, it suffices to prove that both ξ−1
v Eξv [Eε(gε)] and E (gε) are smaller in order

than b
1/2
ε ; recall (26). For the first term, this follows from the previous bound on Hgε(z) and the

representation (24). For E (gε), since π ∈ �(κ1) with κ1 > 1, we have, successively,

|E (gε)| ≤ 1

c(π)

∫ 1

0

|gε(a)|
a

∫ +∞

log(1/a)

π(x)dx da

�
∫ 1

0
|gε(a)|aκ1−1 da �

∫ 1

0
|gε(a)|da � bε.

We eventually obtain

E[Bε,η(g)2] � bε

(
εμ′ + (εη−1)2μ′)

log(1/η)

for any 0 < μ′ < (1 + κ1)/2. The trade-off between Mε,η(gε) and Bε,η(gε) yields the rate

εmax{2μ′/(2μ′+1),μ′}bε for any 0 < μ′ < (1 + κ1)/2,

which is of the form o(εμ/(μ+1)bε) for any 1 ≤ μ < 1 + κ1, hence the result. �

Completion of proof of Theorem 2. By the representation formula (9), we can write

E (gγε ) − m1(π)−1 = 1

m1(π)

∫ 1

1−γε

(
fγε (a) − 1

)
β(a)da,



Statistical analysis of fragmentation chains 417

where the integral is taken over [1 − γε,1] since fγε (a) = 1 on [0,1 − γε] and β(·) is a density
function with respect to the Lebesgue measure on (0,1). We further have∣∣∣∣∫ 1

1−γε

(
fγε (a) − 1

)
β(a)da

∣∣∣∣� ∫ −log(1−γε)

0
π(x)dx � γ κ2

ε

since ‖fγ ‖∞ � 1, by (10), π ∈ R(κ2) and −log(1 − x) � x for small enough x ≥ 0. We deduce
that

|E (gγε ) − m1(π)−1| � γ κ2
ε . (28)

Next, for some c > 0, γεgγε ∈ C̃γε (c), hence, for any 0 < μ < κ1, Proposition 2 entails that

E[|Eε(gγε ) − E (gγε )|] � γ −1/2
ε εμ/(2μ+2). (29)

Moreover,

g′
γε

(a) = −f ′
γε

(a) − af ′′
γε

(a),

hence, by property (10), we have γ 2
ε gγε ∈ C′(c) for some c > 0. Applying (7) of Theorem 1, we

deduce that

E[|Eε(gγε ) − Eε,σ (gγε )|] � γ −2
ε [(σε−1)1/2 + εμ′/4] (30)

for any 0 < μ′ < κ1. The specification γε = εμ/(μ+1)(2κ2+1) yields the correct rate for (28) and
(29). The assumption that σε−3 is bounded ensures that the term γ −2

ε (σε−1)1/2 in (30) is as-
ymptotically negligible since κ2 ≥ 1. Using the fact that κ1 ≥ 4, the term γ −2

ε εμ/4 also proves
negligible by taking μ′ sufficiently close to 4. The conclusion readily follows for m̂1,ε .

We now turn to higher moment estimators. Thanks to the proof for the case k = 1, it suffices
to show that

m1(π)Eε,σ (g̃γε ) →
∫ 1

0

(
log

1

a

)k

β(a)da

in probability with the correct rate as ε → 0. Note, first, that by representation (9),

E (g̃γε ) = 1

m1(π)

∫ 1

0
hγε (a)β(a)da

= 1

m1(π)

∫ 1

0
fγε (1 − a)

(
log

1

a

)k

β(a)da,

therefore

m1(π)E (g̃γε ) −
∫ 1

0

(
log

1

a

)k

β(a)da =
∫ γε

0

(
fγε (1 − a) − 1

)(
log

1

a

)k

β(a)da
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since fγε (1 − a) = 1 if a ≥ γε . It follows that∣∣∣∣∫ γε

0

(
fγε (1 − a) − 1

)(
log

1

a

)k

β(a)da

∣∣∣∣ � ∫ γε

0

(
log

1

a

)k

β(a)da �
∫ +∞

log 1/γε

xkπ(x)dx

�
(∫ +∞

−logγε

π(x)dx

)1−δ′(∫ +∞

0
xk/δ′

π(x)dx

)δ′

� γ κ1(1−δ′)
ε

for any 0 < δ′ < 1, by Hölder’s inequality and where we have used the fact that π ∈ �(κ1).
The second integral in the last line is finite by Assumption C. Since the choice of δ′ is free, the
choice of γε and the assumption that κ1 > κ2 show that this term is asymptotically negligible
with respect to (εμ/(μ+1))κ2/(2κ2+1). Therefore, it suffices to show that

Tε = Eε,σ (g̃γε ) − E (g̃γε )

has order (εμ/(μ+1))κ2/(2κ2+1). We split Tε = Tε,1 + Tε,2 with

Tε,1 = Eε,σ (g̃γε ) − Eε(g̃γε ) and Tε,2 = Eε(g̃γε ) − E (g̃γε ).

Lemma 3. There exists some constant c > 0, independent of ε, such that:

• we have γ 2
ε g̃γε ∈ C′(c);

• the decomposition

g̃γε (a) = q1,γε (a) + q2,γε (a) (31)

holds, so that for any 0 < δ′ < 1, we have γ δ′
ε q1,γε ∈ C̃γε (c) and γ δ′

ε q2,γε ∈ C(c).

Proof. Tedious but straightforward computations show that

g̃′
γε

(a) = ck,1a
−1(loga)k−2fγε (1 − a)

+ [ck,2(loga)k + ck,3(loga)k−1]f ′
γε

(1 − a) + ck,4a(loga)kf ′′
γε

(1 − a)

with explicit constants ck,1 = (−1)k+1k(k − 1), ck,2 = (−1)k , ck,3 = (−1)k(k + 1)k and ck,4 =
(−1)k+1. Using property (11) of fγε , one readily checks that the four terms multiplied by γ 2

ε

are bounded. For the last term, corresponding to the constant ck,4, the property (10) of fγε also
shows that this term multiplied by γ 2

ε has the correct order, so γ 2
ε g̃ε ∈ C′(c) for some c > 0.

For the second part of the lemma, we have (31) with

q1,γε (a) = (−1)kaf ′
γε

(1 − a)(loga)k

and

q2,γε (a) = (−1)k+1fγε (1 − a)k(loga)k−1.
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By construction of fγε , we have supp(q1,γε ) ⊂ [0, γε]. It follows that for any 0 < δ′ < 1 and
a ∈ (0,1), we have

|q1,γε (a)| ≤ aδ′ |loga|ka1−δ′ |f ′
γε

(1 − a)| � γ 1−δ′
ε ‖f ′

γε
‖∞ � γ −δ′

ε ,

where we have used the fact that supa∈(0,1) a
δ′ |loga|k < +∞, the fact that supp(q1,γε ) ⊂ [0, γε]

and property (10). We conclude that γ δ′
ε q1,γε ∈ C̃γε (c) for some c > 0.

For the term q2,γε , we have, for any a ∈ (0, γε] and any 0 < δ′ < 1,

|q2,γε (a)| ≤ kaδ′ |loga|k−1a1+δ−δ′
((

γ

a

)1+δ

fγ (1 − a)

)
� 1,

where we have again used the fact that supa∈(0,1) a
δ′ |loga|k < +∞ and property (11). For a ≥ γε ,

we directly have |q2,ε(a)| � |logγε|k−1, which is smaller in order than γ −δ′
ε as ε → 0. �

The first part of Lemma 3 enables us to apply (7) of Theorem 1: we obtain

E[|Tε,1|] � γ −2
ε [(σε−1)1/2 + εμ′/4]

for any 0 < μ′ < κ1 and this term is asymptotically negligible in the same way as for (30). The
second part of Lemma 3 enables us to apply Proposition 2 to the term q1,γε and Theorem 1 to the
term q2,γε , respectively. It follows that

E[|T2,ε|] ≤ E[|q1,γε |] + E[|q2,γε |]
� γ 1/2

ε γ −δ′
ε εμ/2(μ+1) + γ −δ′

ε εμ/2(μ+1) � γ −δ′
ε εμ/2(μ+1).

One readily checks that the choice δ′ < 1/2 shows that this term is negligible. The proof of
Theorem 2 is thus complete.

5.4. Proof of Theorem 3

Without loss of generality, we consider the homogeneous case with α = 0. We may also assume
that σ = 0 since adding experimental noise to the observation of the fragments only increases
the error bounds.

Step 1: An augmented experiment. In the binary case, the dislocation measure ν(ds) is equiva-
lently expressed via a probability measure on [1/2,1] with density function a � ρ(a); see (14).

We prove a lower bound in the augmented experiment, where one can observe all of the sizes
X̃ε of the fragments until they become smaller than ε, namely,

X̃ε := {ξu, ξu− ≥ ε} ∪ {ξu,u ∈ Uε}.
Clearly, taking the infimum over all estimators based on X̃ε instead of Xε = Xε,0 only reduces
the lower bound.
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For every u ∈ Uε , we have ξu− ≥ ε. By the conservative Assumption B, there are at most
ε−1 such ξu−, so Card Uε ≤ 2ε−1. For every node u ∈ U , the fragmentation process gives rise to
two offspring with sizes ξuU and ξu(1 − U), where U is a random variable independent of ξu

with density function ρ(·). Therefore, the process of the sizes of the fragments in the enlarged
experiment can be realized by fewer than

2ε−1
(

1 + 1

2
+ · · · + 1

2k(ε)

)
≤ �4ε−1� + 1 =: n(ε)

independent realizations of the law ρ(·), where k(ε) := log2(2/ε), assumed to be an integer with
no loss of generality.

In turn, Theorem 3 reduces to proving that ε1/2 is a lower rate of convergence for estimating
mk(π) based on the observation of an n(ε)-sample of the law ρ(·). The one-to-one correspon-
dence between ρ(·) and π(·) is given in (16).

Step 2: Construction of πε . We write ρπ(·) to emphasize the dependence on π(·). Let

φk(a) := a log(1/a)k + (1 − a) log
(
1/(1 − a)

)k
, a ∈ [1/2,1].

From (17), we have

mk(π0) =
∫ 1

1/2
φk(a)ρπ0(a)da.

Let 0 < τ < 1. Choose a function ψk(·) : [1/2,1] → R such that

‖ψk‖∞ ≤ τ inf
a

ρπ0(a),

∫ 1

1/2
ψk(a)da = 0, r(k) :=

∫ 1

1/2
φk(a)ψk(a)da 
= 0,

a choice which is obviously possible thanks to Assumption D. For ε > 0, define

ρπε (a) := ρπ0(a) + ε1/2ψk(a), a ∈ [1/2,1].
(Therefore, (16) defines πε(·) unambiguously.) By construction, ρπε (·) is a density function on
[1/2,1] and has a corresponding binary fragmentation with Lévy measure given by πε(·). More-
over,

mk(πε) = mk(π0) + r(k)ε1/2.

Step 3: A two-point lower bound. The following chain of arguments is fairly classical. We
denote by P̃π the law of the independent random variables (Ui, i = 1, . . . , n(ε)) with common
density ρπ(·) that we use to realize the augmented experiment.

Let Fε be an arbitrary estimator of mk(π) based on X̃ε . Put c := |r(k)|/2. We have

max
π∈{π0,πε}

P̃π [ε−1/2|Fε − mk(π)| ≥ c]

≥ 1
2

(̃
Pπ0 [ε−1/2|Fε − mk(π0)| ≥ c] + P̃πε [ε−1/2|Fε − mk(πε)| ≥ c])

≥ 1
2 Ẽπ0

[
1{ε−1/2|Fε−mk(π0)|≥c} + 1{ε−1/2|Fε−mk(πε)|≥c}

]− 1
2‖P̃π0 − P̃πε‖TV,
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where ‖ · ‖TV denotes the total variation distance between probability measures. By the triangle
inequality, we have

ε−1/2(|Fε − mk(π0)| + |Fε − mk(πε)|
)≥ |r(k)| = 2c,

so one of the two indicators within the expectation above must be equal to one with full P̃π0 -
probability. Therefore,

max
π∈{π0,πε}

P̃π [ε−1/2|Fε − mk(π)| ≥ c] ≥ 1
2 (1 − ‖P̃π0 − P̃πε‖TV)

and Theorem 3 is proved if

lim sup
ε→0

‖P̃π0 − P̃πε‖TV < 1. (32)

By Pinsker’s inequality, ‖P̃π0 − P̃πε‖TV ≤
√

2
2 (Ẽπ0 [log

dP̃π0
dP̃πε

])1/2 and

Ẽπ0

[
log

dP̃π0

dP̃πε

]
= −

n(ε)∑
i=1

Ẽπ0

[
log

ρπε (Ui)

ρπ0(Ui)

]

= −
n(ε)∑
i=1

Ẽπ0

[
log

(
1 + ε1/2ψk(Ui)ρπ0(Ui)

−1)− ε1/2ψk(Ui)ρπ0(Ui)
−1],

where we have used the fact that Ẽπ0[ψk(Ui)ρπ0(Ui)
−1] = ∫ 1

1/2 ψk(a)da = 0. We also have that

the term ε1/2|ψk(Ui)ρπ0(Ui)
−1| is smaller than τε1/2. Hence, for small enough τ ,∣∣−log

(
1 + ε1/2ψk(Ui)ρπ0(Ui)

−1)+ ε1/2ψk(Ui)ρπ0(Ui)
−1
∣∣≤ τ 2ε.

Therefore ‖P̃π0 − P̃πε‖TV ≤
√

2
2 τε1/2n(ε)1/2 and this quantity is bounded away from 1 by choos-

ing τ small enough, uniformly in n, so (32) follows. The proof of Theorem 3 is thus complete.

5.5. Proof of Theorem 4

We plan to use the following decomposition:

β̂(a) − β(a) = m̂1,ε Eε,σ (ha,ε) − β(a) = I + II + III + IV

with

I := m̂1,ε

(
Eε,σ (ha,ε) − Eε(ha,ε)

)
,

II := m̂1,ε

(
Eε(ha,ε) − E (ha,ε)

)
,

III := (
m̂1,ε − m1(π)

)
E (ha,ε),

IV := m1(π)E (ha,ε) − β(a).
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Considering I and II, the term m̂1,ε is bounded in probability by Theorem 2. By (7) in Theorem 1,
together with the fact that γ 3

ε ϕ′
γε,a

∈ C′(‖ϕ′′‖∞), we have

E[|Eε(ha,ε) − Eε,σ (ha,ε)|] � γ −3
ε [(σε−1)1/2 + εμ′/4] (33)

for any 0 < μ′ < κ1. By construction, we have γ 2
ε · ϕ′

γε,a
(·) ∈ C̃γε (‖ϕ′‖∞). Therefore, by Propo-

sition 2,

E
[(

Eε(ha,ε) − E (ha,ε)
)2]� γ −3

ε εμ/(μ+1). (34)

Considering III, note that for all a ∈ (0,1), the function ϕγε,a(·) has support in (0,1) for suffi-
ciently small ε since γε → 0. Using the representation (9), we then have

|E (ha,ε)| =
∣∣∣∣ 1

m1(π)

∫ 1

0
ϕγε,a(u)β(u)du

∣∣∣∣� m1(π)−1 sup
u∈(0,1)

β(u)

since
∫ 1

0 ϕγε,a(u)du = ∫ 1
0 ϕ(u)du = 1. Recall that supu∈(0,1) β(u) � 1, by Lemma 2. By Theo-

rem 2, we conclude that III2 has order

ε2μκ2/(μ+1)(2κ2+1) (35)

in probability. For IV , we first note that m1(π)E (ha,ε) = ∫ 1
0 ϕγε,a(u)β(u)du, hence

IV2 =
(∫ 1

0
ϕγε,a(u)β(u)du − β(a)

)2

.

The following argument is classical in nonparametric estimation: since β ∈ �(s) with s = n +
{s}, where n is a non-negative integer, by a Taylor expansion up to order n (recall that the number
N of vanishing moments of ϕ(·), recall (15), satisfies N > s), we obtain

IV2 � γ 2s
ε ; (36)

see, for instance, Tsybakov [16], Proposition 1.2. Combining (34) and (36), we see that the bal-
ance term γε = εμ/(μ+1)(2s+3) yields the correct rate for II and IV . Next, the condition κ2 ≥ s/3
ensures that the term (35) also has the correct order. Finally, the estimate (33) proves asymptoti-
cally negligible, thanks to the assumption that σε−3 is bounded and using the fact that κ1 ≥ 4, in
the same way as for (30) in the proof of Theorem 2. The proof of Theorem 4 is thus complete.
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